AN ITERATIVE SUBSTRUCTURING ALGORITHM
FOR PROBLEMS IN THREE DIMENSIONS

BARRY F. SMITH”

Mathematics and Computer Science Division Preprint MCS-P240-0591
Argonne National Laboratory

June, 1991

Abstract. In domain decomposition algorithms with more than a few subdomains, there is a
crucial need for a mechanism to provide for global communication of information at each step of the
iterative process. The convergence rate will decay rapidly with an increasing number of subdomains
if communication is only between neighboring subdomains. For iterative substructuring algorithms
(those domain decomposition algorithms that use nonoverlapping subdomains), the method that
provides for good global communication in two dimensions does not work well for problems in three
dimensions. In this paper we present an alternative approach for providing global communication
that works well in three dimensions. Sample theoretical and numerical results are presented.

1. Introduction. In this paper we will discuss an iterative substructuring al-
gorithm designed explicitly for problems in three dimensions. Our algorithm has
almost optimal convergence properties for problems in both two and three dimen-
sions. Earlier iterative substructuring algorithms designed for two dimensions have
poor convergence properties when applied in three dimensions. We introduce two
simple variants of the algorithm and demonstrate some sample numerical and ana-
lytic results we have obtained. Our focus is on the techniques used in the construction
of the coarse problem that provides for global communication of information at each
iteration. This global communication is crucial when a large number of subdomains
are used. For other work on iterative substructuring algorithms, we refer to Bramble,
Pasciak, and Schatz [2], [3], Dryja and Widlund [4], Keyes and Gropp [7], [8], and
Smith [12].

In the next section we introduce the elliptic problems we are interested in solving.
This is followed by a briet review of parts of the abstract theory of Schwarz methods.
We then introduce the iterative substructuring algorithm and conclude with some
preliminary numerical experiments.

2. The Problem. We begin with a scalar, second-order, self-adjoint, coercive,
bilinear form agq(u,v) on @ C R* and impose a homogeneous Dirichlet condition on
'y C 9Q and Neumann boundary conditions on dQ2\ I'g. In addition, we assume that
the underlying elliptic operator has no zero-order terms. We wish to find v € Hr, ()
such that

ag(u,v) = (f,v), VvelHp (Q).

* Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844. FEmail:
bsmith@mecs.anl.gov. This work was supported by the Applied Mathematical Sciences subprogram
of the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

More generally we are interested in multicomponent problems and eventually prob-
lems with non-selfadjoint differential operators. In this paper we restrict ourselves to
the scalar self-adjoint class of problems.

We begin with a discretization that satisfies the usual rules for finite element
triangulations. Let V(Q) be the space of continuous, piecewise linear functions
on the triangulation. In addition, for the construction of the preconditioner, we
assume that the set of elements are partitioned into disjoint substructures ;. We
further assume that there exists constants ¢ and (' independent of A and H such
that for all substructures ¢H < diam(€2;) < C'H. In the experiments reported here,
the substructures will always be brick-shaped, though this is not necessary for the
algorithm. The discrete problem is to find u” € V"(2) such that

(1) ag(u”, o™y = (f,0"), VYo' e VI(Q).

3. Iterative Substructuring with Many Subdomains. Schwarz methods
are iterative methods for the solution of linear systems that arise from the discretiza-
tion of partial differential equations. The solution space is decomposed into subspaces.
Approximations to the solution are updated by projecting the error, in some appro-
priate inner product that approximates a(-,-), onto these subspaces. The iterative
schemes are accelerated by using the conjugate gradient method or a version for non-
symmetric problems such as GMRES. See Dryja and Widlund [5] for details and an
extensive bibliography.

The key technical tool in the Schwarz analysis of domain decomposition algo-
rithms is the so-called Lions’ lemma, see Lions [9] and Nepomnyaschikh [11]. We let
the solution space V" be decomposed into subspaces V' and let b;(-,-) be the inner
product on V/* that approximates a(-,-). Assume that C/ is the minimum value such
that for all u* € V" there exists a representation u” = 3~ u with u! € V* such that,

(2) > biuf,uf) < (Cg)tau”,).

Then 1/(C2)? is the smallest eigenvalue of the preconditioned problem. The largest
eigenvalue is often easily calculated using some form of strengthened Cauchy-Schwarz
inequality, (see Dryja and Widlund [5]) and generally is not much larger then one.

Iterative substructuring algorithms can be constructed using the Schwarz ap-
proach, from three basic components: subspaces associated with the interiors of the
subdomains, subspaces associated with two subdomains that share a common edge
(face in three dimensions), and a coarse subspace that involves the unknowns asso-
ciated with the subdomain vertices (in three dimensions we may additionally have
subspaces associated with the edges shared by more then two subdomains). We refer
the reader to Dryja and Widlund [5] for details on how the solutions from the local
problems and the global coarse problem are merged at each iteration to form the
approximate solution. The local problems can be solved exactly by, for instance, a
sparse solver, or approximately by an iterative method such as multigrid.

In two dimensions the construction of the global coarse space is straightforward.
We define the space VJ* by the values on the subdomain vertices extended as piecewise

2

linear functions on the subdomains. The coarse space contribution to the update
to the solution is obtained by projecting the error onto the subpace VJ* and then
interpolating it back to V",

In three dimensions, this approach has two fundamental flaws. The first is the
expense and difficulty of the piecewise linear interpolation onto the subdomains from
the subdomain vertices. The more basic problem is that when nonoverlapping subdo-
mains are used with this coarse subspace, the condition number of the preconditioned
problem grows faster than O(H/h). The reason for this growth can be understood by
examining the bound for Lions’ lemma.

In three dimensions, consider a finite element function u* that is one at a single
finite element node that is a vertex of a subdomain and zero on all other finite element
nodes. The energy of u" is approximately fsupp(uh) 1/h* ~ h. Since Vj is the only
subspace whose elements are nonzero at the vertex nodes, in the decomposition of u”
we must take ul to be the interpolant of u”*. That is, u} is a continuous, piecewise
linear function on the subdomains that is one on a single subdomain vertex and zero
on all subdomain vertices. Its energy is approximately fsupp(ug) 1/H* ~ H. Hence
(C8)? ~ H/h. To summarize, the problem in three dimensions is that interpolating
the value of a finite element function from a single node can result in large changes
in energy, see Smith [12], [13] for a more technical explanation.

Following an approach of Bramble, Pasciak, and Schatz [3], we construct the
new coarse space Vj' in a way that avoids interpolating the value of finite element
functions from a single node. We define the space V' by values on the wirebasket;
these values are then extended onto the faces by the average of the values on the
edges adjacent to that face. Finally, the values on the interior of the subdomain are
obtained by extending the values from the faces and edges as discrete harmonic on
the interior. This type of interpolation results in only small, O(141log(H/h)), changes
in the energy; see Smith [12], [13].

On the subspace VJ* we need an accurate, yet easily computed, approximation to
the H! inner product. We approximate the inner product one subdomain at a time,
namely,

bo(u™, v") = > by (u, o).
We assume that for all €;

(3) cibgi(uh,uh) < (uh,uh)H1(Q) < Cibgi(uh,uh).

Then by summing over ¢ we obtain

(mjnci)bo(uh,uh) < (uh,uh)H1(Q) < (max Ci)bo(uh,uh).

For a subdomain with no fixed Dirichlet boundary, the null space of (u", uh);p(gi) is
the space of constant functions. In order for (3) to hold for ¢; > 0, it is necessary for
bgi(uh, u") to also have the null space of the constant functions. We therefore use
bo(u",v") = (1 +log(H/h))h Y- minmin(uyy) — w=0) 1wy} - 5=0).
i w k2 g k2
3

The 2 is a vector of all ones of the same dimension as g%), while g%) is the vector of
coefficients of the finite element function u” restricted to the wirebasket of subdomain
Q. The (1 + log(H/h)) factor is needed as a technical detail in the proofs. The
calculation of a projection onto the space V4 in the by(-, -) inner product chiefly involves
the solution of a sparse linear system with one unknown per subdomain; see Smith
[12]. The techniques used in the construction of by(-,-) are similar to those used by
Bramble, Pasciak, and Schatz [3] and Mandel [10].

The main theoretical result obtained for this algorithm is given in Smith [12].

THEOREM 3.1. When exact interior solvers are used in the algorithm outlined
above, the condition number of the resulting system can be bounded independently of
the number of subdomains and the jumps in the coefficients of the differential equation
between subdomains. The condition number grows only weakly with the number of
unknowns per subdomain. In particular,

K(T) < C(1 + log(H/h))2.

When approximate interior solvers are used, the degradation in the convergence
rate is determined by the angle between the space of discrete harmonic functions and
the space of approximately discrete harmonic functions; see Borgers [1] and Haase,
Langer, and Meyer [6]. The best bounds obtained so far indicate that asymptotically
for small subdomain size H and small mesh size h, log(H/h) multigrid V—cycle sweeps
are needed for each approximate solve in order to preserve the overall convergence
rate given above. In practice, at least for simple problems, o(1) multigrid V—cycle
sweeps are all that are needed; see Haase, Langer, and Meyer [6].

4. Numerical Results. In this section we report on some numerical results
for several model problems. All the calculations have been performed on an Intel
iPSC/860 hypercube with 32 processors, each with 16 megabytes of memory.

In the first set of experiments we study the growth in the condition number as we
refine the mesh. We consider the unit cube with Dirichlet boundary conditions given
on one face. The cube is uniformly divided into 64 subcubes. In Table 1 we report
on the condition numbers when we precondition with a simple diagonal scaling and
the full algorithm discussed above. In addition, we include iteration counts and run
times for a problem with a nontrivial right-hand side. The iterations were stopped
after a relative decrease in the [, norm of the residual of 107*. We consider three
preconditioners: simple diagonal scaling, the iterative substructuring algorithm with
exact interior solvers, and the iterative substructuring algorithm with one multigrid
V—cycle as an approximate interior solver.

As expected, the condition number when using diagonal scaling grows in pro-
portion to (H/h)?, while the iteration count for the same preconditioner grows lin-
early with H/h. Also as expected, for the preconditioned problem the the condition
number,«, grows roughly as (1 + log(H/h))*. What is interesting is that the perfor-
mance is very similar when either an exact interior solver or merely one multigrid
V—cycle is used.

In the second problem we fix the number of unknowns at 857,375 and increase the
number of subdomains, see Table 2. This is for a unit cube with Dirichlet boundary
conditions and a mesh of 1/h = 96 in each coordinate direction. We note that as
we increase the number of subdomains the condition numbers for the fully precon-
ditioned problem decreases. These problems were run with 32 processors. As the
number of subdomains increases the amount of overhead that is related to shifting
data between subdomains increases and hence the total time to solve the problem
increases. Increasing the number of processors would alleviate this problem. We
note that the original problem is relatively well conditioned: x ~ 3734. Thus simple
diagonal scaling is competitive and, as we can see in Table 2 can actually perform
better then the other two preconditioners. Most applications, however, are not this
well conditioned.

TABLE 1
Problem 1: Growth in Condition Numbers for 64 Subdomains.

Preconditioner
Number of Diagonal Exact 1 V—cycle

H/h Unknowns £ It. Time K £ It. Time

8 34,848 | 4,980 129 5.4 16.9 | 169 17 3.9

16 270,400 | 19,920 262 26.6 | 27.3 |26.7 23 14.1

20 524,880 | 31,125 325 49.8 | 31.3 |31.0 25 25.3

24 903,264 | 48,609 388 87.6 | 34.9 |38.8 28 46.8

32 2,130,048 | 79,682 522 2334 | 40.9 |51.0 32 130.8

TABLE 2
Dirichlet Problem with 857,375 Unknowns

Preconditioner
Number of Diagonal Exact 1 V—cycle
Subdomains H/h K It. Time K k It. Time
27 32 | 3,734 145 3433 | 314 |32.6 22 444
64 24 | 3,734 145 33.73 | 31.1 |31.3 25 40.2
216 16 | 3,734 145 63.03 | 26.0 |26.1 23 56.9
512 12 13,734 145 125.74 | 22.0 |22.0 21 111.5

In the third problem we compare some timing results using the algorithm with one
multigrid V—cycle as an interior solver and simple diagonal scaling. In this problem
we use a region which has the shape of a table with three legs. We prescribe Dirichlet
boundary data on the top of the table only. The subdomains are rectangular bricks
with aspect ratios of 4:5:20 and there are 244 subdomains. The interior problems
are solved approximately with one multigrid V-cycle. These results are reported in
Table 3. We observe that the full preconditioner performs much better than diagonal
scaling. Both algorithms obtain reasonably good speedups as we increase the number
of processors.

TABLE 3
Problem 3 with 244 Subdomains.

H/h | Number of Number of Diagonal 1 V-cycle
Unknowns Processors (time, in sec.)
8 132,792 Number of Iterations 309 20
Condition Numbers 19,657 20.8
8 143.2 54.9
16 78.2 35.9
32 48.3 26.6
16 1,030,512 | Number of Iterations 617 35
Condition Numbers 78,486 4.1
16 427.1 155.1
32 237.2 88.5
20 2,000,460 | Number of Iterations 772 39
Condition Numbers 122,582 93.9
32 453.4 157.5

It is of interest to know what part of the algorithm consumes most of the com-
puter time during the solution process. For the problem in Table 1 with 2,130,048
unknowns, we have traced the percentage of the time in various operations when 32
processors were used. For the full preconditioner the bulk of the solution time, 72%,
is spent in the multigrid code. The rest is spent in the matrix multiply, 5%; the
daxpy, 4%; the inner product, 3%; and the face and coarse solvers, 2%. The time
spent on communication between processors can be divided into the time spent on
communications related to the inner product, 1%; the matrix multiply, 4%; and the
preconditioner, 8%.

For the diagonally preconditioned problem, 25% of the time is spent on the ma-
trix multiply, 22% on the daxpy, 18% on the inner product, and 7% on the diagonal
scaling. The percentage of the total time spent on communication for the matrix
multiply is 23% and it is 4% for the inner product. The application of the full pre-
conditioner results in a decrease in the proportion of the time spent in interprocessor
communication and hence a more efficient use of the machine.

We make the following preliminary conclusions. For the simplest model prob-
lems, the iterative substructuring algorithms are not competitive with simple diagonal
scaling, when exact interior solvers are used. Despite the decrease in the number of
iterations, the large cost of the interior solvers are just too great to overcome the low
cost of a diagonal scaling. When one multigrid V-cycle is used to solve the interior
problems approximately, the algorithm performs almost as well as with exact interior
solvers in terms of the condition number and is much faster. It is possible to find
simple problems where the full preconditioner does perform better, in terms of time,
than diagonal scaling. On the other hand, for the simplest possible problem, a unit
cube with Dirichlet boundary conditions on the entire boundary (see Table 2), simple
diagonal scaling beats this particular implementation of the iterative substructuring
algorithm.

Much more work is needed to determine the best approach for variable coefficient,
multicomponent problems. We expect that one multigrid V—cycle as an approximate
solver will not be as effective as for simple problems. In addition, it is imperative
that the problems associated with the faces and the coarse problem be adapted to the
particular set of equations we are solving. Not only should the bounds depend only
weakly on H and h, but they also should depend only weakly on the partial differential
equation. Future work will focus on comparisons of different face preconditioners and
modifications to the wirebasket problem to take the particular form of the differential
equation into account.

REFERENCES

[1] C. BORGERS, The Neumann—Dirichlet domain decomposition method with inezact solvers on
the subdomains, Numer. Math., 55 (1989), pp. 123-136.

[2] J. H. BRAMBLE, J. E. Pasciak, AND A. H. ScHATZ, The construction of precondilioners for
elliptic problems by substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[3] ——, The construction of preconditioners for elliptic problems by substructuring, IV, Math.
Comp., 53 (1989), pp. 1-24.

[4] M. DrvJa anND O. B. WIDLUND, Some domain decomposition algorithms for elliptic problems,
in Iterative Methods for Large Linear Systems, Academic Press, San Diego, California,
1989, pp. 273-291.

[6] ——, Towards a unified theory of domain decomposition algorithms for elliptic problems, in
Third International Symposium on Domain Decomposition Methods for Partial Differential
Equations, held in Houston, Texas, March 20-22, 1989, T. Chan, R. Glowinski, J. Périaux,
and O. Widlund, eds., STAM, Philadelphia, PA, 1990, pp. 3-21.

[6] G. HaasE, U. LANGER, AND A. MEYER, A new approach to the Dirichlel domain decompo-
sttion method, Tech. Rep., Technical University of Chemnitz, 1990.

[7] D. E. KEvEs aND W. D. GroprP, A comparison of domain decomposilion techniques for
elliptic partial differential equations and their parallel implementation, STAM J. Sci. Stat.
Comput., 8 (1987), pp. s166-s202.

[8] ——, Domain decomposilion lechniques for nonsymmelric systems of equations, in Domain
Decomposition Methods, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., STAM,
Philadelphia, PA, 1989, pp. 321-339.

[9] P. L. LioNs, On the Schwarz alternating method. I., in First International Symposium on
Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H.
Golub, G. A. Meurant, and J. Périaux, eds., STAM, Philadelphia, PA, 1988, pp. 1-42.

[10] J. MANDEL, Efficient domain decomposilion precondilioning for the p-version finile element
method in three dimensions, Tech. Rep., University of Colorado at Denver, 1989.

[11] S. V. NEPOMNYASCHIKH, Domain Decomposition and Schwarz Methods in a Subspace for
the Approzimate Solution of Elliptic Boundary Value Problems, Ph.D. thesis, Computing
Center of the Siberian Branch of the USSR, Academy of Sciences, Novosibirsk, USSR, 1986.

[12] B. F. SmiTH, A domain decomposition algorithm for elliptic problems in three dimensions,
Tech. Rep. 519, Department of Computer Science, Courant Institute, October 1990.

[13] ——, Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elas-
ticity, Ph.D. thesis, Courant Institute of Mathematical Sciences, September 1990. Tech.
Rep. 517, Department of Computer Science, Courant Institute.

