
AN ITERATIVE SUBSTRUCTURING ALGORITHMFOR PROBLEMS IN THREE DIMENSIONSBARRY F. SMITH�Mathematics and Computer Science Division Preprint MCS-P240-0591Argonne National LaboratoryJune, 1991Abstract. In domain decomposition algorithms with more than a few subdomains, there is acrucial need for a mechanism to provide for global communication of information at each step of theiterative process. The convergence rate will decay rapidly with an increasing number of subdomainsif communication is only between neighboring subdomains. For iterative substructuring algorithms(those domain decomposition algorithms that use nonoverlapping subdomains), the method thatprovides for good global communication in two dimensions does not work well for problems in threedimensions. In this paper we present an alternative approach for providing global communicationthat works well in three dimensions. Sample theoretical and numerical results are presented.1. Introduction. In this paper we will discuss an iterative substructuring al-gorithm designed explicitly for problems in three dimensions. Our algorithm hasalmost optimal convergence properties for problems in both two and three dimen-sions. Earlier iterative substructuring algorithms designed for two dimensions havepoor convergence properties when applied in three dimensions. We introduce twosimple variants of the algorithm and demonstrate some sample numerical and ana-lytic results we have obtained. Our focus is on the techniques used in the constructionof the coarse problem that provides for global communication of information at eachiteration. This global communication is crucial when a large number of subdomainsare used. For other work on iterative substructuring algorithms, we refer to Bramble,Pasciak, and Schatz [2], [3], Dryja and Widlund [4], Keyes and Gropp [7], [8], andSmith [12].In the next section we introduce the elliptic problems we are interested in solving.This is followed by a brief review of parts of the abstract theory of Schwarz methods.We then introduce the iterative substructuring algorithm and conclude with somepreliminary numerical experiments.2. The Problem. We begin with a scalar, second-order, self-adjoint, coercive,bilinear form a
(u; v) on 
 � R3 and impose a homogeneous Dirichlet condition on�0 � @
 and Neumann boundary conditions on @
 n�0: In addition, we assume thatthe underlying elliptic operator has no zero-order terms. We wish to �nd u 2 H�0(
)such that a
(u; v) = (f; v); 8 v 2 H1�0(
):� Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844. Email:bsmith@mcs.anl.gov. This work was supported by the Applied Mathematical Sciences subprogramof the O�ce of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



More generally we are interested in multicomponent problems and eventually prob-lems with non-selfadjoint di�erential operators. In this paper we restrict ourselves tothe scalar self{adjoint class of problems.We begin with a discretization that satis�es the usual rules for �nite elementtriangulations. Let V h(
) be the space of continuous, piecewise linear functionson the triangulation. In addition, for the construction of the preconditioner, weassume that the set of elements are partitioned into disjoint substructures 
i. Wefurther assume that there exists constants c and C independent of h and H suchthat for all substructures cH � diam(
i) � CH: In the experiments reported here,the substructures will always be brick-shaped, though this is not necessary for thealgorithm. The discrete problem is to �nd uh 2 V h(
) such thata
(uh; vh) = (f; vh); 8 vh 2 V h(
):(1) 3. Iterative Substructuring with Many Subdomains. Schwarz methodsare iterative methods for the solution of linear systems that arise from the discretiza-tion of partial di�erential equations. The solution space is decomposed into subspaces.Approximations to the solution are updated by projecting the error, in some appro-priate inner product that approximates a(�; �); onto these subspaces. The iterativeschemes are accelerated by using the conjugate gradient method or a version for non-symmetric problems such as GMRES. See Dryja and Widlund [5] for details and anextensive bibliography.The key technical tool in the Schwarz analysis of domain decomposition algo-rithms is the so-called Lions' lemma, see Lions [9] and Nepomnyaschikh [11]. We letthe solution space V h be decomposed into subspaces V hi and let bi(�; �) be the innerproduct on V hi that approximates a(�; �). Assume that Ch0 is the minimum value suchthat for all uh 2 V h there exists a representation uh = Puhi with uhi 2 V hi , such that,Xi bi(uhi ; uhi ) � (Ch0 )2a(uh; uh):(2)Then 1=(Ch0 )2 is the smallest eigenvalue of the preconditioned problem. The largesteigenvalue is often easily calculated using some form of strengthened Cauchy-Schwarzinequality, (see Dryja and Widlund [5]) and generally is not much larger then one.Iterative substructuring algorithms can be constructed using the Schwarz ap-proach, from three basic components: subspaces associated with the interiors of thesubdomains, subspaces associated with two subdomains that share a common edge(face in three dimensions), and a coarse subspace that involves the unknowns asso-ciated with the subdomain vertices (in three dimensions we may additionally havesubspaces associated with the edges shared by more then two subdomains). We referthe reader to Dryja and Widlund [5] for details on how the solutions from the localproblems and the global coarse problem are merged at each iteration to form theapproximate solution. The local problems can be solved exactly by, for instance, asparse solver, or approximately by an iterative method such as multigrid.In two dimensions the construction of the global coarse space is straightforward.We de�ne the space V h0 by the values on the subdomain vertices extended as piecewise2



linear functions on the subdomains. The coarse space contribution to the updateto the solution is obtained by projecting the error onto the subpace V h0 and theninterpolating it back to V h:In three dimensions, this approach has two fundamental aws. The �rst is theexpense and di�culty of the piecewise linear interpolation onto the subdomains fromthe subdomain vertices. The more basic problem is that when nonoverlapping subdo-mains are used with this coarse subspace, the condition number of the preconditionedproblem grows faster than O(H=h): The reason for this growth can be understood byexamining the bound for Lions' lemma.In three dimensions, consider a �nite element function uh that is one at a single�nite element node that is a vertex of a subdomain and zero on all other �nite elementnodes. The energy of uh is approximately Rsupp(uh) 1=h2 � h: Since V0 is the onlysubspace whose elements are nonzero at the vertex nodes, in the decomposition of uhwe must take uh0 to be the interpolant of uh: That is, uh0 is a continuous, piecewiselinear function on the subdomains that is one on a single subdomain vertex and zeroon all subdomain vertices. Its energy is approximately Rsupp(uh0 ) 1=H2 � H: Hence(Ch0 )2 � H=h: To summarize, the problem in three dimensions is that interpolatingthe value of a �nite element function from a single node can result in large changesin energy, see Smith [12], [13] for a more technical explanation.Following an approach of Bramble, Pasciak, and Schatz [3], we construct thenew coarse space V h0 in a way that avoids interpolating the value of �nite elementfunctions from a single node. We de�ne the space V h0 by values on the wirebasket;these values are then extended onto the faces by the average of the values on theedges adjacent to that face. Finally, the values on the interior of the subdomain areobtained by extending the values from the faces and edges as discrete harmonic onthe interior. This type of interpolation results in only small, O(1+log(H=h)); changesin the energy; see Smith [12], [13].On the subspace V h0 we need an accurate, yet easily computed, approximation tothe H1 inner product. We approximate the inner product one subdomain at a time,namely, b0(uh; vh) =Xi b
i0 (uh; vh):We assume that for all 
icib
i0 (uh; uh) � (uh; uh)H1(
i) � Cib
i0 (uh; uh):(3)Then by summing over i we obtain(mini ci)b0(uh; uh) � (uh; uh)H1(
) � (maxi Ci)b0(uh; uh):For a subdomain with no �xed Dirichlet boundary, the null space of (uh; uh)H1(
i) isthe space of constant functions. In order for (3) to hold for ci > 0; it is necessary forb
i0 (uh; uh) to also have the null space of the constant functions. We therefore useb0(uh; vh) = (1 + log(H=h))hXi min�w(i) min�y(i) (u(i)W � �w(i)z(i))I(v(i)W � �y(i)z(i)):3



The z(i) is a vector of all ones of the same dimension as u(i)W , while u(i)W is the vector ofcoe�cients of the �nite element function uh restricted to the wirebasket of subdomain
i: The (1 + log(H=h)) factor is needed as a technical detail in the proofs. Thecalculation of a projection onto the space V0 in the b0(�; �) inner product chiey involvesthe solution of a sparse linear system with one unknown per subdomain; see Smith[12]. The techniques used in the construction of b0(�; �) are similar to those used byBramble, Pasciak, and Schatz [3] and Mandel [10].The main theoretical result obtained for this algorithm is given in Smith [12].Theorem 3.1. When exact interior solvers are used in the algorithm outlinedabove, the condition number of the resulting system can be bounded independently ofthe number of subdomains and the jumps in the coe�cients of the di�erential equationbetween subdomains. The condition number grows only weakly with the number ofunknowns per subdomain. In particular,�(T ) � C(1 + log(H=h))2:When approximate interior solvers are used, the degradation in the convergencerate is determined by the angle between the space of discrete harmonic functions andthe space of approximately discrete harmonic functions; see B�orgers [1] and Haase,Langer, and Meyer [6]. The best bounds obtained so far indicate that asymptoticallyfor small subdomain sizeH and small mesh size h, log(H=h) multigrid V{cycle sweepsare needed for each approximate solve in order to preserve the overall convergencerate given above. In practice, at least for simple problems, o(1) multigrid V{cyclesweeps are all that are needed; see Haase, Langer, and Meyer [6].4. Numerical Results. In this section we report on some numerical resultsfor several model problems. All the calculations have been performed on an InteliPSC/860 hypercube with 32 processors, each with 16 megabytes of memory.In the �rst set of experiments we study the growth in the condition number as were�ne the mesh. We consider the unit cube with Dirichlet boundary conditions givenon one face. The cube is uniformly divided into 64 subcubes. In Table 1 we reporton the condition numbers when we precondition with a simple diagonal scaling andthe full algorithm discussed above. In addition, we include iteration counts and runtimes for a problem with a nontrivial right-hand side. The iterations were stoppedafter a relative decrease in the l2 norm of the residual of 10�4: We consider threepreconditioners: simple diagonal scaling, the iterative substructuring algorithm withexact interior solvers, and the iterative substructuring algorithm with one multigridV{cycle as an approximate interior solver.As expected, the condition number when using diagonal scaling grows in pro-portion to (H=h)2, while the iteration count for the same preconditioner grows lin-early with H=h. Also as expected, for the preconditioned problem the the conditionnumber,�; grows roughly as (1 + log(H=h))2. What is interesting is that the perfor-mance is very similar when either an exact interior solver or merely one multigridV{cycle is used. 4



In the second problem we �x the number of unknowns at 857,375 and increase thenumber of subdomains, see Table 2. This is for a unit cube with Dirichlet boundaryconditions and a mesh of 1=h = 96 in each coordinate direction. We note that aswe increase the number of subdomains the condition numbers for the fully precon-ditioned problem decreases. These problems were run with 32 processors. As thenumber of subdomains increases the amount of overhead that is related to shiftingdata between subdomains increases and hence the total time to solve the problemincreases. Increasing the number of processors would alleviate this problem. Wenote that the original problem is relatively well conditioned: � � 3734: Thus simplediagonal scaling is competitive and, as we can see in Table 2 can actually performbetter then the other two preconditioners. Most applications, however, are not thiswell conditioned. Table 1Problem 1: Growth in Condition Numbers for 64 Subdomains.PreconditionerNumber of Diagonal Exact 1 V{cycleH=h Unknowns � It. Time � � It. Time8 34,848 4,980 129 5.4 16.9 16.9 17 3.916 270,400 19,920 262 26.6 27.3 26.7 23 14.120 524,880 31,125 325 49.8 31.3 31.0 25 25.324 903,264 48,609 388 87.6 34.9 38.8 28 46.832 2,130,048 79,682 522 233.4 40.9 51.0 32 130.8Table 2Dirichlet Problem with 857,375 UnknownsPreconditionerNumber of Diagonal Exact 1 V{cycleSubdomains H=h � It. Time � � It. Time27 32 3,734 145 34.33 31.4 32.6 22 44.464 24 3,734 145 33.73 31.1 31.3 25 40.2216 16 3,734 145 63.03 26.0 26.1 23 56.9512 12 3,734 145 125.74 22.0 22.0 21 111.5In the third problem we compare some timing results using the algorithm with onemultigrid V{cycle as an interior solver and simple diagonal scaling. In this problemwe use a region which has the shape of a table with three legs. We prescribe Dirichletboundary data on the top of the table only. The subdomains are rectangular brickswith aspect ratios of 4:5:20 and there are 244 subdomains. The interior problemsare solved approximately with one multigrid V-cycle. These results are reported inTable 3. We observe that the full preconditioner performs much better than diagonalscaling. Both algorithms obtain reasonably good speedups as we increase the numberof processors. 5



Table 3Problem 3 with 244 Subdomains.H=h Number of Number of Diagonal 1 V{cycleUnknowns Processors (time, in sec.)8 132,792 Number of Iterations 309 20Condition Numbers 19,657 20.88 143.2 54.916 78.2 35.932 48.3 26.616 1,030,512 Number of Iterations 617 35Condition Numbers 78,486 74.116 427.1 155.132 237.2 88.520 2,000,460 Number of Iterations 772 39Condition Numbers 122,582 93.932 453.4 157.5It is of interest to know what part of the algorithm consumes most of the com-puter time during the solution process. For the problem in Table 1 with 2,130,048unknowns, we have traced the percentage of the time in various operations when 32processors were used. For the full preconditioner the bulk of the solution time, 72%,is spent in the multigrid code. The rest is spent in the matrix multiply, 5%; thedaxpy, 4%; the inner product, 3%; and the face and coarse solvers, 2%. The timespent on communication between processors can be divided into the time spent oncommunications related to the inner product, 1%; the matrix multiply, 4%; and thepreconditioner, 8%.For the diagonally preconditioned problem, 25% of the time is spent on the ma-trix multiply, 22% on the daxpy, 18% on the inner product, and 7% on the diagonalscaling. The percentage of the total time spent on communication for the matrixmultiply is 23% and it is 4% for the inner product. The application of the full pre-conditioner results in a decrease in the proportion of the time spent in interprocessorcommunication and hence a more e�cient use of the machine.We make the following preliminary conclusions. For the simplest model prob-lems, the iterative substructuring algorithms are not competitive with simple diagonalscaling, when exact interior solvers are used. Despite the decrease in the number ofiterations, the large cost of the interior solvers are just too great to overcome the lowcost of a diagonal scaling. When one multigrid V-cycle is used to solve the interiorproblems approximately, the algorithm performs almost as well as with exact interiorsolvers in terms of the condition number and is much faster. It is possible to �ndsimple problems where the full preconditioner does perform better, in terms of time,than diagonal scaling. On the other hand, for the simplest possible problem, a unitcube with Dirichlet boundary conditions on the entire boundary (see Table 2), simplediagonal scaling beats this particular implementation of the iterative substructuringalgorithm. 6
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