
SPARSE JACOBIAN ESTIMATION AND FACTORIZATION ON AMULTIPROCESSOR�PAUL E. PLASSMANNyAbstract. In this paper we present algorithms and experimental results for the estimation and QRfactorization of large, sparse Jacobians on a message-passing multiprocessor. The gist of this work is thedevelopment of paradigms for the e�cient solution of the \inner loop" of a nonlinear optimization algorithm:the estimation of the Jacobian, its factorization, and the solution of the resulting trust-region problem. Aparallel sparse QR factorization based on the global row reduction algorithm is introduced. We emphasizethe commonality between row partitions that allow for the e�cient parallel factorization of the Jacobianand its estimation. We also note that the interprocessor communication structure constructed for the QRfactorization can be used to solve an associated trust-region problem. Finally, experimental results obtainedon the Intel iPSC/2 are presented.1. Introduction. To solve many nonlinear optimization problems it is necessary toestimate and factor the Jacobian of a nonlinear function F : Rn 7! Rm, with m � n. Inlarge scale optimization problems this Jacobian is often sparse and the e�cient solution ofthese problems depends on the utilization of this structure. In this paper we will considerthe problem of developing e�cient algorithms for the \inner loop" of a nonlinear optimiza-tion algorithm: the estimation of the Jacobian, its QR factorization, and the solution ofthe resulting trust-region problem on a distributed memory computer.The parallel QR factorization algorithm presented in this paper is based on the conceptof row merge heaps introduced by Liu [10] as a means of reducing the incidental �ll incurredduring a sequential row-oriented QR factorization. In the parallel algorithm, the leaves ofthis row merge tree are partitioned by determining a special set of vertices in the rowmerge heap. These vertices, called foundation vertices, yield an initial row distribution, orassignment of rows to processors. Thus, the computation of the upper trapezoidal matricesassociated with these foundation vertices is entirely local to each processor. To handlethe interprocessor communication that is required to further reduce these matrices, weintroduce the global row reduction algorithm. This algorithm, which attempts to minimizeinterprocessor communication, is described in section 2.Related to the symbolic factorization phase of the global row reduction algorithmare several algorithmic problems which we discuss in section 3. We note that the rowmerge heap can be e�ciently computed in parallel by an almost linear time forest mergingalgorithm. The concept of a foundation vertex in the row merge heap is introduced, and wegive a characterization of the set of row partitions that can be represented by foundationvertices. An algorithm is presented for computing a set of foundation vertices which inturn determines a suitable initial row partition. This algorithm is a heuristic which seeks tominimize the required interprocessor communication while balancing the amount of localwork required of each processor. We discuss how the required communication is computed,stored, and can be reutilized during the subsequent factorization of matrices with the samenonzero structure. As an aside, we note that an additional problem posed by the symbolic� Presented at the Mathematical Sciences Institute workshop on Large-Scale Numerical Optimization,Cornell University, October 19-20, 1989.y Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Av-enue, Argonne, IL 60439; previously, Center for Applied Mathematics, 305 Sage Hall, Cornell University,Ithaca, NY 14853. Research partially supported by the Computational Mathematics Program of the Na-tional Science Foundation under grant DMS-8706133 and by the U.S. Army Research O�ce through theMathematical Sciences Institute, Cornell University. 1



factorization is to develop a consistent means for processors to determine locally the set ofprocessors involved at each stage of the factorization.For these algorithms experimental results obtained on the Intel iPSC/2 hypercube arepresented in section 4. We �nd that the global row reduction algorithm can incur slightlymore incidental �ll than the sequential algorithm. However, this extra work is o�set by theelimination of some of the interprocessor communication that would be required by nonlocalmerging of the upper trapezoidal matrices. In addition, it seems that this approach ismore amenable to di�erent load balancing schemes and can be employed with any columnordering heuristic.To solve nonlinear least-squares problems, the Levenberg-Marquardt approach requiresthe solution of a sequence of trust-region problems [11]. In section 5 we show that theglobal row reduction algorithm can be modi�ed to solve the matrix problem that arises insolving these trust-region problems. This modi�cation allows the use of the interprocessorcommunication structure that is generated for the QR factorization without requiring anadditional symbolic factorization step. In section 6 we show how the elements of theJacobian can be estimated in a natural manner using the initial row distribution. Wenote that in some instances an intersection graph coloring may not be adequate and amulticoloring or full matrix method must be used.2. A Parallel Sparse QR Factorization Algorithm. The sparse QR factorizationalgorithm described in this section is based on the concept of the row merge heap �rstintroduced by Liu [10]. In this context, let A be a sparse m � n matrix, m � n, of fullcolumn rank. We wish to factor A into the matrix product QR, where Q is an orthogonalm � m matrix and R is an upper triangular m � n matrix. This factorization is realizedby computing a sequence of elementary orthogonal transformations QT1 ; QT2 : : : ; QTK thatreduces A to upper triangular form. It is usually impractical to explicitly form Q; instead,these transformations are applied to both sides of the linear system Ax L.S.= b. The resultingupper triangular system Rx L.S.= QTb can then be solved for x by back substitution.The sparsity structure of the upper triangular matrix R is determined by an orderingof the columns of A. Mathematically R is equal to the Cholesky factor of ATA, but it isknown that the sparsity structure predicted by the symbolic Cholesky factorization of ATAmay overestimate the sparsity structure of R. However, if A is reordered into block uppertriangular (Dulmage-Mendelsohn) form, it can be shown [2] that for each diagonal blockthese two structures are equal (assuming no accidental numerical cancellation). Equiva-lently, if the bipartite graph representation of A has the strong Hall property, then the twostructures are equal; we assume this to be the case for the remainder of this paper.Given the equivalence of the nonzero structure of the orthogonal and Cholesky factors,a column ordering can be chosen using existing heuristics for reduction of �ll in factoringsymmetric positive de�nite systems [7, 8]. Hence, the resulting nonzero structure of R willbe reasonably sparse and therefore one expects that the computation required to obtain Rwill be reduced with respect to column orderings that produce more �ll.The amount of computation required to reduce A to upper triangular form can varydramatically depending on what type of orthogonal transformations are used, and in whatmanner they are applied. Sequences of Givens rotations have been shown to be verye�ective in performing this reduction [6, 8]. Consider the Givens rotation G(k)ij whichoperates on rows ri and rj of the matrix to zero the k-th element of row rj . If S(ri)and S(rj) are the sorted lists of nonzeros in the rows before the application of the Givens2



rotation, then the structures after the rotations, S(r0i) and S(r0j), are given byS(r0i) = S(ri) [ S(rj)S(r0j) = (S(ri) [ S(rj)) n fkg :(1)As a result, during the factorization process rows with leading nonzeros in the same columninherit the structure of the rows they are merged with.2.1. The Row Merge Heap. This inheritance of structure can be compactly rep-resented by the row merge heap data structure [10]. For a given column ordering, the rowmerge heap, H(A), is constructed via the following rules:1. The leaves of H , r1; r2; : : : ; rm, represent the rows of A. The interior vertices of Hare labeled by the columns, c1; c2; : : : ; cn, of A.2. Each vertex x in H has an associated structure (a sorted list) S(x). For the leavesof H , the structures S(ri) are just the initial nonzero structures of the rows of A.In addition, a vertex x is a child of the vertex ck , S(x) = fk; : : :g.3. The formula S(ck) = (Sfchildren xg S(x))\ fk + 1; : : : ; ng gives the structure of aninterior vertex ck.For example, consider the matrix structure shown in Figure 1. If the rows and columns1 2 3 4 5 6123456789101112
� � �� �� �� �� �� �� � �� �� � �� ��� �Fig. 1. An example of a matrix nonzero structure.of the matrix are ordered as shown in the �gure, then by using the rules described aboveone can construct the row merge heap shown in Figure 2.Based upon the row merge heap, Liu suggests a sequential sparse QR factorizationalgorithm. In this algorithm, a binary splitting H 0 of the row merge heap is generated.A binary splitting of the row merge heap is constructed by adding interior vertices to theheap until each vertex has no more than two children. A binary splitting of the heap inFigure 2 is shown in Figure 3. Associated with each vertex in the binary heap H 0 is anessentially full upper trapezoidal matrix. A sparse matrix is essentially full if, after allzero rows and columns of the matrix are removed, the resulting matrix can be permuted3
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c5) = f6gS(c4) = f5; 6gS(c3) = f4; 6gS(c1) = f3; 6g S(c2) = f4; 5g
S(c6) = ;

c1 r11r10 r12r9r8r7r6r5r4r3r2r1 c4 c2 c5c6c3Fig. 2. The row merge heap constructed from the matrix in Figure 1.


c003 c02r1 r2 r3 r4 r5 r6 r7 r8 r9 r12r10 r11c03 c005c1 c3 c4 c5c6 c05c2c01 Fig. 3. A binary splitting of the row merge heap in Figure 2.4



to form a dense upper trapezoidal matrix. In the sequential algorithm, the vertices of thebinary heap are visited in a postorder traversal of the heap. The upper trapezoidal matrixassociated with each vertex is generated by merging the matrices corresponding to the twochildren of that vertex. In general, these matrices may not be essentially full, however, ifthe number of rows involved in the merge exceeds the number of resulting columns, thenthe resulting matrix is essentially full [10]. Thus to generate the factor R, the row mergeheap is \evaluated" from the leaves of the row merge tree to the root. The top row of thematrix associated with vertex ck yields the k-th row of the matrix R.To show how these merges work in the context of the example shown in Figure 1,denote by T (v) the upper trapezoidal matrix associated with a vertex v in the heap. Forthe splitting shown in Figure 3, the matrices corresponding to the vertices c01 and c1 areshown in Figure 4. We denote a nonzero in the matrix with �, a zero that was �lled inT (r1) = � 0 � 0 0 � T (c01) = � 0 � 0 0 f� 0 f 0 0 �R1� = � 0 � 0 0 � T (c1) = � 0 � 0 0 �� 0 0 �Fig. 4. The structures of the matrices involved in computing T (c1).during the merging of the two child matrices of the vertex by f , and denote by � a nonzerothat was eliminated during the merging. When the matrix corresponding to a columnvertex is formed, the top row of the matrix is a completed row of the factor R which isthen removed from the matrix and placed in storage allocated for the factor. In Figure 4the completed �rst row of R is denoted by R1�. Also note that the nonzero structure ofT (c1) is given by S(c1), that the matrices are essentially full, and that the structure of R1�is given by S(c1) [ f1g.2.2. The Global Row Reduction Algorithm. When considering a parallel algo-rithm based on the row merge heap concept, it is natural to consider a data distributionthat preserves the \row-oriented" character of the algorithm. Thus, in this section, weassume that the matrix is distributed to the processors by rows. In addition, since m canbe much greater than n, it is reasonable to prefer a row to a column distribution sincethen the computational e�ciencies would probably depend on m=p instead of n=p. Inthis section we contrast two possible parallel row-oriented algorithms for computing theQR factorization of a sparse matrix: the nonlocal merge algorithm and the global rowreduction algorithm.Given that the rows of the matrix are distributed to the processors, the row mergeheap displays the computational dependency of �nal rows of the factor R upon the initialrows of A. For example, in Figure 3 the vertex c1 has descendant rows r1, r2, and r3 and,consequently, one uses only these rows to compute the �rst row of R. This observation5



suggests an approach for several possible parallel algorithms. Suppose we have 4 processors.Then rows 1-3 could be assigned to processor 1, rows 4-6 to processor 2, rows 7-9 toprocessor 3, and rows 10-12 to the fourth processor. Based on the row merge heap shownin Figure 3, the computation of the upper trapezoidal matrices associated with the verticesc1, c03, c2, and c05 can all be done locally (on the processor to which the rows were initiallyassigned). This computation can be done using Liu's sequential algorithm. After theselocal results are computed, some sort of communication is required between processors 1and 2 to compute the matrices associated with c3, and then between processors 1, 2, and3 for c4, and so forth.One possibility would be to continue with the binary merge algorithm, perform exactlythe same computation that is done in the sequential algorithm, but now perform the mergeson data that is not always local. Denote this algorithm as the nonlocal merge algorithm.Since each step requires the merging of two upper trapezoidal sparse matrices, the approachwe might consider is a generalization of a dense upper triangular matrix merging algorithm,originally proposed in the context of solving positive de�nite trust region problems [5].In this nonlocal merging algorithm, the rows of the two upper trapezoidal matrices arewrapped onto an embedded ring of processors using the structure of the parent in thebinary merge. This algorithm is discussed in more detail elsewhere [13].A di�erent approach to the problem of interprocessor communication is the global rowreduction algorithm. In this algorithm the redistribution of rows required by the binarymerges is avoided, instead a global reduction of rows is executed to compute each row ofR. Each processor maintains a set of upper trapezoidal matrices; among these matriceslocal merges are done whenever possible. However, if interprocessor communication isrequired, say to compute the k-th row of R, then the processors communicate according toa reduction tree Ek. The reduction tree is a rooted tree whose vertices represent a subset ofthe processors. The edges of this tree represent communication between these processors,and the order in which a parent processor communicates with its children is speci�ed.Based on the reduction tree Ek, a processor receives rows (in a particular order) fromits children. The processor merges each of these rows to eliminate the nonzero in columnk, and then sends the resulting row back to the processor that originally sent it. Afterthe rows from its children processors have been processed, the processor sends its row toits parent in the reduction tree and waits for the row to be returned with the nonzeroin column k eliminated. Following the global row reduction, the processor at the root ofthe reduction tree contains the computed row Rk�. Each processor does any possible localmerging and then participates in the next global row reduction for which it contains anonzero. Figure 5 presents a description of the global row reduction algorithm.An example of a reduction tree is shown in Figure 6 involving 6 processors: a, b, c, d,e, and root. We denote the structures of the leading row in the upper trapezoidal matrixat each processor by A, B, C, D, E, and Root. The reduction tree is \evaluated" fromthe leaves up to the root; the edge numbers represent the order in which a vertex reducesthe rows sent by its children. One can think of the order in which the rows are processedas a sort of \parallel postorder" traversal of the reduction tree. For example, in Figure 6processor c �rst receives a row from processor a, computes and then applies a Givensrotation to the two rows to zero the �rst element. Processor c then sends the resulting rowback to a and acts on the row sent from processor b. The row sent back to processor ainherits the structure of the row at processor c, hence A0 = (A [ C) n fkg. At the sametime, processor root can receive and process the row sent by processor e. Processor e thenreceives its modi�ed row with the new structure E 0 = (E[Root) n fkg. The row reduction6



Lv = List of upper triangular matrices, initially the rowsassigned to processor v;Proc (v) : fprogram for processor vgFor k = 1; : : : ; n doPerform local merges on matrices in Lv with leading nonzero k;If global reduction required for T 2 LvFor each child u of v in Ek (in order given) doReceive row r from processor u;Merge r with the top row of T ;Send r back to child processor u;enddoIf v = root thenStore top row of T in data structure for Rk�;elseSend top row of T to parent processor of v in Ek;Receive top row of T from parent processor;Bring T back to upper triangular form;endifendifenddo Fig. 5. The global row reduction algorithm.continues until Rk� has been computed at processor root, and each processor has receivedits modi�ed row.Consider the resulting situation if the same six processors shown in Figure 6 had beeninvolved at step k of the nonlocal merge algorithm. In this case the result would be oneupper trapezoidal matrix with nonzero structure S 0 = (A [ B [ C [D [ E [ Root) n fkgwrapped onto the six processors. Consequently, all these processors would be involvedin the future reduction steps given by the nonzeros in S 0 . In the global row reductionalgorithm, not all of these processors are involved in every step since each processor doesnot inherit the union of the structures. More work has been done by the nonlocal mergealgorithm because we are left with only one upper trapezoidal matrix distributed across sixprocessors, as opposed to the global row reduction algorithm which leaves six sparser uppertrapezoidal matrices, each with a di�erent structure on a di�erent processor. However, theexperimental results presented in Section 4 show that over all the reduction steps, moreintermediate �ll can be generated by the global row reduction algorithm, leading to moretotal arithmetic work. The advantage of the global row reduction algorithm is an increasein �ne-grain parallelism and a decrease in the interprocessor communication.Implicit in this approach is an assignment of the rows of R to processors. For a moreexplicit example of the algorithm consider the matrix in Figure 1, its row merge heap shownin Figure 3, and the initial distribution of rows to processors described above. Supposeprocessor 1 is assigned the �rst row of R, processor 3 the second row, and processor 2 thethird and fourth rows of R. Then Figure 7 depicts the interprocessor communication ofrows required to compute R4� given one possible reduction tree. In the �gure we denote anonzero that has just been eliminated by a � and a zero that has just been �lled in by an f .7



rootA0 = (A [ C) n fkgE 0 = (E [Root) n fkgRoot0 = Root n fkg
B0 = (A[ B [ C) n fkgc dbae 32121 [E [Root) n fkgC 0 = (A[ B [ C [DD0 = (A [B [ C [D) n fkgFig. 6. An example of a global row reduction tree.The dashed box and an arrow represent the sending of the row in the box to the indicatedprocessor. Note the local reductions that are done after a row is returned to a processor: onprocessor 1 in diagram (c), and on processor 3 in diagram (d). It is also interesting to notethat only processors 3 and 4 are required to communicate in the computation of R5� sinceprocessors 1 and 2 do not inherit a nonzero in this location. This example demonstratesthat fewer processors may be involved at each step of the factorization with the global rowreduction algorithm than with the nonlocal merge algorithm. With the nonlocal mergealgorithm all four processors are involved in the processor ring to compute T (c5). Ofcourse, in this example there are not enough nonzeros in S(c5) to make it completelyaround the ring, however all the processors would be involved in the redistribution of therows, and would also be involved in any subsequent matrix merges.3. Combinatorial Problems in Computing the QR Factorization. In this sec-tion we describe several algorithmic results related to the symbolic factorization phase ofthe global row reduction algorithm. First, we show that the problem of determining therow merge heap in parallel can be done by a simple extension of an elimination forestmerging algorithm [16]. Then we rephrase the problem of �nding an initial row partitionas a problem in �nding a special set of vertices, called a foundation, in the row mergeheap. Given that the row partition is generated in this manner, it has been shown thatthe interprocessor communication required by the global row reduction algorithm can becomputed by performing a certain vertex elimination upon a quotient graph [13]. Theadvantage of this approach is that the quotient graph is a much smaller structure than arepresentation of the entire nonzero structure of the matrix, yet it captures the essentialinformation necessary to determine the interprocessor communication during the symbolicphase of the sparse factorization.3.1. Parallel Computation of the Row Merge Heap. Based on the row mergeheap rules presented earlier, one can construct a sequential algorithm for this computa-tion [10]. This column-driven algorithm is shown in Figure 8. Suppose that for the parallelalgorithm we are given an initial assignment of the rows to processors described by thep-partition � = fR1; R2; : : : ; Rpg of the rows of the matrix. It is possible to execute the rowmerge heap algorithm locally on each processor with the rows assigned to that processor.For example, processor a can compute the heap structure Ha from the row set Ra usingthe sequential row merge heap algorithm. The resulting structure will not necessarily bea connected heap, but rather a forest of heaps. This forest has leaves Ra, and a structure8
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�� 0����1 32 21 � ff� � R4�1 22 31 � ��� � �f�Fig. 7. Computing R4� with the global row reduction algorithm for the matrix in Figure 1.9



Initialize trees Ti, i = 1; : : : ; m, withTi = frig and S(Ti) = S(ri);For k = 1; : : : ; n doFind all trees, say T1; : : : ; Ts, with S(root(Ti)) = fk; : : :g;Form a new tree with root ck by linking the above trees bytheir roots to ck;Set S(ck) = (Ssj=1 S(root(Tj)) n fkg;enddo Fig. 8. A sequential algorithm to compute the row merge heap.related to the complete row merge heap H(A). Following the work of Zmijewski [16] on theparallel merging of elimination forests, an algorithm can be developed for merging theseheap forests to obtain the entire row merge heap. Consider the algorithm shown in Figure 9which takes two heap forests,Ha and Hb, and merges them to produce the heap forest Hab.This merged heap forest is equivalent to the heap forest generated by the row merge heapalgorithm on the row set Ra [ Rb.fCompute: Hab = merge(Ha; Hb)gHab = the disconnected set of vertices fc1; : : : ; cng [ Ra [Rb;For k = 1; : : : ; n doFor i = a; b doFor all children v of k in Hi doFind u = root(v) in Hab;If (u 6= k) Link the tree rooted at u to k in Hab;enddoenddoenddo Fig. 9. An algorithm to merge two heap forests.For example, consider the matrix structure presented in Figure 1 and the resultingrow merge heap in Figure 2. If we partition the rows of that matrix into the two setsRa = f1; 2; 3; 7; 8; 9g and Rb = f4; 5; 6; 10; 11; 12g, then the corresponding heap forests Haand Hb are shown in Figure 10. If we use the heap forest merge algorithm to merge thesetwo structures, at the start of the last pass through the k loop of the algorithm, with k = 6,we have obtained the partial row merge heap H(5)ab shown in Figure 11. The child of c6 inHa is c3. The root of the tree containing c3 in H(5)ab is c5, thus we link c5 to c6 in Hab.Notice that c6 has two children in Hb, c4 and c5. But after we have added c6 to Hab, theroot of the tree containing these vertices is c6, hence there is nothing left to be done.A proof of correctness for the heap forest merge algorithm is similar to the proofpresented by Zmijewski [16] and we will not present it here. Note that this mergingalgorithm requires only the disjoint set primitives �nd and link, hence, as Zmijewski pointedout in the elimination forest case, an implementation using path compression and set union[15] obtains a nearly linear running time. However, there are several important di�erencesbetween these two algorithms. 10
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r12r10 r11c1c3c6 r3r2r1 c4c2 c3c4 c5c5
Fig. 10. The heap forests Ha and Hb.
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c1 r11r10 r12r9r8r7r6r5r4r3r2r1 c4 c2 c5c3Fig. 11. The partially constructed heap H(5)ab .11



First, note that �nding the root of a row vertex r in the partially constructed heapforest is trivial: it is simply itself. Hence, each of these �nds takes only constant time.Suppose that the rows are evenly distributed, so that each processor is assigned no morethan dm=pe rows. The row merge heap is constructed by recursively performing mergesin log(p) time stages. Since the rows are evenly distributed, the �rst step in the recursionmerges at most 2dm=pe row vertices, the next at most 4dm=pe row vertices, up to the laststep which merges all m row vertices. Thus the total time required for just merging therow vertices is O(m). Otherwise, O(n) �nds and links of the column vertices are requiredfor each merge, hence these operations require a running time of O(n�(n)), where �(n)is the inverse of Ackerman's function. The total running time of the merging algorithmover the log(p) stages is then O(m+ n log(p)�(n)). By the same argument, the amount ofinterprocessor communication is just O(m+n log(p)). Hence, for m � n log(p) the runningtime of the heap forest merge algorithm is essentially linear.Note that the parallel algorithm does not compute the vertex structures along withthe row merge heap as described in the row merge heap algorithm. There is a di�erencebetween the information contained in the elimination tree used in the sparse Choleskyfactorization and the row merge heap used here. The elimination forest construction isa more compact representation of the information required for the factorization becausethe nonzero structure of the rows of the Cholesky factor can be easily computed from theelimination tree and the original matrix [9, 14]. In the row merge heap, the structure ofa vertex is only a subset of the set of its ancestors. This means that the row merge heap,without the vertex structures, is insu�cient to exactly determine the nonzero structuresof the upper trapezoidal matrices associated with the vertices, or the nonzero structureof the �nal matrix factor R. However, the row partition algorithm presented in the nextsection requires only the row merge heap without the vertex structures, hence the heapforest merge algorithm is su�cient for this task. The vertex structures are necessary for theallocation of space, which can be done after the determination of a row partition, duringthe symbolic factorization phase.3.2. Determining a Row Partition. The interprocessor communication requiredduring the factorization of the matrix is determined by the distribution of rows to proces-sors. Formally, let R be the set of row indices f1; : : : ; mg and let � = fR1; R2; : : : ; Rpg bea p{partition of R, where row r 2 Rj , row r is assigned to processor j. For the purposesof the next section, it is necessary to assume that � is generated by a special set of verticesv1; : : : ; vp of Ĥ(A), a splitting of the row merge heap. We will call this set of vertices afoundation of the partition � if it has the property: r 2 Rj , row r is a descendant of vjin Ĥ(A).For example, consider the row merge heap shown in Figure 2. For the row partitionR1 = f1; 2; 3g, R2 = f4; 5; 6g, R3 = f7; 8; 9g, and R4 = f10; 11; 12g we can split vertices c3and c5 and obtain the new heap shown in Figure 12. Thus, we obtain the founding verticesv1 = c1, v2 = ĉ3, v3 = c2, and v4 = ĉ5 for this partition.Not all p{partitions of R can be obtained from a foundation in a row merge heap.However, a characterization of allowable partitions can be derived. First, a splitting Ĥ ofthe row merge heap H is obtained by starting withH and adding interior vertices accordingto the following rule. Given a vertex w, with children w1; : : : ; wK, one can take a subsetof k of these vertices, with 1 < k < K, delete their edges to w and reattach them to theadded vertex ŵ, and then insert ŵ as a child of w. To determine how to generate a suitablesplitting of the heap we need the following de�nitions. Let desc(v) be the set of row indicesdescendant from vertex v in the heap or heap splitting ~H . Call a vertex v 2 ~H unique to12
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ĉ5R4R3R2R1 ĉ3 c2c4 c5c3c1 r11r10 r12r9r8r7r6r5r4r3r2r1
c6

Fig. 12. A set of foundation vertices for a row partition.the set Ri if desc(v) � Ri. Likewise, a vertex v is said to dominate Ri if Ri � desc(v).Finally, we say a vertex v founds Ri if v is both unique to and dominates Ri. A set ofvertices fv1; : : : ; vpg that de�nes the p{partition fR1; : : : ; Rpg is then equivalent to a setof foundation vertices. These de�nitions are illustrated in Figure 13. Figure 14 illustrates
vvvv v .................................................................................................................. v v v v vvv vv3v2v1RiFig. 13. Vertices v1 and v2 dominate Ri, vertices v2 and v3 are unique to Ri, vertex v2 founds Ri.how a founding vertex ŵ can be created by a splitting of the heap.Let the minimum dominating vertex for Ri be the vertex wi in H that dominates theset Ri and has no descendant in H that also dominates Ri. The vertex wi is clearly unique(in the usual sense). Then the set of partitions that give rise to a founding set of verticescan be characterized by the following theorem.Theorem 1. Let fw1; : : : ; wpg be the set of minimum dominating vertices in the rowmerge heap H corresponding to the p{partition � = fR1; : : : ; Rpg. � allows a splitting Ĥof H with founding vertices fv1; : : : ; vpg , each child v of wi, for 1 � i � p, is eitherunique to the set Ri or desc(v) \Ri = ;. 13



................................................................................................................................................................................................................................................... .........................................................v vvvv......................................................... vv v v......................................................... v v v vvw w ŵRi RiFig. 14. In this case vertex w can be split to form the founding vertex ŵ for Ri.Proof: ()) For each i, 1 � i � p, consider vi, the founding vertex for Ri. There are twocases, based on whether vi is a vertex in H . In the �rst case, assume vi is in H , then vi isboth a dominating vertex and is unique to the set Ri. If vi has more than one child, thenit is the minimum dominating vertex wi and each child must be unique to Ri. Otherwise,vi has a descendant in H which is the minimum dominating vertex wi. The children of thisvertex must be unique to Ri, satisfying the conditions of the lemma. For the second case,assume that vi is not in H . Then vi is the closest descendant of some original vertex w inH . Since vi is unique to the set Ri, then all of the descendants of vi are also unique to Ri.Since vi dominates Ri, we note that any child v of w in H with desc(v) \Ri 6= ; must bea descendant of vi in Ĥ. Thus, prior to the splitting of H , any descendant of vi that was achild of w was also unique to Ri. Likewise, since vi dominates Ri, then w also dominatesRi. Since by our de�nition a split vertex must have more than one child, no descendant ofvi can dominate Ri. Hence, w must also be the minimum dominating vertex in H for Ri,and each child v of w in H is either unique to Ri or has desc(v) \Ri = ;.(() Let wi be the minimum dominating vertex for Ri. If wi is unique to Ri then wiquali�es as a foundation vertex. Otherwise, wi must have more than one child, say verticesu1; : : : ; uk, that are unique to Ri. We can construct a new vertex vi whose parent is w andwhose children are u1; : : : ; uk. For any other child v of w we have that desc(v) \ Ri = ;,hence vi dominates Ri and is a foundation vertex for Ri. Repeating this constructionfor each set Ri in the partition generates the desired splitting Ĥ and a set of foundationvertices for the partition �. 2Given a row merge heap H we must address the practical problem of determininga suitable partition � by which to distribute the rows of the matrix. There are twocompeting aims in �nding such a partition: �rst, to minimize the amount of interprocessorcommunication, and second, to equalize the amount of work assigned to each processor.The �rst aim can be realized by looking for a set of founding vertices as \high" up the rowmerge heap as possible, in this way the processors do not have to communicate until latein the factorization. To satisfy the second aim we have to estimate the amount of workrequired to construct the upper triangular matrix associated with the founding vertex of apartition.Consider a vertex v in H , let the function ~w(v) be the amount of work required tocompute its associated upper triangular matrix. Note that if v has more than one child it14



is certainly the case that ~w(v) > Xchildren x ~w(x) :(2)Unfortunately, it is di�cult to compute ~w(v), and since the function is not additive it ishard to imagine a recursive scheme for dividing the work evenly between processors. Asone possible approximation consider the function w(v) = fthe number of leaves descendentfrom vg, which is additive, and thus obeys the formulaw(v) = Xchildren xw(x) :(3) Using any additive approximation for the vertex weights, the row partition algorithmshown in Figure 15 can be used to recursively search the row merge heap to obtain the rowpartition sets. The algorithm is initialized by specifying a small nonnegative parameter �.As each partition set is constructed by the algorithm, its size is limited to be at most 1+�times the average size of the remaining partition sets. The global variable avg maintainsthis average size which is computed as the total remaining weight divided by the numberof partition sets left to be constructed. The vertices of the row merge heap are exploredin a depth �rst search (DFS) order starting at the root of the heap. Based on the weightof the vertex under consideration it is either accepted by itself to de�ne a partition set,or added to a partially completed partition set, or split further by a recursive call to theprocedure split.At the completion of the algorithm each set Pi, for i = 1; : : : ; p, contains a set of columnvertices whose row vertex descendants yield the row partition set Ri. Some additionalpostprocessing of these sets must be done to convert them into a set of foundation vertices;this additional work is straightforward and we will not discuss it here. However, note thatthe �nal result of the algorithm is not always a set of p foundation vertices. Instead, somenumber p0 � p foundation vertices are constructed, and one or more of these vertices isassigned to each processor. After all possible local reductions have been completed, each ofthese vertices will correspond to an essentially full upper trapezoidal matrix in the matrixlist at a processor, and the global row reduction process can begin. Note that as � decreasesto zero, the number of foundation vertices assigned to each processor will tend to increasesince we are demanding a more even distribution of rows to processors.3.3. Reduction of the Set of Candidate Processors. Once a row partition isdetermined, this partition can be broadcast and the rows of the matrix redistributed to thecorrect processors. At this point it is convenient to make use of a column permutation thatmaintains the row merge heap structure, but makes its reduction a little easier. We notethat the computations required to reduce the row merge heap are invariant with respectto column permutations that preserve the heap structure. Therefore we can reorder thecolumns so that the descendants of all of the foundation vertices are ordered before anyof the foundation vertices. Given this reordering, let kmin denote the column index of theminimum valued foundation vertex, then the computation of all rows Rk� for k < kmin arelocal to the processor to which the row is assigned. Once row reductions between processorsbegin, the nonzero structure of the upper triangular matrices at each processor changes ina nontrivial way based on the reduction trees. Thus, the set of processors that participateat each stage of the factorization is not easily computable.In the symbolic factorization stage space is allocated for the intermediate storage ofthe upper triangular matrices and for the matrix factor R. Recall that a reduction tree,15



begin fDo a DFS of H gPk = ;; k = 1; : : : ; p;avg = m=p;k = 1;v = n; fstart at root of Hgsplit(v);endprocedure split(vertex v)beginFor each child u of v doif w(u) > (1 + �)avg fweight too largegsplit(u);else if w(u) � avg fweight alone acceptablegPk+1 = Pk;Pk = fug;k = k + 1;update avg;else if w(u) + w(Pk) > (1 + �)avg fweight too largegsplit(u);else fweight small enough...gPk = Pk [ fug;w(Pk) = w(Pk) + w(u);If w(Pk) � avg f...and large enoughgk = k + 1;update avg;endifendifenddoend Fig. 15. A row partition algorithm.say Ek, is used to organize the row reductions among processors to produce Rk�, the k-throw of R. The reduction trees must also be computed during the symbolic factorization.The approach used is to generate a candidate set X(k) of processors at each stage k of thesymbolic factorization. This candidate set has two properties: (1) the set X(k) contains allthe processors that are in the reduction tree Ek, and (2) each processor can easily computeX(k) based on local information. Ideally, one would like to generate a candidate set asclose to the correct set of processors as possible in order to increase the e�ciency of thesymbolic factorization. Several possible algorithms for constructing these candidate setsbased on a quotient graph vertex elimination model have been discussed elsewhere [13].Another simple possibility would be to let the candidate set be the set of all processorswhich are assigned a row in the set desc(ck) of the row merge heap. For the discussionthat follows we assume that a candidate set can be easily computed, and that it satis�esthe two properties given above.Given the set of candidate processors X(k), in Figure 16 we present an algorithm16



for generating the reduction tree during the symbolic factorization stage of the global rowreduction algorithm. The basic scheme used in the hypercube implementation of the globalrow reduction algorithm is to compute the reduction tree in two steps. First, we computea minimum depth spanning tree (MDST), as if one was doing a sparse gather operation,rooted at the processor assigned the completed row Rk�. As information is passed upthe tree, we eliminate nodes that do not participate in the row reduction. Note that thecomputed MDST is not necessarily unique.Proc (v) : fprogram for processor vgt root = ;;If (S(v) = fk; : : :g) t root = v;For each child u of v in MDST doReceive (S(u0); u0) from processor u;If (S(u0) = fk; : : :g) thenIf (t root = ;) thent root = u0 ;ElseS(t root) = merge(S(t root); S(u0));S(u0) = S(t root) n fkg;Send S(u0) to processor u0 ;endifendifenddoSend (S(t root); t root) to the parent of v in MDST;If (t root = v) Receive S(v);Fig. 16. An algorithm to generate Ek from the candidate set X(k).In this algorithm, S(v) is the structure of the upper trapezoidal matrix at processor v.The variable t root is the root of a subtree of the reduction tree Ek being computed. If S(v)has a leading nonzero in position k, then t root is set to v and structures are merged intoS(v) as they are received. Otherwise, some descendant w of v in the MDST is promotedto t root, and processor v computes any required mergings into S(w). After messages havebeen received from all the children of v in the MDST, the computed structure S(t root) issent to the parent of processor v.To store the required interprocessor communication each processor need only store itsparent and children in the reduction tree. This information can be stored contiguouslyin a vector along with a set of pointers. For example, suppose that in the �nal reductiontree Ek processor v receives rows from processors u1; u2; : : : ; us, (in the order listed), andthen sends its resulting top row to processor w. Then we append the processor valuesu1; u2; : : : ; us; w contiguously to this storage vector, note that the pointer head(k) points tothe location storing u1, and set the pointer head(k+1) to the location following w. The �rstinterprocessor communication by processor v takes place at some step kv with kv � kmin.Since each processor communicates with no more than log(p) processors at each step, thelength of this communication storage vector is no longer than (n�kmin+1)(log(p)+1) andwill usually be much shorter. A vector of pointers of length n � kmin + 2 is also required.17



4. Experimental Results for the QR Factorization of a Sparse Matrix. Pre-sented in this section are experimental results obtained with an implementation of theglobal row reduction algorithm for sparse QR factorizations. These algorithms were im-plemented on a 32-node Intel iPSC/2 hypercube with 4.5 MBytes of memory per node inGreen Hills Fortran-386 Fortran and run under version R3.2 of the iPSC operating system.Given the matrix A and some initial distribution of the matrix rows onto the processors,the major steps in this parallel implementation are the following.1. Determine a column ordering to reduce the �ll in Cholesky (ATA). In our experi-ments a simple parallel implementation of the minimum-degree algorithm [7] wasused to determine the column ordering.2. Swap columns based on the column ordering determined. Since a row mapping isused, this is a local operation.3. Determine a \preliminary" row merge heap by the local column-driven algorithm,shown in Figure 8, based on the set of rows Ri assigned to the processor. Thislocal computation is followed by the global heap forest merging algorithm, shownin Figure 9, to determine the complete row merge heap.4. Use the row partition algorithm, shown in Figure 15, on one processor to determinea row partition �, and broadcast the result.5. Swap rows among processors based on the computed row partition.6. Renumber the column vertices so that the local merging is done in a postordertraversal of the row merge heap, and globally, all vertices corresponding to localcomputation are labeled before the foundation vertices.7. Construct the quotient graph based on the partition � and the row merge heap.Since the foundation vertices are labeled after them, column vertices local to aprocessor do not need to be included in the quotient graph. (This step is not dis-cussed in this paper, but is presented in reference [13]. Briey, the quotient graphis a compact way to represent the structures of the upper trapezoidal matrices ateach processor during the symbolic factorization. The advantage of this approachis that the size of the quotient graph is proportional to the number of partitions,not the number of rows, and hence can be maintained easily by each processor.)8. The symbolic factorization phase:(a) Use a quotient graph elimination algorithm to determine the candidate set ateach step of the factorization (see reference [13] for a lengthy discussion onpossible quotient graph elimination models).(b) Reduce the minimum depth spanning tree generated from the candidate set,using the algorithm shown in Figure 16, to obtain the the reduction trees andstore the result.(c) Determine the intermediate storage required for the upper triangular matrices.(d) Determine the storage required for the matrix factor R.9. Perform the numerical factorization.For these experiments four sparse matrix structures were used in the construction oftest matrices. A description of the matrix structures used is given below. Note that thesematrices range from being very structured to random, and as a result the densities of thematrix factors progressively increases. For the test matrices used, the number of initialnonzeros was comparable.1. Grid 1: This matrix is constructed from the 9-point di�erence operator on a squarek�k grid. Each row structure is then repeated four times to form a k2�4k2 matrix.18



2. Grid 2: This matrix is constructed from a �nite element k�k grid problem. Thereis a matrix column associated with each vertex in the grid and a matrix row witheach square element. In the row corresponding to an element, there is a nonzerofor each of the four vertices that de�ne the element. This structure is repeatedfour times to obtain a (k � 1)2 � 4k2 matrix.3. Banded: This matrix is obtained by starting with a square matrix with a nonzerodiagonal and a band of width ten percent of the dimension of the matrix. Thestructure inside the band is random, and this matrix structure is repeated fourtimes.4. Random: This matrix is constructed by starting with a random square matrix withnonzero diagonal, and repeating the structure four times.Table 1 summarizes the results obtained from the implementation on hypercubes of 8,16, and 32 processors. Shown in this table are the nonzero densities of the original test ma-trix A and of the resulting factor R. The e�ciency shown is an \e�ective" time to performone Givens operation for just the numerical factorization stage of the factorization relativeto the sequential binary row merge heap algorithm of Liu. This e�ciency is computedusing the following values. Let tparallel be the execution time of the numerical factorizationon the hypercube, p be the number of processors used, and  the time required to per-form one Givens update (operation) on one processor. In addition, let NL be the numberof operations required by Liu's sequential row merge heap algorithm. Then the e�ectivee�ciency is computed by the formulae�ciency = p tparallel NL :(4)Also listed is tfact=tsymb, the ratio of the time required to perform the numerical factor-ization to the time required to perform the symbolic factorization. The �nal column ofTable 1 is a measure of the computational imbalance, which is computed as the ratio ofthe maximum number of operations performed by any processor to the average number ofoperations per processor. Table 1A summary of experimental results for sparse systems.Problem Density A (R) p E�ciencies tfact=tsymb Comp. ImbalanceGrid 1 2.1% 8 3.56 1.38 1.18(13456 nonzeros) (18.4%) 16 5.15 1.65 1.31400� 1600 32 7.70 1.72 1.28Grid 2 0.83% 8 5.26 0.65 1.83(7056 nonzeros) (6.7%) 16 6.76 0.43 2.26484� 1764 32 7.23 0.32 2.07Banded 2.2% 8 3.88 2.19 1.15(13964 nonzeros) (32.9%) 16 5.18 2.16 1.38400� 1600 32 6.64 1.89 1.32Random 2.0% 8 3.91 6.15 1.30(12952 nonzeros) (61.2%) 16 3.18 3.92 1.63400� 1600 32 3.54 3.55 1.3319



Interpreting the e�ective e�ciency is treacherous because not all the perceived ine�-ciencies are the result of idle processors waiting for messages, load balancing problems, orcommunication overhead. A signi�cant part of this ine�ciency is due to the overhead inhandling sparse data structures and is, therefore, very dependent on the implementationitself. Even in a good sequential implementation, the overhead in manipulating the sparsedata structures will account for most of the observed execution time. Thus, a data struc-ture overhead of one to two times the actual time spent in numerical computation is notunreasonable, but the actual amount would depend on both the problem solved and theimplementation.As noted earlier, the global row reduction algorithm can be doing more numerical workthan the sequential row merge heap algorithm because it can allow more incidental �ll.That this additional �ll occurs is shown in Figure 17 which shows the ratio of the numberof operations required by the global row reduction algorithm to the number of operationsrequired by the sequential row merge heap algorithm. This ratio is plotted for the fourtest problems as a function of the number of processors used for a �xed problem size. Notethat for the more structured problems this ratio increases as the number of processorsincrease, thus the decreasing e�ciencies seen for these problems is at least partially due tothis additional work.Ratio 0:511:5
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Hypercube dimension, log2(p)Fig. 17. A comparison of the number of operations required.To give some idea of the improvement in computational speed that can be a�ordedby this parallel implementation we have plotted in Figure 18 the execution times of thevarious phases of the algorithm for the same banded problem used in Table 1. For thisproblem good improvements in the execution time are observed as the number of processorsis increased. Also note that, in this case, the symbolic factorization phase consistently takesabout one half the time required by the numerical factorization. In this problem, as in theother test problems, the amount of time required to compute a minimum-degree orderingand reorder the matrix columns was minimal.As noted in steps 7 and 8(a), associated with the global row reduction algorithm are anumber of algorithmic problems related to a determination of the interprocessor commu-nication at each stage of the factorization. There are a number of useful characterizations20
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Hypercube dimension, log2(p)Fig. 18. Times required for various phases of the factorization.that have been developed to streamline the symbolic factorization phase of the algorithm[13]. It is likely that a better implementation of the symbolic factorization phase wouldsigni�cantly decrease the execution time of this phase from the times presented here.Overall, these results are preliminary, but encouraging. The concept of the row mergeheap algorithm is e�ective on medium grain parallel machines like the iPSC/2 because itdecomposes a large sparse problem into a number of smaller dense problems. The existenceof these smaller dense problems allows the attainment of a reasonable ratio of work tocommunication overhead. However, a strict parallel implementation of Liu's sequential rowmerge heap algorithm can require more interprocessor communication than is necessary.Thus, taking a di�erent approach, the global row reduction algorithm has been introducedas a means of reducing the amount of required interprocessor communication.5. A Sparse R-S Reduction Algorithm. The solution of the trust-region probleminvolved in the Levenberg-Marquardt approach to solving nonlinear least-squares problemsrequires the repeated reduction of a system of the form" R�1=2I #(5)to upper triangular form [11]. In this system R is the upper triangular factor obtainedfrom the QR factorization of the Jacobian and � is the current estimate of the Levenberg-Marquardt parameter. Since the lower half of the system is diagonal, it is clear that thestructure of this resulting upper triangular matrix has the same nonzero structure as theoriginal matrix R. However, it might be less clear that essentially the same algorithm thatwas used to compute the QR factorization and originally obtain R can be used to reducethis system to upper triangular form. For brevity, we denote the lower matrix in the abovesystem as S and refer to this matrix problem as the R-S reduction.A quick observation is that the column vertex dependence of the row merge heapgenerated by the structure of the matrix in equation (5) is the same as that of the originalmatrix. However, the leaves of the heap are di�erent. If we let Rk� be the k-th row of R21



and Sk� be the k-th row of the diagonal matrix, then column vertex ck in the row mergehas just these two rows as leaf descendants. For our example system, with the row mergeheap �rst shown in Figure 2, we obtain the heap shown in Figure 19.
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S5�R5�R2� S2�S4�S3�R3�R1� S1� R4� R6� S6�Fig. 19. The R-S reduction row merge heap for the example matrix.For simplicity, assume that we have one founding vertex assigned to each processor v.Denote by Ŝ(k)(v) the structure of the upper triangular matrix at processor v at the startof step k of the R-S reduction, and by S(k)(v) the corresponding structure during theglobal row reduction algorithm. Let kv be the �rst column index for which processor vmust participate in a global row reduction step. Consider the case when k < kv and Rk�is assigned to processor v, here we also assign Sk� to processor v. For this case we observethat both S(k+1)(v) and Ŝ(k+1)(v) equal S(Rk�) n fkg. But for k � kv and Rk� assignedto processor v, we observe that S(k+1)(v) � S(Rk�) n fkg. The problem is that if we keepboth Sk� and Rk� at processor v, then we have Ŝ(k+1)(v) = S(Rk�) n fkg, and we will notbe able to use the reduction trees generated by the global row reduction algorithm.The following modi�cation to the algorithm solves this problem. Let �k be the proces-sor corresponding to last numbered child of root(Ek), where Ek is the reduction tree forstep k of the global row reduction algorithm. Following the computation of the QR factor-ization, we have Rk� residing at processor root(Ek). But for k � kroot(Ek) we assign Sk� toroot(Ek) and move the row Rk� to processor �k . Since �k is the last processor to merge arowwith root(Ek) in the global row reduction algorithm, we have S(k+1)(�k) = S(Rk�)nfkg.But note that S(k)(�k) � S(Rk�). Hence, in the R-S reduction algorithm we do not mergeRk� into the upper triangular matrix at processor �k until after all of its children in Ekare processed (to maintain the structures of the children). Then Rk� can be merged intothe upper triangular matrix at processor �k, and the top row of this new matrix sent toroot(Ek). The completed row of the reduced R-S matrix is computed and stored at proces-sor root(Ek), and the row sent from processor �k is returned with the nonzero in columnk eliminated. Now the structure of the upper triangular matrix at processor root(Ek)has vertex k deleted, hence Ŝ(k+1)(root(Ek)) = Ŝ(k)(root(Ek)) n fkg. Likewise, on pro-cessor �k we have Ŝ(k+1)(�k) = S(Rk�) n fkg = S(k+1)(�k). Since the structures on thechildren processors are also maintained, we have the result that if, for each processor v,Ŝ(k)(v) = S(k)(v), then Ŝ(k+1)(v) = S(k+1)(v). Therefore, with this modi�cation we havethe same structure at each processor that was present during the global row reduction algo-22



rithm, and the reduction trees that were generated for the global row reduction algorithmsu�ce to specify the interprocessor communication required for the R-S reduction.6. Parallel Estimation of a Sparse Jacobian. In this section we consider theproblem of the parallel estimation of a sparse Jacobian J(x) by the forward di�erenceequation J(x)d �= F (x+ d)� F (x) :(6)We assume that the function evaluation can only be done as a \black box," (i.e. thatthe component functions are highly interrelated, or for some reason it is ine�cient toseparate the evaluation of each of the component functions). Thus we are presented witha subroutine which when given a point x, produces the function value F (x). We will alsoassume that each function evaluation takes approximately the same amount of time tocompute.On a sequential machine the goal is to minimize the total number of function evalu-ations necessary to estimate J(x). But on a parallel machine the saving of one functionevaluation may not make any di�erence; it may only mean that one more processor is idlewhile the other processors are busy computing function values at other di�erencing points.These processors will have to remain idle since the factorization of the Jacobian cannotbegin until the matrix has been estimated.If �max is the maximum number of nonzeros in a row of the Jacobian, we know thatat least that many function evaluations are required to estimate J(x) [4]. Thus an optimalparallel algorithm with p processors would take at least d�maxp e times the time requiredfor one function evaluation. A realistic goal might then be to demand an algorithm thatestimates the Jacobian with no more thanK = d�maxp ep function evaluations, since reducingthe number of function evaluations from this amount would not improve the running time ofthe optimization algorithm. Or if we overlap the function evaluation involved in the stepacceptance computation with the Jacobian estimation, as suggested by Byrd, Schnabel,and Shultz [1] and Coleman and Li [3], we may require the estimation to be done with oneless evaluation.On a variety of test problems it has been shown by Coleman and Mor�e [4] that inter-section graph coloring algorithms often generate a set of di�erencing vectors which requiresvery close to the optimal number of function evaluations. Also, the incidence degree order(IDO) coloring algorithm, which they �nd to be very e�ective, has essentially the samestructure as the minimum-degree ordering algorithm. Therefore, this algorithm �ts verynaturally into the framework established for initializing the QR factorization. A possibleproblem that can arise is when the coloring algorithm determines a coloring that requiressome K 0 > K function evaluations. In this case we would like to be able to turn to an alter-nate approach which does not exceed the limit of K function evaluations. The alternativeswe consider are the multicoloring methods and full matrix methods.The full matrix method was originally proposed by Newsam and Ramsdell [12]. Con-sider some � � �max di�erence vectors combined into a n � � matrix D and the corre-sponding � function di�erences combined into a m� � matrix �F . If S(J) is the nonzerostructure of the Jacobian, we can approximate the Jacobian by solving the minimizationproblem min f kAD��FkF s:t: A 2 S(J) g :(7)This problem decomposes into m independent linear least squares problems which can be23



rephrased in terms of S(i), the nonzero structure of row i, asmin f kDTS(i)ATS(i) ��FTi k2 g ;(8)where �Fi is the i-th row of �F , and AS(i) are the nonzeros of the i-th row of A. If eachmatrix DS(i) is of full rank (i.e. rank jS(i)j), then equation (8) has a unique solution withwhich the i-th row of the Jacobian can be estimated.One can think of equation (8) as a general framework for all of these Jacobian estima-tion algorithms. These techniques can be classi�ed, based on the structure of the matricesDS(i), into three types:1. coloring methods, DS(i) can be permuted to a diagonal matrix,2. multicoloring methods, DS(i) can be permuted to an upper triangular matrix, and3. full matrix methods, DS(i) is dense and of full rank, and must be factored to solvefor each row of the Jacobian.Consider the case when the the coloring algorithm determines a coloring that requiressome K 0 > K function evaluations. First we note that, in this situation, a multicoloringapproach can save at least one function evaluation.Theorem 2. If we have a coloring of cardinality K 0 > �max, then a multicoloring canevaluate J(x) with K̂ function evaluations, where K 0 � 1 � K̂ � �max.Proof: We are given that the coloring partitions the columns of the Jacobian into thegroups C1; C2; : : : ; CK0 with K 0 > �max. We will show how to construct a multicoloringwhich allows for the solution of the Jacobian with K 0 � 1 function evaluations. Let thedi�erencing vectors generated by the coloring be d(i) =Pj2Ci �ej , and construct from themthe K 0 � 1 multicoloring di�erencing vectors d(i;i+1) = d(i) + d(i+1), for i = 1; : : : ; K 0 � 1.We note that equation (6) forms the K 0 � 1 equationsXj Jkjd(i;i+1) = fk(x+ d(i;i+1))� fk(x) :(9)We will show that these equations are always equivalent to an upper triangular system.Let v denote the k-th row of J . Since we have a K 0-coloring, there are at most some setof indices j1; j2; : : : ; jK0 of v, where ji 2 Ci, that are nonzero. Thus, the above equationsare equivalent to a system of the form:vj1 + vj2 = �f (1;2)vj2 + vj3 = �f (2;3)...vjK0�1 + vjK0 = �f (K0�1;K0) :(10)Since �max < K 0 , at most K 0 � 1 of the vji are nonzero, hence the above equations canalways be rearranged into a solvable upper triangular system. 2A problem with both the multicoloring and full matrix approaches is that the uppertriangular matrices or matrix factors used to solve for each row of the Jacobian must bestored. This additional storage is of size O(P�2i ), where �i is the number of nonzeros inrow i of the Jacobian. This additional storage can be prohibitive. But suppose we havetwo rows, r1 and r2, with structures satisfying S(r2) � S(r1). We note that the matrixsystem used to solve for r1 can also be used to solve for r2. To extend this idea, supposewe have t full matrix systems with structures S1; S2; : : : ; St. If for each row ri of J there isa set Sj such that S(ri) � Sj , we can then use these matrix systems to solve for each row24



of the Jacobian. To construct these systems requires K̂ = maxjSj j function evaluations,and these matrices can be stored in O(P jSj j2) space.Suppose the columns of the Jacobian are ordered in a minimum-degree ordering toreduce the �ll in the upper triangular factor R during the QR factorization stage. Thenwe �nd that the k-th vertex chosen by the ordering algorithm had minimum degree in thepartially eliminated graph G(k)(JTJ). We observe that after the �rst k � 1 vertices havebeen eliminated, the adjacency list of vertex k is just the structure S(ck) in the row mergeheap. Therefore it makes sense to propose the set of foundation vertices v1; v2; : : : ; vp asthe generators of the sets S1; S2; : : : ; St discussed above. But the structure S(v) of vertex vin the row merge heap is only a subset of the structure required for the full matrix methodbecause it does not include column vertices that were eliminated earlier. So we de�ne thenew structure S�(v) by the formulaS�(v) = [r2desc(v)S(r) ;(11)where desc(v) is the set of rows which are descendants of vertex v in the row merge heap.If we use the foundation vertices as the generators of a full matrix Jacobian approxi-mation algorithm, we require maxjS�(vi)j function evaluations to be able to solve for everyrow of J(x). For the test problems described in the previous section we show in Table 2these values as compared to the size of colorings generated by the IDO ordering. We alsoshow the number of function evaluations required by a multicoloring generated from thestructures S�(vi). This multicoloring was generated by a greedy assignment of colors tothe indices of the structures while maintaining an upper triangular matrix solution.Table 2Comparison of Jacobian estimation schemes based on the foundation vertices.Problem �max IDO p maxjS�(vi)j Multi-Coloring ColoringGrid 1 8 25 27(13456 nonzeros) 9 14 16 25 27400� 1600 32 15 18Grid 2 8 9 12(7056 nonzeros) 4 6 16 9 10484� 1764 32 9 10Banded 8 27 28(13964 nonzeros) 14 29 16 30 30400� 1600 32 27 29Random 8 74 79(12952 nonzeros) 28 43 16 67 68400� 1600 32 63 64Clearly the sizes of the matrix systems generated by this method are too large. Supposewe demand a full matrix solution that requires only K̂ function evaluations, but we havea vertex v in the row merge heap with jS�(v)j > K̂. We can always replace v with itschildren, u1; : : : ; us, and then continue this process recursively until we have a set of newvertices, w1; : : : ; wt, with maxjS�(wi)j � K̂. This process will terminate since �max � K̂.25



In Table 3 we show the results of this approach on the test problems discussed earlier.We show both the average number and the maximum number of full matrix systems perprocessor, given that the initial vertices on processor i are its foundation vertices. In thiscase we have set K̂ equal to the cardinality of the IDO coloring given in Table 2. In thelast column is shown the amount of storage required for these full matrices as a fraction ofthe storage required for the Jacobian matrix.Table 3Results for the modi�ed full matrix Jacobian estimation scheme.Problem Systems/Processor StorageAvg. Max. RequiredGrid 1 8 15 1.80(13456 nonzeros) 5 9 1.75400� 1600 3 5 1.90Grid 2 11 18 1.08(7056 nonzeros) 7 12 1.18484� 1764 3 7 1.19Banded 32 38 7.02(13964 nonzeros) 12 20 5.06400� 1600 8 12 7.40Random 9 13 4.82(12952 nonzeros) 5 11 5.28400� 1600 3 4 6.757. Summary and Discussion. Most of the computation required in the solution oflarge nonlinear optimization problems is contained within the \inner loop" of the opti-mization algorithm: the estimation of the Jacobian, its factorization, and the solution ofa trust-region problem (or another globalization strategy). Thus, in this paper we haveconcentrated on developing parallel algorithms for solving these speci�c tasks for problemsin which the Jacobian is sparse.We have introduced a parallel sparse QR factorization based on the global row re-duction algorithm. The algorithm has the interesting feature that it is equivalent to thesequential row merge heap algorithm local to a processor, but when interprocessor com-munication is required it attempts to minimize this communication in exchange for someadditional incidental �ll. For the test problems considered, this additional �ll was foundto be nominal, and the required interprocessor communication was shown not to dominatethe arithmetic work. Determining exactly what communication is required is computedduring a symbolic factorization in which a sequence of candidate sets of processors arereduced to a set of reduction trees. The reduction tree data structure compactly describesthe required interprocessor communication during the numeric factorization. The heuristicpresented for doing this reduction orders the children of a processor in the reduction treeby the order in which it receives messages from them. The advantage of this approach isthat it achieves local load balancing, which should be reected by a more even distributionof work during the numeric factorization stage. An interesting topic for further researchwould be to explore other approaches for generating the reduction tree from the candidateset, especially methods that take previous row reductions between processors, and their26



inherited sparsity structure, into account. Also, the minimum depth spanning tree used inthe reduction tree algorithm is not unique; aspects of this choice should be explored.We note that since the nonzero structure of the Jacobian is �xed, the setting up ofthese communication data structures need only be done once. Thus the time required forthis computation is amortized over the number of iterations of the outer loop required tosolve the nonlinear optimization problem. We have also seen that a slight modi�cation ofthe global row reduction algorithm allows for the solution of a trust-region problem usingthe same communication structure generated for the QR factorization.The initial row distribution for the global row reduction algorithm was shown to beequivalent to the determination of a set of foundation vertices in a split form of the rowmerge heap. A characterization of a row partition in terms of foundation vertices wasgiven. Based on the row merge heap, a heuristic for generating a good initial row partitionwas presented that attempts to minimize the interprocessor communication during thefactorization while balancing the workload among the processors. A disadvantage of thisalgorithm is its assumption that the vertex weights are additive. For the test problems con-sidered, this approximation yielded acceptable partitions. However, better approximationschemes for these weights is a topic worthy of further study.An algorithm based directly on the original binary row merge heap approach, such asthe nonlocal merge algorithm briey discussed in this paper, seems to implicitly requirewell-balanced recursive decomposition of the row merge heap in order to be e�ective; forexample, when the column ordering is done with the nested dissection heuristic. Problemswith this approach include the fact that a good separator of the intersection graph does notnecessarily correspond to an even distribution of rows between the two separated compo-nents of the intersection graph. Also, the nested dissection approach is not as e�ective as aminimum-degree ordering on some sparse problems, hence a \general purpose" algorithmsuch as the global row reduction algorithm is essential for these problems.Thus, a signi�cant advantage of the global row reduction algorithm is that it can beemployed with any initial row distribution and is, in this sense, independent of the �ll-reducing heuristic that was used in ordering the columns of the matrix. For example, thealgorithm can handle the problem of \splinters" in the row merge heap (i.e. small subtreesrooted very high in the row merge heap). In the nonlocal merge algorithm, where a rowpartition is derived from a recursive decomposition of the binary row merge heap, suchsubtrees can result in a disparity in the work assigned to processors. This problem can betaken care of by the global row reduction algorithm, since each processor maintains a listof upper triangular matrices. The small amount of work represented by a splinter can beeasily incorporated into any one of these lists.Finally, we note that two other research groups, A. Pothen and P. Raghavan, andE. Chu and A. George, have also recently developed parallel algorithms and hypercubeimplementations for the sparse QR factorization. These algorithms seem to be essentiallydi�erent than the global row reduction algorithm presented here, but, of course, theyaddress many similar concerns.Acknowledgements. The work reported in this paper was partially completed withthe assistance of computing facilities of the Advanced Computing Facility at the CornellCenter for Theory and Simulation in Science and Engineering, which is supported by theNational Science Foundation and New York State. The author would also like to thankone referee for very detailed and helpful comments.27
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