
Chapter 1Automated Reasoning andBledsoe's Dream for theField1 Larry WosMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439AbstractIn one sense, this article is a personal tribute to Woody Bledsoe. As such,the style will in general be that of private correspondence. However, since thisarticle is also a compendium of experiments with an automated reasoning pro-gram, researchers interested in automated reasoning, mathematics, and logicwill �nd pertinent material here. The results of those experiments stronglysuggest that research frequently bene�ts greatly from the use of an automatedreasoning program. As evidence, I select from those results some proofs thatare better than one can �nd in the literature, and focus on some theoremsthat, until now, had never been proved with an automated reasoning program,theorems that Hilbert, Church, and various logicians thought signi�cant. Toadd spice to the article, I present challenges for reasoning programs, includingquestions that are still open.1This work was supported by the Applied Mathematical Sciences subprogram of theO�ce of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



1.1 Coming AttractionsWoody, before getting deeply into the material, I feel certain that you wouldlike to have a brief review of what is to come in this letter/article. I think Iknow you fairly well, and I think you know me fairly well. But, in the latticeof knowledge that one person has about another, greater than my knowledgeof you and your knowledge of me is my knowledge of me|or, with regard tothe focus of this article, of my research. Mathematics does indeed o�er theuse of some appropriate|or farfetched|metaphors.I think of this document as a letter/article because it is partly a personaltribute to you|and hence, the style is often that of private correspondence|and partly a compendium of experiments with an automated reasoning pro-gram. At least to me, the results of those experiments strongly suggest thatresearch frequently bene�ts greatly from the use of an automated reasoningprogram. Even the most skeptical should be rather startled at what can nowbe done with a reasoning program. Especially for you, I promise to selectfrom those results some proofs that are better than one can �nd in the liter-ature. I also promise to focus on some theorems that, until now, had neverbeen proved with an automated reasoning program|theorems that Hilbert,Church, and various logicians thought worth their attention. Since|as you sowell know|I also wish to interest others in what the �eld has to o�er, someof my remarks and observations are directed to researchers in general.The focus of this article is a signi�cant fraction of your grand dream forautomated reasoning. From your entrance into the �eld of automated reason-ing until the present, you have daydreamed about a computer friend. Ratherthan the whole of your grand dream|which will take many years to realize, ifever|I shall concentrate on those aspects that are now a reality, reached farsooner than anyone could have guessed but two decades ago. Although theseaspects|also present from the beginning in my dream for the �eld of auto-mated reasoning|focus on but a fraction of your grander dream, neverthelessthe fraction is itself a signi�cant dream to have.You envision an automated reasoning program that will, when instructedfor the �rst time to prove one or more theorems, frequently succeed, andsucceed without the researcher playing a key role. You dream of reason-ing programs that contribute to mathematics or logic|by �nding a betterproof than expected, or producing a shorter proof than previously known,or answering an open question. And you hope to see mathematicians andlogicians using reasoning programs as assistants in their research. In thisarticle|although you will be hard to convince|I show that this signi�cantfraction of your dream is in fact a reality. As evidence, I outline a fragmentof the history of automated reasoning from its birth (approximately 1960)to the present, drawing mainly from experiences with automated reasoningprograms designed by colleagues at Argonne National Laboratory. You and Iboth know that I shall focus mainly on recent results obtained with McCune's2



powerful program OTTER [17]; I reserve my comments concerning other pro-grams for Note 6. Even in your terms, I may succeed in staying with thetruth|we shall see, yes?Rather than a detailed account of people and places, the presentationconsists of a sequence of snapshots showing how the e�ectiveness of automatedreasoning gradually increased. The snapshots focus on individual questions,problems, and theorems, and the successes and failures resulting from theirconsideration by some automated reasoning program. By discussing someof the recent advances in theory, implementation, and application, I answerthose who assert the impossibility of the e�ective automation of reasoning.How can such skeptics still exist?To address the three cited objectives of your and my dream for an auto-mated reasoning program and to illustrate how far automated reasoning hasadvanced, I give examples, examples of successfully proving theorems on the�rst try|and without much guidance from the user. A second set of examplesfocuses on �nding better proofs than were expected, producing shorter proofsthan were known, and answering open questions. The �nal examples concernthe current use of an automated reasoning program by mathematicians andlogicians.The rate of recent advances suggests|certainly to me|that still more ofyour dream is within reach, as the �eld continues to o�er intriguing challenges.Presented here are some of those challenges, including questions|still open|that are amenable to attack with an automated reasoning program. Althoughthe progress is accelerating, there will always exist challenges for research invarious areas of theory, implementation, and application.Now at this point I can hear you saying, \Larry, I hear you; my studentshear you; the world hears you. But, although I shouldn't be giving advice, Iwill. Tell me more, and tell the others who might be curious about the newresults|expand on what you have just said, and don't mind a little repetition.And, oh yes, let me see in writing some of your opinions and biases, so we canall have a crack at them."1.2 Motivation, Dedication, and OrganizationAs in any course, article, book, or meal, certain preliminaries are in orderbefore the entree is served. However, if you prefer to feast immediately, youmight simply fast-forward to the next section.The choice of subject for this letter/article is based in part on many stim-ulating and enlightening conversations I have had with you, Woody, and isbased in part on some recent successful experiments with McCune's auto-mated reasoning program OTTER. By anticipating what you might say, letme now expand somewhat on the three cited goals that are part of your dreamfor automated reasoning. As will be shown with various examples, regarding3



those important goals, your dream is now a reality.First, you and I envision an automated reasoning program that will, wheninstructed for the �rst time to prove one or more theorems, frequently succeed,and succeed without the researcher playing a key role. Yes, I agree with thethought I am certain you have at this moment, the key point concerns thedegree to which the success depends on the researcher's guidance. After all,you and I aim at a program that can function as a colleague|for example,�nding a proof with little more than a hint from us. As evidence that this goalhas been reached, I shall discuss (in Section 4) a successful attempt to useOTTER to prove 68 theorems suggested by Dana Scott, and (in Section 5) Ishall include a new axiom system and a shorter proof. If you were focusing onyour grand dream, you would at this point comment that we still do poorlywith a randomly selected theorem from a typical advanced mathematics text,and you would be right. But think of it: 68 theorems in one run with OTTER,with no knowledge of any of the corresponding proofs and|of at least fairsigni�cance|theorems suggested by Scott.You and I also dream of reasoning programs that contribute to mathemat-ics or logic|by �nding a better proof than expected, or producing a shorterproof than previously known, or|best of all|answering an open question.I shall give you examples of each of the three types of contribution. Whenyou read the full story|which I include in this article|of how that already-mentioned new axiom system was actually found, I suspect you will considerthe episode as evidence of contributing a bit to mathematics and logic. Onthe other hand, I suppose the story could also be used as evidence that atleast one person interested in automated reasoning conducts research in anodd way. Some gambles win, and some lose|and, sometimes, it is hard totell which has occurred.And of course you and I hope to see mathematicians and logicians us-ing reasoning programs as assistants in their research. Well, they now do,occasionally, use such programs, and some occurrences are brie
y discussed.Since I cannot with certainty rank the given three goals, I shall organizethis article by simply considering them in the order cited. The promisedoutline of a fragment of the history of automated reasoning from its birth(approximately 1960) to the present will provide an appropriate perspectivefor a full appreciation of the signi�cance of reaching the three objectives. Al-though from today's perspective the beginning was not particularly impressiveor promising|I think you share this view|you may �nd that the evidenceo�ered here shows that we have made impressive advances.The examples have been chosen to re
ect the state of the art at variouspoints between 1960 and 1990, beginning with an example that today's re-searcher would correctly classify as o�ering no challenge, and ending withexamples that|at least some|mathematicians and logicians consider inter-esting theorems. Far more interesting to me than history is the current stateof the art, for it demonstrates that research does bene�t greatly from the use4



of an automated reasoning program. The examples will occasionally be ac-companied by personal commentary concerning their signi�cance. To answerthose who assert the impossibility of the e�ective automation of reasoning,I also consider some of the recent advances in theory, implementation, andapplication.For many of the examples, the corresponding input clauses are includedand often even the clauses that illustrate a successful completion of the prob-lem under study. To aid you in judging whether the dice were loaded or thedeck stacked|even you might be a bit skeptical|I occasionally discuss theparticular approach that was used to succeed, the parameter settings, and thereasons for choosing that approach. Again, occasional commentary is given.Finally, to stimulate research, I include problems that I consider challenging|or even surpassing|the limits of current automated reasoning programs, ando�er questions|still open|that are amenable to attack with some existingprogram.Throughout this article, in addition to proving theorems, I also discussdiverse ways in which a general-purpose, automated reasoning program canaid research; I focus mainly on McCune's marvelous and portable programOTTER. As you know, this program is based on the paradigm common to theprograms designed by colleagues at Argonne. The lesser-known uses includethe checking of given proofs, the discovery of problems for testing programsand ideas, the systematic search for shorter proofs, and the identi�cation oferrors in the chosen axiom system. Appropriate examples will be includedhere. For the more familiar use of proving theorems, examples will be givento show how a researcher can move from one attack to another in search ofthat which is su�ciently e�ective, thus illustrating the versatility o�ered bysome automated reasoning programs.For the �nal item of this section, I note that, throughout this article, Iexpress various unsupported opinions, opinions based mostly on experimen-tation from 1964 to the present. I do so at your repeated encouragement.Indeed, when in conversation I have commented that I can give neither proofnor overwhelming data as the basis for certain utterances, you have repliedthat I need only issue an appropriate warning. So, Woody, here goes: Thisarticle contains commentary that is little more than opinion, and perhapseven bias. The commentary might add spice|for some, the taste of jalapenopeppers|to the presentation (in the following sections) of shorter proofs, newproofs, a new axiom system, new results, new techniques, and new uses of anautomated reasoning program. 5



1.3 A Fragment of Automated Reasoning fromBirth through AdolescenceThis small taste of history provides a perspective for the following sections.In those sections I focus on the new material, and in them I give the hardevidence that three goals of your grander dream have been reached, at leastto an important extent. The history presented in this section will also permitothers to see how far away those goals were|even a few years ago|how farwe have come, and (to some extent) how we got where we are.The �rst problem (the Davis-Putnam example [2]) I identify with the �eldis, by today's standards, not very impressive. The Davis-Putnam exampleasks for a proof of the unsatis�ability of the following set of clauses. (For thisand succeeding examples, the notation for clauses is that used to present aproblem to OTTER, where \-" means not and \|" means or.)P(x,y).-P(y,f(x,y)) | -P(f(x,y),f(x,y)) | Q(x,y).-P(y,f(x,y)) | -P(f(x,y),f(x,y)) | -Q(x,f(x,y) |-Q(f(x,y),f(x,y)).Before the introduction of binary resolution [21], this problem was acceptedas a challenge for reasoning programs. On the other hand, with the useof binary resolution, a proof was obtainable in 1963 in essentially no CPUtime. Of course, rather than deprecating the quality of the early research,the simplicity of the Davis-Putnam example illustrates what little power waso�ered by the programs existing before 1963. The problem did serve nicely asa beginning, and|more important to me|the ease with which it was solvedwith a reasoning program motivated my attempt to obtain computer proofsof theorems from the mathematics literature.The �rst theorem that was tried is a simple classroom exercise: If in agroup the square of every element x is the identity e, the group is commutative.The attempt to prove the theorem failed; after 2,000 clauses were retained,memory was exhausted (on an IBM 704 computer). Since the failure led to theformulation of the set of support strategy [31], I am still fond of the theorem,even though I recognize its utter simplicity. Since the importance of strategyin general and of the set of support strategy in particular has been repeatedlyproven [34], I am continually disappointed at the lack of research directed tothat aspect of automated reasoning. To stimulate such research|which was,I admit, one reason I wrote my second book [36]|you and I could pool ourpersonal resources and o�er a $20 prize for a signi�cant contribution in thearea of strategy.The �rst attempt to prove that, in a ring, the product of �x and �y is xyalso failed. The failure led to the use of lemma adjunction, speci�cally, thelemmas that assert that the product in either order of 0 and x is 0.6



The �rst attempt to prove that subgroups of index 2 are normal failed. Tosucceed, a primitive form of case analysis was used; one case focused on anelement in the subgroup, the other case on an element outside the subgroup.I �nd this theorem appealing, for it o�ers some di�culty for a person toprove, and it is somewhat signi�cant from the viewpoint of mathematics.The index 2 problem has added appeal for me, for the attack that succeededis representative of the way I prefer case analysis to be treated, rather than,say, by automatically splitting every ground clause into its individual literals.Even at the end of the sixties|because of the lack of power o�ered by thethen-current reasoning programs|I knew it was futile to attempt to seek acomputer proof of the \commutator theorem": If in a group the cube of everyx is the identity e, then [[x,y],y] = e for all x and y, where the commutator [x,y]of any two elements x and y of a group is the product of x, y, the inverse of x,and the inverse of y. Indeed, although I presented this theorem as an exampleof the potential use of paramodulation [20], its included clause-notation proofwas obtained by hand. As it turned out, the �rst computer proof of thetheorem was obtained with hyperresolution [22]; the �rst paramodulationproof by computer was not obtained until approximately six years after theproblem was suggested. This theorem is now, and will always be, importantto me, for its study solidi�ed my interest in paramodulation [33], an interestthat has never diminished. The theorem also holds special meaning for me, forRoss Overbeek's reading of the corresponding paper prompted him to enterthe �eld; any estimate of the value of that occurrence falls short of the mark.The four theorems and the results were typical of the 1960s, at least of theresearch I shared with colleagues. Failure was the expected outcome, and wewere seldom disappointed. In other words, the �rst of your goals for the �eldof automated reasoning|succeeding moderately often on the �rst attempt toprove a theorem not tried before|was far in the future, if reachable at all.As it turned out, and as I shall exemplify in the next section, two decadesafter the close of the 1960s would see the attainment of this goal. Examples ofsuccess on the �rst attempt include theorems of interest to Hilbert, Church,Frege, Bernays, Lukasiewicz, and Tarski.The second goal|a reasoning program making contributions to mathe-matics and logic|brings me even more excitement than does the �rst goal.However, except for a brief consideration in the late 1960s of attempting toanswer an open question concerning the independence of the �rst three axiomsof the �ve for a ternary Boolean algebra [30], I was not involved in such anactivity until the late 1970s. In fact, except for the discovery by Guard andassociates of SAM's lemma [4], I was almost certain such contributions wouldnot occur in my lifetime. Clearly|and most fortunately|I was in error, forthe period from 1978 to the present witnessed the answering of open ques-tions from various �elds of mathematics and logic, where the answers wereobtained with substantial assistance from an automated reasoning program.The �elds include combinatory logic, �nite semigroups, ternary Boolean alge-7



bra, Robbins algebra, equivalential calculus, and various areas of logic relatedto implicational calculus.As for your third goal|the actual use by mathematicians and logiciansof automated reasoning programs|until the early 1980s, the only item thatoccurs to me concerns Paul Halmos and his visit to the University of Texas.On that visit|and I checked this with Halmos|you and Halmos, using atheorem prover, were able to prove a theorem from Naive Set Theory [5].Unfortunately, my best recollection says that the theorem occurs betweenpages 43 and 45; perhaps you can supply the needed details. I am not surethis early 1970s incident actually quali�es for \use of an automated reasoningprogram by a mathematician", but it is in the vicinity.On the other hand, without doubt, Kalman's use at Argonne of the pro-gram ITP [12, 13] during his stay in the early 1980s clearly quali�es; Kalmanwas studying various aspects of equivalential calculus, in part in the contextof group theory. Kalman continues to conduct research with the aid of areasoning program; he is now using OTTER for additional studies in grouptheory. For a second example, Scott has just successfully used OTTER (onhis Macintosh) to obtain a proof of the completeness of a Lukasiewicz axiomsystem for sentential calculus.History is treating our goals well|or do you remain understandably skep-tical? Resist if you can, but I suggest such skepticismmay be di�cult to main-tain when you see what happened here in August 1990, research promptedby Scott's stimulating communication by email. Of course, there will alwaysexist research problems to solve in various areas of automated reasoning. Wewould not wish it any other way, for we have each spent a major fractionof our lives in this �eld. We have certainly shown that the automation ofcareful reasoning is far more than feasible, contrary to those who assert itsimpossibility. Although the type of reasoning found in mathematics is indeeddeep and beyond complete capturing, we have come much closer than I wouldhave guessed when I entered the �eld in 1963.Clearly|and this remark is particularly appropriate when addressed tome|care must be exercised to control the obvious enthusiasm; the last timeI exercised such care occurred in approximately 1802. Yes, I am aware thatyour grand dream is far from realized and that many graduate students couldoutperform the best of the existing automated reasoning programs if the com-petition centered on randomly selected theorems frommathematics texts. Buthow many of those students have answered an open question|even further,a question posed by Kaplansky? As you well know, such a question|as wellas other open questions|has been answered with crucial assistance from oneof Argonne's reasoning programs.Exercising my usual conservative approach, which brings to eye, ear, andmind a herd of stampeding elephants|just between you and me|the resultsof the next two sections are truly exciting and beautiful!8



1.4 Successes on the First Try: Goal 1In this and succeeding sections|�nally getting to new results and new uses|Iam going to emphasize the most recent experiences I have had with OTTER,experiences involving theorems suggested by Dana Scott. The theorems arefrom various logical calculi, such as sentential calculus. Beginning in 1879,such theorems have occupied the attention of Frege, Russell, Hilbert, Tarski,Bernays, Lukasiewicz, Church, and others of their stature; two books thatcontain pertinent material are [10, 11]. I shall try hard to tell the truth abouthow the successes occurred, under what conditions, in what order, and howeasily for my colleague McCune and me. However, when I am experimentingand not in the presence of one of my colleagues, I can easily lose the �nedetails. But, you need not worry; most, if not all, of what I present canbe independently veri�ed, so the loss of some of the minute history is notdevastating.When Scott returned home after a visit to Argonne in August 1990, hesent by email 68 theorems for OTTER's attempt at proof. The theorems(whose negations are given shortly) are numbered 4 through 71 in a studyby Lukasiewicz; they are provable from the following three axioms expressedin clause notation. The �rst of the three can be thought of as transitivity,(x! y) ! ((y ! z) ! (x! z)). The second can be read as (:x! x)! x,and the third as x! (:x! y).(L1) P(i(i(x,y),i(i(y,z),i(x,z)))).(L2) P(i(i(n(x),x),x)).(L3) P(i(x,i(n(x),y))).The rule of inference is condensed detachment, captured with the followingclause when hyperresolution is the chosen inference rule.-P(i(x,y)) | -P(x) | P(y).Lukasiewicz accurately claims that the given three axioms are complete forsentential calculus. An axiom set is complete for sentential calculus if the setof formulas that can be deduced from it with the use of condensed detach-ment and instantiation is precisely the set of formulas (in e�ect, unit clauses)that are true under all assignments of true and false, with implication andnegation used as logicians use these terms. Therefore, the following 68 theo-rems, presented as negations to seek a contradiction, must hold. Frequently,throughout the remainder of this article, the theorems in the unnegated formwill be referred to as theses. Frequently also, the ANSWER literal (which isignored by the program when applying an inference rule) is appended to aclause to indicate the role of the clause. The ANSWER literal will usually beabbreviated with \$ANS", the word \thesis" with \th", the word \negated"with \neg", and the word \binary" with \bin".9



-P(i(i(i(i(q,r),i(p,r)),s),i(i(p,q),s))) | $ANS(neg_th_04).-P(i(i(p,i(q,r)),i(i(s,q),i(p,i(s,r))))) | $ANS(neg_th_05).-P(i(i(p,q),i(i(i(p,r),s),i(i(q,r),s)))) | $ANS(neg_th_06).-P(i(i(t,i(i(p,r),s)),i(i(p,q),i(t,i(i(q,r),s)))))| $ANS(neg_th_07).-P(i(i(q,r),i(i(p,q),i(i(r,s),i(p,s))))) | $ANS(neg_th_08).-P(i(i(i(n(p),q),r),i(p,r))) | $ANS(neg_th_09).-P(i(p,i(i(i(n(p),p),p),i(i(q,p),p)))) | $ANS(neg_th_10).-P(i(i(q,i(i(n(p),p),p)),i(i(n(p),p),p))) | $ANS(neg_th_11).-P(i(t,i(i(n(p),p),p))) | $ANS(neg_th_12).-P(i(i(n(p),q),i(t,i(i(q,p),p)))) | $ANS(neg_th_13).-P(i(i(i(t,i(i(q,p),p)),r),i(i(n(p),q),r))) | $ANS(neg_th_14).-P(i(i(n(p),q),i(i(q,p),p))) | $ANS(neg_th_15).-P(i(p,p)) | $ANS(neg_th_16).-P(i(p,i(i(q,p),p))) | $ANS(neg_th_17).-P(i(q,i(p,q))) | $ANS(neg_th_18).-P(i(i(i(p,q),r),i(q,r))) | $ANS(neg_th_19).-P(i(p,i(i(p,q),q))) | $ANS(neg_th_20).-P(i(i(p,i(q,r)),i(q,i(p,r)))) | $ANS(neg_th_21).-P(i(i(q,r),i(i(p,q),i(p,r)))) | $ANS(neg_th_22).-P(i(i(i(q,i(p,r)),s),i(i(p,i(q,r)),s))) | $ANS(neg_th_23).-P(i(i(i(p,q),p),p)) | $ANS(neg_th_24).-P(i(i(i(p,r),s),i(i(p,q),i(i(q,r),s)))) | $ANS(neg_th_25).-P(i(i(i(p,q),r),i(i(r,p),p))) | $ANS(neg_th_26).-P(i(i(i(p,q),q),i(i(q,p),p))) | $ANS(neg_th_27).-P(i(i(i(i(r,p),p),s),i(i(i(p,q),r),s))) | $ANS(neg_th_28).-P(i(i(i(p,q),r),i(i(p,r),r))) | $ANS(neg_th_29).-P(i(i(p,i(p,q)),i(p,q))) | $ANS(neg_th_30).-P(i(i(p,s),i(i(i(p,q),r),i(i(s,r),r)))) | $ANS(neg_th_31).-P(i(i(i(p,q),r),i(i(p,s),i(i(s,r),r)))) | $ANS(neg_th_32).-P(i(i(p,s),i(i(s,i(q,i(p,r))),i(q,i(p,r))))) | $ANS(neg_th_33).-P(i(i(s,i(q,i(p,r))),i(i(p,s),i(q,i(p,r))))) | $ANS(neg_th_34).-P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | $ANS(neg_th_35).-P(i(n(p),i(p,q))) | $ANS(neg_th_36).-P(i(i(i(p,q),r),i(n(p),r))) | $ANS(neg_th_37).-P(i(i(p,n(p)),n(p))) | $ANS(neg_th_38).-P(i(n(n(p)),p)) | $ANS(neg_th_39).-P(i(p,n(n(p)))) | $ANS(neg_th_40).-P(i(i(p,q),i(n(n(p)),q))) | $ANS(neg_th_41).-P(i(i(i(n(n(p)),q),r),i(i(p,q),r))) | $ANS(neg_th_42).-P(i(i(p,q),i(i(q,n(p)),n(p)))) | $ANS(neg_th_43).-P(i(i(s,i(q,n(p))),i(i(p,q),i(s,n(p))))) | $ANS(neg_th_44).-P(i(i(s,i(q,p)),i(i(n(p),q),i(s,p)))) | $ANS(neg_th_45).-P(i(i(p,q),i(n(q),n(p)))) | $ANS(neg_th_46).10



-P(i(i(p,n(q)),i(q,n(p)))) | $ANS(neg_th_47).-P(i(i(n(p),q),i(n(q),p))) | $ANS(neg_th_48).-P(i(i(n(p),n(q)),i(q,p))) | $ANS(neg_th_49).-P(i(i(i(n(q),p),r),i(i(n(p),q),r))) | $ANS(neg_th_50).-P(i(i(p,i(q,r)),i(p,i(n(r),n(q))))) | $ANS(neg_th_51).-P(i(i(p,i(q,n(r))),i(p,i(r,n(q))))) | $ANS(neg_th_52).-P(i(i(n(p),q),i(i(p,q),q))) | $ANS(neg_th_53).-P(i(i(p,q),i(i(n(p),q),q))) | $ANS(neg_th_54).-P(i(i(p,q),i(i(p,n(q)),n(p)))) | $ANS(neg_th_55).-P(i(i(i(i(p,q),q),r),i(i(n(p),q),r))) | $ANS(neg_th_56).-P(i(i(n(p),r),i(i(p,q),i(i(q,r),r)))) | $ANS(neg_th_57).-P(i(i(i(i(p,q),i(i(q,r),r)),s),i(i(n(p),r),s))) |$ANS(neg_th_58).-P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(neg_th_59).-P(i(i(s,i(n(p),r)),i(s,i(i(q,r),i(i(p,q),r))))) |$ANS(neg_th_60).-P(i(i(p,r),i(i(q,r),i(i(n(p),q),r)))) | $ANS(neg_th_61).-P(i(i(n(n(p)),q),i(p,q))) | $ANS(neg_th_62).-P(i(q,i(p,p))) | $ANS(neg_th_63).-P(i(n(i(p,p)),q)) | $ANS(neg_th_64).-P(i(i(n(q),n(i(p,p))),q)) | $ANS(neg_th_65).-P(i(n(i(p,q)),p)) | $ANS(neg_th_66).-P(i(n(i(p,q)),n(q))) | $ANS(neg_th_67).-P(i(n(i(p,n(q))),q)) | $ANS(neg_th_68).-P(i(p,i(n(q),n(i(p,q))))) | $ANS(neg_th_69).-P(i(p,i(q,n(i(p,n(q)))))) | $ANS(neg_th_70).-P(n(i(i(p,p),n(i(q,q))))) | $ANS(neg_th_71).My esteemed colleague McCune, with whom I have conducted most ofthe experiments reported here, immediately submitted the 68 theorems toOTTER. He chose hyperresolution as the only inference rule; he placed theclause for condensed detachment in the axioms, the three Lukasiewicz axiomsin the set of support, and the 68 negations in the passive list|a list that isinactive except for both testing for the completion of a proof by detecting unitcon
ict and checking for forward subsumption [21]. For the weighting strategy[15, 34, 36]|the strategy used by OTTER to decide where next to focus itsattention|he chose to use symbol count. The motivation was to approachthe theorems as simply as possible, keying on the three Lukasiewicz axioms,using the 68 negations only to detect the corresponding proofs (if found), andcausing OTTER's search for proofs to be directed by focusing at any givenpoint on the shortest formula available. OTTER proved 33 of the theoremsbefore it was decided that more CPU time would yield little additional. Asimilar attempt with ROO, a parallel version of OTTER, produced 48 proofs.Motivated by the strong urge to demonstrate OTTER's power by sendingproofs of all 68 theorems at once to Scott, I decided to make one additional11



attempt. The attempt was based on replacing the use of symbol count (todirect OTTER in its choice of where next to focus its attention) by a set of68 weight templates, each matching the corresponding pattern of occurrencesof the function i in one of the theorems under attack. I reasoned|hazardedis probably more accurate|that, if the 68 theorems were the steps in a proofof a desired result, then each merited emphasis if and when deduced.It worked, and better than I would have guessed; OTTER proved all 68theorems in less than 16 CPU minutes on a SPARCstation. As it turned out,Scott was interested mainly in eight of the theses: 16, 18, 24, 21, 35, 39, 40,and 49. He wished to have a single proof of all eight, rather than piecingeight separate results together and tediously removing duplicate steps andsuch, which he could compare to the Lukasiewicz proof for style di�erences.A ploy that succeeded focuses on taking the disjunction of the correspondingeight negations and placing it among the axioms; the desired proof is foundwhen the empty clause is generated with the disjunction playing the role ofnucleus. He informed me that the resulting 46-step proof more or less matchesthe style of that given by Lukasiewicz.But the story does not end there. Its ending is given in the next section,where it properly belongs, as an example of a small contribution to logic madeby an automated reasoning program.Although three attempts were required to obtain all 68 proofs, the studyled to the formulation of an approach|not scienti�cally justi�ed|that wasused on the following example. The theorem in question asks for a proof thatthe third axiom (FL3) of the Frege/Lukasiewicz axiom system FL (presentedby Church) follows from the six axioms (F1) through (F6), Frege's originalaxiom system F for sentential calculus. (The �rst two of the three axioms|theses 18, 35, and 49|of which FL consists are, respectively, the �rst andsecond of F.) When OTTER considered the following seven clauses, coupledwith the clause for condensed detachment, it found the desired proof on the�rst try.(F1 th_18) P(i(x,i(y,x))).(F2 th_35) P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).(F3 th_21) P(i(i(x,i(y,z)),i(y,i(x,z)))).(F4 th_39) P(i(i(x,y),i(n(y),n(x)))).(F5 th_40) P(i(n(n(x)),x)).(F6 th_46) P(i(x,n(n(x)))).(FL3 neg_th_49) -P(i(i(n(p),n(q)),i(q,p))) | $ANS(step_FL3).The approach was again to rely on the weight templates whose pattern of thefunction i matches the 68 theses just discussed.At this point, you might properly wonder what possible explanation I cangive for such an action, especially since I was seeking but one of the 68 proofs,that of 49. Explanation: if the use of those 68 patterns as weight templatesenabled McCune and me to send to Scott the proofs of the test problems12



he suggested, then those patterns must be good ones, good ones for othertheorems in this area of logic|even if the axioms (hypotheses) were changed.Reasoning of this type accounts for the fact that some gamblers win greatsums; it also accounts for the fact that most gamblers lose their entire stake.As it turned out, the sought-after proof was obtained in less than 1 CPUsecond, a proof of 14 steps. Since the proof was obtained on the �rst attempt,do we not have overwhelming evidence of the realization of the �rst goal, oris the evidence|at least to this point|underwhelming?I then took for weight templates the patterns suggested by the 14 stepsof the proof, set the appropriate 
ags to instruct OTTER to seek possiblyshorter proofs of (FL3), and obtained in one run the following 11-step proofin 6 CPU seconds. (In Note 5, I have more to say concerning the importanceof seeking shorter proofs and the use of weight templates.) The number in the�rst �eld gives the corresponding position of the clause among those retainedduring OTTER's attempt. The expression hyper,x,y,z typically denotes thatx is the clause in focus, y is the nucleus, z is the other satellite (for condenseddetachment), and hyperresolution is the inference rule.1 [] -P(i(x,y)) | -P(x) | P(y).2 [] P(i(x,i(y,x))).3 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).4 [] P(i(i(x,i(y,z)),i(y,i(x,z)))).5 [] P(i(i(x,y),i(n(y),n(x)))).6 [] P(i(n(n(x)),x)).7 [] P(i(x,n(n(x)))).8 [] -P(i(i(n(p),n(q)),i(q,p))) | $ANS(step_FL3).--------------------22 [hyper,4,1,3] P(i(i(x,y),i(i(x,i(y,z)),i(x,z)))).25 [hyper,5,1,4] P(i(n(x),i(i(y,x),n(y)))).33 [hyper,6,1,2] P(i(x,i(n(n(y)),y))).50 [hyper,22,1,7] P(i(i(x,i(n(n(x)),y)),i(x,y))).56 [hyper,25,1,2] P(i(x,i(n(y),i(i(z,y),n(z))))).61 [hyper,33,1,3] P(i(i(x,n(n(y))),i(x,y))).86 [hyper,56,1,50] P(i(x,i(i(y,n(x)),n(y)))).523 [hyper,61,1,2] P(i(x,i(i(y,n(n(z))),i(y,z)))).541 [hyper,523,1,3] P(i(i(x,i(y,n(n(z)))),i(x,i(y,z)))).675 [hyper,86,1,4] P(i(i(x,n(y)),i(y,n(x)))).708 [hyper,675,1,541] P(i(i(n(x),n(y)),i(y,x))).Clause (708) contradicts clause (8), and the proof is complete.I have no idea whether this proof is the same as, equivalent to, or betterthan that to be found in the literature.The motivation for studying the next theorem|another example of suc-ceeding on the �rst try|was simple curiosity on my part. If Scott was sat-is�ed that OTTER proved the completeness of the three-axiom system of13



Lukasiewicz by proving the eight theses, 16, 18, 24, 21, 35, 39, 40, and 49,then an obvious theorem to attempt to prove is the converse: from these eightaxioms, one can deduce each of (L1), (L2), and (L3). (As we later learned,for a complete system, one need consider only the second, �fth, and eighth;in other words, the other �ve are dependent on these three.) The same ap-proach was used again, directing OTTER's search for the desired three proofsby using the 68 weight templates. The theses were proved in a single run, inthe order (L3), (L1), and (L2). The proofs were obtained in the interval ofCPU seconds between 97 and 101.You might �nd the following example of particular interest, for it dra-matically demonstrates how far we have come and exhibits OTTER's nearlylinear performance with respect to clause generation. The theorem to proveasserts that the third of the following six axioms, Frege's system for sententialcalculus, is dependent on the remaining �ve.(F1 th_18) P(i(x,i(y,x))).(F2 th_35) P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).(F3 th_21) P(i(i(x,i(y,z)),i(y,i(x,z)))).(F4 th_39) P(i(i(x,y),i(n(y),n(x)))).(F5 th_40) P(i(n(n(x)),x)).(F6 th_46) P(i(x,n(n(x)))).Using the approach described in this section, but with a smaller set of weighttemplates, OTTER succeeded in proving|on the �rst attempt|that thethird axiom is indeed dependent on the other �ve.For the following reasons, this �rst-attempt success is (to me) both stimu-lating and enlightening. The proof was obtained (on a SPARCstation) in justunder 19 CPU hours. The proof was completed upon retention of a clausenumbered 11331, after generating over 30,000,000 clauses. The performanceof OTTER was nearly linear; during the �rst few CPU seconds, clauses weregenerated at the rate of 550 per CPU second, and during the last few CPUseconds, clauses were generated at the rate of 460 per CPU second. I couldnot resist letting OTTER run for additional time to see what would happento the generation rate. At the 43 CPU hour mark, after generating just un-der 66,000,000 clauses, the rate had �nally dropped to 300 clauses per CPUsecond|pretty impressive to see such small degradation over such a long pe-riod of time. A fast, tireless, and accurate assistant, OTTER provides a nicecomplement to the researcher with insight. The mathematician or logicianmight make marvelous discoveries, after mastering and then using this pro-gram. The proof OTTER found consists of 74 steps, not counting, of course,the �ve (input) axioms, all of which are used.I have a tag or postscript to the discussion of this Frege dependence theo-rem. As OTTER was searching for a proof that the third axiom is dependenton the other �ve, my colleague McCune informed me (after browsing in oneof Lukasiewicz's books) that the dependence could be proved from the �rst14



two axioms alone. On a second computer, OTTER was asked to search forsuch a proof. We were motivated, of course, by curiosity about which runwould �nish �rst|the long run just discussed, or this second attempt|andby the wish to compare the two proofs, should they be found. The secondattempt succeeded �rst, in under 52 CPU seconds, �nding a proof consistingof 11 steps. Yes, for this newer theorem, one attempt was again su�cient.Considered together, the two results suggest that the presence of unneededbut usable axioms can sharply detract from a program's e�ectiveness.The �nal detailed example of success on the �rst try concerns provingthe completeness of the axiom system consisting of (the unnegated form of)theses 19, 37, and 59. McCune informed me of this system from his read-ing of Lukasiewicz. Scott has commented to me that the system is indeedinteresting|and he can explain why|but that Lukasiewicz does not explainwhy nor does he give the corresponding proofs. OTTER's proof that theses19, 37, and 59 form a complete system rests on the deduction of (FL1), (FL2),and (FL3), mentioned earlier as a complete system. Since these proofs maynot exist in the literature, OTTER's proofs are included here. The followingthree proofs are, respectively, for the deduction of (FL1), (FL2), and (FL3);the third required approximately 406 CPU seconds, and the �rst two requiredless than 1 CPU second.1 [] -P(i(x,y)) | -P(x) | P(y).2 [] P(i(i(i(x,y),z),i(y,z))).21 [] -P(i(q,i(p,q))) | $ANS(step_th_18).--------------------35 [hyper,2,1,2] P(i(x,i(y,x))).Clause (35) contradicts clause (21), and the proof is complete.1 [] -P(i(x,y)) | -P(x) | P(y).2 [] P(i(i(i(x,y),z),i(y,z))).3 [] P(i(i(i(x,y),z),i(n(x),z))).4 [] P(i(i(n(x),z),i(i(y,z),i(i(x,y),z)))).24 [] -P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | $ANS(step_th_35).--------------------35 [hyper,2,1,2] P(i(x,i(y,x))).43 [hyper,35,1,3] P(i(n(x),i(y,i(x,z)))).44 [hyper,35,1,2] P(i(x,i(y,i(z,x)))).68 [hyper,43,1,4] P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))).72 [hyper,68,1,35] P(i(i(x,i(x,y)),i(z,i(x,y)))).79 [hyper,72,1,43] P(i(x,i(n(y),i(y,z)))).81 [hyper,79,1,79] P(i(n(x),i(x,y))).87 [hyper,81,1,4] P(i(i(x,i(y,z)),i(i(y,x),i(y,z)))).98 [hyper,87,1,44] P(i(i(x,y),i(x,i(z,y)))).299 [hyper,98,1,68] P(i(i(x,i(y,z)),i(y,i(x,z)))).15



338 [hyper,299,1,98] P(i(x,i(i(x,y),i(z,y)))).1127 [hyper,338,1,68] P(i(i(x,y),i(i(y,z),i(x,z)))).1208 [hyper,1127,1,299] P(i(i(x,y),i(i(z,x),i(z,y)))).1285 [hyper,1208,1,68] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).Clause (1285) contradicts clause (24), and the proof is complete.1 [] -P(i(x,y)) | -P(x) | P(y).2 [] P(i(i(i(x,y),z),i(y,z))).3 [] P(i(i(i(x,y),z),i(n(x),z))).4 [] P(i(i(n(x),z),i(i(y,z),i(i(x,y),z)))).27 [] -P(i(i(n(p),n(q)),i(q,p))) | $ANS(step_th_49).--------------------35 [hyper,2,1,2] P(i(x,i(y,x))).42 [hyper,35,1,4] P(i(i(x,i(y,n(z))),i(i(z,x),i(y,n(z))))).43 [hyper,35,1,3] P(i(n(x),i(y,i(x,z)))).44 [hyper,35,1,2] P(i(x,i(y,i(z,x)))).48 [hyper,42,1,35] P(i(i(x,n(x)),i(y,n(x)))).68 [hyper,43,1,4] P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))).72 [hyper,68,1,35] P(i(i(x,i(x,y)),i(z,i(x,y)))).79 [hyper,72,1,43] P(i(x,i(n(y),i(y,z)))).81 [hyper,79,1,79] P(i(n(x),i(x,y))).87 [hyper,81,1,4] P(i(i(x,i(y,z)),i(i(y,x),i(y,z)))).98 [hyper,87,1,44] P(i(i(x,y),i(x,i(z,y)))).101 [hyper,87,1,35] P(i(i(x,y),i(x,y))).104 [hyper,101,1,87] P(i(i(x,i(x,y)),i(x,y))).111 [hyper,104,1,48] P(i(i(x,n(x)),n(x))).112 [hyper,104,1,35] P(i(x,x)).299 [hyper,98,1,68] P(i(i(x,i(y,z)),i(y,i(x,z)))).338 [hyper,299,1,98] P(i(x,i(i(x,y),i(z,y)))).1127 [hyper,338,1,68] P(i(i(x,y),i(i(y,z),i(x,z)))).1203 [hyper,1127,1,1127] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).1208 [hyper,1127,1,299] P(i(i(x,y),i(i(z,x),i(z,y)))).1234 [hyper,1127,1,299] P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))).1257 [hyper,1203,1,1203] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).1260 [hyper,1203,1,1127] P(i(i(x,y),i(i(i(x,z),u),i(i(y,z),u)))).1321 [hyper,1208,1,4] P(i(i(x,i(n(y),z)),i(x,i(i(u,z),i(i(y,u),z))))).1492 [hyper,1257,1,1234] P(i(i(x,i(y,z)),i(i(u,x),i(y,i(u,z))))).1517 [hyper,1260,1,299] P(i(i(i(x,y),z),i(i(x,u),i(i(u,y),z)))).1640 [hyper,1321,1,3] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).2266 [hyper,1640,1,1492] P(i(i(x,i(i(y,z),u)),i(i(v,u), i(x,i(i(y,v),u))))).2269 [hyper,1640,1,299] P(i(i(x,y),i(i(i(z,u),y),i(i(z,x),y)))).2751 [hyper,2269,1,112] P(i(i(i(x,y),z),i(i(x,z),z))).16



3002 [hyper,2751,1,1517] P(i(i(i(x,y),z),i(i(z,u),i(i(x,u),u)))).3204 [hyper,3002,1,111] P(i(i(n(x),y),i(i(x,y),y))).3331 [hyper,3204,1,299] P(i(i(x,y),i(i(n(x),y),y))).3544 [hyper,3331,1,2266] P(i(i(x,y),i(i(z,y),i(i(n(z),x),y)))).3879 [hyper,3544,1,299] P(i(i(x,y),i(i(z,y),i(i(n(x),z),y)))).3982 [hyper,3879,1,35] P(i(i(x,i(y,z)),i(i(n(z),x),i(y,z)))).4126 [hyper,3982,1,81] P(i(i(n(x),n(y)),i(y,x))).Clause (4126) contradicts clause (27), and the proof is complete.In 1923, Hilbert o�ered as a complete axiom system for sentential calculusthat consisting of theses 18, 21, 22, 30, 3, and 54. Later, it was proved that30 is dependent on the remaining axioms in Hilbert's system. On the �rst try,OTTER proved (with a 3-step proof) the dependence of 30 in less than 2 CPUseconds and, in that same run, proved the completeness of Hilbert's system.The �rst completeness proof proceeds by deducing the system consisting oftheses 19, 37, and 59, completing a 9-step proof in just over 7 CPU seconds.In just under 17 CPU seconds, OTTER found a di�erent 28-step proof ofcompleteness by deducing the system FL consisting of theses 18, 35, and 49.However, later in the same run, a far shorter proof was found in approximately1,733 CPU seconds, a proof consisting of 12 steps. Still in the same run, a30-step proof of the completeness of Hilbert's system was found by deducingFrege's system F (excluding the dependent axiom) in approximately 143 CPUseconds. A shorter 16-step proof was then found in approximately 3,706CPU seconds. A 6-step proof of the Lukasiewicz system was obtained inapproximately 961 CPU seconds, and a 5-step proof in approximately 1,848CPU seconds.A few observations concerning these results are now in order. The wayOTTER can be used is strikingly di�erent from the approach typically takenwith a colleague; Notes 4 and 7 elaborate on this point. In the latter case,a decision is made concerning which single path is best to pursue; for ex-ample, if the completeness of the Hilbert axiom system is the objective, thedecision might be to attempt to prove the Lukasiewicz system or, instead, toattempt to prove Frege's. In contrast, with OTTER as your assistant, a goodapproach consists of asking this program to consider simultaneously a num-ber of possible paths to a completeness proof; more comments are given inNote 5. Indeed, as evidenced in the preceding paragraph, that approach wasmarkedly successful|one run produced a number of di�erent completenessproofs for the axiom set under study. Among those many proofs, some di�erin the intermediate steps but are alike in that each completes by deducing allthe members of a given complete system. In contrast, other proofs obtainedin that single run complete by deducing the members of a totally di�erentcomplete system.To me it seems clear that, at least in some areas, all has changed fromthe early 1960s, from the mid-1970s, and even from �ve years ago. Indeed,as the following summary suggests|and it may not convince you, for you17



can drive a hard bargain|certain important aspects of your dream for the�eld are now a reality. An unsophisticated approach in which one chooses theobvious inference rule and obvious weights to direct the search (by symbolcount) yields many proofs on the �rst try. With a little bit of sophistication,an approach can be formulated, based on the study of one set of theorems,and then used to obtain on the �rst try proofs of theorems that merited theattention of great minds. You and I know that in no way do the results of thecited experiments lessen the achievements of the various logicians involvedin the studies beginning with Frege in 1879. Instead|at least I would liketo �nd that this is the case|the successes with OTTER mark a singularachievement for automated reasoning and suggest that the �eld has indeedadvanced signi�cantly.1.5 Contributions to Mathematics and Logic:Goal 2Since this article is in part written for you, to add a special touch, I presentnew material and, further, material obtained during the writing of this article.The new results include an axiom system that may not have been seen before,and what appears to be a proof far shorter than is found in the literature; eachwas obtained with the aid of the program OTTER. To complement the newmaterial and to give additional evidence of the possible value of automatedreasoning to mathematics and logic, I shall begin by brie
y reviewing someopen questions that were answered with the assistance of a reasoning program.Some of these questions might prove challenging and useful for those who wishto compare the e�ectiveness of various programs, to evaluate the potential ofa new approach, or|by attempting to answer the questions unaided by acomputer friend|to gain an appreciation for how far the �eld has come.Of course, I can now hear you asking one of your provocative questions.\Larry, before you give your review of the past ten or so years, how far has the�eld come?" The accurate answer to your question, it seems to me, dependson whether the focus is on how far we have traveled or on how far we haveto travel. To graphically see what I mean, we can look to the space program.In particular, the man in the moon is no longer a myth; indeed a person haswalked on it. But the distance to the moon is dwarfed by the distance to theoutermost planet, which is in turn miniscule when compared to the distanceto another galaxy. So, how far has the space program advanced? Four decadesago, I would have doubted that we would reach the moon; two decades ago,I did doubt that an automated reasoning program would play a key role inanswering open questions. Those two misplaced doubts have not shaken me; Istill have doubts. For one example, if Texas is larger than Illinois|and, mindyou, I said if|it is to make room for taller people, for tall Texans.As you know, beginning in 1978, automated reasoning programs designed18



by members of the Argonne group have been used to answer various openquestions, in �nite semigroups posed by Kaplansky [29], in equivalential cal-culus posed by Kalman [35], in ternary Boolean algebra posed by Grau [30],in �nite semigroups posed by McFadden [14], and in combinatory logic posedby Smullyan [24, 25, 37]. In my opinion, the successes in combinatory logicprovide the most powerful evidence that automated reasoning has made con-tributions of note.Barendregt [1] de�nes combinatory logic as an equational system satisfyingthe combinators S and K, where the respective actions of the constants S andK are given by the following two clauses.EQUAL(a(a(a(S,x),y),z),a(a(x,z),a(y,z))).EQUAL(a(a(K,x),y),x).The Smullyan questions (answered by my colleague McCune and me) focuson what are called fragments of combinatory logic, and not the logic in itsentirety. One of Smullyan's questions concerns �nding, if such exists, anappropriate combinator to be used with the combinator B (de�ned with thefollowing clause) to construct a �xed point combinator.EQUAL(a(a(a(B,x),y),z),a(x,a(y,z))).The combinator � is a �xed point combinator if and only if, for all combinatorsx, the equation �x = x(�x) holds. The strong �xed point property holds forthe fragment with basis B if and only if there exists a �xed point combinator� such that � is expressed purely in terms of the elements of B.Statman answered Smullyan's question in the a�rmative [26] by using thecombinator W, de�ned by the following clause.EQUAL(a(a(W,x),y),a(a(x,y),y)).In addition to Statman's combinator, the fourth in the following list of �ve,McCune and I found four others by using an automated reasoning program[16]. �1 = B(B(B(WW )W )B)B�2 = B(B(WW )W )(BBB)�3 = B(B(WW )(BWB))B�4 = B(WW )(BW (BBB))�5 = B(WW )(B(BWB)B)Smullyan did indeed seem impressed by the discovery of the additional four.Later, by using the kernel strategy [37] applied by OTTER, we found anin�nite class of in�nite sets of such combinators. That result is still extremelygratifying to me, especially in my role as mathematician. Indeed, to �ndsuch richness where, just one year earlier, it was not known whether anyappropriate combinators existed, and then to make the discovery because of19



formulating a new strategy that could be e�ectively applied by an automatedreasoning program, signaled to me a signi�cant advance in the �eld.If you are curious and immediately wonder whether we simply built onStatman's combinator, I can accurately report that we did not; indeed, wefound other combinators to act in the place of W. In particular, recallingthat expressions in combinatory logic are assumed to be left associated unlessotherwise indicated, our combinator N and the combinator H serve well.Nxyz = xzyzHxyz = xyzyThe proofs|obtained with OTTER applying the kernel strategy|that thefragments with respective bases of combinatorsB and N and of B andH satisfythe strong �xed point property were completed by �nding the following [37].B(B(N (BB(N (BBN )N ))N )B)BH(B(H(HB))B)B(HH)The combinator N may merit further study, for|in addition to o�ering asmuch (or more) power asW for constructing �xed point combinators|BN (BB)acts as S does. The signi�cance of this comment rests with the fact that Splays a vital role in the study of combinatory logic as a whole|S and K form acomplete axiom system for the logic. Without the Argonne program OTTERand the kernel strategy, the combinator N might have remained undiscovered.Smullyan then posed corresponding questions about the presence of thestrong �xed point property for the fragments with respective bases of combi-nators B and L and of Q and L, de�ned by the following equations.Lxy = x(yy)Qxyz = y(xz)McCune and I proved that neither fragment could satisfy the strong �xedpoint property [18]; OTTER again played a key role.Smullyan also posed questions concerning the existence of combinations,an expression involving some given set of combinators that behaves as someother given combinator does. When an appropriate combination exists, hewished also to know the length (in symbol count) of the smallest and howmany of such there are. The questions McCune and I answered focus on thefollowing combinators.(B) Bxyz = x(yz) (Q) Qxyz = y(xz)(C) Cxyz = xzy (Q1) Q1xyz = x(zy)(F ) Fxyz = zyx (T ) Txy = yx(G) Gxyzw = xw(yz) (V ) V xyz = zxyFrom the theorems proved in the study, the following summarizes the im-portant results [39]. The combinators to be used for attempting to �nd an20



appropriate combination are B and T. Two combinations exist that act as Qdoes, each of length 6, and no shorter exists. Two combinations exist that actas Q1 does, each of length 6, and no shorter exists. Two combinations existthat act as C does, each of length 8, and no shorter exists. Five combinationsexist that act as F does, each of length 8, and no shorter exists. Ten com-binations exist that act as V does, each of length 10, and no shorter exists.Five combinations exist that act as G does, each of length 10, and no shorterexists.Questions of either type|those focusing on �xed point combinators andthose focusing on combinations|might prove challenging and useful for eval-uating a new reasoning program or a new idea. A full appreciation of thepower o�ered by today's automated reasoning program can be gained by ac-cepting the challenge of attempting to answer the questions just discussed,and to do so unaided by a computer program. What satisfaction you and Imight derive|especially me with my experiences at the poker table|fromwitnessing a person's reaction to accepting the challenge, when said personis one of those who still considers automated reasoning at best to have thesigni�cance of a mouse eating a grain of wheat! Since you might be curious,paramodulation was the chosen inference rule for both studies of combinatorylogic, and the set of support strategy played a key role. The time required to�nd �xed point combinators is frequently less than 5 CPU seconds, when thekernel strategy is used. Except for the combinator G, the respective times inCPU seconds for the studies of combinations are 6, 14, 19, 50, and 248. For G,the results were obtained from a Prolog program used in a generate-and-testmode; that Prolog program is not a reasoning program. In addition to �nd-ing the appropriate combinations for the combinator G, the Prolog programwas used to show that no smaller combinations exist. Since attempts withOTTER did not succeed, we have an opportunity for the big stakes players.And now for the new material gathered during the writing of this article:a possibly new axiom system for sentential calculus, a sharply shorter proofof the completeness of the axiom system proposed by Lukasiewicz (consistingof L1, L2, and L3), and some related items. The following story, showingprecisely how the axiom system was discovered, provides powerful evidenceof the value of having the program OTTER as a member of a research team.The use of OTTER dramatically reduced the turnaround time and facilitatedthe immediate veri�cation of a conjecture. The story centers on an episode oftemporary miscommunication that was the primary force in the discovery ofthe axiom set to be introduced. At the same time, the story provides anotherexample of the serendipity of research.After McCune and I dispatched the 68 theorems suggested by Dana Scottin an email, Scott and I began an email exchange of ideas and results. Heplayed the role of logician, bringing knowledge of various calculi into play;I played the role of computer scientist, supplying knowledge relevant to thevaried uses of OTTER. Scott's contributions included suggestions of theorems21



for OTTER to try to prove and suggestions of where to �nd other theoremsfor OTTER to try to prove. My contributions were to respond to Scott'ssuggestions by including input �les, designed to enable OTTER to performe�ectively, and proofs, obtained from OTTER using the various input �les.Because the third attempt (at proving the 68 theses) succeeded in provingall 68 and in less than 16 CPU minutes on a SPARCstation, we were o� andrunning.As indicated earlier, among those 68 theses numbered 4 through 71 (with1 through 3 being the complete axiom system proposed by Lukasiewicz), theset consisting of theses 18, 35, and 49 can be proved to be another completeaxiom system, namely, FL. In other words, our success with Scott's originalsuggestion included a proof of the completeness of the Lukasiewicz system.Therefore, an obvious challenge was to attempt to have OTTER prove theconverse, that the system consisting of theses 18, 35, and 49 is complete,where the proof would rest on deducing theses 1, 2, and 3.It worked, and on the �rst try; theses 2 and 3 were proved in approximately2 and 4 CPU seconds, respectively. However, as it turned out, the deductionof the remaining thesis, 1, proved more di�cult. In fact, were it not for theability to run OTTER in the background|permitting me to write this articleand simultaneously conduct research|and were it not for successes in thepreceding years reached only after substantial CPU time had been used, theattempt to complete the desired proof might have been abandoned. Instead,thesis 1 was proved after 26,600 CPU seconds.The natural move next was to follow another of Scott's suggestions bystudying other known axiom systems, which, as it turned out, led to theearlier-mentioned episode of miscommunication. Buried in the text of one ofthe papers by Lukasiewicz is the mention of the complete system consistingof theses 19, 37, and 59; no proof of its completeness is given, nor does hegive any discussion of the importance of this system. Again, on the �rst try,OTTER proved it complete in less than 7 CPU seconds, with a 29-step proofin which the known system consisting of theses 18, 35, and 49 is deduced.Flushed with pleasure at this new success, I immediately sent the proof toScott by email. However, as became clear from Scott's return email, I hadmiscommunicated|I had left the impression that this system, consisting oftheses 19, 37, and 59, was a new axiom system, whose discovery belongedto me and, of course, to OTTER. What to do?|instant noti�cation of myerror, which I sent, certainly seemed hardly enough. After all, I had in e�ectbeen congratulated|which I obviously did not deserve|and, perhaps equallydisturbing, Scott had expressed interest in the axiom system.What was called for|if it could be found|was a genuinely new axiom sys-tem. The preferred way to rectify my communication error was to present|ifat all possible|Scott with an axiom system that was genuinely new, notalready in the literature. Unfortunately, I had no intuitive grasp of the ele-ments of sentential calculus, and no knowledge of how its study had proceeded.22



Therefore, on the surface, the idea of making such a search was out of thequestion|unless a guess and reliance on the ever-present and valued assistantOTTER could save the day.The morning after the episode of miscommunication, noting that variouscomplete systems existed each consisting of three theses|1 and 2 and 3,18 and 35 and 49, and 19 and 37 and 59|I read through the 68 originallysuggested by Scott. My objective was to replace one of theses 19, 37, and 59,for Scott had liked that system. In
uenced by the apparent relation of 37 to59, the placement and occurrence of their variables and the function n, thethesis that appealed to me above the rest was 60. Therefore, the system totry to prove complete was that consisting of theses 19, 37, and 60. I selectedthe naive approach of seeking a deduction of thesis 59, since both systemsshare 19 and 37. Such an approach is naive, for it might actually be easier todeduce another system entirely, say that consisting of theses 18, 35, and 49; Imust admit that I did not even consider that possibility.Again OTTER succeeded on the �rst try; an 11-step deduction of thesis59 was obtained in less than 3 CPU seconds. Rather than sending that proofto Scott, I then had OTTER seek a shorter proof, which it found. Here is the8-step proof that I sent to Scott, found by OTTER in just under 5,000 CPUseconds; a shorter proof exists, which will also be given. As observed earlier,the number in the �rst �eld indicates the corresponding position among theretained clauses.1 [] -P(i(x,y)) | -P(x) | P(y).8 [] P(i(i(i(x,y),z),i(y,z))).9 [] P(i(i(i(x,y),z),i(n(x),z))).10 [] P(i(i(u,i(n(x),z)),i(u,i(i(y,z),i(i(x,y),z))))).25 [] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(step_th_59).--------------------34 [hyper,8,1,8] P(i(x,i(y,x))).40 [hyper,10,1,9] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).59 [hyper,40,1,34] P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))).63 [hyper,59,1,34] P(i(i(x,i(x,y)),i(z,i(x,y)))).68 [hyper,63,1,63] P(i(x,i(i(y,i(y,z)),i(y,z)))).30752 [hyper,68,1,68] P(i(i(x,i(x,y)),i(x,y))).30758 [hyper,30752,1,34] P(i(x,x)).30954 [hyper,30758,1,10] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))).Clause (30954) contradicts clause (25), and the proof is complete.Scott noted that this new axiom system, in which 59 is replaced by 60,o�ers less appeal, but the proof of 59 is interesting. He then suggested a wayto shorten the proof, which OTTER succeeded in doing. Where the preceding8-step proof is organic, meaning that none of the steps (theses) of the proofcontains a subthesis that is true under all assignments of true and false, thefollowing 7-step proof is inorganic. 23



1 [] -P(i(x,y)) | -P(x) | P(y).2 [] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(step_th_59).3 [] P(i(i(i(x,y),z),i(y,z))).4 [] P(i(i(i(x,y),z),i(n(x),z))).5 [] P(i(i(u,i(n(x),z)),i(u,i(i(y,z),i(i(x,y),z))))).--------------------6 [hyper,3,1,3] P(i(x,i(y,x))).10 [hyper,5,1,4] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).18 [hyper,10,1,6] P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))).21 [hyper,18,1,6] P(i(i(x,i(x,y)),i(z,i(x,y)))).26 [hyper,21,1,6] P(i(x,i(y,y))).27 [hyper,26,1,26] P(i(x,x)).33 [hyper,27,1,5] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))).Clause (33) contradicts clause (2), and the proof is complete.It appears that the two proofs are the shortest that exist among, respec-tively, the organic and inorganic. A review of this anecdote suggests correctlyhow a dialogue between researchers can be sharply enhanced by access to anautomated reasoning program of OTTER's type.The preceding story has an interesting postscript, showing, among otherthings, that wild guesses coupled with OTTER's power and rapid turnaroundcan lead to additional advances. Roughly a week after the discovery of thesystem consisting of theses 19, 37, and 60, Scott suggested yet another possibleaxiom system. He suggested replacing thesis 60 by the following thesis, to becalled 60a.P(i(i(i(i(y,z),i(i(x,y),z)),u),i(i(n(x),z),u))).In approximately 47 CPU seconds, OTTER proved (on the �rst try) thecompleteness of Scott's system by deducing thesis 59 with the following 8-step proof.1 [] -P(i(x,y)) | -P(x) | P(y).8 [] P(i(i(i(x,y),z),i(y,z))).9 [] P(i(i(i(x,y),z),i(n(x),z))).10 [] P(i(i(i(i(y,z),i(i(x,y),z)),u),i(i(n(x),z),u))).25 [] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(step_th_59).--------------------27 [hyper,8,1,8] P(i(x,i(y,x))).30 [hyper,9,1,8] P(i(n(i(x,y)),i(y,z))).35 [hyper,27,1,10] P(i(i(n(x),y),i(z,i(i(u,y),i(i(x,u),y))))).176 [hyper,35,1,30] P(i(x,i(i(y,i(z,u)),i(i(i(v,z),y),i(z,u))))).193 [hyper,176,1,176] P(i(i(x,i(y,z)),i(i(i(u,y),x),i(y,z)))).213 [hyper,193,1,8] P(i(i(i(x,y),i(i(z,y),u)),i(y,u))).253 [hyper,213,1,10] P(i(x,x)).273 [hyper,253,1,10] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))).24



Clause (273) contradicts clause (25), and the proof is complete.OTTER also obtained a completeness proof of the Scott system by deduc-ing the three axioms of FL; the 33-step proof was obtained in approximately89 CPU seconds. In approximately 94 CPU seconds, an 11-step deduction ofthesis 60 was obtained. Of the completeness proofs focusing on the (indepen-dent) Frege system, a 31-step proof was obtained in approximately 2,912 CPUseconds. Hilbert's system was deduced with a 24-step proof in approximately921 CPU seconds. In approximately 2,677 CPU seconds, the Lukasiewiczaxiom system was obtained with a 24-step proof. As is so typical of the ex-periments presented in this article, all of the completeness proofs for the Scottsystem were obtained in a single run.A post postscript: I have just found a 4-step, organic proof of thesis 59from theses 19, 37, and 60; therefore, earlier, I should have said \it appearedthat ..."|this article does indeed have the character of a letter. When Inoti�ed Scott of this 4-step proof, his reaction, given by email, was that itmight indeed be \a very neat proof that would not be obvious to a humaninvestigator". He explained that it is not particularly easy to do uni�cation inone's head|and is he ever right! (Note 1 is relevant to the preceding.) Hereis the proof.1 [] -P(i(x,y)) | -P(x) | P(y).8 [] P(i(i(i(x,y),z),i(y,z))).9 [] P(i(i(i(x,y),z),i(n(x),z))).10 [] P(i(i(u,i(n(x),z)),i(u,i(i(y,z),i(i(x,y),z))))).25 [] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(step_th_59).--------------------33 [hyper,10,1,9] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).44 [hyper,33,1,8] P(i(i(x,i(y,z)),i(i(i(u,y),x),i(y,z)))).68 [hyper,44,1,8] P(i(i(i(x,y),i(i(z,y),u)),i(y,u))).99 [hyper,68,1,10] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))).Clause (99) contradicts clause (25), and the proof is complete.Of course|in keeping with my personality with which you are so familiar,and because I simply delight in proofs and in successes with OTTER|I wouldlike to include virtually everything learned because of Scott's prompting; Iclearly thrive on successful proof �nding with OTTER, especially when theimpetus is provided by a great scholar. However, since I can hear you givingme the appropriate warning, I shall postpone some items to a later section(Random Notes), omit many, and conclude this section with the promisedshorter proof.The theorem in question asserts that the Lukasiewicz system, consisting oftheses 1, 2, and 3, is complete for sentential calculus. Scott informs me thatthe Lukasiewicz proof, deducing the three axioms of FL, is 46 steps in length;using OTTER on the Macintosh, Scott obtained essentially the same proof.The following 30-step proof, deducing the three theses of FL, is the shortest25



so far obtained; a somewhat di�erent 30-step proof that is not organic hasalso been found with OTTER.1 [] -P(i(x,y)) | -P(x) | P(y).4 [] -P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) |-P(i(i(n(p),n(q)),i(q,p))) |$ANS(step_all_Church_FL_18_35_49).8 [] P(i(i(x,y),i(i(y,z),i(x,z)))).9 [] P(i(i(n(x),x),x)).10 [] P(i(x,i(n(x),y))).--------------------34 [hyper,8,1,8] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).35 [hyper,9,1,8] P(i(i(x,y),i(i(n(x),x),y))).38 [hyper,10,1,8] P(i(i(i(n(x),y),z),i(x,z))).41 [hyper,34,1,34] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).43 [hyper,34,1,8] P(i(i(x,y),i(i(i(x,z),u),i(i(y,z),u)))).52 [hyper,38,1,34] P(i(i(x,n(y)),i(y,i(x,z)))).57 [hyper,38,1,9] P(i(x,x)).59 [hyper,52,1,38] P(i(x,i(y,i(n(x),z)))).66 [hyper,41,1,35] P(i(i(x,i(n(y),y)),i(i(y,z),i(x,z)))).67 [hyper,43,1,41] P(i(i(x,i(i(y,z),u)),i(i(y,v),i(x,i(i(v,z),u))))).103 [hyper,59,1,9] P(i(x,i(n(i(i(n(y),y),y)),z))).272 [hyper,66,1,103] P(i(i(i(i(n(x),x),x),y),i(z,y))).303 [hyper,272,1,57] P(i(x,i(i(n(y),y),y))).310 [hyper,303,1,67] P(i(i(n(x),y),i(z,i(i(y,x),x)))).317 [hyper,310,1,66] P(i(i(i(i(x,y),y),z),i(i(n(y),x),z))).335 [hyper,317,1,34] P(i(i(x,i(y,z)),i(i(n(z),y),i(x,z)))).346 [hyper,317,1,57] P(i(i(n(x),y),i(i(y,x),x))).350 [hyper,317,1,38] P(i(i(n(x),n(y)),i(y,x))).377 [hyper,350,1,38] P(i(x,i(y,x))).416 [hyper,377,1,8] P(i(i(i(x,y),z),i(y,z))).508 [hyper,416,1,350] P(i(n(x),i(x,y))).509 [hyper,416,1,346] P(i(x,i(i(x,y),y))).593 [hyper,508,1,335] P(i(i(n(x),y),i(n(y),x))).644 [hyper,593,1,508] P(i(n(i(x,y)),x)).714 [hyper,509,1,41] P(i(i(x,i(y,z)),i(y,i(x,z)))).765 [hyper,714,1,8] P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))).771 [hyper,714,1,346] P(i(i(x,y),i(i(n(y),x),y))).1755 [hyper,771,1,67] P(i(i(n(x),y),i(i(z,x),i(i(y,z),x)))).1809 [hyper,1755,1,644] P(i(i(x,i(y,z)),i(i(y,x),i(y,z)))).1870 [hyper,1809,1,765] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).Clauses (377), (1870), and (350), respectively, contradict the literals of clause(4), and the proof is complete. 26



1.6 Mathematicians and Logicians as Users ofa Program: Goal 3Although a precise estimation of the value of having many mathematiciansand logicians as users of automated reasoning programs is essentially impossi-ble, their use would clearly advance the �eld markedly. A master of some area,group theory for example, who was also quite familiar with the intricacies ofthe use of OTTER would almost certainly make signi�cant contributions tothat area. I must admit that this observation seems di�cult to doubt whenyou review what has occurred in the past decade regarding the answering ofopen questions from a variety of �elds of mathematics and logic. Grantedthat none of the long-standing deep problems have been solved; however, theinvestigators could hardly be classed as masters of any of the disciplines fromwhich the questions were taken. I also agree with you that failure would bethe likely outcome if an automated reasoning program were asked to provea randomly selected theorem from a standard textbook. Given these plusesand minuses, the goal of having mathematicians and logicians counted amongthe users of such programs is indeed an important goal and|how can it beotherwise!|an important component of your and my dream for automatedreasoning. Finally, I can report that the current set of those using an auto-mated reasoning program does now include such researchers.Although I have heard rumors of such uses at the University of Texas andin England|rumors that I have not veri�ed|I prefer to con�ne my commentsto what I know personally. Also, recognizing the lack of a clear distinctionbetween that which is strictly computation and that which contains reasoningsteps, I shall, nevertheless, pretend otherwise and cite as my �rst exampleJohn Kalman's research. Kalman is a logician at the University of Aucklandin New Zealand. In the late 1970s, he had his own theorem-proving programwhich he heavily used for his research in equivalential calculus [8]. Promptedby his desire to become familiar with our e�orts in the �eld, Kalman visitedArgonne and suggested leaving with us seven theorems to attempt to provewith our program. He did not have to wait too long before seeing results.Indeed, ten minutes after he presented the seven theorems, he had in his hands�ve proofs obtained with a version of the program that would eventually becalled AURA [23]. After tasting this �nest of brandies, he was converted,shortly thereafter becoming a constant and active user of our programs|and still is today. So convinced of their value, he has written an extensiveworkbook for the use of ITP, a book that contains many gems that meritstudy [9]. He is currently using OTTER to aid his research in group theory,but in the context of divisional calculus.For some time, copies of OTTER have also been in the hands of CorradoBoehm (combinatory logic) University of Rome, Robert Meyer (relevancelogic) Australian National University, R. Goldblatt (mathematics) Welling-ton University in New Zealand, and Roger Hindley (logic) University College27



in Wales. Most recently, we sent a copy of OTTER to Dana Scott (logic)Carnegie Mellon University, which he has successfully used on his Macintosh.Barely a trickle, indeed; but, compared to 1975, a veritable torrent!On the other hand, recognizing that in some sense we have hardly movedfrom zero, you might �nd interest in the following excerpts from two phoneconversations I had with Irving Kaplansky. Approximately a decade ago, Icalled him at the University of Chicago to obtain a possible open question toattack with our program. He supplied such a question, the question mentionedearlier regarding the possible existence of certain �nite semigroups; Note 3might be of interest. During that conversation, when automated theoremproving in general was broached, Kaplansky surprised me with the followingcomments, which I have just checked in a second phone conversation. \Youhave a friend in court. Should you continue in your research, the mathematicspapers written in 2060 or thereabouts will be at a new level of reading, withmuch of the current level within reach of a theorem-proving program." In oursecond conversation, prompted by my wish to clear with him my inclusion ofhis earlier comments, he and I agreed that progress is indeed painfully slow,as it is with programs to automate translation from one language to another.The snail travels fast, thinks the defenseless plant with fear; the snailtravels slow, observes the cat eager to play. I believe|of course, you know Iactually mean that I am certain|the signi�cant point is that, �nally, we aretraveling, making recognizable progress. What will you and I witness beforewe move elsewhere? I wonder, I await, and, most truthfully|how many knowthat truth takes on numerous possible values?|I thrive on the expectation.1.7 New and Old Uses for an Automated Rea-soning ProgramAt this point|taking you up on your comment that you do not mind a littlerepetition|I shall present a general review of what is possible when usingan automated reasoning program, in particular, when using OTTER. At thesimplest level, in addition to the familiar use of a program like OTTER for�nding proofs, such a program o�ers unexpected power for proof checking,as the following example shows. If a proof has no steps missing, you cantake each of its steps and use weight templates to instruct OTTER to preferexpressions that match the pattern of function symbols in the steps of theproof.An example that I just ran focuses on the completeness proof for thesystem consisting of theses 19, 37, and 60 in which an 8-step deduction ofthesis 59 is found. The goal is to have OTTER proof check the given proof.Therefore, OTTER was given the instruction to use symbol count to assignpriority (by weight) to all clauses other than those that match one of thefollowing eight weight templates. 28



weight_list(pick_and_purge).weight(P(i(x,i(y,x))), 2).weight(P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))), 2).weight(P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))), 2).weight(P(i(i(x,i(x,y)),i(z,i(x,y)))), 2).weight(P(i(x,i(i(y,i(y,z)),i(y,z)))), 1).weight(P(i(i(x,i(x,y)),i(x,y))), 1).weight(P(i(x,x)), 2).weight(P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))), 2).end_of_list.The 
ags for seeking shorter proofs were turned o�. And here comes anillustration of the unexpected power when using OTTER in a proof-checkingmode; Note 3 is relevant.Instead of verifying by \�nding" the expected 8-step proof, OTTER foundthe 7-step deduction of thesis 59, the same 7-step proof given earlier. Theexplanation rests in part with the fact that weight templates of the kind justgiven are treated as if all variables are indistinguishable. Since step �ve, justas step one, of the shorter proof matches in its pattern of the function i the�rst weight template, it is preferred over clauses that do not match one ofthe templates. OTTER happened to �nd the shorter proof �rst and wasprevented from completing the longer proof because the two proofs share thesame last step and forward subsumption was in use. Disappointment seemsmisplaced; after all, the shorter proof is often the more elegant.On the other hand, were you to insist upon verifying the given 8-step proof,or were you to prefer to avoid proofs that are not organic, OTTER o�ers mostof what is needed. In the �rst case, if the weight of the �fth and sixth stepsis set to 1 rather than to 2, OTTER �nds the 8-step proof. If, in addition,back subsumption (which discards any retained clause that is subsumed by aclause retained later) is turned o�, and if you instruct OTTER to seek morethan one proof, then OTTER �nds both proofs.In the second case, the avoidance of proofs that are less likely to be organicis achieved with demodulation [32]. Speci�cally, if the following demodula-tor list is included in the input, where \$T" is interpreted as \true", thenall clauses containing as a proper subexpression i(t; t) for some term t areimmediately purged.list(demodulators).(i(i(x,x),y) = discard).(i(y,i(x,x)) = discard).(i(discard,x) = discard).(i(x,discard) = discard).(n(discard) = discard).(P(discard) = $T).end_of_list. 29



An analysis of these demodulators shows that the thesis i(x; x) is not dis-carded, an important observation, for this thesis often plays a key role in acompleteness proof for an axiom system for sentential calculus as well as formany other proofs.Of course, if you do not have a proof in its entirety to check, but haveinstead some steps that are conjectured to be useful (as when hints are given toa starred exercise), then the corresponding weight templates can be included.In other words, for those points between the ends of the spectrum focusing,respectively, on proof checking and proof �nding, OTTER o�ers much of whatis needed.Somewhat related is the use of OTTER to monitor progress, its own andthat of the researcher; I recommend Note 4. For a sample of this use, youcan imagine wishing to prove some speci�c theorem, but �nding it di�cultto choose between various possible attacks. With one choice of attack, theconjecture asserts that, if lemmas A, B, and C could be proved, then thetheorem would be within reach. With a second choice, the key lemmas appearto be D and E. With a third choice, lemmas F, G, and H are thought too�er what is needed. With OTTER and without much e�ort, the researchercan pursue simultaneously all three lines of attack. A way to proceed is torepresent each of the eight lemmas as a unit clause, negate each, includewith each the ANSWER literal with an argument designating which lemmais represented, place the negations in the passive list, and start the run. WithUnix, the run can be placed in the background. Then, one simply glancesoccasionally at the output �le to read the occurrences of UNIT CONFLICT.The ANSWER literal, which is ignored by OTTER when testing for UNITCONFLICT, is included to facilitate monitoring of the program's progressand of the researcher's chosen attacks. In addition, you can include in theaxioms list the disjunction of the appropriate negated lemmas disjoined withan appropriate ANSWER literal and occasionally glance at the output �le insearch of a desired occurrence of the EMPTY CLAUSE; if the disjunction isplaced in the passive list, it will be ignored, thus defeating the purpose of itsinclusion. Using a disjunction approach is a means for avoiding the tediouspiecing together of the various parts of a proof, and is useful for automaticallyremoving duplicate steps from the various parts; in other words, this ployreturns the union of the various parts.In contrast to the preceding uses, you can even use OTTER for the mun-dane task of detecting errors in the input or errors in the axioms, errors suchas a simple typo or an incorrect interchange of symbols. The means for suchdetection is that of reading the retained clauses resulting from using the inputthat might contain an error|perhaps unsuspected at that. In fact, I recentlyhad such an experience. The run was motivated by yet another study of apossible axiom system. A proof was found more rapidly than I expected.However, rather than satisfaction, you can imagine my reaction when I foundthat the proof contained the following undesirable clause.30



P(x).In the study in question, the clause amounts to asserting that everything istrue|obvious nonsense! Fortunately, as exhibited in the proofs given earlier,OTTER supplies, for each deduction, the immediate ancestors from whichthe deduction is obtained. By tracing backward through the ancestry tree,the 
aw in the input was easily found.Even when you are certain that the input is 
awless, you might wish toexamine OTTER's output to decide whether the chosen approach is satisfac-tory. In particular, one of OTTER's 
ags can be used to cause the output �leto contain all of the generated clauses, including those that are discarded forsome reason. An inspection of the generated clauses can lead to the discoverythat much of the CPU time is being consumed on what is clearly fruitlessconsideration. Especially for the expert in the �eld from which the problemunder study is chosen, such an inspection can prove of immense value; Note 4is perhaps of interest here. Indeed, it seems to me that, if so many successescan be so readily obtained by someone who is hardly more than conversantwith a �eld, then the possibilities are most promising if the user is instead amaster of the discipline under attack.You can also use OTTER to produce test problems of varying di�culty,problems to be used to evaluate the relative strength of a new program orthe potential of a new approach. A graduated set of such problems certainlyappears to be one of the useful items to have for research in automated rea-soning. Such a set should also prove useful as exercises for a course, a book, oran exam. One means for obtaining the desired set of problems, or at least ob-taining some of them, is to have OTTER run well past the CPU time neededto complete some simple task. For example, let the task be to prove theses39 and 40 from the members of FL, 18, 35, and 49. Taken together, theses39 and 40 can be viewed as asserting, for all x, the equality of n(n(x)) andx. OTTER completes the given assignment in less than 4 CPU seconds, afterretaining 156 clauses. If you then take advantage of the fact that OTTER'sperformance is nearly linear with regard to the deduction of conclusions andallow the program to run for a few CPU hours, a proof of the dependence ofthesis 21 is also obtained. In approximately 7.4 CPU hours, OTTER producesa 55-step proof of the dependence of thesis 21 on theses 18, 35, and 49.For those who prefer an approach to automated reasoning based on Prologtechnology, this problem appears to o�er a small challenge; in particular, alevel saturation approach with OTTER obtained an 11-step proof in approx-imately 9.1 CPU hours. The explanation for �nding an 11-step proof ratherthan the 55-step proof rests with the fact that thesis 21 is dependent on theses18 and 35 alone; the longer proof relies on the use of thesis 49, thus admittingto the search clauses in which the function n occurs. In fact, 28 of the 55clauses of the longer proof contain at least one occurrence of n. A bigger chal-lenge for the approach based on Prolog technology focuses on proving thesis1, the �rst of the three axioms Lukasiewicz used for sentential calculus, from31



theses 18, 35, and 49.Clearly, a quick review of the various uses covered here|from those di-rectly related to research to those that might well be considered mundane|correctly suggests that I am captivated by experiments with an automatedreasoning program. That I �nd the program OTTER to be a great compan-ion and a valuable assistant is manifestly obvious. Finally, you are de�nitelywarranted in concluding that|rather than the impossibility of an e�ectiveautomation of logical reasoning, as has too frequently been suggested in theliterature|I am building a case for my view that the �eld has demonstratedin various ways that we have arrived.1.8 Challenges and Open QuestionsMy friend and colleague George Robinson asked me on September 15, 1990,whether the �eld was still as prone to bs as it was when he and I stud-ied automated theorem proving. I told him that all was sharply changed;many researchers now welcomed challenges and the opportunity to attackopen questions with an existing program. Therefore, in addition to the chal-lenges presented by the theorems discussed so far in this article, others seemin order, including questions that remain open here in 1990.Open Question in Robbins AlgebraThe following question has been open for decades, receiving attention evenfrom Tarski and his students [6, 27]. Is every Robbins algebra a Boolean al-gebra? A Robbins algebra is a nonempty set satisfying the following threeaxioms, expressed in clause notation, in which the function o can be inter-preted as plus and the function n as negation.(R1) EQUAL(o(x,y),o(y,x)).(R2) EQUAL(o(o(x,y),z),o(x,o(y,z))).(R3) EQUAL(n(o(n(o(x,y)),n(o(x,n(y))))),x).A Boolean algebra is a nonempty set S with two operations, plus and times,and a 0 and a 1. Each operation is commutative, and each distributes overthe other. The 1 is a multiplicative identity, and the 0 is an additive identity.In addition, for every x, the negation of x exists with x plus its negation equalto 1 and x times its negation equal to 0. An alternative axiomatization ofBoolean algebra consists of (R1), (R2), and Huntington's axiom (H3) [7].(H3) EQUAL(o(n(o(n(x),y)),n(o(n(x),n(y)))),x).Since it is known that every �nite Robbins algebra is Boolean, two choicesexist. You can attempt to �nd an in�nite model that satis�es the threeaxioms for a Robbins algebra but violates a property for a Boolean algebra,or you can attempt to prove that Robbins implies Boolean. If you rely on the32



assistance of an automated reasoning program, with the intention of provingthat Robbins does not imply Boolean, an added challenge is presented by theneed to cope with in�nite sets. If instead you rely on such a program withthe objective of proving that Robbins does imply Boolean, then an addedchallenge focuses on coping with the extremely large number of clauses thatwill ordinarily be encountered, even if paramodulation is the chosen inferencerule. Open Questions in Combinatory LogicCombinatory logic presents a number of open questions of which the fol-lowing o�er intrigue. Does the fragment with a basis consisting of the com-binators B and S alone satisfy the strong �xed point property? The �rst twoof the following three clauses specify the actions of B and S, respectively; thethird clause corresponds to the denial of the strong �xed point property.EQUAL(a(a(a(B,x),y),z),a(x,a(y,z))).EQUAL(a(a(a(S,x),y),z),a(a(x,z),a(y,z))).-EQUAL(a(y,f(y)),a(f(y),a(y,f(y)))).If paramodulation is the inference rule of choice, then, of course, you must adda clause for re
exivity of equality, x = x: If the inference rule of choice is oneof the resolution-based rules, hyperresolution for example, then in additionyou must add clauses for symmetry, for transitivity, and for substitutivity ineach of the arguments of the function a.For a similar question, does the fragment with a basis consisting of thecombinators B and N1 satisfy the strong �xed point property? The behaviorof the combinator N1 is given by the following clause.EQUAL(a(a(a(N1,x),y),z),a(a(a(x,y),y),z)).To further encourage research focusing on the automation of model gener-ation, here are two open questions. Does there exist a �nite model satisfyingthe combinators B and L in which the strong �xed point property fails tohold? Does there exist a �nite model satisfying the combinators Q and Lin which the strong �xed point property fails to hold? That some (possiblyin�nite) model of the type under discussion in each of the two questions ex-ists follows from results quoted earlier from the research with my colleagueMcCune [18].Because of the lack of formal criteria to determine precisely which ques-tions merit the classi�cation of open, I point out that the preceding questionsfrom combinatory logic are my questions. I do not mean to imply that I knowthe answers, for I do not; nor, as far as I can ascertain, does anyone else.Challenge Problem from Many-Valued Sentential Calculus33



As for a new problem (from among the theorems whose proof is known) totake the place of the problems previously considered tough for an automatedreasoning program to solve, the following theorem from many-valued senten-tial calculus provides an excellent target. The theorem, sometimes known asthe �fth conjecture of Lukasiewicz, asserts that, from the �rst four of the fol-lowing �ve clauses, the �fth can be deduced by using condensed detachment.P(i(x,i(y,x))).P(i(i(x,y),i(i(y,z),i(x,z)))).P(i(i(i(x,y),y),i(i(y,x),x))).P(i(i(n(x),n(y)),i(y,x))).P(i(i(i(x,y),i(y,x)),i(y,x))).The problem asks for an approach that enables an automated reasoning pro-gram to prove the Lukasiewicz conjecture, using condensed detachment. Twopoints to keep in mind are (1) a proof of the conjecture has been obtainedwhere the problem was rephrased as one for equality, and (2) McCune and Ihave a 63-step proof using condensed detachment, a proof obtained by usingOTTER in a mode that is in part proof checking and in part proof �nding.Our solution, obtained in a style somewhat reminiscent of that discussed ear-lier in which you have an outline and OTTER �lls in the holes, does not count,for we relied heavily on the equality-oriented proof that was obtained withOTTER. Challenge Problems from Sentential CalculusThe last two challenges in this section come from Dana Scott. Both focuson a slightly di�erent notation for sentential calculus, namely, the replacementof n(x) by i(x; F ), where F is thought of as meaning false. Scott asks whether,among the following �ve axioms given in clause form, axioms 1, 2, and 4 arecomplete for sentential calculus, and whether axioms 1, 4, and 5 are.(axiom 1) P(i(i(x,y),i(i(y,z),i(x,z)))).(axiom 2) P(i(i(i(x,F),x),x)).(axiom 3) P(i(x,i(i(x,F),y))).(axiom 4) P(i(F,x)).(axiom 5) P(i(i(i(x,F),F),x)).Axiom 3 is included because its deduction from either set will establish thecorresponding completeness result. As it turns out, the following axiom, 2a,is provable from axioms 1, 2, and 3; it is obviously more general than axiom2.(axiom 2a) P(i(i(i(x,y),x),x)).Therefore, the complete axiom system consisting of 1, 2, and 3 is equivalentto that consisting of 1, 2a, and 3. 34



1.9 Random NotesFor your enjoyment and curiosity, I decided to include the following notes.Some of them express the views we have exchanged; some are simply myunsupported opinions (which you have encouraged me to express). Someof the notes are directly related to the earlier material, some are distantlyrelated, and some are perhaps unrelated.Note 1. That a number of individuals still maintain the impossibilityof the e�ective automation of logical reasoning attests to resistance|and,perhaps, to fear. No automated reasoning program will ever replace the skilledmathematician or logician. But, in view of the frequency, variety, and ease ofsuccess reported here and elsewhere, how can one doubt the value of such aprogram as an automated reasoning assistant?As my esteemed colleague Bob Boyer has been heard to say, there is no wayto cheat when answering an open question. Since a number of such questionshave been answered with the claim that an automated reasoning programplayed a key role, then the only apparent complaint must rest with the beliefthat the program did very little. If that is the objection, I recommend thatthe skeptic review the 4-step proof deducing thesis 59 from theses 19, 37, and60, coupled with Scott's comment. That proof certainly appears to be anexample of a proof that a person might not �nd.For a more impressive result, I recommend that the curious examine SteveWinker's original 159-step proof that establishes that the formula XHN pro-vides a complete axiomatization of equivalential calculus [38]. Winker's resultrefuted a long-standing conjecture, and it was obtained with substantial assis-tance from an automated reasoning program (AURA) designed by colleaguesat Argonne National Laboratory.For equally impressive results, but ones that may o�er even more depth,I recommend that the di�cult-to-persuade examine the research (with mycolleague McCune) focusing on �xed point problems in combinatory logic [37,18]. In that context, the kernel strategy, used to �nd �xed point combinators,is of particular satisfaction; its use provides the most uniform success withrandomly selected problems from some area of mathematics or logic.Note 2. Automated reasoning programs can �nd proofs that a person,even with training and knowledge, might not �nd; again, the earlier cited 4-step proof of thesis 59 provides an appropriate example. More obvious is thecase in which an open question was answered, where an automated reasoningprogram played a key role. Such a program makes no tacit assumptions. Sucha program nicely complements the expertise that can be brought to a study bythe researcher. The objection that one cannot know a priori which inferencerule to use seems spurious; in many computing environments, one can simplytry a number of runs, simultaneously. When a person, rather than a program,is one's colleague, the preferred attack is often unclear.On the other hand, the desire for choosing quickly and wisely the best35



inference rule and strategy provides an excellent motivation for researchersin our �eld to propose and test metarules for making such choices. Only,let the testing at least include hard problems and new problems, instead ofrelying on those that have been repeatedly quoted and that are now easyto solve. Of course, I recommend an occasional attempt to answer an openquestion; but the tests must focus mainly on known results, for, otherwise,progress cannot be measured. I also give the obvious recommendation thatdata must be given to support claims, CPU time compared to other programsor approaches, number of conclusions drawn, number retained, and the like.Note 3. To me, it is clear that the �eld has matured, at least passingthrough adolescence. Only a few years ago, what chance would we have hadwith the 68 theorems suggested by Scott? Before OTTER's arrival, whatprogram could perform almost linearly with respect to drawing conclusions?Who would have guessed that, by 1990, a program would exist that could bee�ectively used (at one end of the spectrum) for proof checking and (at theother end) for �nding a new axiom system?If the �eld moves forward just a bit more, such a program might wellease the burden of refereeing for journals of various types|give such a futureprogram the outline supplied in the paper to be refereed, and instruct it to �llin the gaps. For a distantly related example, OTTER found that, among the68 theses of Lukasiewicz sent by Scott, 12 properly subsumes 11, 18 properlysubsumes 17, and 26 properly subsumes 27; a pair of this type might occurin a proof to be refereed. Also, when OTTER was given the obvious eightweight templates and asked recently to proof check the 8-step proof of thesis59 from theses 19, 37, and 60, the 7-step proof was found �rst. In otherwords, OTTER sometimes �nds a better proof than the one under study, andsometimes �nds a theorem more general than either of two theorems|neitherof which subsumes the other|whose negations are included to permit theprogram to prove both theorems in one run.Note 4. Conducting research with OTTER is strikingly di�erent fromconducting research with a person. With a person, one is ordinarily forced tochoose, from among the possible attacks, the one that seems most promising.It is simply too confusing and too arduous to sit back and try to consider twoor more paths of inquiry simultaneously. However, with OTTER, you canpursue many attacks in a single run. I certainly took this approach in mystudies of the completeness proofs for various axiom systems.It was simple; you choose the axiom system to be proved complete, placeits members in the set of support, and, for each other known complete axiomsystem, place in the axioms the disjunction of the negations of its members.I think it helps to monitor OTTER's progress: you can place the individualnegations|each disjoined with an ANSWER literal designating its role|inthe passive list, preventing them from participating except for unit con
ictand subsumption. Occasional glances at the output �le show how things areprogressing. Asking about UNIT CONFLICT shows which members of which36



axiom system have been proved, which is where the ANSWER literal comesinto play. Asking about EMPTY CLAUSE shows which systems have beendeduced or, equivalently, which completeness proofs have been obtained.The other striking di�erence focuses on the occurrences of success mea-sured in CPU time or measured in the number of retained clauses. Speci�cally,proofs often occur in bunches. OTTER often proves some of the theoremsunder consideration in the �rst few CPU seconds and with a small numberof retained clauses. Then, often, an isolated proof is found after say 20 CPUminutes and the retention of 3,000 clauses. At that point, sometimes, OT-TER seems to go o� and hide, for glances at the output �le in search of newsuccesses from among the targets yield nothing new. However|and I amjust beginning to accept this|after a long gap in time and retained clauses,another desired result is often obtained.For such an example, it su�ces to glance at the following results of thesuccessful attempt to prove the dependence of theses 1, 2, 3, 16, 21, 24, 39,and 40 on the set consisting of 18, 35, and 49.UNIT CONFLICT at 2.02 sec 104 [bin,103,13] $ANS(step_th_2).UNIT CONFLICT at 3.69 sec 144 [bin,143,18] $ANS(step_th_39).UNIT CONFLICT at 3.76 sec 149 [bin,148,15] $ANS(step_th_16).UNIT CONFLICT at 3.87 sec 157 [bin,156,19] $ANS(step_th_40).UNIT CONFLICT at 4.04 sec 162 [bin,161,14] $ANS(step_th_3).UNIT CONFLICT at 1288.96 sec3211 [bin,3210,16] $ANS(step_th_24).UNIT CONFLICT at 26600.33 sec8089 [bin,8088,12] $ANS(step_th_1).UNIT CONFLICT at 26635.09 sec8205 [bin,8204,17] $ANS(step_th_21).Note 5. Using OTTER is, to me, often reminiscent of collaboratingwith a brilliant colleague whose mental processes are complex and sometimesmysterious. Rather than simple poetry or worse, I am instead referring to theintricacy and interplay of OTTER procedures and options.For example, let the objective be to �nd one or more shorter proofs. Theobvious approach is to set the 
ags instructing OTTER to compare derivationlengths and to use back subsumption and thus seek, in a straightforwardmanner, to measure the lengths of two deductions of the same conclusion,preferring the shorter. The approach is a good one, but far more can be done,and certain hidden complications exist. Perhaps not so obvious, the shorterproof terminating in clause D may be missed because of encountering on theway two deductions of clause C, where the �rst deduction has shorter lengththan the second, but where the second deduction contains clauses that can beused repeatedly on the path from C to D. In other words, the shorter subpathon the way to proving a theorem may lead to pursuing a longer path to the�nish. 37



Since the topic of shorter proofs is important|such proofs are often moreelegant|I shall simply touch on additional options and other complicationsthat are in part hidden. Rather than instructing OTTER to direct its searchbased on choosing as the focus of attention the \simplest" clause not yet used,you can instead use level saturation, a breadth-�rst search. In the context ofseeking shorter proofs, the appeal of an approach based on level saturationrests with the correlation between proofs of lower level and shorter proofs.However, you can quickly see that there can exist two proofs with the �rsthaving lower level than the second, but with the second being shorter. Thelevel of input clauses is 0, and the level of a deduced clause is one greaterthan the maximum of the levels of the immediate ancestors used to deducethe clause. A proof can be found at level 4 with a length of 7, in contrast toa second proof of the same result having level 5 and length 5. Therefore, anapproach based on level saturation is not guaranteed to �nd the shortest proof,for, if forward subsumption is used|which is almost always recommended|the second proof can have its last step subsumed, preventing completion. Infact, any form of subsumption, backward or forward, can interfere with �ndingthe shortest proof, for the subsumed clause|although less general than itssubsumer|may be the key step in a shorter proof.Nevertheless, when using the ancestor subsume 
ag, to avoid retainingmany copies of the same clause, the use of back subsumption is recommended.The clause A ancestor-subsumes the clause B if and only if (1) A properlysubsumes B or (2) A and B are identical and the derivation length of A isless than or equal to that of B. Just as there can exist clauses A and B thatsubsume each other, there can also exist two clauses that ancestor-subsumeeach other. In either case, if forward subsumption is in use, OTTER retainsthe earlier copy. Rather than asking OTTER to directly seek shorter proofsby comparing derivation lengths, you might instead prefer to use a level-saturation approach with the ancestor subsume 
ag turned o�. With thatchoice, you might well decide to use back subsumption to purge less generalclauses in favor of newer and more general clauses. However, you should bewarned that the use of back subsumption can, unfortunately, interfere with�nding a shorter proof. To see how such interference can occur, you canimagine the deduction of two clauses A and B such that B is deduced afterA is deduced and such that B back subsumes A. If in addition the path to Ais shorter than the path to B, and if the use of A or B could lead in one stepto the completion of the desired proof, then the actions of back subsumptioncan prevent you from �nding the shorter proof.The use of weighting|which is inescapable with OTTER, for the focus ofattention will be based on symbol count or on the input weight templates|can block the discovery of a shorter proof. Indeed, the use of so-called lesscomplex expressions in preference to more complex can force the program tomiss a proof that might be shorter though relying on more complex clauses.Perhaps the word \miss" is not the best word in a technical sense; the word38



\delay" might be better, delay for an inordinate amount of CPU time, forexample, so that the proof is in fact missed.In a similar way, the inclusion of dependent clauses|although promotingnaturalness and perhaps the imitation of the approach a person might take|can also interfere with �nding a shorter proof. For example, the successfulattempt to prove thesis 21 dependent on theses 18, 35, and 49 produced a 55-step proof in which all three theses were used; in contrast, a second attemptin which thesis 49 was omitted produced an 11-step proof.Although you might strongly and understandably object, I think we haveyet more evidence to support the position that the best approach to the au-tomation of logical reasoning does not emphasize the imitation of the way aperson works. Naturalness of proof and of approach is �ne; but its absenceto some degree or to a total degree may be the key to obtaining the desiredresult. All is okay; better to increase the e�ectiveness of research by com-plementing the researcher, without the concern of imitation. I was startledby the obvious appeal|to a surprising number of people|coupled with themisleading nature of a recent talk in which the speaker asserted that the suc-cessful dispatching of a challenge problem proposed by Frank Pfennig, thoughlaudable, su�ered from the fact that Lukasiewicz (the author of the theoremin question) would never have in e�ect generated the 6,000,000 conclusionsthat the program did. I am certain that Lukasiewicz did not and would nevertake such an approach; but the observation is at best irrelevant, if the ob-ject is to evaluate the merit of the attack taken by an automated reasoningprogram.Finally, intuition can get in the way of �nding the desired shorter proof.For example, intuition might suggest that the thesis i(x; i(y; x)) is a key to�nding a shorter proof. To impose that intuition on OTTER's search, you canuse a weight template to give a low weight (high preference) to the followingclause.P(i(x,i(y,x))).OTTER would accept the instruction, emphasizing the role of the preced-ing clause, which might in turn send the program down a long, long pathculminating in a proof. The resulting proof might be far longer than thatproduced if the clause were simply given a weight based on symbol count or,even further, given a high weight to prevent or delay its use.Quite di�erent from the direct approach to seeking a shorter proof withOTTER is that in which a number of targets are given simultaneously. Forexample, if the objective is to prove that some given set of axioms is completefor some calculus, by including in the axioms clauses each of which is thedisjunction of the negations of a known set of axioms, OTTER can in e�ectattempt to use each disjunction as a target. If you also set the proofs limit
ag to 0, giving OTTER permission to continue to seek proofs until time ormemory is exhausted, then the program may in fact succeed in completing a39



number of di�erent and sometimes unrelated proofs. Then, rather than OT-TER comparing proof lengths, the user makes the comparison. This approachto seeking a shorter proof can, of course, be combined with the direct approachin which OTTER compares derivation lengths of the same deduction.Of course, the beauty|some might say di�culty|of using OTTER iscaptured by the converse; such an emphasis based on the researcher's intuitionmight be just what is needed to �nd the shorter proof. Indeed, when Scottsuggested that the 8-step proof of thesis 59 from theses 19, 37, and 60 couldbe shortened and also stated how that could be accomplished, I simply addedweight templates to encourage the use of one clause and discourage the useof two others; it did work, as evidenced by the resulting 7-step proof, as hepredicted. I view such occurrences as proof that OTTER is an assistant whosevalue is great|and growing. Conducting research with a person is, in reality,no less complicated.Note 6. Just as di�erent mathematicians and di�erent logicians havedi�erent strengths, so also is it true for automated reasoning programs. Noprogram compares to the Boyer-Moore program for verifying computer codeor verifying algorithms. The Kapur-Zhang program appears to be the best forsolving problems in which associative/commutative uni�cation can be used.As for the approach based on Prolog technology, Stickel's program sets thestandard. However, for my type of experimentation, no program o�ers nearlyas much as OTTER does. Even further, for serious research in some area ofmathematics or logic, I strongly conjecture that nothing that currently existscompares to OTTER. The fact that, with respect to drawing conclusions,this program performs almost linearly gives it a distinct edge. Even after19 CPU hours on a SPARCstation, the rate of deductions had changed onlyfrom 550 clauses per CPU second to 460. One of McCune's masterful moveswas to adapt the use of discrimination trees [19] to the application of forwardsubsumption, a procedure that is indispensable for serious research [40].Sometimes, the objective is to �nd the \best" proof, which may mean theshortest, the most elegant, the most natural, or simply one that the researcherparticularly likes. With the use of weighting and the ancestor 
ag and demod-ulation, OTTER often enables one to take a proof and polish it to produce abetter proof. A case in point: when Scott suggested that the 8-step proof ofthesis 59 from theses 19, 37, and 60 could be shortened to a 7-step proof andshowed how, it was trivial to instruct OTTER to follow Scott's suggestions.Later, when the assignment for OTTER was to simply verify that proof tocheck that no shorter proof existed, the use of level saturation failed in anodd way|a 4-step proof was found instead.Note 7. Clearly, the use of OTTER as a team member requires reorienta-tion. For one of the more striking examples|when compared to working withanother person|no means exists to ask OTTER how it is doing, whether it isclose to a proof, or whether it is stuck in a trough. Instead, one notices thatthe proofs often come in clusters and that the gaps between successes can vary40



widely. I have often had the urge to truncate a run because of noting that nonew proofs had been found in the preceding 3 CPU hours, only to discover,after resisting the urge, that more proofs would be found. For example, in arun being made as I write this section, in which the object is to �nd a proofof the completeness of a single axiom (found by Meredith) for sentential cal-culus, one of the desired results was obtained at the 15 CPU-second mark,and the next result was not obtained until the 5,606 CPU-second mark.Also, I �nd it much easier to wander through OTTER's results thanthrough those of a person; the explanation rests in part with no missing steps,precise history of derivation, and the like. Such wanderings have producedunexpected treasure. For example, before I was told that theses 18, 35, and49 form a complete axiom system for sentential calculus, I was using OTTERto attempt to prove that the system consisting of theses 16, 18, 21, 24, 35, 39,40, and 49 was complete. The approach focused on deducing theses 1, 2, and3, the Lukasiewicz axiom system. In that study, I had also instructed OT-TER to seek, where possible, shorter proofs. You can imagine the delight andexcitement I experienced at discovering, during my examination of OTTER'ssuccess with proving theses 1, 2, and 3, that the shorter proofs did not usetheses 24, 39, and 40. In other words, I had a proof that theses 24, 39, and40 were dependent on theses 18, 35, and 49|possibly, although unlikely, anew result. Even though the result was already known, as it turned out, theexample clearly illustrates|at least to me|the potential value of OTTERas a research assistant. The fact that theses 16 and 21 are also dependent|although not discovered in my cited experiment|detracts for me in no way.On the contrary, the experiment now gives me yet another way to seek theexistence of dependent axioms.1.10 A Sincere DebateAt this point, before giving a summary and conclusions, an exchange of viewsis in order. I move that you and I more or less debate. Since you have lostyour vote, for you are not present, the motion carries. However, fear not, forI shall also take your part|at least to the extent of guessing what you mightsay at various points. In fact, I shall give you �rst say.\Larry, Larry, you are really confused. There is no way that anyone hascome near to ful�lling my dream, not even you, for whom I have the greatestrespect. You and your colleagues at Argonne are pretty good at solving somemathematics problems, that's for sure. But so is Macsyma and Wu's algo-rithm. In all three cases, the problem is that the mainstream of mathematicsis just not being addressed. Who cares about little problems like centuries-old geometry theorems, propositional calculus independence results, or trickylittle integration problems? Who cares? Not any signi�cant portion of theworking mathematicians of this world."41



You raise a number of excellent points in your �rst salvo. I am certain thatyour sole motive is to get at the truth, so let me address two of those points.You are indeed correct that your grand dream has hardly been touched, butwhat about those aspects addressed in this article/letter? We can prove theo-rems suggested by a well-respected researcher, such as Dana Scott, and do soon the �rst try. A few mathematicians and logicians are now experimentingwith an automated reasoning program, OTTER in particular. And|mostsigni�cant, at least to me, and I hope to others|we have used our programsto answer open questions, and from a variety of �elds.The kernel strategy that McCune and I formulated for answering questionsconcerning �xed point combinators appears to o�er far more power in thatarea than any person can o�er|no disrespect intended to anyone. Who wouldhave thought that by the mid-1980s there would exist an area in which theprobability of success was higher than one half when a problem from thatarea was submitted to an automated reasoning program? And, please note,we usually have the answer in less than 5 CPU seconds. So, we have at leastful�lled one of Ross Overbeek's dreams. Second, as for the mainstream notcaring, at least (in alphabetical order) Kalman, Kaplansky, and Scott caresome. In fact, Kalman, on a visit to Argonne, told me that the work thatWinker and I did added stature to equivalential calculus. I am getting morespace than you are.\Larry, you were a mathematics graduate student at two great schools, theUniversity of Chicago and the University of Illinois. Take down the �fteenor so graduate-level mathematics texts that you studied and mastered. Openthose 7,000 pages to any page you want. Is there a program on earth that cancheck that page, even if it is recast in a formalism of your choice? How manyof those pages could be processed? I bet not 10. Quaife's splendid work withOTTER shows that to check regular math (for example, set theory or numbertheory), you have to put in dozens of lemmas to get through a regular mathproof with OTTER, say one lemma per line of proof! That is proof checking,not automated theorem proving. So we are probably less than 10/7000th ofthe way towards ful�lling my dream. And I will bet you any amount of moneythat my dream will be ful�lled only when machines do as people do, as I havebeen saying and trying to do for two decades: use analogy, use a huge databaseof known mathematics, use examples, use domain-speci�c heuristics."You again score points, and in abundance. You see, I focus on what hasbeen accomplished, rather than on what has not. Indeed, an overwhelmingmajority of what is found in mathematics books is outside our power|now.But, we cannot begin in the middle; mathematics did not begin there. Wehave come so far from those early days in the 1960s, but the journey hasonly begun. Only in the past few years have there existed more than a scantnumber of researchers trying to do mathematics with a reasoning program.Too many people in the �eld wasted time early|in my judgment|by focusingexclusively on theory rather than experimenting heavily. Granted that much42



of Quaife's excellent e�ort is proof checking; however, a study of it mightunearth new ideas to replace much of the checking with proof �nding.I have the greatest respect for your analysis; but, nevertheless, I do notadvocate having computers approaching mathematics as people do. Instead,I favor a team consisting of a mathematician and an automated reasoningprogram|a team that may eventually be far more powerful than either couldbe! In that regard, although our dreams|yours and mine|diverge sharply,we must each believe that the �eld clearly merits total devotion to it. Proof:the sum of the years you and I have given to the corresponding researchapproaches half a century!\Larry, I hope I have not been too harsh!"Just harsh enough|not too much, but, more important, not too little.Questioning from those within the �eld is required|if the �eld is to advance.However|and I also hope you �nd my remarks not too harsh|I think thatthe disappointment and sometimes disapproval regarding the automation ofreasoning, especially in the context of mathematics, misses the following fun-damental and essential point. In my view, to evaluate the e�ectiveness ofthe better automated reasoning programs by comparing them to the best ofmathematicians and logicians|for example, those who currently hold the po-sition of full professor and those who in the past have written some of thestandard texts|is the wrong comparison to make. If instead the comparisonis with people in general, or even with randomly chosen college students, themore e�ective reasoning programs now available will receive excellent grades,scoring much higher than the vast majority of people. Indeed, given a set ofproblems from mathematics and logic, the best of such programs|OTTERis my choice|reason far more e�ectively than almost all people do. For anexample, the ability of OTTER to simplify and canonicalize expressions inmost cases dwarfs that of any individual I have encountered. OTTER canapply as many as 4,000 demodulators per CPU second; obviously, no personcan compete with such performance.Of course, let us not ignore the long-term goal of using an automatedreasoning program that does compare favorably with the better mathemati-cians and logicians. When and if the �eld has advanced that far, we shall besavoring the �nest brandy and perfect raspberries, listening to Mozart andBix Beiderbecke reborn, and|perhaps more relevant|answering some of thedeepest open questions that exist.Were I not familiar with the twists and turns of the mind|learned mainlyat the poker table|I would be sitting at this keyboard experiencing amaze-ment at the lack of use, by mathematicians and logicians, of some automatedreasoning program. What fun they are missing by not using this powerful,portable program! How sad, for the use of a program like OTTER by evena handful of mathematicians and logicians would materially increase the rateof advance of automated reasoning and|from what I can tell|also of math-ematics and logic. Could it possibly be that they simply do not know what43



a valuable assistant for research OTTER is? With OTTER's availability andwith access to today's powerful computers, we may have a mystery here, onefocusing on how researchers can resist the temptation to add this program tothe team. Such users are, in my opinion, one of the key missing pieces to therapid advance of our �eld.The grand objectives are indeed stunning and beautiful|and worth thegamble.1.11 Summary, Conclusions, and the FutureMy congratulations to you, Woody, for winning the 1991 prize for Milestonesin Automated Theorem Proving. How poetic it would be if, many yearsfrom now, the winner of that prize had found the basis for the correspondingresearch by reading this article/letter, stimulated by one of the experiments,challenge problems, or open questions presented here! Even further, perhapsthis future winner, excited by the demonstration of the marked advance ofautomated reasoning over the past decade and intrigued by the apparentpower of McCune's program OTTER, will have conducted the prizewinningresearch on a copy of this very program|a copy obtained by anonymous FTP,for example. After all, the challenge problems do provide a wide spectrum ofdi�culty and are, therefore, useful for testing new programs and evaluatingnew ideas. Might the impetus come from one of the included problems inwhich equality plays no role, or might it come from one of the problems inwhich equality plays the dominant role? I prefer that the impetus be oneof the open questions posed here to further stimulate research in automatedreasoning and to promote its application to mathematics and logic.Perhaps, at this very moment, our future prize winner is pursuing oneof the three goals on which the organization of this article is based. Thepursuit might be of the �rst goal, which focuses on the ability of an automatedreasoning program, when given a theorem to consider, to obtain a proof onthe �rst attempt and, of equal importance, without much guidance from theuser. The proviso about the lack of guidance addresses the understandableconcern of those who wish or might wish to use such a program, but withoutthe requirement of mastering the various intricacies and subtleties. Perhapsthe needed stimulus will be one of the numerous examples given to show that�rst-attempt success in fact occurs frequently here in 1990.Instead, the target might be the second goal, which concerns contributionsto mathematics and logic resulting from the use of an automated reasoningprogram. In that case, the impetus for research might be one of the contri-butions discussed here|a shorter proof than can be found in the literature,an answer to an open question, or the new axiom system. How satisfyingthat the theorems that are the focus of these contributions and those relevantto the �rst goal include ones meriting the attention (in alphabetic order) of44



Bernays, Church, Frege, Hilbert, Kalman, Kaplansky, Lukasiewicz, Scott, andSmullyan.Unfortunately, compared to the �rst two goals, less evidence exists for therealization of the third goal, the use by mathematicians and logicians of an au-tomated reasoning program. However, as such use increases|as it assuredlymust|automated reasoning will make impressive advances. I eagerly awaitthe succession of open questions that will be answered with the assistance ofsome automated reasoning program. Will one of those questions be so signif-icant that answering it will merit the awarding of the $100,000 prize you hadestablished for the \�rst monumental contribution to mathematics made byan automated reasoning program"?Has the evidence cited here begun to persuade you that the three goalsthat are an important part of your grand dream for automated reasoning arein fact �nally a reality? The case is further strengthened if you also con-sider the recent advances in theory, implementation, and application. Withregard to theory, the formulation of the kernel strategy [37] for attacking�xed point problems in combinatory logic and the full development of theformal treatment for linked inference [28] in which equality plays no essentialrole �t nicely into the picture of a �eld making important advances. As forimplementation, the nearly linear performance of OTTER coupled with itspower marks a singular development. In the area of application, among theuses for an automated reasoning program discussed in this article are those ofsystematically seeking shorter proofs, identifying dependent axioms, checkingproofs, �nding new axiom systems, and the familiar proving theorems. Thesevaried uses make an automated reasoning program|especially the programOTTER|an excellent research assistant. Its power reduces the turnaroundtime dramatically, producing a qualitative improvement in the study of thechosen area of mathematics or logic. The added power is in part derived fromMcCune's adaptation of the use of discrimination trees [19] for the applicationof forward subsumption [21] and demodulation [32].Of course, as you know so well, I am somewhat puzzled at the lack of useof an automated reasoning program by mathematicians and logicians. Couldthe explanation be that people simply are not familiar with the recent devel-opments? Is it not known that a program like OTTER can apply as manyas 4,000 rewrites rules per CPU second on a SPARCstation to simplify andcanonicalize rapidly and accurately? Do few know that, by using weighting[15], the expert's knowledge and intuition can be used to direct such a programin its search for the desired information? More generally, is there little aware-ness of how well the use of an automated reasoning program complements theway a person works?In uni�cation alone, this complementary aspect is nicely exempli�ed. In-deed, as Dana Scott observes, uni�cation is neither the most natural nor theeasiest process for a person to apply, which explains in part why the use ofa reasoning program can lead to �nding unexpected and elegant proofs that45



a person might not discover. An excellent example is provided (in Section 5)by the 4-step proof of thesis 59 from theses 19, 37, and 60 (the new axiomsystem). Dijkstra has commented on the importance of �nding such shortand elegant proofs [3].In summary, to me|and I hope to you|the evidence presented in thisarticle strongly suggests that automated reasoning has made signi�cant quan-titative and qualitative advances in the decade from 1980 to 1990. Further,this evidence refutes the position that still exists asserting the impossibil-ity of an e�ective automation of reasoning. Of course, no program will everreplace the mathematician and logician; but programs do exist that nicelycomplement such a researcher. That we have barely begun is clear; that chal-lenges will always exist is preferred; that automated reasoning o�ers intrigue,excitement, and beauty will continually be true.AcknowledgmentsMy gratitude to WilliamMcCune for his impressive program OTTER and forbeing a splendid colleague, and to Dana Scott for his intriguing and excellentsuggestions regarding research.
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