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1 Introduction

Let ©Q be a smooth, bounded and connected domain in ®". In this paper, we consider the
following boundary value problem:

Au+ f(u)=0 in Q,
u>0 in Q, del (1.1)
u = g—z =0 on 0.

Here, n denotes the unit outer normal to 99. (See [KK] for existence and uniqueness results
for (1.1).) We prove the following two theorems.

Theorem 1 Let f be such that

F(s) = fils)+ fals), (1.2)

where fy is nondecreasing and fo Lipschitz continuous. If u € C*(Q) be a classical solution
of (1.1), then Q is an open ball, & = Br(zg) say, in R" and u is radially symmetric about
the center xq. Furthermore,

ou

— <0 for 0<r=lz—uzo <R
or

Theorem 2 Let Br(0) be a ball of radius R > 0. Let u be a classical solution of the
boundary value problem,

Au+ f(u)=0 in Br(0),
u>0 in Br(0), de2 (1.3)
u=20 on 0BR(0).
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If f € CY1((0,00)) and there exists an so > 0 such that f(s) is strictly decreasing in [0, sq],

loc
then w is radially symmetric about 0. Furthermore,

@<0 for 0 <r <R.
or

We use the well-known moving-plane method, which was first proposed by Alexandrov.
In 1971, Serrin used this method to prove the symmetry result for (1.1) in the case where
f(s) is real and constant. Since we are dealing with nonsmooth functions like fi, some
stronger version of the Hopf near-boundary theorem has to be used. In fact, we use the
moving-plane method, in combination with a result (Lemma 4) of Gidas, Ni and Nirenberg
[GNN], to prove Theorem 1. To prove Theorem 2, we need to analyze the locations of
possible minima of the difference u — u* in order to continue the moving-plane process.

2 Preliminaries

To prove Theorems 1 and 2, we need a series of technical lemmas, whose proofs can be

found in [GNN], [H], [PW] and [S].
Let u be a nonnegative classical solution in £ of the following differential inequality:
Lu = a“(2)Diju + b (z)Diu + e(z)u <0 in  Q, (2.1)
where (a¥(z)) > A in Q for some fixed A > 0 and a'/,b", ¢ € L=(Q).

Lemma 1 (Strong Maximum Principle) If u > 0 in Q and u vanishes at some point
inside 0, then uw =0 in ).

Lemma 2 (Hopf Boundary Lemma) If g € 9, v > 0 in Q, and u(zg) = 0, then

0
G—Z($0) <0

and
L u(e) — ()
r—x0,rE€80 |$ — $0|

>0 (2.2)
for any non-tangential limit.
Lemma 3 ([GNN]) Let Q be a domain in R". Let yo € I and assume that, near yo, 082

consists of two transversally intersecting C*— hypersurfaces ¢ = 0 and ¢ = 0. Suppose that
w, P < 0in Q. Let u satisfy (2.1), u > 0 in Q, and u(yo) = 0. Assume that

U(yo) = a* (o) Dip(yo) Djtb(yo) > 0



and, if {(yo) = 0, assume furthermore that a” € C?* in some Q. = QN B.(yo) (¢ > 0), and
that V({(y)) = 0 at yo for any tangential derivatives V; along {¢ =0} N {y = 0}. Then

Ju

95 > 0 at yo if L(yo) >0,
Ou 0*u i
%>0 or @>0 at yo if l(yo) =0,

for any direction s entering Q at yo transversally to the hypersurfaces ¢ = 0 and ¥ = 0.
Lemma 4 ([GNN]) Let g € 09 with n1(x¢) > 0, where ny is the first component of n.
Assume that u > 0 in Q., u =0 on IN N B.(x¢), and

Au+ f(u)y=0 inQ,

where f satisfies (1.2). Then there exists a 6 > 0 such that Dyu < 0 in Qs.

3 Proof of Theorem 1

Before we can use the moving-plane method, we introduce a few definitions. Let ey =
(1,0,...,0) be the unit vector along the zi-axis, and let T\ be the hyperplane {z; = A}.
Since € is bounded and smooth, T\NQ = () for large A. Now, let A decrease until T touches
Q at Ao, say.

For A < Ag, let E'A" = QN {x; > A}, and let ¥, be the reflection of E'A" about the plane
Ty. Let 2* be the reflection point of z about T}, i.e.,

= (2X — 21,22, ..., Tp).

If Ag — A is small, Xy will be inside 2. But as A decreases continuously, ¥} will be in €2
until one of the following occurs:

1. f becomes internally tangent to J€) at some point z¢ not on Ty;

2. T\ becomes orthogonal to 9 at some point gy € IQ N T).

We let T\, denote the plane that first reaches one of these two possibilities and call E-Al_l
the maximal cap.

Lemma 5 If
w(z) < u(at) in BT



for some X € (A1, Ag), then

{ Do u x)u< on QNT), 2 (3.1)

u(x) < u(2?) in IF.

Proof. Let v(z) = u(2"), € ©F. Then

A(v(z) = u(@)) + fi(v(2)) + fo(v(2)) = filu(z)) — fa(u(z)) =0
and
v(z)—u(z)>0 in E‘A",
with
v(z) —u(z) £ 0in X7F.
Now, fi(v(z)) > fi(u(z)) and fa(v(z)) — falu(z)) = ex(@)(v(z) — u(x)), where cy(2) is

bounded, because f; is nondecreasing and f5 is Lipschitz. Hence,

A(v(z) —u(z)) + en(z)(v(z) —u(z)) <0, iq3 (3.2)
v(z)—u(z) >0 in X7, iq4 (3.3)

and
v(z)—u(z)£0 in X7 (3.4)

Then Lemma 1 implies that v(z) — u(2) > 0 in ¥, while Lemma 2 gives us that

E%%I(v(x)-— u(w)) >0, igh (3‘5)

l’le

because v(z) — u(x)|,,—\ = 0, which is the minimum. From (3.5), we obtain the inequality

Ju Ju

—— - > 0,
8$1 8$1

l’le

which completes the proof of Lemma 5. 1

Lemma 6 Let u be a classical solution of (1.1). Then (3.1) holds for all X € (A1, Xo).

Proof. From Lemma 4, we know that (3.2) and (3.3) hold for all A € (Aq, Ag) with A\g — A
sufficiently small.

Suppose the lemma is false. That is, suppose that there exists a Ay € (A1, Ag) such that
(3.1) holds for A € (Ag, Ag) but not for A < Aj.



On the other hand, the continuity of u implies that
u(z) < u(ac&’), AE 21'2,
and since Ay € (A1, Ag), Lemma 5 implies that (3.2) and (3.3) also hold for A = A,.

Since Ay > Ay, ni(zg) > 0 for each point zg € 321’2\(TA2 N Q). And hence Lemma 4
concludes that there exists £,,, > 0 such that

Deu(z) <0 in QN0 B, (wo).
Since D, u(z) < 0 on T, N Q, we have that there exists some ¢ > 0, such that
Dou(z) <0 in Qn{zy > Ay —¢}, iq6 (3.6)

because Th, N Q is compact.

Therefore, if (3.2) and (3.3) fail to hold in (A1, \y), we must have a sequence {\'} such
that ' '
A'> A and A Ajasi— oo,
with ' N '
u(zt) > u(z™')  for some 2! € E-Al_i'

But  is bounded, so we can find a subsequence of {z'}, say {'} itself, which converges to

some point xg € E—AI_Q as i — oo with u(zo) > u(x}?). Therefore, z¢ € 321’2, because (3.1)
holds for Ay. Thus, we have either of two possibilities:

1. a9 € 321’2\(TA N Q). But then z¢ € 9Q with $S2 € Q, since Ay > Ay, which implies
that 0 > u(z3?) > 0. This is impossible.
2.z €Ty, N Q. Therefore, $S2 = 2o.
Since A’ > A;, we have that the line segment P; joining z* and 2N lies in Q. Therefore,
u(z') > u(z™') implies that
Deu(y') >0 for some y' € P;.

But ' — 2o and N $82 = g, so P; shrinks into the single point zg. This gives us a
contradiction with (3.6), because y* € QN {x1 > Ay — ¢} for ¢ large enough. This completes
the proof of Lemma 6. 1

Proof of Theorem 1. By Lemma 6, (3.2) and (3.3) hold for all A € (Ay, Ag). Let us
discuss the following two possible cases.



Case 1. Xy U E-Al_l U(T), nQ) = Q.

Then Q is symmetric about 7\, in which case we have shown that

u(z) < u(z™), ze Xt
( ) ( ) A1 W= (AlaAO)v 1q7 (37)
D, u <0, z € XY,
or
u(z) = u(z™), z€Q,
Deju>0, if e € NIy, iq8 (3.8)
Deu<0, if 2 e QN XY .

Case 2. ¥\ U E-Al—l U(Ty, NQ) % Q.

Then u(z*) — u(z) > 0 in E-Al_l and not identically zero. Therefore, the same argument

as in Lemma 5 implies that
w(z™) > u(z) in D

at some point o ¢ T),. As in the proof of Lemma 5, we find by letting v(z) = u(z™) that

A(v(z) = u(2)) + ey (2)(v(z) —u(z)) <O in BT,
v(z) —u(z) >0 in E-Al_lv iq9| (3.9)
v(xo) — u(zg) = 0.

Since zg ¢ Th,, E-Al_l is smooth near xg. Hence we may use Lemma 2 to conclude that

0
%(v —u)(xg) <0,

which is in contradiction with the boundary condition 2% = 2%(z4) = 0. Hence, Ty, must
an an ’ 1

become orthogonal to 99 at some point yo € 0Q N T),.

However, u(z'1) — u(x) satisfies (3.8) in E—Al_lv Yo € OXT, and, near yo, X consists of
two transversally intersecting hypersurfaces xy = Ay and 0€), which become orthogonal at
yo. A simple computation shows that {(yp) = 0 and, for any tangential direction ¢ along
T\, N O at yo,

Vi) =0 at go.

which implies by Lemma 3 that for any s entering  at yo transversally to T and 01,

v —u) 0?(v — u)
s >0 or YR

On the other hand, it follows from (1.1) that

> 0 at Yo-

(v—u)(yo) =0, V(v—u)(yo)=0, and D*(v—u)(yo)=0.



This again leads us to a contradiction, so it must be the case that
- + _
LUy U(Th, NnQ) =

On the other hand, since we can start moving the plane from the left to the right along the
x1-axis as well, we conclude that

u(z) = u(z™) = €Q,

Dou>0 if 2eQnxy, (3.10)

Deu<0 if zeQnyy.

But equation (1.1) is rotationally invariant. Therefore € is symmetric in every direction. We
thus find that € must be a ball, because it is connected. Then (3.10) gives the conclusions
of Theorem 1.

4 Proof of Theorem 2

Gidas, Ni, and Nirenberg proved in [GNN] that the solutions of

Au+ f(u) =0  in Br(0),
u>0 in Br(0), de3 (4.1)
u=20 on dBR(0),

with

f(s) = fi(s) + fa(s), (4.2)
where fy is Lipschitz continuous and f; nondecreasing, must be radially symmetric about
0 and, furthermore, g—;f < 0 for 0 < r < R. On the other hand, if a decomposition like (4.2)
does not exist, in particular if f is not smooth, then it is an open problem whether positive
solutions of (1.1) are radially symmetric. Actually, some examples given in [GNN, pp. 220]
show that these cases could be very delicate.

In this part, we will try to treat a family of nonlinear terms f which are neither Lip-
schitz nor nondecreasing. Such situations arise, for example, in the study of free-boundary
problems for Emden-Fowler type equations (see [KK]), where

flu) = u/? — M9 with 1 < p < ¢ < . (4.3)

Remark 1. If ¢ = oo, then f(s) = sYP — 1is an increasing function in s and therefore
[GNN]’s result implies that « must be radially symmetric. Therefore, the difficult parts
occur when 1 < p < ¢ < oo. For such cases,

b

strictly decreasing in [07 (p/q)pq/(q—p)]

S : : ST pq/(q-p)
strictly increasing in |(p/q) ,00]) .



Remark 2. Recently, new symmetry results have been obtained in [GL] and [LV] for
equations on nonsmooth domains.

Proof of Theorem 2. First we define
A= {/\ € (0, R)|u(z) < u(z?) ifz € E'A"}
Because u|sp, = 0, there exists a Ag € (0, R) such that
u(BR(O)\B1,(0)) € (0, 50). (4.4
Step 1. (2o + R). B € A.

For any A € (%(Ao + R), R), f is a strictly decreasing function in teh interval
[0, max { supu,supu’ }], where u* = u(z"), because of (4.4), and

t sf
A(ut = u)(@) + f(u(2)) = f(u(z)) =0 in X7,
w—u=0 on Ty,
ut —u >0 on 9XT\ 7.

Claim 1. Ifu'—u>0in E;",thenuA—u>Oin E‘A" and 887“1<00nTA.
Suppose the claim is false, i.e. there exists a yo € X1, such that (v — u)(yo) = 0.

On the other hand, both w and u* are strictly positive in E‘A", S0
u(w) = u(x) ’
where L2 @)=/ (ulz)) i locally bounded, because f € C2((0,00)).

u (x)—u(x) loc

Hence the strong maximum principle implies a contradiction. Therefore, if u* —u > 0
in E‘A", then u* — u > 0 there.

A(uA —u)(z)+

Claim 2. v —wu>0in E‘A".

Otherwise, because v — u > 0 on 821’, u® — u would have a strictly interior negative
minimum, say at yo € ¥¥. But at yo we have A(u* — u)(yo) > 0 and, since so > u(yo) >
uM(yo) > 0 by (4.4), f(u(yo)) < f(u*(yo)). Therefore,

A(u* = u)(yo) + f(u (o)) = f(u(yo)) > 0,
a contradiction.

Thus Step 1 is proved.



Step 2. A is closed w.r.t. (0, R).

If {\'} is a sequence in A which converges to some X in (0, R), then, since
u(e) < u(™), @ ext,
letting ¢ — oo, we find
w(z) < u(z?), zeXf.
But then ‘Claim 1 in ‘Step 1’ shows that u(z) < u(2") in X1, i.e. A € A.
Step 3. Ais open in (0, R).

Suppose that A is not open. Then there exists a A € A and a sequence {\'} € (0, R) s.t.

A' — X with A\* ¢ A. That is, for each ¢ there exists 2’ € E; with

B

N u)(e), (1.5)

0> u(acw) — u(z') = min (u
xEE;

and the mean-value theorem implies

Ju

8$1

(y") > 0 for some y* € ™\ i, (4.6)

Because z' € Bgr(0), there exists a subsequence, say {z'} itself, converging to a point
zo € Br(0) and (4.5) implies that

u(zo) > u(z)). (4.7)

But A € A, therefore (4.7) could only occur on dXF. Hence ¢ € 9%7.

On the other hand,
u<u' ondNT\T,.

Therefore z¢ € T.

In this case, since 2* — 29 € Ty and A* — X, we have 2N zg. Therefore (4.6) implies
that 9
U
— > 0.
Dy (960) zZ
Hence, 2o € T\ N dBR(0) , because
ou —
— <0 inT\.
91 < mn 14y

Now, since 2o € dBr(0) and lim;_ ., 2 = lim;_ ., ww = x¢, we have 0 < u(w”l) <u(zh) <
so if 7 is large enough. Therefore, f(u(2%)) < f(u(2*"")) for all 7 large enough.



But A(u — u)(2%) > 0, since 2 is a minimum point of u*" — u, so we reach a contra-
diction, because

A(w = u)(@') + flu(z™)) = flu(z') = 0.

Therefore A is open.

Step 4. Since A is non-empty and both open and closed in (0, R), it must be the case
that A = (0, R), so letting A — 0, we find that

u($1, o '7$n) < u(—$1, o '7$n)
for x € B¢, But both Br(0) and A are invariant under the symmetry group, so
u radially symmetric

and 9
_u<0 for 0<r <R,
or

by ‘Claim 1°. Thus, the proof of Theorem 2 is complete.
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