
LAPACK: Linear Algebra Software forSupercomputers1Christian H. BischofMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439{4801bischof@mcs.anl.govArgonne Preprint MCS-P236-0491Appeared in Proc. 2nd ODIN Symposium, A. Schreiner and W. Ewinger, Eds., pp. 101-120, 1991.This paper presents an overview of the LAPACK library, a portable, public-domain library to solvethe most common linear algebra problems. This library provides a uniformly designed set of sub-routines for solving systems of simultaneous linear equations, least-squares problems, and eigenvalueproblems for dense and banded matrices. We elaborate on the design methodologies incorporatedto make the LAPACK codes e�cient on today's high-performance architectures. In particular,we discuss the use of block algorithms and the reliance on the Basic Linear Algebra Subprograms(BLAS). We present performance results that show the suitability of the LAPACK approach forvector uniprocessors and shared-memory multiprocessors. We also address some issues that have tobe dealt with in tuning LAPACK for speci�c architectures. Lastly, we present results that show thatthe LAPACK software can be adapted with little e�ort to we distributed-memory environments, anddiscuss future e�orts resulting from this project.1 Introduction and ScopeThe LAPACK (shorthand for Linear Algebra Package) library is a group e�ort to develop a portablepublic-domain linear algebra library in Fortran 77. The library is intended to provide a uniformset of subroutines to solve the most common linear algebra problems and to run e�ciently on awide range of high-performance computers. The LAPACK project was initialized by Jack Dongarra(University of Tennessee) and Jim Demmel (University of California at Berkeley). In addition, EdAnderson (University of Tennessee), Zhaoujun Bai (University of Kentucky), Jeremy Du Croz (NAGLtd.), Anne Greenbaum (New York University), Sven Hammarling (NAG Ltd.), Danny Sorensen(Rice University) and Chris Bischof (Argonne National Laboratory) made up the initial LAPACKteam. During the past three years many more people have become involved in the project andprovided us with algorithms, suggestions, and benchmark results.LAPACK provides routines for solving� systems of simultaneous linear equations;1The work of the author was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38. The LAPACK project is also supported bythe National Science Foundation under grant ASC-8715728.1



� over- and underdetermined systems of equations;� symmetric and unsymmetric eigenvalue problems, simple and generalized; and� singular value problems.Dense and banded matrices are provided for, but not general sparse matrices. In all areas, similarfunctionality will be provided for real and complex matrices. The LAPACK package also includestest and timing routines to verify the installation of the LAPACK codes on a particular architectureand to assess their performance (see [5]).As a result, LAPACK serves many purposes.� It is an easy-to-use library that solves linear algebra problems e�ciently and reliably. Driverroutines will be supplied to make the solution of common problems as easy as possible.� Since source code is freely accessible, it is also a toolbox for the algorithm developer. Itcontains a wealth of reliable, well-documented, and integrated subroutines; and the algorithmicproperties of the many new algorithms will be documented in the accompanying literature.� The LAPACK codes can be used as a benchmark to compare the oating-point performanceof various computers. Because of their considerable size, the codes are also good compiler andoating-point arithmetic test suites.� Lastly, the accuracy and robustness of the LAPACK codes provide a standard against whichcompeting implementations and algorithms can be measured.The new library will extend the successful EISPACK [23, 30] and LINPACK [16] libraries, in-tegrating the two sets of algorithms into a uni�ed, systematic library. A great deal of e�ort hasalso been expended to incorporate design methodologies that make the LAPACK algorithms moreappropriate for today's high-performance architectures. In particular, LAPACK codes have beencarefully restructured to reduce the cost of data movement as much as possible.LAPACK is designed to be e�cient and transportable across a wide range of computing envi-ronments, with special emphasis on tightly coupled shared-memory multiprocessors as, for example,the Alliant FX/8, IBM 3090/VF, CRAY-2, or CRAY Y-MP multiprocessors. While we do not hopefor LAPACK codes to be optimal for all architectures, we expect high performance over a widerange of machines. By relying on the Basic Linear Algebra Subprograms (BLAS) [17, 19, 27] thecodes can be \tuned" to a given architecture by e�cient|and, in all likelihood machine-dependent|implementations of these kernels. Machine-speci�c optimizations are limited to those kernels, andthe user interface is uniform across machines.A detailed description of the LAPACK package is given in [8].2 The Basic Linear Algebra Subprograms (BLAS)The Basic Linear Algebra Subprograms (BLAS) provide an interface for the elementary matrix andvector operations. The �rst BLAS [27], which we call Level 1 BLAS, implement common vector-vector operations such as a dot product, or a \saxpy,"y  y + �x;2



where x and y are vectors and � is a scalar. The Level 2 BLAS [19] provide matrix-vector operationssuch as matrix-vector multiplication and rank-one updates. The development of the Level 2 BLASwas motivated by vector-processing machines. Many of the frequently used algorithms of numericallinear algebra can readily be coded so that the bulk of the computation is performed by calls to theLevel 2 BLAS routines.Unfortunately, this approach is often not well suited to computers with a memory hierarchy (suchas global memory, cache or local memory, and vector registers) and parallel-processing computers.(For a description of many advanced-computer architectures, see [20, 26, 31].) Data at low levels ofthe memory hierarchy can be accessed immediately, whereas data at higher levels is available onlyafter some delay and (because of memory bank conicts) may not be available at a rate fast enoughto feed the arithmetic units. For this reason it is imperative to reuse data as much as possible tocut down on data movement overhead.This goal can be achieved by expressing a computation in terms of matrix-matrix operations.The Level 3 BLAS [17] provide the matrix-matrix operations needed for linear algebra. Togetherwith the Level 1 and 2 BLAS, they provide a well-de�ned interface for the elementary matrix andvector operations and add to the portability, modularity, and ease of maintenance of the software.As an example, consider the ratio of memory references to arithmetic operations for a \saxpy" (aLevel 1 BLAS), a matrix-vector multiply (a Level 2 BLAS), and a matrix-matrix multiply (a Level3 BLAS). For n-vectors and n� n matrices, it is 3:2, 1:2, and 1.5:n, respectively,We see that the use of higher-level BLAS requires less data movement. In particular, for theLevel 3 BLAS, we achieve a surface-to-volume e�ect for the ratio of operations to data movement.The superiority of the Level 3 BLAS is borne out by the performance numbers in Figure 2, whichshows the performance of a matrix-matrix multiply (the multiplication of a 100 � k by a k � nmatrix, with k = 96 for the Siemens and k = 100 for the Crays) versus a matrix-vector multiply (themultiplication of a 100� n matrix by an n-vector) on the CRAY-2 (with 4 processors), the CRAYY-MP (with 8 processors), and the Siemens S600/10. It should be noted that the performancenumbers for the Siemens S600/10 are preliminary, since the BLAS employed are simply the FortranBLAS that had been optimized for the Siemens VP series [24, 25].For all machines a matrix-matrix multiply is preferable to a series of matrix-vector multiplies.The reason is that the memory bandwidth of high-performance supercomputers is signi�cantly lowerthan the speed of the processors. For example, on the IBM 3090/VF, data has to be resident incache before it can be used as an operand. The CRAY-2, in contrast, has 16 kwords of so-called localmemory, from which data can be accessed in four clock cycles, whereas references to global memoryexperience a startup overhead of 63 cycles for a vector load or store. An additional bottleneck onthose machines is the fact that there is only one path into main memory which has to be used forboth load and stores. In contrast, each processor of an CRAY X-MP and CRAY Y-MP has two loadpipes and one store pipe into main memory, greatly alleviating this I/O bottleneck. In general, onecan obtain a good idea of the usefulness of higher-level BLAS by comparing the peak performance ofa machine with its peak transfer rate into main memory. This ratio varies between 1.5 for the CRAYY-MP and 0.12 for the Alliant FX/80, with values between 0.5 and 1 being common. Whenever theratio of peak performance to peak memory bandwidth is low, it is imperative to reuse data in fastmemory in order not to degrade the computation rate by waiting for memory accesses. The Level3 BLAS allow for e�cient reuse of fast memory and hence provide an algorithmic tool that ensuresgood performance on such machines. 3
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Figure 1: Speed of Matrix-Matrix and Matrix-Vector Multiply3 Block AlgorithmsThe LINPACK and EISPACK codes were written in a fashion that, for the most part, ignored thecost of data movement. The preceding section, however, has shown that considerable performanceimprovements can be achieved by using matrix-matrix kernels.In some algorithms (e.g., computing the eigenvalues of a symmetric tridiagonal matrix), use ofsuch kernels is not feasible. In the majority of algorithms, however, there is scope for using theLevel 2 and Level 3 BLAS. To exploit the Level 3 BLAS, one usually must express the algorithm atthe top level in terms of operations on submatrices (the so-called blocks) as compared to vector- orscalar-oriented operations. Many references to block algorithms can be found in [12, 21, 22].As an example of a block algorithm, we consider algorithms for computing the Cholesky decom-position A = LLT ;where A is a symmetric positive de�nite matrix and L is an lower triangular matrix. There areseveral ways of computing this factorization; and if one overwrites the lower triangle of A with L,one arrives at the variants shown in Figure 2. A is partitioned conformably. In the top-lookingversion we overwrite A21 and A22, using L11; in the left-looking version we overwrite A22 and A32,using L21 and L31; and in the right-looking version we overwrite A22 and A32, updating A33. If Ais partitioned such that L22 is a scalar, we obtain the usual unblocked versions of the algorithms;L22 = pA22, and the solution of the equation systems involving L22 is simply a scalar division.To arrive at a block algorithm,we consider A as composed of submatrices as indicated in Figure 2,4



op-looking VariantL21  A21L�T11A22 A22 � L21LT21L22  Cholesky factor ofeft-looking VariantA22 A22 � L21LT21L22  Cholesky factor of A22A32 A32 � L31LT21L32  A32L�T22
ight-looking VariantL22  Cholesky factor of A22L32  A32L�T22A33 A33 � L32LT32Dotted areas are \not" references, diagonally dashed areas are \read," and horizontally dashed areas are\read" and \written."Figure 2: Three Variants for the Block Formulation of the Cholesky Factorization5



Table 1: Distribution of Floating-Point Operations in Di�erent Variants of the Block CholeskyAlgorithm on a 500� 500 matrix, Using blocksize 64Cholesky Unblocked STRSM SSYRK SGEMMVariant Choleskytop-looking 1.6% 82.1% 16.3% 0%left-looking 1.6% 16.7% 16.3% 65.3%right-looking 1.6% 16.7% 81.6% 0%Table 2: Memory Access Cost (in Kwords) of Di�erent Variants of the Block Cholesky AlgorithmVariant Reads Writes Reads+Writestop-looking 536 140 676left-looking 697 249 946right-looking 513 389 902unblocked 21082 125 21208instead of scalar entries or vectors. Let us assume for the sake of simplicity that A can be partitionedinto N subblocks of size nb� nb each. It is characteristic of block factorization algorithms that oneneeds an \unblocked" code as well | in this case, the Cholesky factorization of a diagonal subblock.Here we employ the algorithm that uses Level 2 BLAS kernels, but the key issue is that we employthis algorithm only on the (comparatively small) nb� nb diagonal subblocks.The three Cholesky variants require the same number of oating-point operations and are nu-merically equivalent, yet they di�er in their use of the BLAS kernels and in the number of reads andwrites they require. In detail, these versions require1. the unblocked Cholesky code;2. the BLAS routine STRSM, which implements a triangular solver with multiple right-handsides (i.e., X  L�1B);3. the BLAS routine SSYRK, which implements a symmetric rank-k update (i.e., A A�BBT );and4. the BLAS routine SGEMM, which implements a matrix-matrix multiply-and-add (i.e., C  �AB + �C).The distribution of work among those kernels is shown in Table 1 for a 500�500 matrix partitionedinto blocks of size 64. We see that the top-looking version does nearly all its work in solvingtriangular systems, the left-looking version favors matrix-matrix multiply, and the right-lookingversion is biased towards symmetric rank-k updates.For memory accesses, we have the situation shown in Table 2, again on a 500�500 matrix parti-tioned into blocks of size 64. The surface-to-volume ratio mentioned before becomes apparent when6



0

500

1000

1500

2000

0 500 1000

A = L*L’ Cray YMP

N = order of matrix

M
FL

O
PS

TOP

Linpack

RIGHT
LEFT

0

20

40

60

0 500

A = U’ U, Alliant FX/80

N = order of matrix
M

FL
O

PS

LINPACK

DOWN

TOP

LEFT

Figure 3: Comparison of Block Cholesky Variants with LINPACK Codewe compare the number of memory accesses required for the blocked versions with the number forthe unblocked version. Of the blocked versions, the top-looking version requires the least numberof memory accesses. The left-looking version requires the greatest total number of memory refer-ences, but fewer writes than the right-looking version. This latter feature may be advantageous inshared-memory multiprocessors where cache consistency is guaranteed by the use of \write-through"caches [26]. On those architectures, read accesses to cached data can be satis�ed in one cycle, butwrite accesses are immediately ushed to memory; as a result, write accesses can be much slowerthan read accesses.The performance of those variants on an eight-processor CRAY Y-MP is shown in Figure 3. This�gure also shows the performance on an Alliant FX/80 of the corresponding variant if we overwritethe upper triangle of A (i.e., compute A = UTU ). We note that, because of the transposing of thematrix, the left-looking version for A = LLT corresponds to the top-looking version for A = UUT .These particular versions have proven to be very e�ective because of their reliance on matrix-matrixmultiplication, the operation of choice for many architectures. We also see that, depending on thearchitecture chosen, the di�erences between the various versions can be quite substantial. For adiscussion of these issues for other decompositions, see [6]. For the LAPACK release, we tried tochoose the variant that provides the best \average" performance over the range of target machines.We also note that there may be quite a di�erence between the variant that overwrites the upperor lower triangle, because of the di�erent memory access patterns. For example, on the SiemensS600/10 we observe the behavior shown in Figure 4. If we overwrite the upper triangle of a symmetricmatrix, the blocked code (dashed line) is always inferior to the unblocked code (solid line), whereasif we overwrite the lower triangle, the blocked code (dash-dotted line) is always superior to theunblocked code (dotted line). Again, we stress that these performance numbers are preliminary.Lastly, in Figure 5 we show the performance of the NEC SX/2, the CRAY-2/S, the CRAY Y-MP,7
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Figure 4: Performance of Cholesky Factorization Variants on Siemens S600/10and the Siemens S600/10 on LU factorizations A = LU of size up to 500. The peak performanceof these machines is 1.3 Gops, 2 Gops, 4 Gops, and 5 Gops, respectively. On a 1000 � 1000problem, the Siemens S600/10 reached 2.5 Gops, even using just the recompiled Fortran BLAS ofthe Siemens VP series. We see that the blocked code usually performs better than the unblocked code(with the exception of the NEC SX/2, where the unblocked code is always better, largely becauseof the implementation of the BLAS). Further, as the numbers for the Crays indicate, both versionsare substantially better than the LINPACK codes. The performance of the Siemens S600/10 on aset of other common matrix transformations is shown in Figure 6. The block size has been chosento achieve best possible performance, and as can be seen, it may di�er for the various algorithms.At any rate, however, the new codes perform substantially better than the EISPACK codes.To achieve block algorithms for the Cholesky and LU factorizations is relatively simple: it isessentially a restructuring of loops. As a result, e�orts are under way [15, 28] to achieve this e�ectby means of compiler transformations. There are other block algorithms, however (for example,the block multishift algorithm of Bai and Demmel [7] and the QR factorization algorithm for rank-de�cient matrices of Bischof [11]), where new algorithms have been invented in order to be able toexploit the power of matrix-matrix kernels. For example, the performance of the QR algorithm forrank-de�cient matrices on the CRAY Y-MP is shown in Figure 7. We here compare the LINPACKcodes, the traditional algorithm implemented with the Level 2 BLAS, and the new block algorithm.Many references to block algorithms can be found in [12, 21, 22].We also note that the LAPACK codes are, in many respects, signi�cantly more reliable than otheravailable software products of comparable scope. For example, the eigenvalue solvers and singular8
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Figure 7: Performance of QR factorization with Restricted Pivoting in Comparison with Implemen-tations of Traditional Algorithms on the CRAY Y-MPWith respect to the crossover point between blocked and unblocked algorithms, it is instructionalto revisit the performance plots of the preceding sections. For some algorithms on some machines,for example, the blocked code is always better (for example, LU factorization on a CRAY-2); forother machines, it is always worse (LU factorization on a NEC SX/2); and for others, the blockedalgorithm is superior from a certain problem size on (for example Hessenberg reduction on a SiemensS600/10). The last example is the common case. We give another example in Figure 8, which showsthe behavior of the blocked algorithm (with blocksize nb = 32) and the unblocked algorithm (withblocksize nb = 1) on one processor of the CRAY-2/S, as well as the performance obtained when weswitch from the blocked to the unblocked algorithm after the size of the submatrix still to be reducedhas dropped below 144. The resulting hybrid algorithm performs better than either the blocked orthe unblocked version.Another issue that deserves closer scrutiny is the choice of the optimal block size. For mostdense matrix algorithms, the choice of block size is immaterial to their numerical reliability, yetit is crucial for their computational performance. As an example, consider block algorithms fororthogonal decompositions such as the QR decomposition A = QR where Q is orthogonal and Ris upper triangular. For an m � n matrix partitioned into blocks of size nb, one has to computeO(m � n � nb) extra oating-point operations in the blocked algorithm, compared to the unblockedalgorithm [10, 14, 29]. These extra operations are o�set by the higher speed of the Level 3 BLASkernels (compared to the Level 2 BLAS kernels) that can now be employed. But obviously there isa tradeo�. Generation of block transformations becomes more expensive as the block size increases,11
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Figure 8: E�ect of Crossover Point on the QR Factorization on one Processor of the Cray 2-Swhereas the block transformations perform faster with increasing block size. Take, for example, theQR factorization on an IBM RS/6000-550 workstation. As the plots in Figure 9 show, there canbe quite a bit of variation in the performance achieved with di�erent block sizes. Fortunately, thedi�erences are often not too severe for the range of machines LAPACK is currently being run on.We obtain access to such machine-speci�c information through an environment inquiry routineILAENV, which, when given the name of the subprogram and its input parameters, returns thecrossover point for the blocked versus unblocked algorithm, the optimal blocksize, and a number ofother parameters. We will supply default values for this routine based on our experimental results,but we hope that the users of LAPACK will enhance this routine based on the experience theygather on their machine. We also note that the choice of an optimal blocking strategy is nontrivial.One has several possibilities for implementing blocking in a program: the use of a �xed block size (ascurrently done in LAPACK), the use of a varying block size determined by some a priori strategy,and the use of a varying block size determined dynamically in the course of the factorization. In [9],we suggested a methodology called adaptive blocking for �nding \good" block sizes for pipelinedfactorization algorithms on distributed-memory multiprocessors. This technique was re�ned in [13],where we developed a recursion formula for the optimal blocking strategy.5 OutlookThe last test release of the LAPACK package will be sent out in May of 1991, and the package willbe formally released in the summer of 1991. Of course, during this e�ort, a variety of worthwhile12
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Figure 9: QR Factorization on IBM RS/6000-550 for Various Blocksizesavenues opened up, some of which we aim to pursue in a successor project to LAPACK [3]. Thegoals of this new project are to� add linear algebra routines to solve new problems;� develop distributed-memory versions of selected LAPACK routines;� develop C versions of the more heavily used routines, and construct a Fortran 90 interface forthe driver programs;� rewrite selected routines to exploit special properties of computer arithmetic, in particular,the IEEE Standard Floating-Point Arithmetic; and� develop a systematic performance evaluation suite based on LAPACK.Some of this work is already well under way. Ed Anderson, Annamaria Benzoni, Jack Dongarra,Steve Moulton, Susan Ostrouchov, Bernard Tourancheau, and Robert van de Geijn of the Universityof Tennessee have been de�ning a standard communication library for dense linear algebra computa-tions on distributed-memory machines, the so-called BLACS (Basic Linear Algebra CommunicationSubprograms) [1]. Using a prototype implementation of the BLACS, they have implemented theQR, LU, Cholesky, and symmetric inde�nite factorizations, as well as the reductions to Hessenbergand tridiagonal form [18, 2]. Performance results on a 128-node Intel iPSC/860 distributed-memorymultiprocessor are shown in Figure 10. The performance reduction is mostly due to the high com-13
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