
On the Positive Solutions of the Free-BoundaryProblem for Emden-Fowler Type EquationsYi Li�, Hans G. Kaper, and Man Kam Kwongy1 IntroductionLet 
 be a smooth, bounded and connected domain in <n. In this paper, we consider thefollowing boundary value problem:8><>: �u+ f(u) = 0 in 
;u > 0 in 
;u = @u@n = 0 on @
: de1 (1:1)Here, n denotes the unit outer normal to @
. (See [KK] for existence and uniqueness resultsfor (1.1).) We prove the following two theorems.Theorem 1 Let f be such that f(s) = f1(s) + f2(s); f (1:2)where f1 is nondecreasing and f2 Lipschitz continuous. If u 2 C2(
) be a classical solutionof (1.1), then 
 is an open ball, 
 = BR(x0) say, in <n and u is radially symmetric aboutthe center x0. Furthermore,@u@r < 0 for 0 < r � jx� x0j < R:Theorem 2 Let BR(0) be a ball of radius R > 0. Let u be a classical solution of theboundary value problem, 8><>: �u+ f(u) = 0 in BR(0);u > 0 in BR(0);u = 0 on @BR(0): de2 (1:3)�Research supported in part by the National Science FoundationyThis work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38. 1



If f 2 C0;1loc ((0;1)) and there exists an s0 > 0 such that f(s) is strictly decreasing in [0; s0],then u is radially symmetric about 0. Furthermore,@u@r < 0 for 0 < r < R:We use the well-known moving-plane method, which was �rst proposed by Alexandrov.In 1971, Serrin used this method to prove the symmetry result for (1.1) in the case wheref(s) is real and constant. Since we are dealing with nonsmooth functions like f1, somestronger version of the Hopf near-boundary theorem has to be used. In fact, we use themoving-plane method, in combination with a result (Lemma 4) of Gidas, Ni and Nirenberg[GNN], to prove Theorem 1. To prove Theorem 2, we need to analyze the locations ofpossible minima of the di�erence u� u� in order to continue the moving-plane process.2 PreliminariesTo prove Theorems 1 and 2, we need a series of technical lemmas, whose proofs can befound in [GNN], [H], [PW] and [S].Let u be a nonnegative classical solution in 
 of the following di�erential inequality:Lu � aij(x)Diju + bi(x)Diu+ c(x)u � 0 in 
; di (2:1)where (aij(x)) � �I in 
 for some �xed � > 0 and aij ; bi; c 2 L1(
).Lemma 1 (Strong Maximum Principle) If u � 0 in 
 and u vanishes at some pointinside 
, then u � 0 in 
.Lemma 2 (Hopf Boundary Lemma) If x0 2 @
, u > 0 in 
, and u(x0) = 0, then@u@n(x0) < 0and limx!x0;x2
 u(x)� u(x0)jx� x0j > 0 (2:2)for any non-tangential limit.Lemma 3 ([GNN]) Let 
 be a domain in <n. Let y0 2 @
 and assume that, near y0, @
consists of two transversally intersecting C2�hypersurfaces ' = 0 and  = 0. Suppose that';  < 0 in 
. Let u satisfy (2.1), u > 0 in 
, and u(y0) = 0. Assume that`(y0) � aij(y0)Di'(y0)Dj (y0) � 02



and, if `(y0) = 0, assume furthermore that aij 2 C2 in some 
" = 
 \B"(y0) (" > 0), andthat rt(`(y)) = 0 at y0 for any tangential derivatives rt along f' = 0g \ f = 0g. Then@u@s > 0 at y0 if `(y0) > 0;@u@s > 0 or @2u@s2 > 0 at y0 if `(y0) = 0;for any direction s entering 
 at y0 transversally to the hypersurfaces ' = 0 and  = 0.Lemma 4 ([GNN]) Let x0 2 @
 with n1(x0) > 0, where n1 is the �rst component of n.Assume that u > 0 in 
", u � 0 on @
 \B"(x0), and�u+ f(u) = 0 in 
;where f satis�es (1.2). Then there exists a � > 0 such that D1u < 0 in 
�.3 Proof of Theorem 1Before we can use the moving-plane method, we introduce a few de�nitions. Let e1 =(1; 0; : : : ; 0) be the unit vector along the x1-axis, and let T� be the hyperplane fx1 = �g.Since 
 is bounded and smooth, T�\
 = ; for large �. Now, let � decrease until T� touches
 at �0, say.For � < �0, let �+� = 
 \ fx1 > �g, and let ��� be the re
ection of �+� about the planeT�. Let x� be the re
ection point of x about T�, i.e.,x� = (2�� x1; x2; : : : ; xn):If �0 � � is small, ��� will be inside 
. But as � decreases continuously, ��� will be in 
until one of the following occurs:1. ��� becomes internally tangent to @
 at some point x0 not on T�;2. T� becomes orthogonal to @
 at some point y0 2 @
 \ T�.We let T�1 denote the plane that �rst reaches one of these two possibilities and call �+�1the maximal cap.Lemma 5 If u(x) � u(x�) in �+�3



for some � 2 (�1; �0), then ( De1u(x) < 0 on 
 \ T�;u(x) < u(x�) in �+� : iq2 (3:1)Proof. Let v(x) = u(x�), x 2 �+� . Then�(v(x)� u(x)) + f1(v(x)) + f2(v(x))� f1(u(x))� f2(u(x)) = 0and v(x)� u(x) � 0 in �+� ;with v(x)� u(x) 6� 0 in �+� :Now, f1(v(x)) � f1(u(x)) and f2(v(x)) � f2(u(x)) = c�(x)(v(x) � u(x)), where c�(x) isbounded, because f1 is nondecreasing and f2 is Lipschitz. Hence,�(v(x)� u(x)) + c�(x)(v(x)� u(x)) � 0; iq3 (3:2)v(x)� u(x) � 0 in �+� ; iq4 (3:3)and v(x)� u(x) 6� 0 in �+� : (3:4)Then Lemma 1 implies that v(x)� u(x) > 0 in �+� , while Lemma 2 gives us that@@x1 (v(x)� u(x))����x1=� > 0; iq5 (3:5)because v(x)� u(x)jx1=� � 0, which is the minimum. From (3.5), we obtain the inequality� @u@x1 � @u@x1 ����x1=� > 0;which completes the proof of Lemma 5.Lemma 6 Let u be a classical solution of (1.1). Then (3.1) holds for all � 2 (�1; �0).Proof. From Lemma 4, we know that (3.2) and (3.3) hold for all � 2 (�1; �0) with �0 � �su�ciently small.Suppose the lemma is false. That is, suppose that there exists a �2 2 (�1; �0) such that(3.1) holds for � 2 (�2; �0) but not for � < �2.4



On the other hand, the continuity of u implies thatu(x) � u(x�2); � 2 �+�2 ;and since �2 2 (�1; �0), Lemma 5 implies that (3.2) and (3.3) also hold for � = �2.Since �2 > �1, n1(x0) > 0 for each point x0 2 @�+�2n(T�2 \ 
). And hence Lemma 4concludes that there exists "x0 > 0 such thatDe1u(x) < 0 in 
 \B"x0 (x0):Since De1u(x) < 0 on T�2 \ 
, we have that there exists some " > 0, such thatDe1u(x) < 0 in 
 \ fx1 > �2 � "g; iq6 (3:6)because T�2 \ 
 is compact.Therefore, if (3.2) and (3.3) fail to hold in (�1; �2), we must have a sequence f�ig suchthat �i > �1 and �i % �2 as i!1;with u(xi) � u(xi�i) for some xi 2 �+�i :But 
 is bounded, so we can �nd a subsequence of fxig, say fxig itself, which converges tosome point x0 2 �+�2 as i ! 1 with u(x0) � u(x�20 ). Therefore, x0 2 @�+�2 , because (3.1)holds for �2. Thus, we have either of two possibilities:1. x0 2 @�+�2n(T� \ 
). But then x0 2 @
 with x�20 2 
, since �2 > �1, which impliesthat 0 � u(x�20 ) > 0. This is impossible.2. x0 2 T�2 \ 
. Therefore, x�20 = x0.Since �i > �1, we have that the line segment Pi joining xi and xi�i lies in 
. Therefore,u(xi) � u(xi�i) implies that De1u(yi) � 0 for some yi 2 Pi:But xi ! x0 and xi�i ! x�20 = x0, so Pi shrinks into the single point x0. This gives us acontradiction with (3.6), because yi 2 
\ fx1 > �2� "g for i large enough. This completesthe proof of Lemma 6.Proof of Theorem 1. By Lemma 6, (3.2) and (3.3) hold for all � 2 (�1; �0). Let usdiscuss the following two possible cases. 5



Case 1. ���1 [ �+�1 [ (T�1 \ 
) = 
.Then 
 is symmetric about T�1 , in which case we have shown that( u(x) � u(x�1); x 2 �+�1 ;De1u < 0; x 2 �+� ; 8 � 2 (�1; �0); iq7 (3:7)or 8><>: u(x) = u(x�1); x 2 
;De1u > 0; if x 2 
 \ ���1 ;De1u < 0; if x 2 
 \ �+�1: iq8 (3:8)Case 2. ���1 [ �+�1 [ (T�1 \ 
)�6= 
.Then u(x�1)� u(x) � 0 in �+�1 and not identically zero. Therefore, the same argumentas in Lemma 5 implies that u(x�1) > u(x) in �+�1 :at some point x0 =2 T�1 . As in the proof of Lemma 5, we �nd by letting v(x) = u(x�1) that8>><>>: �(v(x)� u(x)) + c�1(x)(v(x)� u(x)) � 0 in �+�1 ;v(x)� u(x) > 0 in �+�1 ;v(x0)� u(x0) = 0: iq9 (3:9)Since x0 =2 T�1, �+�1 is smooth near x0. Hence we may use Lemma 2 to conclude that@@n(v � u)(x0) < 0;which is in contradiction with the boundary condition @v@n = @u@n(x0) = 0. Hence, T�1 mustbecome orthogonal to @
 at some point y0 2 @
 \ T�1 .However, u(x�1)� u(x) satis�es (3.8) in �+�1, y0 2 @�+� , and, near y0, @�+� consists oftwo transversally intersecting hypersurfaces x1 = �1 and @
, which become orthogonal aty0. A simple computation shows that `(y0) = 0 and, for any tangential direction t alongT�1 \ @
 at y0, rt(`(y)) = 0 at y0;which implies by Lemma 3 that for any s entering 
 at y0 transversally to T� and @
,@(v � u)@s > 0 or @2(v � u)@s2 > 0 at y0:On the other hand, it follows from (1.1) that(v � u)(y0) = 0; r(v � u)(y0) = 0; and D2(v � u)(y0) = 0:6



This again leads us to a contradiction, so it must be the case that���1 [ �+�1 [ (T�1 \ 
) = 
:On the other hand, since we can start moving the plane from the left to the right along thex1-axis as well, we conclude that8><>: u(x) = u(x�1) x 2 
;De1u > 0 if x 2 
 \ ���1 ;De1u < 0 if x 2 
 \ �+�1 : iq10 (3:10)But equation (1.1) is rotationally invariant. Therefore 
 is symmetric in every direction. Wethus �nd that 
 must be a ball, because it is connected. Then (3.10) gives the conclusionsof Theorem 1.4 Proof of Theorem 2Gidas, Ni, and Nirenberg proved in [GNN] that the solutions of8><>: �u+ f(u) = 0 in BR(0);u > 0 in BR(0);u = 0 on @BR(0); de3 (4:1)with f(s) = f1(s) + f2(s); f2 (4:2)where f1 is Lipschitz continuous and f2 nondecreasing, must be radially symmetric about0 and, furthermore, @u@r < 0 for 0 < r < R. On the other hand, if a decomposition like (4.2)does not exist, in particular if f is not smooth, then it is an open problem whether positivesolutions of (1.1) are radially symmetric. Actually, some examples given in [GNN, pp. 220]show that these cases could be very delicate.In this part, we will try to treat a family of nonlinear terms f which are neither Lip-schitz nor nondecreasing. Such situations arise, for example, in the study of free-boundaryproblems for Emden-Fowler type equations (see [KK]), wheref(u) = u1=p � u1=q with 1 � p < q � 1: f3 (4:3)Remark 1. If q = 1, then f(s) = s1=p � 1 is an increasing function in s and therefore[GNN]'s result implies that u must be radially symmetric. Therefore, the di�cult partsoccur when 1 � p < q <1. For such cases,f(s) = 8><>: strictly decreasing in h0; (p=q)pq=(q�p)i ;strictly increasing in h(p=q)pq=(q�p) ;1� :7



Remark 2. Recently, new symmetry results have been obtained in [GL] and [LV] forequations on nonsmooth domains.Proof of Theorem 2. First we de�ne� = n� 2 (0; R)ju(x)< u(x�) if x 2 �+�o :Because uj@BR = 0, there exists a �0 2 (0; R) such thatu(BR(0)nB�0(0)) � (0; s0): incl (4:4)Step 1. (12(�0 +R); R) 2 �.For any � 2 (12(�0 + R); R); f is a strictly decreasing function in teh interval[ 0;maxf sup�+� u; supS+� u� g], where u� = u(x�), because of (4.4), and8><>: �(u� � u)(x) + f(u�(x))� f(u(x)) = 0 in �+� ;u� � u = 0 on T�;u� � u > 0 on @�+� n T�:Claim 1. If u� � u � 0 in �+� , then u� � u > 0 in �+� and @u@x1 < 0 on T�.Suppose the claim is false, i.e. there exists a y0 2 �+� , such that (u� � u)(y0) = 0.On the other hand, both u and u� are strictly positive in �+� , so�(u� � u)(x) + f(u�(x))� f(u(x))u�(x)� u(x) (u� � u)(x) = 0;where f(u�(x))�f(u(x))u�(x)�u(x) is locally bounded, because f 2 C0;1loc ((0;1)).Hence the strong maximum principle implies a contradiction. Therefore, if u� � u � 0in �+� , then u� � u > 0 there.Claim 2. u� � u � 0 in �+� .Otherwise, because u� � u � 0 on @�+� , u� � u would have a strictly interior negativeminimum, say at y0 2 �+� . But at y0 we have �(u� � u)(y0) � 0 and, since s0 > u(y0) >u�(y0) > 0 by (4.4), f(u(y0)) < f(u�(y0)). Therefore,�(u� � u)(y0) + f(u�(y0))� f(u(y0)) > 0;a contradiction.Thus Step 1 is proved. 8



Step 2. � is closed w.r.t. (0; R).If f�ig is a sequence in � which converges to some � in (0; R), then, sinceu(x) < u(x�i); x 2 �+�i ;letting i!1, we �nd u(x) � u(x�); x 2 �+� :But then `Claim 1' in `Step 1' shows that u(x) < u(x�) in �+� , i.e. � 2 �.Step 3. � is open in (0; R).Suppose that � is not open. Then there exists a � 2 � and a sequence f�ig 2 (0; R) s.t.�i ! � with �i =2 �. That is, for each i there exists xi 2 �+�i with0 > u(xi�i)� u(xi) = minx2�+�i(u�i � u)(x); min (4:5)and the mean-value theorem implies@u@x1 (yi) � 0 for some yi 2 xi�ixi: mvt (4:6)Because xi 2 BR(0), there exists a subsequence, say fxig itself, converging to a pointx0 2 BR(0) and (4.5) implies that u(x0) � u(x�0): iq11 (4:7)But � 2 �, therefore (4.7) could only occur on @�+� . Hence x0 2 @�+� .On the other hand, u < u� on @�+� nT�:Therefore x0 2 T�.In this case, since xi ! x0 2 T� and �i ! �, we have xi�i ! x0. Therefore (4.6) impliesthat @u@x1 (x0) � 0:Hence, x0 2 T� \ @BR(0) , because @u@x1 < 0 in T�:Now, since x0 2 @BR(0) and limi!1 xi = limi!1 xi�i = x0, we have 0 < u(xi�i) < u(xi) <s0 if i is large enough. Therefore, f(u(xi)) < f(u(xi�i)) for all i large enough.9



But �(u�i � u)(xi) � 0, since xi is a minimum point of u�i � u, so we reach a contra-diction, because �(u� � u)(xi) + f(u(xi�i))� f(u(xi)) = 0:Therefore � is open.Step 4. Since � is non-empty and both open and closed in (0; R), it must be the casethat � = (0; R), so letting �! 0, we �nd thatu(x1; � � � ; xn) � u(�x1; � � � ; xn)for x 2 �+0 . But both BR(0) and � are invariant under the symmetry group, sou radially symmetricand @u@r < 0 for 0 < r < R;by `Claim 1'. Thus, the proof of Theorem 2 is complete.References[GL] N. Garofalo and J. Lewis, A Symmetry Result Related to Some OverdeterminedBoundary Value Problems, Amer. J. Math. 111 (1989), 9{33.[GNN] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and Related Properties via theMaximum Principle, Comm. Math. Phys. 68 (1979), 209{243.[H] H. Hopf, Lectures on Di�erential Geometry in the Large, Stanford Univ.(1956).[KK] H. G. Kaper and Man Kam Kwong, Free Boundary Problems for Emden-FowlerEquations, Di�erential and Integral Equations 3 (1990), 353{362.[LV] J. Lewis and A. Vogel, On Some Almost Everywhere Symmetry Theorems,preprint.[PW] M. Protter and H. Weinberger, Maximum Principles in Di�erential Equa-tions, Prentice-Hall (1967).[S] J. Serrin, A Symmetry Problem in Potential Theory, Arch. Rational Mech. Anal.43, (1971), 304{318. 10


