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Abstract

This paper contains the results of experiments with several search strategies
on 112 problems involving condensed detachment. The problems are taken from
nine different logic calculi: three versions of the two-valued sentential calculus,
the many-valued sentential calculus, the implicational calculus, the equivalential
calculus, the R calculus, the left group calculus, and the right group calculus.
Each problem was given to the theorem prover OTTER and was run with at least
three strategies: (1) a basic strategy, (2) a strategy with a more refined method
for selecting clauses on which to focus, and (3) a strategy that uses the refined
selection mechanism and deletes deduced formulas according to some simple
rules. Two new features of OTTER are also presented: the refined method for
selecting the next formula on which to focus, and a method for controlling
memory usage.

1 Introduction

The aim of this paper is to examine the role of strategy in the study of logic calculi
with condensed detachment. We present results of experiments with the theorem-
proving program OTTER on 112 problems, all of which contain the axiom (or, from
another point of view, inference rule) condensed detachment.

All of the problems concern axiomatizations of various logic calculi, including the
two-valued sentential calculus and two of its variations, the many-valued sentential
calculus, the implicational fragment of sentential calculus, equivalential calculus, and
three subsystems of the equivalential calculus: the R calculus, the left group calculus,
and the right group calculus. The problems should also serve well as test problems
for evaluating other search strategies and other theorem-proving programs.

We have experimented extensively with most of the problems, and we have devel-
oped specialized strategies for particular logic calculi. For the experiments presented
in this paper, however, we sought strategies that perform well on all of the problems.
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Aside from a default basic strategy, we experimented with a guidance strategy and
a deletion strategy. The guidance strategy, which we call the ratio strategy (Section
1.2.1), combines best-first search with breadth-first search when selecting the next for-
mula on which to focus. The deletion strategy (Section 1.2.2) causes derived formulas
that are instances of simple patterns to be deleted.

1.1 Condensed Detachment

All of the problems use C. A. Meredith’s condensed detachment [6, 12], a rule of
inference that combines detachment (modus ponens) and instantiation. Let C' be the
binary operation of concern. If C'(«,5) and y are both theorems (renamed so that
they have no variables in common), and if o and y unify with most general unifier
o, then fo is deduced by condensed detachment. The formula C'(«, ) is the major
premise, and v is the menor premise. The binary operation is usually interpreted as
“implies”, “equivalent”, or some variation of the group operation, depending on the
calculus.

The logic calculi can be studied as first-order theories by a trivial transformation
[5]. First, a unary predicate P, interpreted as “is a theorem” or “is the group iden-
tity”, is introduced. Then, each axiom of the calculus is preceded by P, with its
variables universally quantified. Finally, condensed detachment becomes an axiom of
the theory.

VaVy(P(C(z,y)) & P(x) — P(y)).

An application of hyperresolution with the axiom condensed detachment corresponds
directly to an application of the inference rule condensed detachment. Although we
used hyperresolution exclusively for the experiments presented in this paper, any
inference rule for first-order logic is applicable.

The AN calculus, which is a variation of the two-valued sentential calculus, has a
binary operation o, which can be interpreted as disjunction, and a unary operation
n, which can be interpreted as negation. For the AN calculus, the following variation
of condensed detachment 1s used:

VaVy(Plo(n(x).y)) & Pa) — P(y)).

The study of logic calculi with condensed detachment has been one of the first
and most successful applications of automated theorem proving. Original research
has been conducted and open questions have been answered by relying heavily on
automated theorem proving programs [3, 14, 13, 4, 22, 18, 21, 8, 9].

1.2 OTTER and Simple Strategies

OTTER [7] is a resolution/paramodulation theorem-proving program for first-order
logic with equality. Its basic algorithm, restricted to hyperresolution with condensed
detachment, is shown in Figure 1.

1.2.1 Selecting the Given Clause

Our default strategy for selecting the given clause in Step 1 of the basic algorithm
has traditionally been to select a clause with the fewest symbols; if there is more



Start with sos list containing all axioms and with usable list containing
the axiom for condensed detachment.

Loop:

1. G = select-given-clause(sos);

2. move G from sos to usable;

3. apply condensed detachment as much as possible, with (G as one
premise, taking the other premise from usable; append to sos
the results that are not subsumed by anything in sos or usable;

end loop.

Figure 1: OTTER’s Basic Algorithm with Condensed Detachment

than one clause of minimum length, the first of those is selected. We call the default
strategy “selecting the smallest clause as given”. However, some problems in the logic
calculi yield quickly to a breadth-first search, which is accomplished by selecting the
first clause in the sos list as the given clause. The method we use for most of the
experiments presented in this paper combines those two methods. In every fourth
iteration of the loop, the first clause is selected, and in the remaining iterations, the
first clause of minimum length is selected. We call this refined method “selecting the
given clause with ratio 3”. The refinement allows large clauses to enter the search
while the focus remains mainly on small clauses. It is similar to a selection strategy
used by J. Kalman in one of his early programs [3].

1.2.2 Deleting Derived Formulas

In the equivalential calculus, the R calculus, and the left and right group calculi (all
of which have binary operator e), we found that formulas containing subformulas that
are instances of e(z, x) are generally not as useful or as powerful as formulas without
such instances. Searches in which those formulas are deleted are generally more
effective, although they can result in longer proofs. The strategy also applies to the
implicational calculi by deleting deduced formulas with instances of i(z, x), although
it appears to be less effective there. The strategy applies to the AN calculus, in which
the binary operation is disjunction, by deleting formulas with instances of o(n(x), ).

In the calculi with unary operation n, meaning negation, we found that deduced
formulas containing instances of n(n(z)) caused redundancy in the search spaces and
that deleting those formulas generally improved the searches. We also ran experiments
deleting formulas with instances of n(n(n(z))).

We used demodulation of derived formulas to implement the deletion strategy.
When the strategy was in use, demodulation usually accounted for between one third

and one half of the CPU time.

1.2.3 Controlling Memory Usage

We limited the OTTER jobs to 12 Mbytes of memory, in which OTTER can store
roughly 20,000 formulas. Even with the deletion strategy of the preceding subsection,



OTTER quickly fills 12 Mbytes. The list sos typically grows much faster than does
the number of given clauses that are removed from it. Thus, most formulas in sos
never enter the search, and memory is wasted.

Our current solution to that problem is the following. When one third of available
memory has been filled, we impose a limit on the number of symbols in deduced
clauses. The limit, say n, is such that 5% of all formulas in sos have < n symbols.
Every tenth iteration of the main loop after the initial limit has been set, calculate
a prospective new limit n’ in the same way. If n’ < n, then the limit is reset to n'.
We arrived at the values 1/3 and 5% by trial and error. Although this method is
incomplete, its use with condensed detachment problems typically does not have a
great effect on the sequence of given clauses, or therefore, on the search. We have not
experimented heavily with this method on other problems.

1.3 The Experiments

We ran all of the experiments on SPARCstation 14+ computers with 16 megabytes of
main memory. In that environment, OTTER can infer several thousand formulas per
second, most of which are deleted because they are subsumed by existing formulas or
by the deletion strategy. (Back subsumption, in which newly kept formulas cause the
deletion of weaker existing formulas, was not used.)

Here is an example of the way in which problems are presented. Given the equiv-
alential calculus formulas

(EC-1) ele(e(x,y), e(z,2)), ey, z))
(EC-4) e(e(z,y), ey, z))
(EC-5) e(e(e(x, y), 2), ez, e(y, 2)))

the problem (EC-4,EC-5 = EC-1) is to find a refutation of the following set of clauses.
Symbols z, y, and z are variables, and a, b, and ¢ are Skolem constants.

- Ple(x,y)) | 7P(x) | P(y). % Condensed Detachment
Ple(e(a, p) (3, 2)). % FC-4
Ple(e(e(z,y), 2), e(x, e(y, 2)))). % EC—§
—P(e(e(e(a,b),e(c,a)),e(b, c))). % Denial of EC-1

Each problem was run with several strategies with a time limit of four hours each.
In the tables that follow, “Fail” indicates that no proof was found within four hours,
and “*” indicates that no proof is possible, because the goal would be deleted by
the deletion strategy. All of the times are given in seconds. The strategies are the
following.

Basic. The smallest formula is selected as given.
Ratio. Given clauses are selected with ratio 3.

R-e. Given clauses are selected with ratio 3, and deduced clauses containing an in-
stance of e(x, z) as a subformula are deleted.

R-i. Given clauses are selected with ratio 3, and deduced clauses containing an in-
stance of i(x, z) as a subformula are deleted.



R-nn. Given clauses are selected with ratio 3, and deduced clauses containing an
instance of n(n(x)) are deleted.

R-nnn. Given clauses are selected with ratio 3, and deduced clauses containing an
instance of n(n(n(xz))) are deleted.

R-i-nn. Given clauses are selected with ratio 3, and deduced clauses containing an
instance of i(z, #) as a subformula or an instance of n(n(z)) are deleted.

R-i-nnn. Given clauses are selected with ratio 3, and deduced clauses containing an
instance of i(z, #) as a subformula or an instance of n(n(n(x))) are deleted.

R-o-nn. Given clauses are selected with ratio 3, and deduced clauses containing an
instance of o(n(x), ) as a subformula or an instance of n(n(x)) are deleted.

R-o-nnn. Given clauses are selected with ratio 3, and deduced clauses containing an
instance of o(n(x), z) as a subformula or an instance of n(n(n(z))) are deleted.

We present here a sequence of problems that reflects a wide range of difficulty and
that roughly follows the historical development of the individual calculi.

2 Two-Valued Sentential Calculi

We experimented with three versions of two-valued sentential calculus: (1) the CN
calculus, with operators intended to mean implication and negation, (2) the CO cal-
culus, with implication and falsehood, and (3) the AN calculus, with disjunction and
negation. If appropriate definitions are added for the missing operators, each version
is equivalent to the classical propositional calculus.

2.1 The Implication/Negation Two-Valued Sentential Calcu-
lus (CN)

Fach of the following formulas holds in the two-valued sentential calculus (CN). The
numbering of the formulas is from [16, p. 42-51].
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(CN-40) i(z,n(n(z)))

(CN-46)  i(i(z,y), i(n(y), n(x)))

(CN-49)  i(i(n(x), n(y)), i(y, 2))

(CN_54) Z(Z(l‘, y)a ¢ z(n(x), y)a y))

(CN-59) i(i(n(w), 2),i(i(y, z), i(i(x, ), 2)))

(CN-60) i(i(x,i(n(y), 2)), {(z,i(i(u, z), i(i(y, w), 2))))
(CN-CAM) i(i(i(i(i(z5), (=), n(w))),2), ), {(i(0, 2), i(u, )

According to Lukasiewicz [17, p. 136], the first axiom system for the two-valued
sentential calculus was {CN-18,CN-21,CN-35,CN-39,CN-40,CN-46} and was due to
Frege. We use that as our starting point. Lukasiewicz showed that CN-21 depends
on the remaining axioms of Frege’s system (Problem 1, Table 1).  Another early

Table 1: CN Calculus, Frege and Hilbert Systems

# Theorem Basic Ratio R-i-nn R-i-nnn R-nn R-nnn
1 CN-18,CN-35,CN-39,CN-40,CN-46 = CN-21  Tail 246 16 176 26 254
2 CN-3,CN-18,CN-21,CN-22,CN-54 = CN-30 3 5 2 2 6 6
3 CN-3,ON-18,CN-21,CN-22,CN-54 = CN-35 Fail Fail 8005 6371 3657 3864
4 CN-3,CN-18,CN-21,CN-22,CN-54 = CN-39 <1 9 * 8 * 11
5 CN-3,CN-18,CN-21,CN-22,CN-54 = CN-40 14 10 * 34 * 13
6 CN-3,CN-18,CN-21,CN-22,CN-54 = CN-46 7366 1534 1467 1509 2857 2401

axiomatization of CN was due to Hilbert [17, p. 136]: {CN-3,CN-18,CN-21,CN-
22,CN-30,CN-54}. Lukasiewicz showed that CN-30 is not necessary (Problem 2, Table
1). Problems 3-6, Table 1, are to derive Frege’s simplified system from Hilbert’s
simplified system.

Lukasiewicz axiomatized CN with {CN-1,CN-2,CN-3} [16]. Other axiom systems
for CN are {CN-18,CN-35,CN-49} (Church [1]), {CN-19,CN-37,CN-59} (Lukasiewicz
[16]), {CN-19,CN-37,CN-60} (Wos [19]), and {CN-CAM} (C. A. Meredith [10]). Prob-
lems 7-24, Table 2, are to start with {CN-1,CN-2,CN-3} and derive formulas in the
other axiomatizations. Problems 25-36, Table 3, are to derive Lukasiewicz’s system

{CN-1,CN-2,CN-3} from the other systems.

2.2 The Implication/Falsehood Two-Valued Sentential Calcu-
lus (CO)

Each of the following formulas holds in the CO calculus:

(CO-1) i(i(z, y),i(i(y, 2), i(x, 2)))

(C0-2) i(z,i(y, z))

(C0-3) i(i(i(z,y),z), x)

(C0-4) i(F,z)

(C0-b) i(i(i(z, F), F), z)

(C0-6) i(i(x,i(y, 2)),i(i(x, y),i(x, 2)))

(CO-CAM)  i(i(i(i(é(x, y), iz, F)), u),v), i(i(v, ®),i(z, ®)))

Fach of the sets {C0-1,C0-2,C0-3,C0-4} (Tarski-Bernays, according to [10]), {CO-
2,C0-5,C0-6} (Church [1]), and {CO-CAM} (C. A. Meredith [10]) axiomatizes the



Table 2: CN Calculus, Starting with {CN-1,CN-2,CN-3}

# Theorem Basic Ratio R-i-nn R-i-nnn R-nn R-nnn
7  CN-1,CN-2,CN-3 = CN-16 <1 <1 <1 <1 <1 <1
8§  CN-1,CN-2,CN-3 = CN-18 60 7 5 5 10 9
9  CN-1,CN-2,CN-3 = CN-19 60 7 5 5 10 9
10  CN-1,CN-2,CN-3 = CN-20 89 147 23 28 65 157
11 CN-1,CN-2,CN-3 = CN-21 104 148 23 28 66 158
12 CN-1,CN-2,CN-3 = CN-22 105 589 74 184 177 595
13 CN-1,CN-2,CN-3 = CN-24 105 71 31 40 40 86
14 CN-1,CN-2,CN-3 = CN-30 109 71 32 45 40 86
15 CN-1,CN-2,CN-3 = CN-35 Fail Fail Fail Fail Fail Fail
16 CN-1,CN-2,CN-3 = CN-37 105 33 31 40 34 40
17  CN-1,CN-2,CN-3 = CN-39 104 31 * 37 * 41
18 CN-1,CN-2,CN-3 = CN-40 106 32 * 38 * 42
19 CN-1,CN-2,CN-3 = CN-46 1021 1262 423 1434 470 1378
20 CN-1,CN-2,CN-3 = CN-49 260 73 31 36 45 88
21  CN-1,CN-2,CN-3 = CN-54 1195 1608 447 1552 509 1763
22  CN-1,CN-2,CN-3 = CN-59 Fail Fail Fail Fail Fail Fail
23 CN-1,CN-2,CN-3 = CN-60 Fail Fail Fail Fail Fail Fail
24 CN-1,CN-2,CN-3 = CN-CAM Fail Fail Fail Fail Fail Fail
Table 3: CN Calculus, Deriving {CN-1,CN-2,CN-3}
# Theorem Basic Ratio R-i-nn R-i-nnn R-nn R-nnn
25 CN-18,CN-35,CN-49 = CN-1  Fail 1083 89 531 91 1137
26 CN-18,CN-35,CN-49 = CN-2 4 3 8 11 1 4
27 CN-18,CN-35,CN-49 = CN-3 3 1 3 3 12 2
28 CN-19,CN-37,CN-59 = CN-1 6038 303 89 245 99 286
29 CN-19,CN-37,CN-59 = CN-2 622 359 3107 6800 257 592
30 CN-19,CN-37,CN-59 = CN-3 161 12 5 12 6 15
31 CN-19,CN-37,CN-60 = CN-1 5611 515 493 682 480 702
32 CN-19,CN-37,CN-60 = CN-2 753 546 Fail Fail 511 755
33 CN-19,CN-37,CN-60 = CN-3 239 224 345 337 329 332
34 CN-CAM = CN-1 Fail Fail Fail Fail Fail Fail
35 CN-CAM = CN-2 Fail Fail Fail Fail Fail Fail
36 CN-CAM = CN-3 6 10 Fail Fail 14 14




CO0 calculus.

others.

Table 4: The C0O Calculus

Problems 37-49, Table 4, involve deriving each axiom system from the

# Theorem Basic  Ratio RA1
37 C0-2,C0-5,C0-6 = CO0-1 419 72 54
38 C0-2,C0-5,C0-6 = C0-3 337 103 98
39 C0-2,C0-5,C0-6 = C0-4 <1 <1 <1
40 C0-2,C0-5,C0-6 = C0-CAM Fail Fail  Fail
41 C0-1,C0-2,C0-3,00-4 = C0-5 38 7 7
42 C0-1,C0-2,C0-3,C0-4 = C0-6 1251 953 1010
43 C0-1,C0-2,C0-3,C0-4 = C0-CAM Fail Fail  Fail
14 C0-CAM = Co-1 Fail Fail  Fail
45 C0-CAM = Co0-2 <1 <1 <1
46 C0-CAM = Co0-3 13 24 30
47 C0-CAM = Co0-4 <1 <1 <1
48 C0-CAM = C0-5 5 9 12
49 C0-CAM = Co0-6 Fail Fail  Fail

2.3 The Disjunction/Negation Two-Valued Sentential Calcu-

lus (AN)

Each of the following formulas holds in the AN calculus:

(AN-1) o(n(o(n(y),

(AN-2) o(n(o(x,y)), oy, z))
(AN-3) o(n(z), o(y, z))
EAN—4) o(n(o(x,x)),x)

AN-CAM)  ofn(o(n(o(n(x), ), o(=, ou, v)))), o(n(o(n(u), 2)), o(z, o(v, 2))))

Fach of the sets {AN-1,AN-2,AN-3,AN-4} (Whitehead-Russell, according to [10])
and {AN-CAM} (C. A. Meredith [10]) axiomatizes the AN calculus. Problems 50-54,
Table 5, are to derive each system from the other. Recall that the clause form of
condensed detachment for the AN calculus is =P(o(n(z),y)) | " P(x) | P(y).

Table 5: The AN Calculus

# Theorem Basic Ratio R-o-nn  R-o-nnn  R-nn  R-nnn
50 AN-1,AN-2,AN-3,AN-4 = AN-CAM  Fail Fail Fail Fail Fail Fail
51 AN-CAM = AN-1 Fail Fail Fail Fail 516 Fail
52 AN-CAM = AN-2 3472 Fail Fail Fail 449 5365
53 AN-CAM = AN-3 34 58 133 78 137 78
54 AN-CAM = AN-4 11447 Fail Fail Fail 2657 Fail

3 The Many-Valued Sentential Calculus (MV)

Each of the following formulas holds in the many-valued sentential calculus:



(MV-1) i(x,i(y, z))

(MV-2) i(i(z,y),i(i(y, z),i(z, 2)))
(MV—3) Z(Z(Z(l‘, y)a y),i i(ya l‘), $))
(MV-4) i(i(i(z, y),i(y, ), i(y, x))
(MV-5) i(i(n(x),n(y)),i(y, x))
(MV-24) i(n(n(x)), )

(MV-25) i(i(z,y),i(i(z,2),i(z,y)))
(MV-29) i(x,n(n(x)))

(MV-33) i(i(n(2),y),i(n(y), x))
(MV-36) i(i(x,y),i(n(y), n(x)))
(MV-39) i(n(i(x,y)), n(y))
(MV-50) i(n(x),i(y, n(i(y, x))))

Lukasiewicz defined the many-valued sentential calculus Ly, and conjectured that
it is axiomatized by {MV-1 MV-2 MV-3 MV-4 MV-5} [17]. Wajsberg proved the con-
jecture, and C. A. Meredith later proved MV-4 dependent on the remaining axioms
[17, p. 144]. Problems 55-62, Table 6, are to prove MV-4 and several other formulas
from {MV-1 MV-2 MV-3 MV-5}. (Problem 55 has been called “Luka5” by members
of the Argonne group.)

Table 6: The MV Calculus

# Theorem Basic Ratio R-i-nn R-i-nnn R-nn R-nnn
55 MV-1,MV-2MV-3MV-5 = MV-4 Fail Fail Fail Fail Fail Fail
56 MV-1,MV-2,MV-3MV-5 = MV-24 3 2 * 8 * 2
57 MV-1MV-2MV-3MV-5 = MV-25 4475 8 5 5 9 9
58  MV-1,MV-2,MV-3MV-5 = MV-29 3 2 * 8 * 2
59 MV-1,MV-2,MV-3MV-5 = MV-33 Fail 2036 1468 2665 1827 3955
60 MV-1,MV-2MV-3,MV-5 = MV-36 Fail 2035 3138 2664 3812 3955
61  MV-1,MV-2 MV-3,MV-5 = MV-39 7 17 675 25 628 16
62 MV-1,MV-2MV-3,MV-5 = MV-50 Fail 2041 3151 2674 3825 3964

4 The Implicational Propositional Calculus (IC)

The implicational propositional calculus (IC) is the part of the sentential calculus in
which the negation operation does not occur. Each of the following formulas holds in

1C:

(IC-1) i(z,x)

(IC-2) i, i(y, v))

(1C-3) i(i(i(z,y), ), x)

(IC-4) i(i(z,y), i(i(y, ), i(x, 2)))
(IC-5) iz, i(i(z,y),y))

(IC-JL) i(i(i(z,y), 2),i(i(z, 2),i(u, x)))

Fach of the sets {IC-2,1C-3,1C-4} (Tarski-Bernays, according to [17, p. 296]) and
{IC-JL} (Lukasiewicz [17, p. 295]) axiomatizes IC. Problems 63-68, Table 7, are to

derive each system from the other.



Table 7: The Implicational Propositional Calculus

# Theorem Basic  Ratio R-e
63 1C-2,1C-3,1C-4 = 1C-JL, 50 101 100
64 1C-JL = 1C-1 8 <1 27
65 IC-JL = IC-2 8 <1 <1
66 1C-JL = 1C-3 32 47 26
67 1C-JL = 1C-4 7933 13985 12224
68 1C-JL = 1C-5 2172 3753 2715

5 Equivalential and Group Calculi

The equivalential and group calculi have one binary operator, e. In the equivalential
calculus (EC) [17], e(a, 3) is normally interpreted as equivalence of & and 3; however,
it can also be interpreted as the group operation «f in Boolean groups (groups in
which the square of every element is the identity). Under the group interpretation,
the theorems of EC are exactly the formulas that are equal to the group identity in
Boolean groups.

The theorems of the R calculus [11] are exactly the formulas equal to the identity
in Abelian groups when e(a, 3) is interpreted as a3~1. There is also an L calculus,
whose theorems are equal to the identity when e(«, 3) is interpreted as a=*3. We
have not experimented with the L calculus, but for completeness, we list here YOL,
the shortest single axiom for the L calculus [14]. No other of length 11 exists.

(YOL) e(e(@,y), ele(e(z,y), ), 2))

The theorems of the left group (LG) calculus [2] are exactly the formulas equal to
the identity in (general) groups when e(a, 8) is interpreted as a=!3. Similarly, the
theorems of the right group (RG) calculus [2] are exactly the formulas equal to the
identity in (general) groups when e(a, 3) is interpreted as a371.

The following relationships exist between the equivalential and group calculi:

LG theorems C L theorems C EC theorems.
RG theorems C R theorems C EC theorems.

5.1 The Equivalential Calculus (EC)

The following formulas hold in the equivalential calculus:

(EC-1) ele(e(x,y), e(z,2)), ey, z))
(EC-2) e(e(z,e(y, z)), e(e(x,y), z))
(EC-4) e(e(z,y), ey, x))

(EC-5) e(e(e(x,y), z),e(z,e(y, 2)))

According to Lukasiewicz [17, p. 252], the first axiomatization of EC was {EC-
1,EC-2}, due to Les$niewski. Soon after, Wajsberg produced others, including {EC-
4,EC-5}. Problems 69 and 70, Table 8, are to derive the Lesniewski system from the
Wajsberg system.



Each of the following formulas is a single axiom for EC| in roughly the order in
which they were discovered. None shorter exists, nor does there exist any other of

length 11.

(YQL) e(e(z,y), ele(z,y), e(x, 2))) Lukasiewicz
(YQF) ele(z,y),ele(x, z),e(z,y))) Lukas%ew%cz
(YQT) ele(z,y),ele(z, ), e(y, 2))) LukaS{ercz
(UM) e(e(e(x,y), 2),e(y, e(z, ®))) Meredith
(XGF) e(z,ele(y, e(x, z)),e(z,y))) Meredith
(WN) e(e(z,e(y, 2)), e(z, e(z,y))) Meredith
(YRM) ele(z,y),e(z, ele(y, z),2))) Meredith
(YRO) ele(z,y),e(z,ele(z,y),2))) Meredith
(PYO) e(e(e(x,e(y, 2)), z), e(y, x)) Meredith
(PYM) e(e(e(x,e(y, 2)),y), e(z,x)) Meredith
(XGK) e(z,ee(y, e(z,2)),e(z,y))) Kalman
(XHK) e(z,ele(y, z),ele(x, 2),y))) Winker
(XHN) e(z,ele(y, z),ele(z,2),y))) Winker

Problems 71-84, Table 8, are to start with each single axiom and derive the system

that precedes it.

Table 8: EC
# Theorem Basic Ratio R-e
69 EC-4,EC-5 = EC-1 244 366 279
70 EC-4EC-5 = EC-2 <1 <l <1
71 YQL = EC-4 <1 <1l <1
72 YQL = EC-5 23 2 2
73 YQF = YQL 2 5 2
74 YQJ = YQF 34 54 33
75 UM = YQIJ 558 1074 159
76 XGF = UM <1 <l <1
77 WN = XGF 98 164 85
78 YRM = WN 326 474 425
79 YRO = YRM 188 250 151
80 PYO = YRO 281 592 516
81 PYM = PYO 245 449 352
82 XGK = PYM Fail Fail 499
83 XHK = XGK Fail Fail 886
84 XHN = XHK 750 1690 484

5.2 The R Calculus (R)

Each of the following formulas is a single axiom for the R calculus:

(QYF) ele(e(x,y), e(x, 2)), e(z,y)) Meredith
(YQM) e(e(z,y), e(e(z,y), e(z,2))) Meredith
(WO) e(e(z,e(y, 2)), e(z, (y, x))) Me.redith
(XGI) e(a:,e(e(y,e( )),e(y, z))) Winker



Problems 85-88, Table 9, are to show the four formulas equivalent in a circular man-
ner.

Table 9: R Calculus

# Theorem Basic Ratio R-e
8 YQM = QYF <1 <1l <1

86 WO = YQM 21 11 5
87 XGJ] = WO Fail Faill 362
88 QYF = XGJ 41 42 21

5.3 The Left Group Calculus (LG)
Kalman’s axiomatization of the LG calculus is {LG-1,L.G-2,L.G-3,LG-4,L.G-5} [2].

(LG-1) e(e(e(x, ele(y, y), ®)), 2), z)

(LG-2) e(ee(e(e(r,y), e(x, 2)), e(y, 2)), u), u)

(LG'3) 6(6(6(6(6(6(xa y)a 6(1‘, Z))’ u)’ 6(6 Y, Z)a u))’ v), U)

(LG-4) e(e(e(e(z,y), z),u), e(e(e(x,v),z), e(e(y, v),u)))

(LG-5) e(e(e(w, e(e(y, x), 2)), e(e(u, x),v)), e(e(e(e(x, y), u), 2), v))
(P-1) e(e(e(x,y), 2), e(e(u, y), e(e(r, u), 2)))

(P-4) e(x, ee(ee(y, 2), e(y, u)), e(z, u)), x))

(Q-1) e(z,ele(y, z),ele(z,y),2)))

(Q-2) ele(z,y),ele(z,2),e(z,y)))

(Q-3) e(e(e(x,y), e(e(y, ), 2)), 2)

(Q-4) ele(e(x,y), e(x, 2)), ey, z))

(LG-27-1690) e(e(e(e(z,y), z), e(e(u,v), e(e(e(w, v), e(w, u)), s))), e(z, e(e(y, ), s)))

With great assistance from OTTER, McCune later showed that each of the sets
{LG-2,LG-3}, {LG-2,P-1}, {LG-2,P-4}, {LG-2,Q-1,Q-2}, {P-1,Q-3}, {P-4,Q-3}, {Q-
1,Q-2,Q-3}, {Q-1,Q-3,Q-4}, and {LG-27-1690} also axiomatizes the LG calculus [8, 9].
Problems 89-101, Table 10, roughly parallel the discovery of the new axiom systems
for the LG calculus.

5.4 The RG Calculus (RG)
Kalman’s axiomatization of the RG calculus is {L.G-1"LG-2/ L.G-3' LG-4' LG-5'} [2].

ze(x e(e(y, e(z,2)),9)))

ze(x e(e(y, =), e(e(y, u), e(z, u)))))

v.ex.e(e(y, ez, w), ey, e(e(z,v), e(u, )
()3/ o). el e(u, ez 1))

(

(

( )

(e(e(a, (v, 2)), el

(el ey, ez, e, ), ele(i, (v, 2)), ele(y, e(v, ), )

(Q'Q/) 6(6(6(x’y)’e(z’y))’e($’z))

(&

[

[

e e N NN
=
| 1 | | |
“2
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]



Table 10: LG Calculus

# Theorem Basic  Ratio R-e
89 LG-2,LG-3,LG-4 = LG-1 115 115 *
90 LG-2,LG-3 = LG-4 222 6 2
91 LG-3 = LG4 109 8 9
92 LG-2,LG-3 = LG-5 Fail Fail 845
93 LG-2,P-1 = LG-3 Fail Fail 536
94 LG-2,P-4 = P-1 <1 <1 <1
95 LG-2,Q-1,Q-2 = P-1 16 30 5
96 P-1,Q-3 = LG-2 211 295 15
97 P-4,Q-3 = P-1 <1 <1 1
98 Q-1,0-2,Q-3 = LG-2 10905  Fail 7617
99 Q-1,Q-4 = Q-2 <1 <1 <1
100 LG-27-1690 = P-1 <1 <1 <1
101 LG-27-1690 = Q-3 <1 2 3

With great assistance from OTTER, McCune later showed that each of the pairs
{Q-2,Q-3'} and {Q-3',Q-4'} axiomatizes the RG calculus and that each of the fol-

lowing formulas is a single axiom for the RG calculus [8, 9]:

(LG2) el (o, e(ely, =), elely, w), oz, w)
(5-2') e(e(x, e(y, 2)), e(w, e(e(y, u), e(z, u))))
(S-39) e(x,e(x,e(e(e(y, 2), e(u, 2)), e(y, u))))
(S4)  ele(r,ely, ), elel, e(u 2)), ey, 0))
(P4)  ele(r,ele(y, 2), (e, w), ez ), 2)
() ele(e,ele(e(y, 2, e(us ), (3, ), 2)

Problems 102-112, Table 11, roughly parallel the discovery of the new axiom
systems for the RG calculus.

6 Summary

We have presented 112 condensed detachment problems that offer a large range of
difficulty to automated theorem-proving programs, and we have shown how OTTER,
using several simple strategies (see Section 1.3), performs on those problems.

For the equivalential, R, RG, and LG calculi (the problems with functor €), strat-
egy R-e wins on nearly all problems. We note that the deletion in strategy R-e
prevents proofs in problems 89 and 102. For the CN, C0, and MV calculi, no clear
overall winner was found. For the AN calculus problems, strategy R-nn performed
best. For the IC problems, the basic strategy performed best. Although we did not
run experiments using deletion while selecting the smallest clause as given, we can
compare the performance of basic and ratio strategies (both without deletion). No



Table 11: RG Calculus

# Theorem Basic  Ratio R-e
102 LG-2" = LG-1' 130 133 *
103 LG-2' = LG-3' Fail Fail 104
104 LG-2' = LG-4' Fail 889 62
105 LG-2' = LG-5' Fail Fail 809
106 Q-2,Q-3' = LG-2" 9609 Fail 5634
107 Q-3,Q-4' = Q-2 <1 <1 <1
108 S-2' = LG-2’ 757 1495 136
109 S-3' = LG-2 91 142 40
110 S-4' = LG-2 5837 Fail Fail®
111 P-4 = LG-2 <1 <1 <1
112 S-6' = LG-2’ 120 143 19

“The deletion strategy eliminates a!l interesting paths.

clear winner was found, but the ratio strategy performed slightly better than the basic
strategy overall. The results of the experiments reinforce our long-held position that
a single strategy cannot be effective on a wide range of problems.

Several of the problems have been particularly challenging for us. Problem 67,
posed as a challenge problem in [15] and called “imp4” by members of the Argonne
group, was the first truly difficult condensed detachment theorem proved by OTTER.
It has been used extensively as a benchmark for parallel deduction programs. Problem
34, to derive CN-1 from CN-CAM, has resisted all of our attempts at automated
proofs. (One attempt generated 1.4 billion formulas and consumed 17 CPU days on
a Solbourne 5¢/900 computer.) Problem 55, to show the dependence of MV-4 in
Lukasiewicz’s system for Ly,, has also resisted all of our attempts. (One attempt
generated 983 million formulas.) We have, however, found many proofs for Problem
55 using OTTER in various proof-checking modes [20]. OTTER’s search for a proof for
Problem 44, to derive C01 from CO-CAM, is impeded by the memory control feature.
The weight limit is lowered, either too much or too soon, which causes key formulas to
be discarded. OTTER has found a proof in about seven hours with a strategy similar
to the basic strategy but with a constant weight limit of 18 instead of the memory
control feature. We have not obtained proofs for problems 24, 40, 43, and 50, which
are to derive complicated single axioms, because our strategies are biased towards
finding simple formulas. The remaining problems for which the tables list complete
failure have yielded to specialized strategies.
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