
Issues in Parallel Automatic Di�erentiation�Christian H. BischofMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439{4801bischof@mcs.anl.govArgonne Preprint MCS{P235{0491Published in Automatic Di�erentiation of Algorithms, A. Griewank and G. Corliss, Eds., SIAM,Philadelphia, pp. 100-113, 1991.Abstract. This paper shows how �rst-order derivatives can be computed in parallel by considering the computationalgraph that underlies the evaluation of the target function. The graph can be generated e�ciently from the ADOL-Ccomputational trace and can be used to automatically deduce the structure of the Jacobian matrix and compute theJacobian using the reverse mode of automatic di�erentiation. By employing well-known graph-coloring techniques,one can dramatically decrease the number of reverse passes required. The resulting implementation performs well onthe Sequent Symmetry and BBN Buttery TC2000 shared-memory multiprocessors. Lastly, we look at the problemsthat must be tackled to make automatic di�erentiation a commonplace computing tool, and to allow for e�cientimplementations on high-performance computers. In our view, the key lies in �nding better ways to incorporate userand/or compile-time information about the behavior of the program into the automatic di�erentiation approach.1. Introduction. In this paper, we are mainly concerned with the evaluation of �rst-orderderivatives on parallel machines. These techniques can easily be generalized to higher derivatives [12].That is, given a function F = 0B@ F1...FM 1CA : RN ! RMand an input argument vector xo 2 RN , we wish to compute@@xiFj(x)jx=x0 ; i = 1; : : : ; N; j = 1; : : : ;M:To this end we assume that we have a computational graph G, which represents the computationof F (x)jx=xo in terms of the elementary arithmetic operations (like +;�; �; =) and standard libraryfunctions (like sin; cos). Figure 1 shows a sample program and the corresponding computationalgraph for the input values x1 = 1 and x2 = 1:5. This view of computation is a natural one, asit captures common subexpressions that can be exploited in the course of the computation of F .This point is demonstrated convincingly in [13]. This paper as well as [1] also gives an intuitiveexplanation of the forward and reverse mode of automatic di�erentiation within this framework.Let us assume that G contains T nodes nk, with the �rst N nodes corresponding to the independentvariables xi, and the last M nodes corresponding to the dependent variables Fj(x). In the forwardmode, we associate with each node nk the valuestk = rnk(x)jx=x0� This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research,U.S. Department of Energy, under Contract W-31-109-Eng-38, and through NSF Cooperative Agreement No. CCR-8809615. 1

if ((x1 - 2) > 0) thena = x1elsea = 2*x1end ifb = 1for i = 1:2 dob = b + sqrt(b)*aend fory0 = b/x2y1 = a*x2 1312

11

10

9

8

7

6

5

4

21 x_1 x_2

y_1 y_2

1

sqrt

*

+

sqrt

*

+

/ *

*2

Fig. 1. Sample Program and Corresponding Computational Graphwhich contain the partial derivatives of this intermediate value with respect to the independentvariables. In the reverse mode, we associate with each node the values�tk = ddnkF (x)jx=xowhich measure the sensitivity of the dependent variables with respect to the intermediate quantitynk. For simplicity we denote by nk both the computational node and the intermediate value that itstands for.The information needed to generate a computational graph corresponding to the computationof F (x)jx=xo can easily be generated through operator overloading. The computational trace thatis generated by packages like ADOL-C [14] corresponds to one particular topological ordering of G.In the next section we describe our approach for representing the computational graph generatedfrom an ADOL-C tape, as well as the optimizations to reduce size of the graph and increase thecomputational granularity of the graph nodes.The computational graph contains exactly all the synchronization constraints one must satisfy inthe computation of F (x)jx=xo. That is, if there is a path from nk to nl, then nl cannot be computedbefore nk, but otherwise there is no restriction on the order in which graph nodes are evaluated.In Section 3 we show how we can exploit this freedom to compute F and its derivatives in parallelon a shared-memory multiprocessor. We also use the computational graph to automatically deducethe sparsity structure of F 0(x)jx=xo and then use graph coloring to identify component functions Fiwhich depend on disjoint subsets of independent variables. The gradients of component functionsof di�erent colors can then be evaluated in the same reverse pass over the graph, a procedure thatcan greatly enhance computational e�ciency.While promising, automatic di�erentiation schemes are still quite a ways from being serious2

contenders for hand-coded derivatives. We survey current approaches to automatic di�erentiation inSection 4 and examine the issues that in our view must be tackled to make automatic di�erentiationa commonplace computing tool and to allow for e�cient implementations on high-performancecomputers. As will be seen, the key lies in �nding better ways to incorporate user and/or compile-time information about the behavior of the program into the automatic di�erentiation approach.2. An E�cient ComputationalGraph Representation. We used the computational traceproduced by the ADOL-C package [14] to generate a computational graph representing the compu-tation of F (x)jx=xo. For example, the code fragmentt = plus(a,b);z = 2*t;would produce the following kind of trace if plus(a,b) was de�ned as a+b, and a and b were storedin s(1) and s(2), respectively.construct(s(3), s(4)); /* allocate formal parameterss(3) = s(1); s(4) = s(2); /* assign actual to formal parameterss(5) = s(3) + s(4); s(6) = s(5); /* addition using one temporary variabledestruct(s(3), s(4), s(5)); /* plus has gone out of scopes(3) = s(6); /* assignment to t,/* reusing storage location 3s(4) = 2.0*s(3); s(5) = s(4); /* multiplication using temporary variableHere the s array is used as RAM storage for the intermediate values that arise in the course ofthe computation. The simplest strategy of assigning storage locations to intermediate values wouldbe to assign a unique location to every intermediate value, but the RAM storage cost needed fordi�erentation utilities would be O(T), in addition to the O(T) cost for recording the T operations.In contrast, ADOL-C overloads the C++ constructors and destructors, and hence reuses the storagelocations assigned to a variable when this variable goes out of scope. This can be seen above, wherewe reuse s(3), s(4) and s(5) once the plus function has gone out of scope. Using this technique,the RAM requirements usually are rather modest. We also note that an operation like z = 2*tresults in two assignments, one assigning 2*t to a compiler-generated intermediary, which is thenassigned to z. While this is clearly a compiler-speci�c phenomenon, the GNU C++ compiler handlesarithmetic operations this way.In the computational graph, each node corresponds to some intermediate value computed duringthe execution of the program to compute F (x)jx=xo. A graph node represents both an operationand the value that is the result of performing that operation with the given input values. We saythat node c is a \child" of node p if the value computed at c is an input value to the operationperformed at p; p is called the \parent" of c. Since all operations are at most binary, each node hasat most two children, but may have many parents. The computational graph is acyclic, with theleaves representing the independent variables and the roots representing the dependent variables.It is important to understand that a node in the computational graph represents a value, not astorage location. For example, in Figure 2, the child node labeled x represents the value in storagelocation x before the addition; the parent node labeled x represents the value in storage location xafter the addition has been performed.To represent the computational graph e�ciently, we use our own memory management to storegraph nodes, opcodes, and pointers between children and parents in contiguous locations in mem-ory. In this way, we avoid memory fragmentation and enhance data locality, since the informationpertaining to neighboring nodes is likely to be stored in adjacent memory locations.To decrease the size of the graph and increase computational granularity, we perform severaloptimizations on the y as we construct the computational graph from the ADOL-C tape. In doingso, we incorporate some suggestions made in [3]. First, we eliminate assignments nodes. Recall that3

x

yxFig. 2. Graph Representation of x+=y
t = a+b;
z = a*t;
y = t/b;

z y

a b

* /

+

+

ba

t

* /

= =

=

z y

Fig. 3. Sample Code Fragment and its Representation with and without Assignment Nodesa node in the graph corresponds to a value, not a memory location. Thus, if we use a variable t onthe right-hand side of an arithmetic operation, we can simply generate a pointer to the result of thelast arithmetic operation that was represented by t. An example is shown in Figure 3.Second, we collapse chains of unary operations into one node, an operation that we call hoisting.As depicted in Figure 4, hoisting allows us to represent a chain of unary operations much moresuccinctly. Instead of using �ve graph nodes with one opcode each, we represent this chain ofoperations in one graph node with �ve opcodes, a so-called supernode. Apart from saving memory,this operation increases the granularity of the graph, in that more oating-point operations areassociated with the evaluation of that particular graph node.Lastly, we remove so-called dead roots; nodes whose value has no inuence on the dependentvariables. Most commonly, those nodes arise as a by-product of the evaluation of some control owcondition. An example is shown in Figure 5. Upon encountering a dead root, we check recursivelywhether children of this node have become dead roots themselves. The implementation of thoseoptimizations is nontrivial, since all these optimizations are performed on the y; for details thereader is referred to [2]. On the other hand, the e�ect of those optimizations can be quite noticeable.We generated computational graphs for the ADOL-C tapes of the following three application codes:Shallow: This code solves the shallow-water equation to simulate the development of the atmo-sphere in a rectangular region [21]. We had 243 independent variables, corresponding to aninitial state de�ned by a 9� 9 grid with 3 variables at each node. Starting from this initialstate, we integrated over 31 time steps. There is only one dependent variable, correspondingto the sum of squares between the measured and computationally predicted values.Bratu: Bratu is a partial di�erential equation model of the exothermic reaction in a section of acylindrical combustion chamber [23]. The code assumes radial symmetry and converts theproblem to a two-dimensional grid with mixed boundary conditions. These results wereobtained with a 40 � 80 grid of the chamber section, yielding 3,200 independent variablesand 3,200 dependent variables.Cavity: This problem is a discretization of an incompressible Navier-Stokes equation in a rectanglewith constant uid ow over one end of the rectangle. The rectangle is represented as a4

1.31.1

sqrt

sin

cos

+

*

1.31.1

+,sqrt,sin,cos

Fig. 4. Sample Code Fragment and its Graph Representation before and after Hoisting
b

a

dead root

Fig. 5. Before and After Removal of Dead Roots5

Table 1E�ect of Graph OptimizationsShallow Number PercentADOL-C tape operations 281805 100.0assignments 61236 21.7dead roots 37390 13.3hoisted nodes 29694 10.5graph nodes 153485 54.5Bratu Number PercentADOL-C tape operations 221513 100.0assignments 30578 13.8dead roots 0 0.0hoisted nodes 48356 21.8graph nodes 142579 64.4Cavity Number PercentADOL-C tape operations 137039 100.0assignments 49139 35.9dead roots 13732 10.0hoisted nodes 6144 4.5graph nodes 68024 49.631� 31 grid, yielding 961 independent variables and 961 dependent variables.The total `tape' storage required 4.1 Mbytes for \Shallow", 3.4 Mbytes for \Bratu", and \Cavity",1.8 Mbytes for \Cavity". In contrast, the RAM requirements, ad indicated by the maximumnumberof storage locations, were rather modest. The maximumnumber of storage locations was 18,365 for\Shallow"; 6,413 for \Bratu"; and 2,355 for \Cavity".In Table 1 we show the e�ect of those optimizations. We display the total number of operationsstored in the original ADOL-C tape, the number of assignments removed, the number of opcodesdeleted as a result of removing dead roots, the number of operations amalgamated into a supernodeas a result of our hoisting operation, and the remaining number of nodes in the optimized graph.We show both absolute and relative values. We see that our optimizations have quite a noticeablee�ect. Between removing assignments and dead roots, we eliminate 35.0%, 13.8%, and 45.9% ofthe operations to be performed. By incorporating these on-the-y techniques into the ADOL-Ctape generation mechanism, we would have saved 29.7%, 9.3%, and 39.8% for the tape storage of\Shallow", \Bratu", and \Cavity" , respectively. The e�ect of hoisting was problem-dependent:19.4%, 17.0%, and 8.8% of all operations were stored in supernodes for \Shallow", \Bratu", and\Cavity" , respectively, and usually a supernode contained two or three arithmetic operations.3. Exploiting Parallelism. The execution graph now can be used to perform a forward orreverse sweep employing several processes. In a forward sweep, we start with the nodes representingthe independent variables (the leaves of the computational graph), and make sure that we evaluateall children of a node before we evaluate this node itself. The situation is the opposite for the reversepass; here we start with the dependent variables (the roots of the computational graph) and evaluateall parents of a node before we evaluate this node itself.If the computational graph is stored in shared memory, we can compute �rst derivatives using6

put roots on queuerepeatlock queue. Pick a node n from the queue. �tn = 0. Unlock queue.foreach parent p of n do�tn = �tn + @gp@xn �tp (*)end forforeach child c of n dolock c;if c has not been visited yet theninitialize counter(c) to the no. of parents of c.end ifcounter(c) = counter(c) - 1;unlock c.if (counter(c) == 0) thenlock queue; put c on queue; unlock queue;end ifend foruntil queue is emptyFig. 6. Dynamically Scheduled Evaluation of First-Order Derivatives Using the Reverse Modethe reverse mode of di�erentiation with the algorithm shown in Figure< 6. If we wish, for example,to compute the gradient rF3(x)jx=xo, we initialize the adjoint values in the root corresponding toF3 to 1, and to zero in all other roots. See [1] for a detailed example.With each graph node, we associate a counter which counts how many parents of a given nodestill have to be computed. When all parents of a given node have been evaluated, we can evaluatethis node; to this end, we put it on a global queue, that contains nodes that are ready to be evaluated.The evaluation is then the summation of the adjoint values (*). Here gp is the elementary functionassociated with node p.In this simple form, the global queue will clearly become a bottleneck in the computation.Griewank and Juedes [17] avoided this problem by employing a hierarchical queue structure. Ourimplementation was inspired by their promising results but in addition, we wished to satisfy thefollowing criteria:� The parallel code had to be portable across shared-memory architectures.� The mechanism for maintaining pools of \runnable" nodes had to be simple, yet e�cient.� The number of \locking" calls had to be minimized.We achieved portability by implementing our code using the P4 portable communication library ofLusk et al. at Argonne. This library has been implemented on a variety of machines, and in particularon the Sequent Symmetry and the BBN Buttery TC2000 shared-memory multiprocessors. Tomaintain \runnable" nodes, we collected them into packets, typically of size 20, and then transferredonly packets of nodes between local process queues and one global queue. During graph evaluation,a node then consumes nodes from its local queue, and inserts newly generated runnable nodes intoits local queue. If the local queues grow beyond a high-water mark, a certain number of packets aretransferred to the global queue. If a process runs out of nodes in the local queue, it looks for a packetin the global queue. This scheme is simple, yet we found that it does the job of avoiding contention onthe global queue. The number of \locking" calls is decreased through the use of supernodes generated7

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

pa
ck

et
s

global queue (time in seconds)

0

5

10

15

0 0.5 1 1.5 2 2.5

pa
ck

et
s

local queue (time in seconds)

Reverse Pass with First Derivative Computation

Fig. 7. Queue Behavior during First Derivative Computation Using Reverse Modethrough hoisting. Since the locking overhead required for evaluating a node is independent of thenumber of arithmetic operations associated with a node, hoisting improves computational e�ciencyby increasing the computational grain size. We also perform some straightforward optimizationsthat ensure that a node is locked only if another process could also access it.We implemented two versions of our graph evaluator, which di�er only in the way data istransferred between the local and global queues. In the �rst version, which we call \the pointerversion", data is transferred between local and global queues simply by switching pointers. That is,all packets reside in shared storage, but they may be temporarily viewed as local in that only oneprocess will access them. This version seems suited for a \at" memory hierarchy as in the SequentSymmetry, where all memory accesses essentially take the same amount of time. On the otherhand, on the BBN Buttery TC2000, shared-memory accesses may be up to ten times slower thanlocal-memory accesses, since shared-memory accesses have to be routed through a switch, whereaslocal-memory accesses are immediately satis�ed. In addition, local-memory accesses are cached,but shared-memory accesses are not. So in the second \copying version", we make sure that localqueues do in fact reside in local memory, and we explicitly copy information between global andlocal queues.It is instructional to consider the behavior of the local versus the global queue. In Figure 7we show the total number of packets in the global queue and the local queue of a processor (as itturned out, the patterns of all local queues were virtually identical) as we evaluate the Jacobian ofthe \Cavity" test problem. We are using the \copying" version with three processes on the BBNTC2000. The packet size is 20, a local queue must not contain more than 11 packets; and if thatlimit is about to be exceeded, four packets are copied to the global queue. We observe a slow growthphase as packets are pushed onto the global queue. During that phase, there is substantial localactivity between accesses to the global queue, as local processes seem to consume a \neighborhood"of the computational graph. As a result, there is virtually no contention on the global queue.In our implementation we also exploit the fact that we can deduce the structure of the Jacobianmatrix from the computational graph in an automatic fashion. If there is a path from the ith8

0

5

10

15

0 5 10

processors

sp
ee

du
p

Jacobian -- Cavity

0

5

10

15

0 5 10

processors

sp
ee

du
p

Jacobian -- Bratu

SEQUENT SYMMETRYFig. 8. Speedup of \Pointer" (solid line) and \Copying" (dashed line) Version on Sequent Symmetryleaf (corresponding to the ith independent variable xi) to the jth root (corresponding to the jthdependent variable Fj), then @Fj@xi 6= 0 | in the absence of numerical cancellation. This is oneof the important fringe bene�ts of automatic di�erentiation. While current software for solvingnonlinear least squares problems (see, for example, [6, 19, 20]) requires the user to specify thesparsity structure of the Jacobian | a tedious and error-prone process unless the structure of theJacobian is very regular | the dependency analysis that is performed as a by-product of automaticdi�erentiation automatically takes care of that.Given the structure of the Jacobian, we can now identify rows of the Jacobian that can becomputed independently. In essence, if Fi and Fk depend on di�erent sets of input values Xi andXj , respectively (Xi; Xj 2 f1; : : : ; ng; Xi \Xj = fg), then rFi and rFj can be evaluated at thesame time with the reverse mode, by seeding the adjoint values in the nodes corresponding to thedependent variables Fi and Fj with 1, and all other adjoint values in the dependent variables with 0.Upon completion of the reverse pass, the adjoint values corresponding to the independent variablesin Xi will be the nonzero gradient values for Fi, and the adjoint values in the independent variablesinXj will be the nonzero gradient values for Fj. This structure has been exploited in �nite-di�erenceapproximations of the Jacobian, and graph coloring algorithms have been used to identify maximalsets of component functions that depend on mutually disjoint sets of input values [5, 4, 9, 18, 22].In our implementation we use the sequential coloring algorithm by Coleman, Garbow, and Mor�e [5],but we also mention that recent research has shown that this step can be e�ciently implementedin parallel as well [15]. For example, in the cavity problem we require 21 \colors", that is, wecan compute the gradients for all 961 component functions in only 21 reverse passes through thecomputational graph. For the \Bratu" problem, which employs a nine-point stencil in its PDEdiscretization, we get by with nine colors as expected.The speedups obtained for the \Cavity" and \Bratu" problems on up to 10 processors of theSequent Symmetry and BBN Buttery TC2000 are shown in Figures 8 and 9, respectively. Thesolid line corresponds to the \pointer" version, the dashed line to the \copying version". We seethat on the Sequent we obtain very good speedup, with the \copying version" performing somewhatbetter for the \Bratu" test problem. We seem to obtain superlinear speedup only because theseexperiments were not performed on dedicated machines. On the other hand, on the BBN ButteryTC2000, we observe a noticeable degradation of performance, with the \pointer" version being clearlyinferior to the \copying" version. This degradation is due to the TC2000 architecture, which has aarchical memory structure in which shared data (in particular our graph structure) is more costly to9

0

2

4

6

8

10

0 5 10

processors

sp
ee

du
p

Jacobian -- Cavity

0

2

4

6

8

10

0 5 10

processors

sp
ee

du
p

Jacobian -- Bratu

BBN BUTTERFLY TC2000Fig. 9. Speedup of \Pointer" (solid line) and \Copying" (dashed line) Version on BBN Buttery TC2000access. In addition, our e�orts to enforce locality on our graph data structures are a disadvantage,since the Buttery's memory allocation routines (which are called by P4) currently do not scatterdata across di�erent memory modules (this will be remedied in the next software release).4. Outlook. Automatic di�erentiation using approaches based on the chain rule based ap-proaches is a very convenient software tool. Given just the code for the function, we can computederivatives of any order (as well as the structure of derivative matrices) exactly (in contrast to �nitedi�erences) in a fashion that is transparent to the user. A survey of currently available packages isgiven in [16]. This property makes chain-rule based automatic di�erentiation a natural candidatefor packages that require derivative values. In addition, our work as well as that of Christianson [3]and Dixon [7] has shown that there is scope for exploiting parallelism in the automatic computationof derivatives, again in a fashion that is transparent to the user.On the other hand, even though this technique is used many di�erent �elds (see the papersin these proceedings), it has by no means become a standard computing tool yet. If one asks thetypical computational scientist about automatic di�erentiation, he is likely to associate this termwith �nite di�erence approximations or symbolic techniques. The reason is that in all likelihood hehas software employing �nite-di�erence approximations or symbolic techniques on his computer |be it a PC, workstation, mainframe or supercomputer | but no software that supports chain-rulebased automatic di�erentiation.For this technique to become the commonplace computing tool that it ought to be, we needsoftware that ful�lls the following criteria:Ease of Use: In particular, Fortran subroutines should be easy to interface with, since most scien-ti�c applications are implemented in this language.Speedy Execution: Theoretically, the evaluation of the gradient with the reverse mode of auto-matic di�erentiation should require no more than �ve times the e�ort of evaluating theunderlying function itself [10], and observed running times should be close to that factor.Moderate Storage Requirements: The storage requirements for performing the forward as wellas the reverse mode should be a modest multiple of the storage required for evaluating thefunctions.Unfortunately, as useful as they are in many respects, all packages surveyed in [16] are subop-timal with respect to some of these criteria. Fortunately, the method is not at fault. It is our beliefthat one can develop automatic di�erentiation software that satis�es these criteria, if one can get10

c$paralleldo 10 i = 1,ny(i) = 0c$vector do 20 j = 1,ny(i) = y(i) + a(i,j)*x(j)20 continue10 continueFig. 10. Code fragment for computing y = Axcompiler support for automatic di�erentiation. For example, through the use of operator overload-ing techniques in C++ or Ada, or PASCAL-SC, we can easily deal with functions written in thoselanguages. On the other hand, Fortran functions require the use of precompilers, which usuallysupport only a subset of the language. If we were to build the restricted set of operator overloadingtechniques needed for our purposes into a Fortran compiler, we could deal with Fortran functionswith the same ease. Fortran90 will have most of that functionality, but at the moment it is unclearwhen this language will be as commonplace as Fortran77 is now.The compiler issue also comes into play when we are concerned about running times. Forexample, the main computation inside the Helmholtz energy functionf(x) = RT nXi=1 xi log xi1� bTx � xTAxp8bTx log 1 + (1 +p2)bTx1 + (1�p2)bTxis the matrix-vector product Ax, which might be computed in Fortran as shown in Figure 4 TheFortran directives instruct the compiler to vectorize the j loop and indicate that the various iterationsof the i loop can be scheduled concurrently if the hardware supports it. With current techniques,this information, which can be so crucial for performance, would simply be ignored. The j loopwould be evaluated at serial speed at best; and, if we were to use the graph scheduling techniqueswe described in the preceding section, we might rediscover the instructions in the parallel loop, butat signi�cant cost. Again, if we were to incorporate di�erentiation arithmetic into a compiler, itwould be easy to generate vectorized di�erentiation or parallel automatic di�erentiation code forsuch source code.Lastly, there is the issue of storage requirements. In order to perform the reverse mode of auto-matic di�erentiation, all current implementations store a trace of the computation; and as we haveseen in our examples, this trace is usually rather large. Even though the trace is accessed sequen-tially, the large storage requirement can quickly make this technique infeasible on small computersystems and/or large problems. There is, however, a way around this problem. Let us consider thefollowing code fragment: x = f(a);y = g(x);To implement the reverse mode of automatic di�erentiation, we currently evaluate f and g, recordingall the arithmetic operations performed, and then run backwards over the computational trace. IfT (f) and T (g) are the number of arithmetic operations required for evaluating f and g, this techniquerequires T (f) + T (g) + (T (f) + T (g)) arithmetic operations (1 � � 5 being the factor by whichthe reverse mode is more expensive than the function evaluation) and O(T (f) + T (g)) storage forrecording the trace. If, on the other hand, we1. record a; 11

Table 2Compiled Graph Evaluation Code Scheduled by Height of Nodes# processors serial 1 2 4 6 8execution time (secs) 0.80 0.97 0.57 0.58 0.54 0.62. evaluate f(a) without tracing;3. evaluate g(x) with tracing ;4. do reverse pass on trace of g, until we come to the point where x was assigned;5. re-evaluate f(a) with tracing; and6. complete the reverse pass on f 's trace,the arithmetic cost is 2 � T (f) + T (g) + (T (f) + T (g)), but we require only O(min(T (f); T (g)))storage for tracing. Of course, we could now further reduce storage by applying this same techniquein a recursive fashion to f and g themselves.Such an approach has been used in hand-coded implementations of the reverse mode. Griewank [11]recently analyzed such a scheme, showing that if one accepts an increase in the number of opera-tions by a �xed factor k, the storage required for tracing is limited essentially by the k-th root ofthe original run-time T . For the particular choice k = ln(T=R), where R is the RAM storage re-quirement for evaluating the original function, the tracing storage requirement and computing timeboth grow logarithmically in the ratio T=R. In his analysis, Griewank assumed that one could insertcheckpoints arbitrarily during the computation; but, as suggested by the example above, subroutineboundaries might be the natural places to put those checkpoints. Again, compiler support would becrucial here.In summary, we believe that automatic di�erentiation can become the generally accepted com-puting tool it deserves to be. For this to happen, we have to make the compiler community awareof this opportunity, and educate ourselves to understand in more detail exactly what functionality(and in what form), we could expect from compiler-supported automatic di�erentiation.Lastly, let us return to the issue of parallelism, which is of crucial importance for the long-termviability of automatic di�erentiation. We essentially have two (not mutually exclusive) choices:� We can exploit parallelism through splitting of the computational graph. This is what wehave done in the implementation we reported on in the preceding sections.� Alternatively, we can exploit parallelism through parallelizing the computations associatedwith each graph node. This has been done by Dixon [7], where the gradient computationassociated with each node in the forward mode is done elementwise in parallel (see also [8]).Even though by no means trivial, the latter alternative is comparatively straightforward, since it isclear which parts of the problem can be done in parallel. On the other hand, extracting parallelismin the evaluation of the computational graph is more di�cult.The main problem is one of computational granularity. The dynamically scheduled algorithm inFigure 6 requires considerable overhead in comparison with the main task, which is the accumulationof the adjoint values in (*). In an attempt to avoid this locking and scheduling overhead, we generateda statically-scheduled version for computing F (x)jx=xo in the following fashion: First we groupedthe computational graph nodes by their maximum distance from a root (this is commonly calledthe \height" of a node). For each node in the graph, we then generated a line of C code, and wegrouped lines corresponding to nodes of the same height in batches of 1000. Between each heightwe placed a barrier, thereby forcing synchronization of all processes. On the \Cavity" problem,we thus generated 67,924 lines of C code and required 47,727 intermediate storage locations. Wecompiled this code on the Sequent Symmetry and obtained the (rather disappointing) results shownin Table 2. We see that the parallel code hardly does better than the serial version. The mainreason is that our execution schedule is rather unbalanced, as is shown by Figure 11 where shows12

0

2000

4000

6000

8000

10000

12000

14000

16000

-2 0 2 4 6 8 10 12 14 16

height of node

nu
m

be
r

of
 n

od
es

Fig. 11. Level Distribution of `Cavity' Graphthe node-height distribution is plotted. As can be seen, the scope for exploiting parallelism withina given height is rather limited. Most of the time we have fewer than 3,000 nodes for a given leveland cannot sensibly use more than three processes.The crucial issue is again one of granularity. In our current computational graph, we associateonly a few ops with each graph node, which is simply not enough to lead to a parallel implementationthat could seriously compete with a hand-coded version. What we need is a coarser computationalgraph, where each node corresponds to a subroutine invocation or a loop nest, say. By being ableto integrate supernodes that correspond to a function g (say), we can then integrate the storagesaving schemes mentioned above, and the overhead for scheduling the evaluation of this node wouldbe amortized over many oating-point operations. In addition, we would be able to optimize theevaluation of g(x) or dgdx . For example, we could exploit the following:Known derivatives: We might know the derivative explicitly, either by computing it by hand orby applying symbolic techniques.Library software: Commonmathematical operations are usually supplied in assembler libraries bythe vendors, and great increases in speed can be achieved through the use of those libraries.Take again the Helmholz energy function. The main kernel is y = xTAx, and ry =2Ax. By inserting the matrix-vector multiplication subroutine, we are certain to computethis derivative signi�cantly faster than through any of the current automatic derivationtechniques.Parallelism within g: We might know an e�cient way of parallelizing g, which we can also exploitin the derivative computation.Again, we are trying to capture user insight in the automatic derivation system. As has been shownthrough our prototype implementation, we can compute derivatives completely automatically, butat a cost. By capturing what user intuition is available, we stand to greatly reduce this cost.Acknowledgments. We thank Ted Gaunt and James Hu for their dedicated e�ort in thisproject, and Andreas Griewank for many helpful discussions.REFERENCES13

[1] Christian Bischof, Andreas Griewank, and David Juedes. Exploiting parallelism in automatic di�erentiation. InElias Houstis and Yoichi Muraoka, editors, Proceedings of the 1991 International Conference on Supercom-puting, pages 146{143, Baltimore, Md., 1991. ACM Press.[2] Christian H. Bischof and James Hu. Creating and optimizing a computational graph for algorithmic decompo-sition. ANL/MCS-TM-148, Argonne National Laboratory, Mathematics and Computer Sciences Division,1991.[3] Bruce Christianson. Automatic Hessians by reverse accumulation. Technical Report No. 228, The Hat�eldPolytechnic, Hat�eld, U.K., 1990.[4] T. F. Coleman and J. J. Mor�e. Estimation of sparse Jacobian matrices and graph coloring problems. SIAMJournal on Numerical Analysis, 20:187{209, 1983.[5] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Mor�e. Software for estimating sparse Jacobian matrices.ACM Transactions on Mathematical Software, 10(3):329{345, 1984.[6] John Dennis and Robert Schnabel. Numerical Methods for Unconstrained Optimization and Nonlin<ear Equa-tions. Prentice-Hall, Englewood Cli�s, New Jersey, 1983.[7] L. C. W. Dixon. Automatic di�erentiation and parallel processing in optimization. Technical Report No. 176,The Hat�eld Polytechnic, Hat�eld, U.K., 1987.[8] Herbert Fischer. Automatic di�erentiation: Parallel computation of function, gradient and Hessian matrix.Parallel Computing, 13:101{110, 1990.[9] D. Goldfarb and P.L. Toint. Optimal estimation of Jacobian and Hessian matrices that arise in �nite di�erencecalculations. Mathematics of Computation, 43:69{88, 1984.[10] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Recent Developments andApplications, pages 83{108, Amsterdam, 1989. Kluwer Academic Publishers.[11] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic dif-ferentiation. Preprint MCS{P228-0491, Argonne National Laboratory, Mathematics and Computer SciencesDivision, 1991.[12] Andreas Griewank. Automatic Evaluation of First- and Higher-Derivative Vectors, volume 97, pages 135{148.Birkh�auser Verlag, Basel, Switzerland, 1991.[13] Andreas Griewank. The chain rule revisited in scienti�c computing. PreprintMCS{P227{0491,Argonne NationalLaboratory, Mathematics and Computer Sciences Division, 1991.[14] Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the automatic di�erentiation ofalgorithms written in C/C++. Preprint MCS-P180-1190, Argonne National Laboratory, Mathematics andComputer Sciences Division, 1990.[15] Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. Preprint ANL/MCS-P246-0691,Argonne National Laboratory, Mathematics and Computer Sciences Division, 1991.[16] David Juedes. A taxonomy of automatic di�erentiation tools. In Andreas Griewank and George Corliss, editors,Proceedings of the Workshop on Automatic Di�erentiation of Algorithms: Theory, Implementation, andApplication, Philadelphia, 1991. SIAM. to appear.[17] David Juedes and Andreas Griewank. Implementing automatic di�erentiation e�ciently. ANL/MCS{TM{140,Argonne National Laboratory, Mathematics and Computer Sciences Division, 1990.[18] Jorge J. Mor�e. On the performance of algorithms for large-scale bound constrained problems. In Large-ScaleNumerical Optimization, pages 31{45, Philadelphia, 1990. SIAM.[19] Jorge J. Mor�e, Burton S. Garbow, and Kenneth E. Hillstrom. Implementation guide for MINPACK-1. TechnicalReport ANL{80{68, Argonne National Laboratory, Mathematics and Computer Sciences Division, 1980.[20] Jorge J. Mor�e, Burton S. Garbow, and Kenneth E. Hillstrom. User guide for MINPACK-1. Technical ReportANL{80{74, Argonne National Laboratory, Mathematics and Computer Sciences Division, 1980.[21] I. M. Navon and U. Muller. FESW | a �nite-element Fortran IV program for solving the shallow waterequations. Advances in Engineering Software, 1:77{84, 1979.[22] Paul E. Plassmann. Sparse Jacobian estimation and factorization on a multiprocessor. In T. F. Coleman andY. Li, editors, Large-Scale Optimization, pages 152{179, Philadelphia, 1990. SIAM.[23] K. H. Winters and K. A. Cli�e. A �nite element study of driven laminar ow in a square cavity. TechnicalReport AERE { R 9444, AERE Harwell, Theoretical Physics Division, 1979.
14

