SPARSE JACOBIAN ESTIMATION AND FACTORIZATION ON A
MULTIPROCESSOR*

PAUL E. PLASSMANN'

Abstract. In this paper we present algorithms and experimental results for the estimation and QR
factorization of large, sparse Jacobians on a message-passing multiprocessor. The gist of this work is the
development of paradigms for the efficient solution of the “inner loop” of a nonlinear optimization algorithm:
the estimation of the Jacobian, its factorization, and the solution of the resulting trust-region problem. A
parallel sparse QR factorization based on the global row reduction algorithm is introduced. We emphasize
the commonality between row partitions that allow for the efficient parallel factorization of the Jacobian
and 1its estimation. We also note that the interprocessor communication structure constructed for the QR
factorization can be used to solve an associated trust-region problem. Finally, experimental results obtained
on the Intel iPSC/2 are presented.

1. Introduction. To solve many nonlinear optimization problems it is necessary to
estimate and factor the Jacobian of a nonlinear function F : R" — R™, with m > n. In
large scale optimization problems this Jacobian is often sparse and the efficient solution of
these problems depends on the utilization of this structure. In this paper we will consider
the problem of developing efficient algorithms for the “inner loop” of a nonlinear optimiza-
tion algorithm: the estimation of the Jacobian, its QR factorization, and the solution of
the resulting trust-region problem on a distributed memory computer.

The parallel QR factorization algorithm presented in this paper is based on the concept
of row merge heaps introduced by Liu [10] as a means of reducing the incidental fill incurred
during a sequential row-oriented QR factorization. In the parallel algorithm, the leaves of
this row merge tree are partitioned by determining a special set of vertices in the row
merge heap. These vertices, called foundation vertices, yield an initial row distribution, or
assignment of rows to processors. Thus, the computation of the upper trapezoidal matrices
associated with these foundation vertices is entirely local to each processor. To handle
the interprocessor communication that is required to further reduce these matrices, we
introduce the global row reduction algorithm. This algorithm, which attempts to minimize
interprocessor communication, is described in section 2.

Related to the symbolic factorization phase of the global row reduction algorithm
are several algorithmic problems which we discuss in section 3. We note that the row
merge heap can be efficiently computed in parallel by an almost linear time forest merging
algorithm. The concept of a foundation vertex in the row merge heap is introduced, and we
give a characterization of the set of row partitions that can be represented by foundation
vertices. An algorithm is presented for computing a set of foundation vertices which in
turn determines a suitable initial row partition. This algorithm is a heuristic which seeks to
minimize the required interprocessor communication while balancing the amount of local
work required of each processor. We discuss how the required communication is computed,
stored, and can be reutilized during the subsequent factorization of matrices with the same
nonzero structure. As an aside, we note that an additional problem posed by the symbolic

* Presented at the Mathematical Sciences Institute workshop on Large-Scale Numerical Optimization,
Cornell University, October 19-20, 1989.

! Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Av-
enue, Argonne, II. 60439; previously, Center for Applied Mathematics, 305 Sage Hall, Cornell University,
Ithaca, NY 14853. Research partially supported by the Computational Mathematics Program of the Na-
tional Science Foundation under grant DMS-8706133 and by the U.S. Army Research Office through the
Mathematical Sciences Institute, Cornell University.

factorization is to develop a consistent means for processors to determine locally the set of
processors involved at each stage of the factorization.

For these algorithms experimental results obtained on the Intel iPSC/2 hypercube are
presented in section 4. We find that the global row reduction algorithm can incur slightly
more incidental fill than the sequential algorithm. However, this extra work is offset by the
elimination of some of the interprocessor communication that would be required by nonlocal
merging of the upper trapezoidal matrices. In addition, it seems that this approach is
more amenable to different load balancing schemes and can be employed with any column
ordering heuristic.

To solve nonlinear least-squares problems, the Levenberg-Marquardt approach requires
the solution of a sequence of trust-region problems [11]. In section 5 we show that the
global row reduction algorithm can be modified to solve the matrix problem that arises in
solving these trust-region problems. This modification allows the use of the interprocessor
communication structure that is generated for the QR factorization without requiring an
additional symbolic factorization step. In section 6 we show how the elements of the
Jacobian can be estimated in a natural manner using the initial row distribution. We
note that in some instances an intersection graph coloring may not be adequate and a
multicoloring or full matrix method must be used.

2. A Parallel Sparse QR Factorization Algorithm. The sparse QR factorization
algorithm described in this section is based on the concept of the row merge heap first
introduced by Liu [10]. In this context, let A be a sparse m x n matrix, m > n, of full
column rank. We wish to factor A into the matrix product @ R, where () is an orthogonal
m X m matrix and R is an upper triangular m X n matrix. This factorization is realized
by computing a sequence of elementary orthogonal transformations Q7, Q7 .. ,Q% that
reduces A to upper triangular form. It is usually impractical to explicitly form ¢); instead,
these transformations are applied to both sides of the linear system Az " b. The resulting
upper triangular system Rax 2 QTh can then be solved for & by back substitution.

The sparsity structure of the upper triangular matrix R is determined by an ordering
of the columns of A. Mathematically R is equal to the Cholesky factor of AT A, but it is
known that the sparsity structure predicted by the symbolic Cholesky factorization of AT A
may overestimate the sparsity structure of R. However, if A is reordered into block upper
triangular (Dulmage-Mendelsohn) form, it can be shown [2] that for each diagonal block
these two structures are equal (assuming no accidental numerical cancellation). Equiva-
lently, if the bipartite graph representation of A has the strong Hall property, then the two
structures are equal; we assume this to be the case for the remainder of this paper.

Given the equivalence of the nonzero structure of the orthogonal and Cholesky factors,
a column ordering can be chosen using existing heuristics for reduction of fill in factoring
symmetric positive definite systems [7, 8]. Hence, the resulting nonzero structure of R will
be reasonably sparse and therefore one expects that the computation required to obtain R
will be reduced with respect to column orderings that produce more fill.

The amount of computation required to reduce A to upper triangular form can vary
dramatically depending on what type of orthogonal transformations are used, and in what
manner they are applied. Sequences of Givens rotations have been shown to be very
effective in performing this reduction [6, 8]. Consider the Givens rotation Ggf) which
operates on rows r; and r; of the matrix to zero the k-th element of row r;. If S(r;)
and 5(r;) are the sorted lists of nonzeros in the rows before the application of the Givens

rotation, then the structures after the rotations, S(r;) and S(r;), are given by

S(r7) S(ri) U S(r;)
(1) S(r;) (S(r) WS (ri) \ {k}

As aresult, during the factorization process rows with leading nonzeros in the same column
inherit the structure of the rows they are merged with.

2.1. The Row Merge Heap. This inheritance of structure can be compactly rep-
resented by the row merge heap data structure [10]. For a given column ordering, the row
merge heap, H(A), is constructed via the following rules:

1. The leaves of H, rq,79,..., 7, represent the rows of A. The interior vertices of H
are labeled by the columns, ¢q,¢o,...,c,, of A.

2. Each vertex z in H has an associated structure (a sorted list) S(z). For the leaves
of H, the structures S(r;) are just the initial nonzero structures of the rows of A.
In addition, a vertex z is a child of the vertex ¢ < S(z) = {k,...}.

3. The formula S(cx) = (Ufehitdren o3 S(2)) N {k + 1,...,n} gives the structure of an
interior vertex cy,.

For example, consider the matrix structure shown in Figure 1. If the rows and columns

1 2 3 4 5 6

1 X
2

3

4 X

) X

6 X X

7 X X

8 X

9 X X

10 X X
11 X

12 X X

Fia. 1. An example of a matrix nonzero structure.

of the matrix are ordered as shown in the figure, then by using the rules described above
one can construct the row merge heap shown in Figure 2.

Based upon the row merge heap, Liu suggests a sequential sparse QR factorization
algorithm. In this algorithm, a binary splitting H of the row merge heap is generated.
A binary splitting of the row merge heap is constructed by adding interior vertices to the
heap until each vertex has no more than two children. A binary splitting of the heap in
Figure 2 is shown in Figure 3. Associated with each vertex in the binary heap H' is an
essentially full upper trapezoidal matrix. A sparse matrix is essentially full if, after all
zero rows and columns of the matrix are removed, the resulting matrix can be permuted

3

1 T2 T3 T4 Ts Te T T8 T9 T10 11 T12

Fia. 2. The row merge heap constructed from the matriz in Figure 1.

1 T2 T3 T4 Ts Te T T8 T9 T10 11 T12

Fia. 3. A binary splitting of the row merge heap in Figure 2.

to form a dense upper trapezoidal matrix. In the sequential algorithm, the vertices of the
binary heap are visited in a postorder traversal of the heap. The upper trapezoidal matrix
associated with each vertex is generated by merging the matrices corresponding to the two
children of that vertex. In general, these matrices may not be essentially full, however, if
the number of rows involved in the merge exceeds the number of resulting columns, then
the resulting matrix is essentially full [10]. Thus to generate the factor R, the row merge
heap is “evaluated” from the leaves of the row merge tree to the root. The top row of the
matrix associated with vertex ¢j yields the k-th row of the matrix R.

To show how these merges work in the context of the example shown in Figure 1,
denote by T'(v) the upper trapezoidal matrix associated with a vertex v in the heap. For
the splitting shown in Figure 3, the matrices corresponding to the vertices cll and ¢y are
shown in Figure 4. We denote a nonzero in the matrix with X, a zero that was filled in

!

T(ri) = x 0 x 0 0 X T(cy)

=
—
*
|
X
o
X
o
o
X
~
—~
o)
—
~—
(

Fig. 4. The structures of the matrices involved in computing T(c1).

during the merging of the two child matrices of the vertex by f, and denote by % a nonzero
that was eliminated during the merging. When the matrix corresponding to a column
vertex is formed, the top row of the matrix is a completed row of the factor R which is
then removed from the matrix and placed in storage allocated for the factor. In Figure 4
the completed first row of R is denoted by Rq.. Also note that the nonzero structure of
T(cq) is given by S(cq), that the matrices are essentially full, and that the structure of Ry,
is given by S(eq) U {1}.

2.2. The Global Row Reduction Algorithm. When considering a parallel algo-
rithm based on the row merge heap concept, it is natural to consider a data distribution
that preserves the “row-oriented” character of the algorithm. Thus, in this section, we
assume that the matrix is distributed to the processors by rows. In addition, since m can
be much greater than n, it is reasonable to prefer a row to a column distribution since
then the computational efficiencies would probably depend on m/p instead of n/p. In
this section we contrast two possible parallel row-oriented algorithms for computing the
QR factorization of a sparse matrix: the nonlocal merge algorithm and the global row
reduction algorithm.

Given that the rows of the matrix are distributed to the processors, the row merge
heap displays the computational dependency of final rows of the factor R upon the initial
rows of A. For example, in Figure 3 the vertex ¢; has descendant rows r1, ro, and r3 and,
consequently, one uses only these rows to compute the first row of R. This observation

5

suggests an approach for several possible parallel algorithms. Suppose we have 4 processors.
Then rows 1-3 could be assigned to processor 1, rows 4-6 to processor 2, rows 7-9 to
processor 3, and rows 10-12 to the fourth processor. Based on the row merge heap shown
in Figure 3, the computation of the upper trapezoidal matrices associated with the vertices
1, c;), ¢9, and 0/5 can all be done locally (on the processor to which the rows were initially
assigned). This computation can be done using Liu’s sequential algorithm. After these
local results are computed, some sort of communication is required between processors 1
and 2 to compute the matrices associated with c3, and then between processors 1, 2, and
3 for ¢4, and so forth.

One possibility would be to continue with the binary merge algorithm, perform exactly
the same computation that is done in the sequential algorithm, but now perform the merges
on data that is not always local. Denote this algorithm as the nonlocal merge algorithm.
Since each step requires the merging of two upper trapezoidal sparse matrices, the approach
we might consider is a generalization of a dense upper triangular matrix merging algorithm,
originally proposed in the context of solving positive definite trust region problems [5].
In this nonlocal merging algorithm, the rows of the two upper trapezoidal matrices are
wrapped onto an embedded ring of processors using the structure of the parent in the
binary merge. This algorithm is discussed in more detail elsewhere [13].

A different approach to the problem of interprocessor communication is the global row
reduction algorithm. In this algorithm the redistribution of rows required by the binary
merges is avoided, instead a global reduction of rows is executed to compute each row of
R. Fach processor maintains a set of upper trapezoidal matrices; among these matrices
local merges are done whenever possible. However, if interprocessor communication is
required, say to compute the k-th row of R, then the processors communicate according to
a reduction tree F. The reduction tree is a rooted tree whose vertices represent a subset of
the processors. The edges of this tree represent communication between these processors,
and the order in which a parent processor communicates with its children is specified.

Based on the reduction tree Fj, a processor receives rows (in a particular order) from
its children. The processor merges each of these rows to eliminate the nonzero in column
k, and then sends the resulting row back to the processor that originally sent it. After
the rows from its children processors have been processed, the processor sends its row to
its parent in the reduction tree and waits for the row to be returned with the nonzero
in column £ eliminated. Following the global row reduction, the processor at the root of
the reduction tree contains the computed row Ry.. Fach processor does any possible local
merging and then participates in the next global row reduction for which it contains a
nonzero. Figure 5 presents a description of the global row reduction algorithm.

An example of a reduction tree is shown in Figure 6 involving 6 processors: a, b, ¢, d,
e, and root. We denote the structures of the leading row in the upper trapezoidal matrix
at each processor by A, B, ', D, F, and Root. The reduction tree is “evaluated” from
the leaves up to the root; the edge numbers represent the order in which a vertex reduces
the rows sent by its children. One can think of the order in which the rows are processed
as a sort of “parallel postorder” traversal of the reduction tree. For example, in Figure 6
processor ¢ first receives a row from processor a, computes and then applies a Givens
rotation to the two rows to zero the first element. Processor ¢ then sends the resulting row
back to a and acts on the row sent from processor b. The row sent back to processor a
inherits the structure of the row at processor ¢, hence A" = (AU C)\ {k}. At the same
time, processor root can receive and process the row sent by processor e. Processor e then
receives its modified row with the new structure E' = (E U Root)\ {k}. The row reduction

6

L, = List of upper triangular matrices, initially the rows
assigned to processor v;

Proc (v) : {program for processor v}
Fork=1,...,ndo
Perform local merges on matrices in L, with leading nonzero k;
If global reduction required for T € L,
For each child u of v in E} (in order given) do
Receive row r from processor u;
Merge r with the top row of T
Send r back to child processor u;
enddo
If v = root then
Store top row of T in data structure for Ry,;
else
Send top row of T to parent processor of v in Fy;
Receive top row of T from parent processor;
Bring T" back to upper triangular form;
endif
endif
enddo

Fia. 5. The global row reduction algorithm.

continues until R, has been computed at processor root, and each processor has received
its modified row.

Consider the resulting situation if the same six processors shown in Figure 6 had been
involved at step k of the nonlocal merge algorithm. In this case the result would be one
upper trapezoidal matrix with nonzero structure §' = (AU BUC U DU E U Root) \ {k}
wrapped onto the six processors. Consequently, all these processors would be involved
in the future reduction steps given by the nonzeros in §°. In the global row reduction
algorithm, not all of these processors are involved in every step since each processor does
not inherit the union of the structures. More work has been done by the nonlocal merge
algorithm because we are left with only one upper trapezoidal matrix distributed across six
processors, as opposed to the global row reduction algorithm which leaves six sparser upper
trapezoidal matrices, each with a different structure on a different processor. However, the
experimental results presented in Section 4 show that over all the reduction steps, more
intermediate fill can be generated by the global row reduction algorithm, leading to more
total arithmetic work. The advantage of the global row reduction algorithm is an increase
in fine-grain parallelism and a decrease in the interprocessor communication.

Implicit in this approach is an assignment of the rows of R to processors. For a more
explicit example of the algorithm consider the matrix in Figure 1, its row merge heap shown
in Figure 3, and the initial distribution of rows to processors described above. Suppose
processor 1 is assigned the first row of R, processor 3 the second row, and processor 2 the
third and fourth rows of R. Then Figure 7 depicts the interprocessor communication of
rows required to compute Ry, given one possible reduction tree. In the figure we denote a
nonzero that has just been eliminated by a * and a zero that has just been filled in by an f.

Root' = Root \ {k} @

E' = (EU Root) \ {k} °

A =(AuO)\ {k
e (@ D'=(AUBUCUD)\ {k}

B =(AUBUC)\ {k}

Fia. 6. An example of a global row reduction tree.

The dashed box and an arrow represent the sending of the row in the box to the indicated
processor. Note the local reductions that are done after a row is returned to a processor: on
processor 1 in diagram (c), and on processor 3 in diagram (d). It is also interesting to note
that only processors 3 and 4 are required to communicate in the computation of Rs, since
processors 1 and 2 do not inherit a nonzero in this location. This example demonstrates
that fewer processors may be involved at each step of the factorization with the global row
reduction algorithm than with the nonlocal merge algorithm. With the nonlocal merge
algorithm all four processors are involved in the processor ring to compute T'(c5). Of
course, in this example there are not enough nonzeros in S(c5) to make it completely
around the ring, however all the processors would be involved in the redistribution of the
rows, and would also be involved in any subsequent matrix merges.

3. Combinatorial Problems in Computing the QR Factorization. In this sec-
tion we describe several algorithmic results related to the symbolic factorization phase of
the global row reduction algorithm. First, we show that the problem of determining the
row merge heap in parallel can be done by a simple extension of an elimination forest
merging algorithm [16]. Then we rephrase the problem of finding an initial row partition
as a problem in finding a special set of vertices, called a foundation, in the row merge
heap. Given that the row partition is generated in this manner, it has been shown that
the interprocessor communication required by the global row reduction algorithm can be
computed by performing a certain vertex elimination upon a quotient graph [13]. The
advantage of this approach is that the quotient graph is a much smaller structure than a
representation of the entire nonzero structure of the matrix, yet it captures the essential
information necessary to determine the interprocessor communication during the symbolic
phase of the sparse factorization.

3.1. Parallel Computation of the Row Merge Heap. Based on the row merge
heap rules presented earlier, one can construct a sequential algorithm for this computa-
tion [10]. This column-driven algorithm is shown in Figure 8. Suppose that for the parallel
algorithm we are given an initial assignment of the rows to processors described by the
p-partition Il = {Rq, Ro, ..., R,} of the rows of the matrix. It is possible to execute the row
merge heap algorithm locally on each processor with the rows assigned to that processor.
For example, processor a can compute the heap structure H, from the row set R, using
the sequential row merge heap algorithm. The resulting structure will not necessarily be
a connected heap, but rather a forest of heaps. This forest has leaves R,, and a structure

8

x 0 x

(a) X
1 2
EXES X x 0
X x 0
r;k::(‘) B 32: | x 0 x
(b) X
1 2
X x 0]
X x 0

(d) . <
1 2
X X
X % f

Fia. 7. Computing Rax with the global row reduction algorithm for the matriz in Figure 1.

Initialize trees T;, ¢ = 1,..., m, with
T; = {r;} and S(1T};) = S(r;);
Fork=1,....ndo
Find all trees, say T1,...,T,, with S(root(T3)) ={k,...};
Form a new tree with root ¢; by linking the above trees by
their roots to ¢g;
Set S(cx) = (Uiy S(root(T))\ {k):
enddo

Fia. 8. A sequential algorithm to compute the row merge heap.

related to the complete row merge heap H(A). Following the work of Zmijewski [16] on the
parallel merging of elimination forests, an algorithm can be developed for merging these
heap forests to obtain the entire row merge heap. Consider the algorithm shown in Figure 9
which takes two heap forests, H, and Hp, and merges them to produce the heap forest H .
This merged heap forest is equivalent to the heap forest generated by the row merge heap
algorithm on the row set R, U Rj.

{Compute: H,, = merge(H,, Hy)}
H,;, = the disconnected set of vertices {¢q,...,c,} U Ry U Ry;
Fork=1,....ndo
For i =a,bdo
For all children v of k in H; do
Find u = root(v) in Hg;
If (u # k) Link the tree rooted at u to k in Hg;
enddo
enddo
enddo

FiGg. 9. An algorithm to merge two heap forests.

For example, consider the matrix structure presented in Figure 1 and the resulting
row merge heap in Figure 2. If we partition the rows of that matrix into the two sets
R, ={1,2,3,7,8,9} and Ry, = {4,5,6,10,11, 12}, then the corresponding heap forests H,
and I are shown in Figure 10. If we use the heap forest merge algorithm to merge these
two structures, at the start of the last pass through the k loop of the algorithm, with k& = 6,
we have obtained the partial row merge heap HS) shown in Figure 11. The child of ¢g in

H, is ¢3. The root of the tree containing ¢z in HS) is ¢5, thus we link c5 to cg in Hgp.
Notice that ¢g has two children in Hj, ¢4 and ¢5. But after we have added ¢g to H,p, the
root of the tree containing these vertices is ¢g, hence there is nothing left to be done.

A proof of correctness for the heap forest merge algorithm is similar to the proof
presented by Zmijewski [16] and we will not present it here. Note that this merging
algorithm requires only the disjoint set primitives find and link, hence, as Zmijewski pointed
out in the elimination forest case, an implementation using path compression and set union
[15] obtains a nearly linear running time. However, there are several important differences
between these two algorithms.

10

|7‘1 T2 T3 T T8 7‘9| |7‘4 Ts Te T10 11 7‘12|

Ha Hb

Fia. 10. The heap forests H, and Hp.

1 T2 T3 T4 Ts Te T T8 T9 T10 11 T12

. 5
Fia. 11. The partially constructed heap H((lb).

11

First, note that finding the root of a row vertex r in the partially constructed heap
forest is trivial: it is simply itself. Hence, each of these finds takes only constant time.
Suppose that the rows are evenly distributed, so that each processor is assigned no more
than [m/p] rows. The row merge heap is constructed by recursively performing merges
in log(p) time stages. Since the rows are evenly distributed, the first step in the recursion
merges at most 2[m/p| row vertices, the next at most 4[m/p]| row vertices, up to the last
step which merges all m row vertices. Thus the total time required for just merging the
row vertices is O(m). Otherwise, O(n) finds and links of the column vertices are required
for each merge, hence these operations require a running time of O(na(n)), where a(n)
is the inverse of Ackerman’s function. The total running time of the merging algorithm
over the log(p) stages is then O(m + nlog(p)a(n)). By the same argument, the amount of
interprocessor communication is just O(m+nlog(p)). Hence, for m > nlog(p) the running
time of the heap forest merge algorithm is essentially linear.

Note that the parallel algorithm does not compute the vertex structures along with
the row merge heap as described in the row merge heap algorithm. There is a difference
between the information contained in the elimination tree used in the sparse Cholesky
factorization and the row merge heap used here. The elimination forest construction is
a more compact representation of the information required for the factorization because
the nonzero structure of the rows of the Cholesky factor can be easily computed from the
elimination tree and the original matrix [9, 14]. In the row merge heap, the structure of
a vertex is only a subset of the set of its ancestors. This means that the row merge heap,
without the vertex structures, is insufficient to exactly determine the nonzero structures
of the upper trapezoidal matrices associated with the vertices, or the nonzero structure
of the final matrix factor R. However, the row partition algorithm presented in the next
section requires only the row merge heap without the vertex structures, hence the heap
forest merge algorithm is sufficient for this task. The vertex structures are necessary for the
allocation of space, which can be done after the determination of a row partition, during
the symbolic factorization phase.

3.2. Determining a Row Partition. The interprocessor communication required
during the factorization of the matrix is determined by the distribution of rows to proces-
sors. Formally, let R be the set of row indices {1,...,m} and let Il = {Rq, Ro,..., R,} be
a p-partition of R, where row r € R; < row r is assigned to processor j. For the purposes
of the next section, it is necessary to assume that Il is generated by a special set of vertices
v1,...,0p of ff(A), a splitting of the row merge heap. We will call this set of vertices a
foundation of the partition II if it has the property: r € R; < row r is a descendant of v;
in H(A).

For example, consider the row merge heap shown in Figure 2. For the row partition
Ry ={1,2,3}, Ry = {4,5,6}, R3s = {7,8,9}, and R4 = {10, 11,12} we can split vertices c3
and ¢5 and obtain the new heap shown in Figure 12. Thus, we obtain the founding vertices
v = €1, Vg = €3, 3 = €9, and vy = ¢5 for this partition.

Not all p—partitions of R can be obtained from a foundation in a row merge heap.
However, a characterization of allowable partitions can be derived. First, a splitting H of
the row merge heap H is obtained by starting with H and adding interior vertices according
to the following rule. Given a vertex w, with children wy,...,wg, one can take a subset
of k of these vertices, with 1 < k < K, delete their edges to w and reattach them to the
added vertex w, and then insert @ as a child of w. To determine how to generate a suitable
splitting of the heap we need the following definitions. Let desc(v) be the set of row indices
descendant from vertex v in the heap or heap splitting H. Call a vertex v € H unique to

12

1 T2 T3 T4 Ts Te T T8 T9 T10 11 T12

|| | | | |
Rl R2 RS R4

Fia. 12. A set of foundation vertices for a row partition.

the set R; if desc(v) C R;. Likewise, a vertex v is said to dominate R; if R; C desc(v).
Finally, we say a vertex v founds R; if v is both unique to and dominates R;. A set of
vertices {vy,...,v,} that defines the p—partition {Rq,..., R,} is then equivalent to a set
of foundation vertices. These definitions are illustrated in Figure 13. Figure 14 illustrates

U1
U2
U3
L
R;

Fia. 13. Vertices v1 and va dominate R;, vertices vy and vs are unique to R;, vertex v2 founds R;.

how a founding vertex @ can be created by a splitting of the heap.

Let the minimum dominating vertex for R; be the vertex w; in H that dominates the
set R; and has no descendant in H that also dominates R;. The vertex w; is clearly unique
(in the usual sense). Then the set of partitions that give rise to a founding set of vertices
can be characterized by the following theorem.

THEOREM 1. Let {wq,...,w,} be the set of minimum dominating vertices in the row
merge heap H corresponding to the p—partition 11 = {Rq,..., R,}. 1 allows a splitting H
of H with founding vertices {vq,...,v,} < each child v of w;, for 1 < i < p, is either

unique to the set R; or desc(v)N R; = (.
13

RZ' Ri

FiG. 14. In this case vertex w can be split to form the founding vertex W for R;.

Proof: (=) For each i, 1 <17 < p, consider v;, the founding vertex for R;. There are two
cases, based on whether v; is a vertex in H. In the first case, assume v; is in H, then v; is
both a dominating vertex and is unique to the set R;. If »; has more than one child, then
it is the minimum dominating vertex w; and each child must be unique to R;. Otherwise,
v; has a descendant in H which is the minimum dominating vertex w;. The children of this
vertex must be unique to R;, satisfying the conditions of the lemma. For the second case,
assume that v; is not in H. Then v; is the closest descendant of some original vertex w in
H. Since v; is unique to the set R;, then all of the descendants of »; are also unique to R;.
Since v; dominates R;, we note that any child v of w in H with dese¢(v) N R; #) must be
a descendant of v; in H. Thus, prior to the splitting of H, any descendant of »; that was a
child of w was also unique to R;. Likewise, since v; dominates R;, then w also dominates
R;. Since by our definition a split vertex must have more than one child, no descendant of
v; can dominate R;. Hence, w must also be the minimum dominating vertex in H for R;,
and each child v of w in H is either unique to R; or has desc(v) N R; = (.

(<) Let w; be the minimum dominating vertex for R;. If w; is unique to R; then w;
qualifies as a foundation vertex. Otherwise, w; must have more than one child, say vertices
Uy, ..., U, that are unique to R;. We can construct a new vertex v; whose parent is w and
whose children are uy,...,u;. For any other child v of w we have that desc(v) N R; = 0,
hence »; dominates R; and is a foundation vertex for R;. Repeating this construction
for each set R; in the partition generates the desired splitting A and a set of foundation
vertices for the partition I1I. O

Given a row merge heap H we must address the practical problem of determining
a suitable partition II by which to distribute the rows of the matrix. There are two
competing aims in finding such a partition: first, to minimize the amount of interprocessor
communication, and second, to equalize the amount of work assigned to each processor.
The first aim can be realized by looking for a set of founding vertices as “high” up the row
merge heap as possible, in this way the processors do not have to communicate until late
in the factorization. To satisfy the second aim we have to estimate the amount of work
required to construct the upper triangular matrix associated with the founding vertex of a
partition.

Consider a vertex v in H, let the function @(v) be the amount of work required to
compute its associated upper triangular matrix. Note that if » has more than one child it

14

is certainly the case that

(2) w(v) > D, w(w)

children z

Unfortunately, it is difficult to compute w(v), and since the function is not additive it is
hard to imagine a recursive scheme for dividing the work evenly between processors. As
one possible approximation consider the function w(v) = {the number of leaves descendent
from v}, which is additive, and thus obeys the formula

(3) w(v)= > w(x)

children z

Using any additive approximation for the vertex weights, the row partition algorithm
shown in Figure 15 can be used to recursively search the row merge heap to obtain the row
partition sets. The algorithm is initialized by specifying a small nonnegative parameter a.
As each partition set is constructed by the algorithm, its size is limited to be at most 14+«
times the average size of the remaining partition sets. The global variable avg maintains
this average size which is computed as the total remaining weight divided by the number
of partition sets left to be constructed. The vertices of the row merge heap are explored
in a depth first search (DFS) order starting at the root of the heap. Based on the weight
of the vertex under consideration it is either accepted by itself to define a partition set,
or added to a partially completed partition set, or split further by a recursive call to the
procedure split.

At the completion of the algorithm each set P;, fore = 1,..., p, contains a set of column
vertices whose row vertex descendants yield the row partition set R;. Some additional
postprocessing of these sets must be done to convert them into a set of foundation vertices;
this additional work is straightforward and we will not discuss it here. However, note that
the final result of the algorithm is not always a set of p foundation vertices. Instead, some
number p’ > p foundation vertices are constructed, and one or more of these vertices is
assigned to each processor. After all possible local reductions have been completed, each of
these vertices will correspond to an essentially full upper trapezoidal matrix in the matrix
list at a processor, and the global row reduction process can begin. Note that as a decreases
to zero, the number of foundation vertices assigned to each processor will tend to increase
since we are demanding a more even distribution of rows to processors.

3.3. Reduction of the Set of Candidate Processors. Once a row partition is
determined, this partition can be broadcast and the rows of the matrix redistributed to the
correct processors. At this point it is convenient to make use of a column permutation that
maintains the row merge heap structure, but makes its reduction a little easier. We note
that the computations required to reduce the row merge heap are invariant with respect
to column permutations that preserve the heap structure. Therefore we can reorder the
columns so that the descendants of all of the foundation vertices are ordered before any
of the foundation vertices. Given this reordering, let k,,;, denote the column index of the
minimum valued foundation vertex, then the computation of all rows Ry, for k < k., are
local to the processor to which the row is assigned. Once row reductions between processors
begin, the nonzero structure of the upper triangular matrices at each processor changes in
a nontrivial way based on the reduction trees. Thus, the set of processors that participate
at each stage of the factorization is not easily computable.

In the symbolic factorization stage space is allocated for the intermediate storage of
the upper triangular matrices and for the matrix factor R. Recall that a reduction tree,

15

begin {Do a DFS of H }
P.=0, k=1,...,p;
avg = m/p;
k=1;
v = n; {start at root of H}
split(v);

end

procedure split(vertex v)
begin
For each child « of v do

if w(u) > (14 a)avg {weight too large}
split(u);

else if w(u) > avg {weight alone acceptable}
Pry = Py
Py = {uy;
k=k+1;
update avg;

else if w(u) + w(Px) > (1 + a)avg {weight too large}
split(u);

else {weight small enough...}
P = P, U {u};
w(Py) = w(Py) + wlu);
If w(Py) > avg {...and large enough}

k=k+1;
update avg;
endif
endif
enddo

end

Fia. 15. A row partition algorithm.

say Py, is used to organize the row reductions among processors to produce Ry,, the k-th
row of R. The reduction trees must also be computed during the symbolic factorization.
The approach used is to generate a candidate set X (%) of processors at each stage k of the
symbolic factorization. This candidate set has two properties: (1) the set X (%) contains all
the processors that are in the reduction tree Fj, and (2) each processor can easily compute
X) based on local information. Ideally, one would like to generate a candidate set as
close to the correct set of processors as possible in order to increase the efficiency of the
symbolic factorization. Several possible algorithms for constructing these candidate sets
based on a quotient graph vertex elimination model have been discussed elsewhere [13].
Another simple possibility would be to let the candidate set be the set of all processors
which are assigned a row in the set desc(cy) of the row merge heap. For the discussion
that follows we assume that a candidate set can be easily computed, and that it satisfies
the two properties given above.

Given the set of candidate processors X (¥, in Figure 16 we present an algorithm

16

for generating the reduction tree during the symbolic factorization stage of the global row
reduction algorithm. The basic scheme used in the hypercube implementation of the global
row reduction algorithm is to compute the reduction tree in two steps. First, we compute
a minimum depth spanning tree (MDST), as if one was doing a sparse gather operation,
rooted at the processor assigned the completed row Rp,. As information is passed up
the tree, we eliminate nodes that do not participate in the row reduction. Note that the
computed MDST is not necessarily unique.

Proc (v) : {program for processor v}
t_root = {;
If (S(v) =A{k,...}) t_root = v;
For each child u of v in MDST do
Receive (S(u'),u") from processor u;
If (S(u') = {k,...}) then
If (t_root =) then
t_root = u/;
Else
S(t_root) = merge(S(troot), S(u'));
S(u') = S(troot) \ {k};
Send S(u') to processor u';
endif
endif
enddo
Send (S(t_root),t_root) to the parent of v in MDST;
If (t_root = v) Receive S(v);

Fia. 16. An algorithm to generate Ey from the candidate set xR,

In this algorithm, S(v) is the structure of the upper trapezoidal matrix at processor v.
The variable t_root is the root of a subtree of the reduction tree E} being computed. If S(v)
has a leading nonzero in position k, then t_root is set to v and structures are merged into
S(v) as they are received. Otherwise, some descendant w of v in the MDST is promoted
to t_root, and processor v computes any required mergings into S(w). After messages have
been received from all the children of v in the MDST, the computed structure S(¢_root) is
sent to the parent of processor v.

To store the required interprocessor communication each processor need only store its
parent and children in the reduction tree. This information can be stored contiguously
in a vector along with a set of pointers. For example, suppose that in the final reduction
tree F} processor v receives rows from processors uq, ug, ..., Us, (in the order listed), and
then sends its resulting top row to processor w. Then we append the processor values
U1, Uz, . . ., Us, w contiguously to this storage vector, note that the pointer head(k) points to
the location storing uq, and set the pointer head(k+1) to the location following w. The first
interprocessor communication by processor v takes place at some step k, with k, > k..
Since each processor communicates with no more than log(p) processors at each step, the
length of this communication storage vector is no longer than (n— kp,;, + 1)(log(p)+1) and
will usually be much shorter. A vector of pointers of length n — k,,;,, + 2 is also required.

17

4. Experimental Results for the QR Factorization of a Sparse Matrix. Pre-
sented in this section are experimental results obtained with an implementation of the
global row reduction algorithm for sparse QR factorizations. These algorithms were im-
plemented on a 32-node Intel iPSC/2 hypercube with 4.5 MBytes of memory per node in
Green Hills Fortran-386 Fortran and run under version R3.2 of the iPSC operating system.
Given the matrix A and some initial distribution of the matrix rows onto the processors,
the major steps in this parallel implementation are the following.

1.

9.

Determine a column ordering to reduce the fill in Cholesky (AT A). In our experi-
ments a simple parallel implementation of the minimum-degree algorithm [7] was
used to determine the column ordering.

. Swap columns based on the column ordering determined. Since a row mapping is

used, this is a local operation.

. Determine a “preliminary” row merge heap by the local column-driven algorithm,

shown in Figure 8, based on the set of rows R; assigned to the processor. This
local computation is followed by the global heap forest merging algorithm, shown
in Figure 9, to determine the complete row merge heap.

. Use the row partition algorithm, shown in Figure 15, on one processor to determine

a row partition II, and broadcast the result.

. Swap rows among processors based on the computed row partition.
. Renumber the column vertices so that the local merging is done in a postorder

traversal of the row merge heap, and globally, all vertices corresponding to local
computation are labeled before the foundation vertices.

. Construct the quotient graph based on the partition II and the row merge heap.

Since the foundation vertices are labeled after them, column vertices local to a
processor do not need to be included in the quotient graph. (This step is not dis-
cussed in this paper, but is presented in reference [13]. Briefly, the quotient graph
is a compact way to represent the structures of the upper trapezoidal matrices at
each processor during the symbolic factorization. The advantage of this approach
is that the size of the quotient graph is proportional to the number of partitions,
not the number of rows, and hence can be maintained easily by each processor.)

. The symbolic factorization phase:

(a) Use a quotient graph elimination algorithm to determine the candidate set at
each step of the factorization (see reference [13] for a lengthy discussion on
possible quotient graph elimination models).

(b) Reduce the minimum depth spanning tree generated from the candidate set,
using the algorithm shown in Figure 16, to obtain the the reduction trees and
store the result.

(c¢) Determine the intermediate storage required for the upper triangular matrices.

(d) Determine the storage required for the matrix factor R.

Perform the numerical factorization.

For these experiments four sparse matrix structures were used in the construction of
test matrices. A description of the matrix structures used is given below. Note that these
matrices range from being very structured to random, and as a result the densities of the
matrix factors progressively increases. For the test matrices used, the number of initial
nonzeros was comparable.

1.

Grid 1: This matrix is constructed from the 9-point difference operator on a square
kxk grid. Each row structure is then repeated four times to form a k2 x4k? matrix.

18

2. Grid 2: This matrix is constructed from a finite element k x k grid problem. There
is a matrix column associated with each vertex in the grid and a matrix row with
each square element. In the row corresponding to an element, there is a nonzero
for each of the four vertices that define the element. This structure is repeated
four times to obtain a (k — 1) x 4k? matrix.

3. Banded: This matrix is obtained by starting with a square matrix with a nonzero
diagonal and a band of width ten percent of the dimension of the matrix. The
structure inside the band is random, and this matrix structure is repeated four
times.

4. Random: This matrix is constructed by starting with a random square matrix with
nonzero diagonal, and repeating the structure four times.

Table 1 summarizes the results obtained from the implementation on hypercubes of 8,
16, and 32 processors. Shown in this table are the nonzero densities of the original test ma-
trix A and of the resulting factor R. The efficiency shown is an “effective” time to perform
one Givens operation for just the numerical factorization stage of the factorization relative
to the sequential binary row merge heap algorithm of Liu. This efficiency is computed
using the following values. Let #parallel be the execution time of the numerical factorization
on the hypercube, p be the number of processors used, and v the time required to per-
form one Givens update (operation) on one processor. In addition, let Ny, be the number
of operations required by Liu’s sequential row merge heap algorithm. Then the effective
efficiency is computed by the formula

p tparallel

4 efficiency =
(4) Y=T0N,

Also listed is tfact/tsymbv the ratio of the time required to perform the numerical factor-
ization to the time required to perform the symbolic factorization. The final column of
Table 1 is a measure of the computational imbalance, which is computed as the ratio of
the maximum number of operations performed by any processor to the average number of
operations per processor.

TABLE 1
A summary of expertmental results for sparse systems.

Problem Density A (R)| p | Efficiencies tfact/tsymb Comp. Imbalance
Grid 1 2.1% 8 3.56 1.38 1.18
(13456 nonzeros) (18.4%) 16 5.15 1.65 1.31
400 x 1600 32 7.70 1.72 1.28
Grid 2 0.83% 8 5.26 0.65 1.83
(7056 nonzeros) (6.7%) 16 6.76 0.43 2.26
484 x 1764 32 7.23 0.32 2.07
Banded 2.2% 8 3.88 2.19 1.15
(13964 nonzeros) (32.9%) 16 5.18 2.16 1.38
400 x 1600 32 6.64 1.89 1.32
Random 2.0% 8 3.91 6.15 1.30
(12952 nonzeros) (61.2%) 16 3.18 3.92 1.63
400 x 1600 32 3.54 3.55 1.33

19

Interpreting the effective efficiency is treacherous because not all the perceived ineffi-
ciencies are the result of idle processors waiting for messages, load balancing problems, or
communication overhead. A significant part of this inefficiency is due to the overhead in
handling sparse data structures and is, therefore, very dependent on the implementation
itself. Even in a good sequential implementation, the overhead in manipulating the sparse
data structures will account for most of the observed execution time. Thus, a data struc-
ture overhead of one to two times the actual time spent in numerical computation is not
unreasonable, but the actual amount would depend on both the problem solved and the
implementation.

As noted earlier, the global row reduction algorithm can be doing more numerical work
than the sequential row merge heap algorithm because it can allow more incidental fill.
That this additional fill occurs is shown in Figure 17 which shows the ratio of the number
of operations required by the global row reduction algorithm to the number of operations
required by the sequential row merge heap algorithm. This ratio is plotted for the four
test problems as a function of the number of processors used for a fixed problem size. Note
that for the more structured problems this ratio increases as the number of processors
increase, thus the decreasing efficiencies seen for these problems is at least partially due to
this additional work.

2.5 I
) +
<& Grid 1 S
2 r + Grid 2 m
O Banded
x Random $
1.5 n .
Ratio & S] U
Od
1 M
% X X X
D .
0 | | | |
1 2 3 4 5 6

Hypercube dimension, log,(p)

Fia. 17. A comparison of the number of operations required.

To give some idea of the improvement in computational speed that can be afforded
by this parallel implementation we have plotted in Figure 18 the execution times of the
various phases of the algorithm for the same banded problem used in Table 1. For this
problem good improvements in the execution time are observed as the number of processors
is increased. Also note that, in this case, the symbolic factorization phase consistently takes
about one half the time required by the numerical factorization. In this problem, as in the
other test problems, the amount of time required to compute a minimum-degree ordering
and reorder the matrix columns was minimal.

As noted in steps 7 and 8(a), associated with the global row reduction algorithm are a
number of algorithmic problems related to a determination of the interprocessor commu-
nication at each stage of the factorization. There are a number of useful characterizations

20

800

00 - < <& Numeric Factorization |
600 + Symbolic Factorization
O Min-Degree Ordering

500 —
Time <

(sec) 400 -

I

300 —
I

200 & -

100 n <& .

0 T 7 n 0
1 2 3 4 5 6

Hypercube dimension, log,(p)

Fia. 18. Times required for various phases of the factorization.

that have been developed to streamline the symbolic factorization phase of the algorithm
[13]. Tt is likely that a better implementation of the symbolic factorization phase would
significantly decrease the execution time of this phase from the times presented here.

Overall, these results are preliminary, but encouraging. The concept of the row merge
heap algorithm is effective on medium grain parallel machines like the iPSC/2 because it
decomposes a large sparse problem into a number of smaller dense problems. The existence
of these smaller dense problems allows the attainment of a reasonable ratio of work to
communication overhead. However, a strict parallel implementation of Liu’s sequential row
merge heap algorithm can require more interprocessor communication than is necessary.
Thus, taking a different approach, the global row reduction algorithm has been introduced
as a means of reducing the amount of required interprocessor communication.

5. A Sparse R-S Reduction Algorithm. The solution of the trust-region problem
involved in the Levenberg-Marquardt approach to solving nonlinear least-squares problems
requires the repeated reduction of a system of the form

(5) [iy]

to upper triangular form [11]. In this system R is the upper triangular factor obtained
from the QR factorization of the Jacobian and A is the current estimate of the Levenberg-
Marquardt parameter. Since the lower half of the system is diagonal, it is clear that the
structure of this resulting upper triangular matrix has the same nonzero structure as the
original matrix R. However, it might be less clear that essentially the same algorithm that
was used to compute the QR factorization and originally obtain R can be used to reduce
this system to upper triangular form. For brevity, we denote the lower matrix in the above
system as S and refer to this matrix problem as the R-S reduction.

A quick observation is that the column vertex dependence of the row merge heap
generated by the structure of the matrix in equation (5) is the same as that of the original
matrix. However, the leaves of the heap are different. If we let Ry. be the k-th row of R

21

and Sg. be the k-th row of the diagonal matrix, then column vertex c; in the row merge
has just these two rows as leaf descendants. For our example system, with the row merge
heap first shown in Figure 2, we obtain the heap shown in Figure 19.

Rl* Sl* RS* SS* R4* 54* RQ* 52* RS* 55* RG* 56*

Fia. 19. The R-S reduction row merge heap for the example matrix.

For simplicity, assume that we have one founding vertex assigned to each processor ».
Denote by g(k)(v) the structure of the upper triangular matrix at processor v at the start
of step k of the R-S reduction, and by S(k)(v) the corresponding structure during the
global row reduction algorithm. Let k, be the first column index for which processor »
must participate in a global row reduction step. Consider the case when k < k, and Ry,
is assigned to processor v, here we also assign Sk, to processor v. For this case we observe
that both S+ (v) and S*+D(v) equal S(Rgw) \ {k}. But for k > k, and Rj. assigned
to processor v, we observe that S*+1(v) C §(Ry.) \ {k}. The problem is that if we keep
both Sy, and Rpy. at processor v, then we have S+ (v) = §(Ry.) \ {k}, and we will not
be able to use the reduction trees generated by the global row reduction algorithm.

The following modification to the algorithm solves this problem. Let o be the proces-
sor corresponding to last numbered child of root(Ey), where Fj is the reduction tree for
step k of the global row reduction algorithm. Following the computation of the QR factor-
ization, we have Ry. residing at processor root(Ey). But for k& > Eyoor(1,) We assign Sg. to
root() and move the row Ry, to processor o;. Since oy is the last processor to merge a
row with root(Ey) in the global row reduction algorithm, we have S*+D(a;) = S(Ry)\ {k}.
But note that 5% (o) C S(Rg.). Hence, in the R-S reduction algorithm we do not merge
Ry, into the upper triangular matrix at processor o until after all of its children in Fj
are processed (to maintain the structures of the children). Then Rj. can be merged into
the upper triangular matrix at processor oy, and the top row of this new matrix sent to
root(£y). The completed row of the reduced R-S matrix is computed and stored at proces-
sor root(Fy), and the row sent from processor oy is returned with the nonzero in column
k eliminated. Now the structure of the upper triangular matrix at processor root(Ey)
has vertex k deleted, hence S tD(root(Ey)) = S (root(Ey)) \ {k}. Likewise, on pro-
cessor ap we have St (op) = S(Rpw) \ {k} = S*+D(gy). Since the structures on the
children processors are also maintained, we have the result that if, for each processor v,
SE(v) = SE)(v), then SE+D () = §E+1(p). Therefore, with this modification we have
the same structure at each processor that was present during the global row reduction algo-

22

rithm, and the reduction trees that were generated for the global row reduction algorithm
suffice to specify the interprocessor communication required for the R-S reduction.

6. Parallel Estimation of a Sparse Jacobian. In this section we consider the
problem of the parallel estimation of a sparse Jacobian J(z) by the forward difference
equation

(6) J(2)d = F(x + d)— F(x)

We assume that the function evaluation can only be done as a “black box,” (i.e. that
the component functions are highly interrelated, or for some reason it is inefficient to
separate the evaluation of each of the component functions). Thus we are presented with
a subroutine which when given a point z, produces the function value F(z). We will also
assume that each function evaluation takes approximately the same amount of time to
compute.

On a sequential machine the goal is to minimize the total number of function evalu-
ations necessary to estimate .J(z). But on a parallel machine the saving of one function
evaluation may not make any difference; it may only mean that one more processor is idle
while the other processors are busy computing function values at other differencing points.
These processors will have to remain idle since the factorization of the Jacobian cannot
begin until the matrix has been estimated.

If prraz is the maximum number of nonzeros in a row of the Jacobian, we know that
at least that many function evaluations are required to estimate J(z) [4]. Thus an optimal
parallel algorithm with p processors would take at least [”’"ﬁ} times the time required
for one function evaluation. A realistic goal might then be to demand an algorithm that
estimates the Jacobian with no more than K = [”’"ﬁ}p function evaluations, since reducing
the number of function evaluations from this amount would not improve the running time of
the optimization algorithm. Or if we overlap the function evaluation involved in the step
acceptance computation with the Jacobian estimation, as suggested by Byrd, Schnabel,
and Shultz [1] and Coleman and Li [3], we may require the estimation to be done with one
less evaluation.

On a variety of test problems it has been shown by Coleman and Moré [4] that inter-
section graph coloring algorithms often generate a set of differencing vectors which requires
very close to the optimal number of function evaluations. Also, the incidence degree order
(IDO) coloring algorithm, which they find to be very effective, has essentially the same
structure as the minimum-degree ordering algorithm. Therefore, this algorithm fits very
naturally into the framework established for initializing the QR factorization. A possible
problem that can arise is when the coloring algorithm determines a coloring that requires
some K’ > K function evaluations. In this case we would like to be able to turn to an alter-
nate approach which does not exceed the limit of K function evaluations. The alternatives
we consider are the multicoloring methods and full matrix methods.

The full matrix method was originally proposed by Newsam and Ramsdell [12]. Con-
sider some p > pnq, difference vectors combined into a n X p matrix D and the corre-
sponding p function differences combined into a m x p matrix AF. If S(J) is the nonzero
structure of the Jacobian, we can approximate the Jacobian by solving the minimization
problem

(7) min { [|[AD — AF||p st. A€ S(J)}

This problem decomposes into m independent linear least squares problems which can be
23

rephrased in terms of S(7), the nonzero structure of row ¢, as
(8) min { || D§yALe — AF 2},

where AF; is the i-th row of AF, and Ag(;) are the nonzeros of the i-th row of A. If each
matrix Dg;) is of full rank (i.e. rank |5(i)[), then equation (8) has a unique solution with
which the i-th row of the Jacobian can be estimated.

One can think of equation (8) as a general framework for all of these Jacobian estima-
tion algorithms. These techniques can be classified, based on the structure of the matrices
Ds;), into three types:

L. coloring methods, Ds(; can be permuted to a diagonal matrix,

2. multicoloring methods, Dg(;) can be permuted to an upper triangular matrix, and

3. full matriz methods, Dgs(;) is dense and of full rank, and must be factored to solve
for each row of the Jacobian.

Consider the case when the the coloring algorithm determines a coloring that requires
some K > K function evaluations. First we note that, in this situation, a multicoloring
approach can save at least one function evaluation.

THEOREM 2. If we have a coloring of cardznalzty K' > Pra; then a multicoloring can

evaluate J(x) with K function evaluations, where K -1 > K > Pmaz-
Proof: We are given that the coloring partitions the columns of the Jacobian into the
groups C'(,Cy,...,Cpr with K > Pmaz- We will show how to construct a multicoloring
which allows for the solution of the Jacobian with K — 1 function evaluations. Let the
differencing vectors generated by the coloring be d(9) = >_jec, T€j, and construct from them
the K" — 1 multicoloring differencing vectors d(+t) = ¢ 4 q(+1) for 4 =1,..., K — 1.
We note that equation (6) forms the K — 1 equations

(9) > I dSHY = fiue 4 d5HY) — fi(e)
j

We will show that these equations are always equivalent to an upper triangular system.

Let v denote the k-th row of J. Since we have a K -coloring, there are at most some set
of indices ji, j2,...,Jx of v, where j; € C, that are nonzero. Thus, the above equations
are equivalent to a system of the form:

vy F U5, = Af(L?)
Vjy + Uy = Af(273)

(10) v v, = Af(K/—l,K/)
Since par < K/, at most K — 1 of the v;, are nonzero, hence the above equations can
always be rearranged into a solvable upper triangular system. O

A problem with both the multicoloring and full matrix approaches is that the upper
triangular matrices or matrix factors used to solve for each row of the Jacobian must be
stored. This additional storage is of size O(3 p?), where p; is the number of nonzeros in
row ¢ of the Jacobian. This additional storage can be prohibitive. But suppose we have
two rows, 71 and rg, with structures satisfying S(rz) C S(r1). We note that the matrix
system used to solve for v can also be used to solve for r9. To extend this idea, suppose
we have ¢ full matrix systems with structures 51, 59, ..., 5. If for each row r; of J there is
a set S; such that S(r;) C 5, we can then use these matrix systems to solve for each row

24

of the Jacobian. To construct these systems requires K = maz|S;| function evaluations,
and these matrices can be stored in O(3_[5;]?) space.

Suppose the columns of the Jacobian are ordered in a minimum-degree ordering to
reduce the fill in the upper triangular factor R during the QR factorization stage. Then
we find that the k-th vertex chosen by the ordering algorithm had minimum degree in the
partially eliminated graph G(k)(JTJ). We observe that after the first & — 1 vertices have
been eliminated, the adjacency list of vertex k is just the structure S(cg) in the row merge
heap. Therefore it makes sense to propose the set of foundation vertices vy, vs,...,v, as
the generators of the sets 91, 52, ...,5; discussed above. But the structure S(v) of vertex v
in the row merge heap is only a subset of the structure required for the full matrix method
because it does not include column vertices that were eliminated earlier. So we define the
new structure $*(v) by the formula

(11) Swy= U s,

redesc(v)

where desc(v) is the set of rows which are descendants of vertex v in the row merge heap.

If we use the foundation vertices as the generators of a full matrix Jacobian approxi-
mation algorithm, we require maxz|S*(v;)| function evaluations to be able to solve for every
row of J(z). For the test problems described in the previous section we show in Table 2
these values as compared to the size of colorings generated by the IDO ordering. We also
show the number of function evaluations required by a multicoloring generated from the
structures S*(v;). This multicoloring was generated by a greedy assignment of colors to
the indices of the structures while maintaining an upper triangular matrix solution.

TABLE 2
Comparison of Jacobian estimation schemes based on the foundation vertices.

Problem Pmax IDO p | maz|S*(v;)| | Multi-
Coloring Coloring

Grid 1 8 25 27
(13456 nonzeros) | 9 14 16 25 27
400 x 1600 32 15 18
Grid 2 8 9 12
(7056 nonzeros) 4 6 16 9 10
484 x 1764 32 9 10
Banded 8 27 28
(13964 nonzeros) | 14 29 16 30 30
400 x 1600 32 27 29
Random 8 74 79
(12952 nonzeros) | 28 43 16 67 68
400 x 1600 32 63 64

Clearly the sizes of the matrix systems generated by this method are too large. Suppose
we demand a full matrix solution that requires only K function evaluations, but we have
a vertex v in the row merge heap with |S*(v)| > K. We can always replace v with its
children, uq,...,u,, and then continue this process recursively until we have a set of new
vertices, wy, . .., wy, with maz|S*(w;)| < K. This process will terminate since ppa. < K.

25

In Table 3 we show the results of this approach on the test problems discussed earlier.
We show both the average number and the maximum number of full matrix systems per
processor, given that the initial vertices on processor ¢ are its foundation vertices. In this
case we have set K equal to the cardinality of the IDO coloring given in Table 2. In the
last column is shown the amount of storage required for these full matrices as a fraction of
the storage required for the Jacobian matrix.

TABLE 3
Results for the modified full matriz Jacobian estimation scheme.

Problem Systems/Processor | Storage

Avg. ‘ Max. Required
Grid 1 8 15 1.80
(13456 nonzeros) | 5 9 1.75
400 x 1600 3 5 1.90
Grid 2 11 18 1.08
(7056 nonzeros) 7 12 1.18
484 x 1764 3 7 1.19
Banded 32 38 7.02
(13964 nonzeros) | 12 20 5.06
400 x 1600 8 12 7.40
Random 9 13 4.82
(12952 nonzeros) | 5 11 5.28
400 x 1600 3 4 6.75

7. Summary and Discussion. Most of the computation required in the solution of
large nonlinear optimization problems is contained within the “inner loop” of the opti-
mization algorithm: the estimation of the Jacobian, its factorization, and the solution of
a trust-region problem (or another globalization strategy). Thus, in this paper we have
concentrated on developing parallel algorithms for solving these specific tasks for problems
in which the Jacobian is sparse.

We have introduced a parallel sparse QR factorization based on the global row re-
duction algorithm. The algorithm has the interesting feature that it is equivalent to the
sequential row merge heap algorithm local to a processor, but when interprocessor com-
munication is required it attempts to minimize this communication in exchange for some
additional incidental fill. For the test problems considered, this additional fill was found
to be nominal, and the required interprocessor communication was shown not to dominate
the arithmetic work. Determining exactly what communication is required is computed
during a symbolic factorization in which a sequence of candidate sets of processors are
reduced to a set of reduction trees. The reduction tree data structure compactly describes
the required interprocessor communication during the numeric factorization. The heuristic
presented for doing this reduction orders the children of a processor in the reduction tree
by the order in which it receives messages from them. The advantage of this approach is
that it achieves local load balancing, which should be reflected by a more even distribution
of work during the numeric factorization stage. An interesting topic for further research
would be to explore other approaches for generating the reduction tree from the candidate
set, especially methods that take previous row reductions between processors, and their

26

inherited sparsity structure, into account. Also, the minimum depth spanning tree used in
the reduction tree algorithm is not unique; aspects of this choice should be explored.

We note that since the nonzero structure of the Jacobian is fixed, the setting up of
these communication data structures need only be done once. Thus the time required for
this computation is amortized over the number of iterations of the outer loop required to
solve the nonlinear optimization problem. We have also seen that a slight modification of
the global row reduction algorithm allows for the solution of a trust-region problem using
the same communication structure generated for the QR factorization.

The initial row distribution for the global row reduction algorithm was shown to be
equivalent to the determination of a set of foundation vertices in a split form of the row
merge heap. A characterization of a row partition in terms of foundation vertices was
given. Based on the row merge heap, a heuristic for generating a good initial row partition
was presented that attempts to minimize the interprocessor communication during the
factorization while balancing the workload among the processors. A disadvantage of this
algorithm is its assumption that the vertex weights are additive. For the test problems con-
sidered, this approximation yielded acceptable partitions. However, better approximation
schemes for these weights is a topic worthy of further study.

An algorithm based directly on the original binary row merge heap approach, such as
the nonlocal merge algorithm briefly discussed in this paper, seems to implicitly require
well-balanced recursive decomposition of the row merge heap in order to be effective; for
example, when the column ordering is done with the nested dissection heuristic. Problems
with this approach include the fact that a good separator of the intersection graph does not
necessarily correspond to an even distribution of rows between the two separated compo-
nents of the intersection graph. Also, the nested dissection approach is not as effective as a
minimum-degree ordering on some sparse problems, hence a “general purpose” algorithm
such as the global row reduction algorithm is essential for these problems.

Thus, a significant advantage of the global row reduction algorithm is that it can be
employed with any initial row distribution and is, in this sense, independent of the fill-
reducing heuristic that was used in ordering the columns of the matrix. For example, the
algorithm can handle the problem of “splinters” in the row merge heap (i.e. small subtrees
rooted very high in the row merge heap). In the nonlocal merge algorithm, where a row
partition is derived from a recursive decomposition of the binary row merge heap, such
subtrees can result in a disparity in the work assigned to processors. This problem can be
taken care of by the global row reduction algorithm, since each processor maintains a list
of upper triangular matrices. The small amount of work represented by a splinter can be
easily incorporated into any one of these lists.

Finally, we note that two other research groups, A. Pothen and P. Raghavan, and
E. Chu and A. George, have also recently developed parallel algorithms and hypercube
implementations for the sparse QR factorization. These algorithms seem to be essentially
different than the global row reduction algorithm presented here, but, of course, they
address many similar concerns.

Acknowledgements. The work reported in this paper was partially completed with
the assistance of computing facilities of the Advanced Computing Facility at the Cornell
Center for Theory and Simulation in Science and Engineering, which is supported by the
National Science Foundation and New York State. The author would also like to thank
one referee for very detailed and helpful comments.

27

REFERENCES

R. BYrD, R. SCHNABEL, AND G. SHULTZ, Parallel quasi- Newton methods for unconstrained optimiza-
tion, Tech. Rep., Department of Computer Science, University of Colorado at Boulder, 1988.

T. F. CoLEMAN, A. EDENBRANDT, AND J. R. GILBERT, Predicting fill for sparse orthogonal factor-
ization, Journal of the Association for Computing Machinery, 33 (1986), pp. 517-532.

T. F. CoLEMAN AND G. L1, Solving systems of nonlinear equations on a message-passing multipro-
cessor, Tech. Rep. CS-87-887, Computer Science Department, Cornell University, 1987.

T. F. COLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph coloring problems,
SIAM Journal on Numerical Analysis, 20 (1983), pp. 187-209.

T. F. COLEMAN AND P. PLASSMANN, Solution of nonlinear least-squares problems on a multiprocessor,
Tech. Rep. CS-88-923, Computer Science Department, Cornell University, 1988.

W. GENTLEMAN, Row elimination for solving sparse linear systems and least squares problems, in
Conference in Numerical Analysis, Lecture Notes in Mathematics 506, G. Watson, ed., Springer-
Verlag, 1975, pp. 122-133.

A. GEORGE AND J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, 1981.

J. GEORGE AND M. HEATH, Solution of sparse least squares problems using Givens rotations, SIAM
Journal on Numerical Analysis, 34 (1980), pp. 69-83.

J. W.-H. Liu, A compact row storage scheme for Cholesky factors using elimination trees, ACM
Transactions on Mathematical Software, 12 (1986), pp. 127-148.

——, On general row merging schemes for sparse Givens transformations, SIAM Journal on Scientific
and Statistical Computing, 7 (1986), pp. 1190-1211.

J. J. MoRE, The Levenberg-Marquardt algorithm: Implementation and theory, in Lecture Notes in
Mathematics, No. 630-Numerical Analysis, G. Watson, ed., Springer-Verlag, 1978, pp. 105-116.

G. NEwsAM AND J. RAMSDELL, Estimation of sparse Jacobian matrices, Tech. Rep. TR-17-81, Aiken
Computation Laboratory, Harvard University, 1981.

P. E. PrassMANN, The Parallel Solution of Nonlinear Least-Squares Problems, Cornell University
Ph.D. thesis, 1990.

R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM Transactions on Math-
ematical Software, 8 (1982), pp. 256-276.

R. TArJAN, Data Structures and Network Algorithms, STAM, 1983.

E. ZMmuewskl, Sparse Cholesky factorization on a multiprocessor, Tech. Rep. 87-856, Cornell Univer-
sity, 1987.

28

