On the Positive Solutions of the Free-Boundary
 Problem for Emden-Fowler Type Equations

Yi Li, ${ }^{*}$ Hans G. Kaper, and Man Kam Kwong ${ }^{\dagger}$

1 Introduction

Let Ω be a smooth, bounded and connected domain in \Re^{n}. In this paper, we consider the following boundary value problem:

$$
\left\{\begin{array}{lll}
\Delta u+f(u)=0 & \text { in } \Omega, & \tag{1.1}\\
u>0 & \text { in } \Omega, & \text { de1 } \\
u=\frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega . &
\end{array}\right.
$$

Here, n denotes the unit outer normal to $\partial \Omega$. (See $[\mathrm{KK}]$ for existence and uniqueness results for (1.1).) We prove the following two theorems.

Theorem 1 Let f be such that

$$
\begin{equation*}
f(s)=f_{1}(s)+f_{2}(s), \quad \text { f } \tag{1.2}
\end{equation*}
$$

where f_{1} is nondecreasing and f_{2} Lipschitz continuous. If $u \in C^{2}(\bar{\Omega})$ be a classical solution of (1.1), then Ω is an open ball, $\Omega=B_{R}\left(x_{0}\right)$ say, in \Re^{n} and u is radially symmetric about the center x_{0}. Furthermore,

$$
\frac{\partial u}{\partial r}<0 \quad \text { for } \quad 0<r \equiv\left|x-x_{0}\right|<R .
$$

Theorem 2 Let $B_{R}(0)$ be a ball of radius $R>0$. Let u be a classical solution of the boundary value problem,

$$
\begin{cases}\Delta u+f(u)=0 & \text { in } B_{R}(0), \tag{1.3}\\ u>0 & \text { in } B_{R}(0), \\ u=0 & \text { on } \partial B_{R}(0) .\end{cases}
$$

[^0]If $f \in C_{l o c}^{0,1}((0, \infty))$ and there exists an $s_{0}>0$ such that $f(s)$ is strictly decreasing in $\left[0, s_{0}\right]$, then u is radially symmetric about 0 . Furthermore,

$$
\frac{\partial u}{\partial r}<0 \quad \text { for } \quad 0<r<R .
$$

We use the well-known moving-plane method, which was first proposed by Alexandrov. In 1971, Serrin used this method to prove the symmetry result for (1.1) in the case where $f(s)$ is real and constant. Since we are dealing with nonsmooth functions like f_{1}, some stronger version of the Hopf near-boundary theorem has to be used. In fact, we use the moving-plane method, in combination with a result (Lemma 4) of Gidas, Ni and Nirenberg [GNN], to prove Theorem 1. To prove Theorem 2, we need to analyze the locations of possible minima of the difference $u-u^{\lambda}$ in order to continue the moving-plane process.

2 Preliminaries

To prove Theorems 1 and 2, we need a series of technical lemmas, whose proofs can be found in [GNN], [H], [PW] and [S].

Let u be a nonnegative classical solution in Ω of the following differential inequality:

$$
\begin{equation*}
L u \equiv a^{i j}(x) D_{i j} u+b^{i}(x) D_{i} u+c(x) u \leq 0 \quad \text { in } \quad \Omega, \quad \text { di } \tag{2.1}
\end{equation*}
$$

where $\left(a^{i j}(x)\right) \geq \lambda I$ in Ω for some fixed $\lambda>0$ and $a^{i j}, b^{i}, c \in L^{\infty}(\Omega)$.

Lemma 1 (Strong Maximum Principle) If $u \geq 0$ in Ω and u vanishes at some point inside Ω, then $u \equiv 0$ in Ω.

Lemma 2 (Hopf Boundary Lemma) If $x_{0} \in \partial \Omega, u>0$ in Ω, and $u\left(x_{0}\right)=0$, then

$$
\frac{\partial u}{\partial n}\left(x_{0}\right)<0
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}, x \in \Omega} \frac{u(x)-u\left(x_{0}\right)}{\left|x-x_{0}\right|}>0 \tag{2.2}
\end{equation*}
$$

for any non-tangential limit.

Lemma 3 ([GNN]) Let Ω be a domain in \Re^{n}. Let $y_{0} \in \partial \Omega$ and assume that, near $y_{0}, \partial \Omega$ consists of two transversally intersecting C^{2}-hypersurfaces $\varphi=0$ and $\psi=0$. Suppose that $\varphi, \psi<0$ in Ω. Let u satisfy (2.1), $u>0$ in Ω, and $u\left(y_{0}\right)=0$. Assume that

$$
\ell\left(y_{0}\right) \equiv a^{i j}\left(y_{0}\right) D_{i} \varphi\left(y_{0}\right) D_{j} \psi\left(y_{0}\right) \geq 0
$$

and, if $\ell\left(y_{0}\right)=0$, assume furthermore that $a^{i j} \in C^{2}$ in some $\Omega_{\varepsilon}=\Omega \cap B_{\varepsilon}\left(y_{0}\right)(\varepsilon>0)$, and that $\nabla_{t}(\ell(y))=0$ at y_{0} for any tangential derivatives ∇_{t} along $\{\varphi=0\} \cap\{\psi=0\}$. Then

$$
\begin{gathered}
\frac{\partial u}{\partial s}>0 \quad \text { at } y_{0} \quad \text { if } \ell\left(y_{0}\right)>0 \\
\frac{\partial u}{\partial s}>0 \quad \text { or } \frac{\partial^{2} u}{\partial s^{2}}>0 \quad \text { at } y_{0} \quad \text { if } \ell\left(y_{0}\right)=0
\end{gathered}
$$

for any direction s entering Ω at y_{0} transversally to the hypersurfaces $\varphi=0$ and $\psi=0$.

Lemma 4 ([GNN]) Let $x_{0} \in \partial \Omega$ with $n_{1}\left(x_{0}\right)>0$, where n_{1} is the first component of n. Assume that $u>0$ in $\Omega_{\varepsilon}, u \equiv 0$ on $\partial \Omega \cap B_{\varepsilon}\left(x_{0}\right)$, and

$$
\Delta u+f(u)=0 \quad \text { in } \Omega
$$

where f satisfies (1.2). Then there exists a $\delta>0$ such that $D_{1} u<0$ in Ω_{δ}.

3 Proof of Theorem 1

Before we can use the moving-plane method, we introduce a few definitions. Let $e_{1}=$ $(1,0, \ldots, 0)$ be the unit vector along the x_{1}-axis, and let T_{λ} be the hyperplane $\left\{x_{1}=\lambda\right\}$. Since Ω is bounded and smooth, $T_{\lambda} \cap \bar{\Omega}=\emptyset$ for large λ. Now, let λ decrease until T_{λ} touches $\bar{\Omega}$ at λ_{0}, say.

For $\lambda<\lambda_{0}$, let $\Sigma_{\lambda}^{+}=\Omega \cap\left\{x_{1}>\lambda\right\}$, and let Σ_{λ}^{-}be the reflection of Σ_{λ}^{+}about the plane T_{λ}. Let x^{λ} be the reflection point of x about T_{λ}, i.e.,

$$
x^{\lambda}=\left(2 \lambda-x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

If $\lambda_{0}-\lambda$ is small, Σ_{λ}^{-}will be inside Ω. But as λ decreases continuously, Σ_{λ}^{-}will be in Ω until one of the following occurs:

1. $\overline{\Sigma_{\lambda}^{-}}$becomes internally tangent to $\partial \Omega$ at some point x_{0} not on T_{λ};
2. T_{λ} becomes orthogonal to $\partial \Omega$ at some point $y_{0} \in \partial \Omega \cap T_{\lambda}$.

We let $T_{\lambda_{1}}$ denote the plane that first reaches one of these two possibilities and call $\Sigma_{\lambda_{1}}^{+}$ the maximal cap.

Lemma 5 If

$$
u(x) \leq u\left(x^{\lambda}\right) \text { in } \Sigma_{\lambda}^{+}
$$

for some $\lambda \in\left(\lambda_{1}, \lambda_{0}\right)$, then

$$
\begin{cases}D_{e_{1}} u(x)<0 & \text { on } \Omega \cap T_{\lambda}, \tag{3.1}\\ u(x)<u\left(x^{\lambda}\right) & \text { in } \Sigma_{\lambda}^{+} .\end{cases}
$$

Proof. Let $v(x)=u\left(x^{\lambda}\right), x \in \Sigma_{\lambda}^{+}$. Then

$$
\Delta(v(x)-u(x))+f_{1}(v(x))+f_{2}(v(x))-f_{1}(u(x))-f_{2}(u(x))=0
$$

and

$$
v(x)-u(x) \geq 0 \quad \text { in } \Sigma_{\lambda}^{+},
$$

with

$$
v(x)-u(x) \not \equiv 0 \text { in } \Sigma_{\lambda}^{+} .
$$

Now, $f_{1}(v(x)) \geq f_{1}(u(x))$ and $f_{2}(v(x))-f_{2}(u(x))=c_{\lambda}(x)(v(x)-u(x))$, where $c_{\lambda}(x)$ is bounded, because f_{1} is nondecreasing and f_{2} is Lipschitz. Hence,

$$
\begin{gather*}
\Delta(v(x)-u(x))+c_{\lambda}(x)(v(x)-u(x)) \leq 0, \tag{3.2}\\
v(x)-u(x) \geq 0 \quad \text { in } \quad \Sigma_{\lambda}^{+}, \quad \text { iq4 } 4 \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
v(x)-u(x) \not \equiv 0 \quad \text { in } \quad \Sigma_{\lambda}^{+} . \tag{3.4}
\end{equation*}
$$

Then Lemma 1 implies that $v(x)-u(x)>0$ in Σ_{λ}^{+}, while Lemma 2 gives us that

$$
\begin{equation*}
\left.\frac{\partial}{\partial x_{1}}(v(x)-u(x))\right|_{x_{1}=\lambda}>0, \quad \text { iq5 } \tag{3.5}
\end{equation*}
$$

because $v(x)-\left.u(x)\right|_{x_{1}=\lambda} \equiv 0$, which is the minimum. From (3.5), we obtain the inequality

$$
-\frac{\partial u}{\partial x_{1}}-\left.\frac{\partial u}{\partial x_{1}}\right|_{x_{1}=\lambda}>0
$$

which completes the proof of Lemma 5.

Lemma 6 Let u be a classical solution of (1.1). Then (3.1) holds for all $\lambda \in\left(\lambda_{1}, \lambda_{0}\right)$.

Proof. From Lemma 4, we know that (3.2) and (3.3) hold for all $\lambda \in\left(\lambda_{1}, \lambda_{0}\right)$ with $\lambda_{0}-\lambda$ sufficiently small.

Suppose the lemma is false. That is, suppose that there exists a $\lambda_{2} \in\left(\lambda_{1}, \lambda_{0}\right)$ such that (3.1) holds for $\lambda \in\left(\lambda_{2}, \lambda_{0}\right)$ but not for $\lambda<\lambda_{2}$.

On the other hand, the continuity of u implies that

$$
u(x) \leq u\left(x^{\lambda_{2}}\right), \quad \lambda \in \Sigma_{\lambda_{2}}^{+}
$$

and since $\lambda_{2} \in\left(\lambda_{1}, \lambda_{0}\right)$, Lemma 5 implies that (3.2) and (3.3) also hold for $\lambda=\lambda_{2}$.
Since $\lambda_{2}>\lambda_{1}, n_{1}\left(x_{0}\right)>0$ for each point $x_{0} \in \partial \Sigma_{\lambda_{2}}^{+} \backslash\left(T_{\lambda_{2}} \cap \Omega\right)$. And hence Lemma 4 concludes that there exists $\varepsilon_{x_{0}}>0$ such that

$$
D_{e_{1}} u(x)<0 \quad \text { in } \quad \Omega \cap B_{\varepsilon_{x_{0}}}\left(x_{0}\right) .
$$

Since $D_{e_{1}} u(x)<0$ on $T_{\lambda_{2}} \cap \Omega$, we have that there exists some $\varepsilon>0$, such that

$$
\begin{equation*}
D_{e_{1}} u(x)<0 \quad \text { in } \quad \Omega \cap\left\{x_{1}>\lambda_{2}-\varepsilon\right\}, \quad \quad \mathrm{iq} 6 \tag{3.6}
\end{equation*}
$$

because $T_{\lambda_{2}} \cap \bar{\Omega}$ is compact.
Therefore, if (3.2) and (3.3) fail to hold in $\left(\lambda_{1}, \lambda_{2}\right)$, we must have a sequence $\left\{\lambda^{i}\right\}$ such that

$$
\lambda^{i}>\lambda_{1} \quad \text { and } \quad \lambda^{i} \nearrow \lambda_{2} \text { as } i \rightarrow \infty
$$

with

$$
u\left(x^{i}\right) \geq u\left(x^{i \lambda^{i}}\right) \text { for some } x^{i} \in \Sigma_{\lambda_{i}}^{+} .
$$

But Ω is bounded, so we can find a subsequence of $\left\{x^{i}\right\}$, say $\left\{x^{i}\right\}$ itself, which converges to some point $x_{0} \in \overline{\Sigma_{\lambda_{2}}^{+}}$as $i \rightarrow \infty$ with $u\left(x_{0}\right) \geq u\left(x_{0}^{\lambda_{2}}\right)$. Therefore, $x_{0} \in \partial \Sigma_{\lambda_{2}}^{+}$, because (3.1) holds for λ_{2}. Thus, we have either of two possibilities:

1. $x_{0} \in \partial \Sigma_{\lambda_{2}}^{+} \backslash\left(T_{\lambda} \cap \bar{\Omega}\right)$. But then $x_{0} \in \partial \Omega$ with $x_{0}^{\lambda_{2}} \in \Omega$, since $\lambda_{2}>\lambda_{1}$, which implies that $0 \geq u\left(x_{0}^{\lambda_{2}}\right)>0$. This is impossible.
2. $x_{0} \in T_{\lambda_{2}} \cap \bar{\Omega}$. Therefore, $x_{0}^{\lambda_{2}}=x_{0}$.

Since $\lambda^{i}>\lambda_{1}$, we have that the line segment P_{i} joining x^{i} and $x^{i \lambda^{i}}$ lies in Ω. Therefore, $u\left(x^{i}\right) \geq u\left(x^{i \lambda^{i}}\right)$ implies that

$$
D_{e_{1}} u\left(y^{i}\right) \geq 0 \quad \text { for some } y^{i} \in P_{i}
$$

But $x^{i} \rightarrow x_{0}$ and $x^{i \lambda^{i}} \rightarrow x_{0}^{\lambda_{2}}=x_{0}$, so P_{i} shrinks into the single point x_{0}. This gives us a contradiction with (3.6), because $y^{i} \in \Omega \cap\left\{x_{1}>\lambda_{2}-\varepsilon\right\}$ for i large enough. This completes the proof of Lemma 6 .

Proof of Theorem 1. By Lemma 6, (3.2) and (3.3) hold for all $\lambda \in\left(\lambda_{1}, \lambda_{0}\right)$. Let us discuss the following two possible cases.

Case 1. $\Sigma_{\lambda_{1}}^{-} \cup \Sigma_{\lambda_{1}}^{+} \cup\left(T_{\lambda_{1}} \cap \Omega\right)=\Omega$.
Then Ω is symmetric about $T_{\lambda_{1}}$, in which case we have shown that

$$
\left\{\begin{array}{ll}
u(x) \leq u\left(x^{\lambda_{1}}\right), & x \in \Sigma_{\lambda_{1}}^{+}, \tag{3.7}\\
D_{e_{1}} u<0, & x \in \Sigma_{\lambda}^{+},
\end{array} \forall \lambda \in\left(\lambda_{1}, \lambda_{0}\right), \quad \boxed{\mathrm{iq} 7}\right.
$$

or

$$
\begin{cases}u(x)=u\left(x^{\lambda_{1}}\right), & x \in \Omega, \tag{3.8}\\ D_{e_{1}} u>0, & \text { if } x \in \Omega \cap \Sigma_{\lambda_{1}}^{-}, \\ D_{e_{1}} u<0, & \text { if } x \in \Omega \cap \Sigma_{\lambda_{1}}^{+} .\end{cases}
$$

Case 2. $\Sigma_{\lambda_{1}}^{-} \cup \Sigma_{\lambda_{1}}^{+} \cup\left(T_{\lambda_{1}} \cap \Omega\right) \nsubseteq \Omega$.
Then $u\left(x^{\lambda_{1}}\right)-u(x) \geq 0$ in $\Sigma_{\lambda_{1}}^{+}$and not identically zero. Therefore, the same argument as in Lemma 5 implies that

$$
u\left(x^{\lambda_{1}}\right)>u(x) \quad \text { in } \Sigma_{\lambda_{1}}^{+}
$$

at some point $x_{0} \notin T_{\lambda_{1}}$. As in the proof of Lemma 5 , we find by letting $v(x)=u\left(x^{\lambda_{1}}\right)$ that

$$
\begin{cases}\Delta(v(x)-u(x))+c_{\lambda_{1}}(x)(v(x)-u(x)) \leq 0 & \text { in } \Sigma_{\lambda_{1}}^{+}, \tag{3.9}\\ v(x)-u(x)>0 & \text { in } \Sigma_{\lambda_{1}}^{+}, \\ v\left(x_{0}\right)-u\left(x_{0}\right)=0 & \end{cases}
$$

Since $x_{0} \notin T_{\lambda_{1}}, \Sigma_{\lambda_{1}}^{+}$is smooth near x_{0}. Hence we may use Lemma 2 to conclude that

$$
\frac{\partial}{\partial n}(v-u)\left(x_{0}\right)<0
$$

which is in contradiction with the boundary condition $\frac{\partial v}{\partial n}=\frac{\partial u}{\partial n}\left(x_{0}\right)=0$. Hence, $T_{\lambda_{1}}$ must become orthogonal to $\partial \Omega$ at some point $y_{0} \in \partial \Omega \cap T_{\lambda_{1}}$.

However, $u\left(x^{\lambda_{1}}\right)-u(x)$ satisfies (3.8) in $\Sigma_{\lambda_{1}}^{+}, y_{0} \in \partial \Sigma_{\lambda}^{+}$, and, near $y_{0}, \partial \Sigma_{\lambda}^{+}$consists of two transversally intersecting hypersurfaces $x_{1}=\lambda_{1}$ and $\partial \Omega$, which become orthogonal at y_{0}. A simple computation shows that $\ell\left(y_{0}\right)=0$ and, for any tangential direction t along $T_{\lambda_{1}} \cap \partial \Omega$ at y_{0},

$$
\nabla_{t}(\ell(y))=0 \quad \text { at } y_{0}
$$

which implies by Lemma 3 that for any s entering Ω at y_{0} transversally to T_{λ} and $\partial \Omega$,

$$
\frac{\partial(v-u)}{\partial s}>0 \quad \text { or } \quad \frac{\partial^{2}(v-u)}{\partial s^{2}}>0 \text { at } y_{0}
$$

On the other hand, it follows from (1.1) that

$$
(v-u)\left(y_{0}\right)=0, \quad \nabla(v-u)\left(y_{0}\right)=0, \quad \text { and } D^{2}(v-u)\left(y_{0}\right)=0
$$

This again leads us to a contradiction, so it must be the case that

$$
\Sigma_{\lambda_{1}}^{-} \cup \Sigma_{\lambda_{1}}^{+} \cup\left(T_{\lambda_{1}} \cap \Omega\right)=\Omega .
$$

On the other hand, since we can start moving the plane from the left to the right along the x_{1}-axis as well, we conclude that

$$
\left\{\begin{array}{lll}
u(x)=u\left(x^{\lambda_{1}}\right) & x \in \Omega, & \tag{3.10}\\
D_{e_{1}} u>0 & \text { if } \quad x \in \Omega \cap \Sigma_{\lambda_{1}}^{-}, & \text {iq10 } \\
D_{e_{1}} u<0 & \text { if } \quad x \in \Omega \cap \Sigma_{\lambda_{1}}^{+} . &
\end{array}\right.
$$

But equation (1.1) is rotationally invariant. Therefore Ω is symmetric in every direction. We thus find that Ω must be a ball, because it is connected. Then (3.10) gives the conclusions of Theorem 1 .

4 Proof of Theorem 2

Gidas, Ni, and Nirenberg proved in [GNN] that the solutions of

$$
\left\{\begin{array}{lll}
\Delta u+f(u)=0 & \text { in } B_{R}(0), & \tag{4.1}\\
u>0 & \text { in } B_{R}(0), & \text { de3} \\
u=0 & \text { on } \partial B_{R}(0), &
\end{array}\right.
$$

with

$$
\begin{equation*}
f(s)=f_{1}(s)+f_{2}(s), \tag{4.2}
\end{equation*}
$$

where f_{1} is Lipschitz continuous and f_{2} nondecreasing, must be radially symmetric about 0 and, furthermore, $\frac{\partial u}{\partial r}<0$ for $0<r<R$. On the other hand, if a decomposition like (4.2) does not exist, in particular if f is not smooth, then it is an open problem whether positive solutions of (1.1) are radially symmetric. Actually, some examples given in [GNN, pp. 220] show that these cases could be very delicate.

In this part, we will try to treat a family of nonlinear terms f which are neither Lipschitz nor nondecreasing. Such situations arise, for example, in the study of free-boundary problems for Emden-Fowler type equations (see [KK]), where

$$
\begin{equation*}
f(u)=u^{1 / p}-u^{1 / q} \text { with } 1 \leq p<q \leq \infty \tag{4.3}
\end{equation*}
$$

Remark 1. If $q=\infty$, then $f(s)=s^{1 / p}-1$ is an increasing function in s and therefore [GNN]'s result implies that u must be radially symmetric. Therefore, the difficult parts occur when $1 \leq p<q<\infty$. For such cases,

$$
f(s)=\left\{\begin{array}{l}
\text { strictly decreasing in }\left[0,(p / q)^{p q /(q-p)}\right] \\
\text { strictly increasing in }\left[(p / q)^{p q /(q-p)}, \infty\right)
\end{array}\right.
$$

Remark 2. Recently, new symmetry results have been obtained in [GL] and [LV] for equations on nonsmooth domains.

Proof of Theorem 2. First we define

$$
\Lambda=\left\{\lambda \in(0, R) \mid u(x)<u\left(x^{\lambda}\right) \quad \text { if } x \in \Sigma_{\lambda}^{+}\right\}
$$

Because $\left.u\right|_{\partial B_{R}}=0$, there exists a $\lambda_{0} \in(0, R)$ such that

$$
\begin{equation*}
u\left(B_{R}(0) \backslash B_{\lambda_{0}}(0)\right) \subset\left(0, s_{0}\right) . \quad \text { incl } \tag{4.4}
\end{equation*}
$$

Step 1. $\quad\left(\frac{1}{2}\left(\lambda_{0}+R\right), R\right) \in \Lambda$.
For any $\lambda \in\left(\frac{1}{2}\left(\lambda_{0}+R\right), R\right), f$ is a strictly decreasing function in teh interval $\left[0, \max \left\{\sup _{\Sigma^{+}} u, \sup _{S^{+}} u^{\lambda}\right\}\right]$, where $u^{\lambda}=u\left(x^{\lambda}\right)$, because of (4.4), and

$$
\begin{cases}\Delta\left(u^{\lambda}-u\right)(x)+f\left(u^{\lambda}(x)\right)-f(u(x))=0 & \text { in } \Sigma_{\lambda}^{+} \\ u^{\lambda}-u=0 & \text { on } \bar{T}_{\lambda} \\ u^{\lambda}-u>0 & \text { on } \partial \Sigma_{\lambda}^{+} \backslash \bar{T}_{\lambda}\end{cases}
$$

Claim 1. If $u^{\lambda}-u \geq 0$ in Σ_{λ}^{+}, then $u^{\lambda}-u>0$ in Σ_{λ}^{+}and $\frac{\partial u}{\partial x_{1}}<0$ on T_{λ}.
Suppose the claim is false, i.e. there exists a $y_{0} \in \Sigma_{\lambda}^{+}$, such that $\left(u^{\lambda}-u\right)\left(y_{0}\right)=0$.
On the other hand, both u and u^{λ} are strictly positive in Σ_{λ}^{+}, so

$$
\Delta\left(u^{\lambda}-u\right)(x)+\frac{f\left(u^{\lambda}(x)\right)-f(u(x))}{u^{\lambda}(x)-u(x)}\left(u^{\lambda}-u\right)(x)=0
$$

where $\frac{f\left(u^{\lambda}(x)\right)-f(u(x))}{u^{\lambda}(x)-u(x)}$ is locally bounded, because $f \in C_{l o c}^{0,1}((0, \infty))$.
Hence the strong maximum principle implies a contradiction. Therefore, if $u^{\lambda}-u \geq 0$ in Σ_{λ}^{+}, then $u^{\lambda}-u>0$ there.
$\underline{\text { Claim 2. }} \quad u^{\lambda}-u \geq 0$ in Σ_{λ}^{+}.
Otherwise, because $u^{\lambda}-u \geq 0$ on $\partial \Sigma_{\lambda}^{+}, u^{\lambda}-u$ would have a strictly interior negative minimum, say at $y_{0} \in \Sigma_{\lambda}^{+}$. But at y_{0} we have $\Delta\left(u^{\lambda}-u\right)\left(y_{0}\right) \geq 0$ and, since $s_{0}>u\left(y_{0}\right)>$ $u^{\lambda}\left(y_{0}\right)>0$ by $(4.4), f\left(u\left(y_{0}\right)\right)<f\left(u^{\lambda}\left(y_{0}\right)\right)$. Therefore,

$$
\Delta\left(u^{\lambda}-u\right)\left(y_{0}\right)+f\left(u^{\lambda}\left(y_{0}\right)\right)-f\left(u\left(y_{0}\right)\right)>0
$$

a contradiction.
Thus Step 1 is proved.

Step 2. $\quad \Lambda$ is closed w.r.t. $(0, R)$.
If $\left\{\lambda^{i}\right\}$ is a sequence in Λ which converges to some λ in $(0, R)$, then, since

$$
u(x)<u\left(x^{\lambda i}\right), \quad x \in \Sigma_{\lambda_{i}}^{+},
$$

letting $i \rightarrow \infty$, we find

$$
u(x) \leq u\left(x^{\lambda}\right), \quad x \in \Sigma_{\lambda}^{+}
$$

But then 'Claim 1' in 'Step 1' shows that $u(x)<u\left(x^{\lambda}\right)$ in Σ_{λ}^{+}, i.e. $\lambda \in \Lambda$.
Step 3. Λ is open in $(0, R)$.
Suppose that Λ is not open. Then there exists a $\lambda \in \Lambda$ and a sequence $\left\{\lambda^{i}\right\} \in(0, R)$ s.t. $\lambda^{i} \rightarrow \lambda$ with $\lambda^{i} \notin \Lambda$. That is, for each i there exists $x^{i} \in \Sigma_{\lambda^{i}}^{+}$with

$$
\begin{equation*}
0>u\left(x^{i \lambda^{i}}\right)-u\left(x^{i}\right)=\min _{x \in \Sigma_{\lambda^{i}}^{+}}\left(u^{\lambda^{i}}-u\right)(x), \quad \min \tag{4.5}
\end{equation*}
$$

and the mean-value theorem implies

$$
\begin{equation*}
\frac{\partial u}{\partial x_{1}}\left(y^{i}\right) \geq 0 \text { for some } y^{i} \in \overline{x^{i \lambda^{i}} x^{i}} . \quad \mathrm{mvt} \tag{4.6}
\end{equation*}
$$

Because $x^{i} \in B_{R}(0)$, there exists a subsequence, say $\left\{x^{i}\right\}$ itself, converging to a point $x_{0} \in \bar{B}_{R}(0)$ and (4.5) implies that

$$
\begin{equation*}
u\left(x_{0}\right) \geq u\left(x_{0}^{\lambda}\right) . \quad \text { iq11 } \tag{4.7}
\end{equation*}
$$

But $\lambda \in \Lambda$, therefore (4.7) could only occur on $\partial \Sigma_{\lambda}^{+}$. Hence $x_{0} \in \partial \Sigma_{\lambda}^{+}$.
On the other hand,

$$
u<u^{\lambda} \quad \text { on } \partial \Sigma_{\lambda}^{+} \backslash \bar{T}_{\lambda} .
$$

Therefore $x_{0} \in \bar{T}_{\lambda}$.
In this case, since $x^{i} \rightarrow x_{0} \in \bar{T}_{\lambda}$ and $\lambda^{i} \rightarrow \lambda$, we have $x^{i \lambda^{i}} \rightarrow x_{0}$. Therefore (4.6) implies that

$$
\frac{\partial u}{\partial x_{1}}\left(x_{0}\right) \geq 0
$$

Hence, $x_{0} \in \bar{T}_{\lambda} \cap \partial B_{R}(0)$, because

$$
\frac{\partial u}{\partial x_{1}}<0 \quad \text { in } \bar{T}_{\lambda}
$$

Now, since $x_{0} \in \partial B_{R}(0)$ and $\lim _{i \rightarrow \infty} x^{i}=\lim _{i \rightarrow \infty} x^{i \lambda^{i}}=x_{0}$, we have $0<u\left(x^{i \lambda^{i}}\right)<u\left(x^{i}\right)<$ s_{0} if i is large enough. Therefore, $f\left(u\left(x^{i}\right)\right)<f\left(u\left(x^{i \lambda^{i}}\right)\right)$ for all i large enough.

But $\Delta\left(u^{\lambda^{i}}-u\right)\left(x^{i}\right) \geq 0$, since x^{i} is a minimum point of $u^{\lambda^{i}}-u$, so we reach a contradiction, because

$$
\Delta\left(u^{\lambda}-u\right)\left(x^{i}\right)+f\left(u\left(x^{i \lambda^{i}}\right)\right)-f\left(u\left(x^{i}\right)\right)=0
$$

Therefore Λ is open.
Step 4. Since Λ is non-empty and both open and closed in $(0, R)$, it must be the case that $\Lambda=(0, R)$, so letting $\lambda \rightarrow 0$, we find that

$$
u\left(x_{1}, \cdots, x_{n}\right) \leq u\left(-x_{1}, \cdots, x_{n}\right)
$$

for $x \in \Sigma_{0}^{+}$. But both $B_{R}(0)$ and Δ are invariant under the symmetry group, so

$$
u \text { radially symmetric }
$$

and

$$
\frac{\partial u}{\partial r}<0 \quad \text { for } \quad 0<r<R
$$

by 'Claim 1'. Thus, the proof of Theorem 2 is complete.

References

[GL] N. Garofalo and J. Lewis, A Symmetry Result Related to Some Overdetermined Boundary Value Problems, Amer. J. Math. 111 (1989), 9-33.
[GNN] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and Related Properties via the Maximum Principle, Comm. Math. Phys. 68 (1979), 209-243.
[H] H. Hopf, Lectures on Differential Geometry in the Large, Stanford Univ. (1956).
[KK] H. G. Kaper and Man Kam Kwong, Free Boundary Problems for Emden-Fowler Equations, Differential and Integral Equations 3 (1990), 353-362.
[LV] J. Lewis and A. Vogel, On Some Almost Everywhere Symmetry Theorems, preprint.
[PW] M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall (1967).
[S] J. Serrin, A Symmetry Problem in Potential Theory, Arch. Rational Mech. Anal. 43, (1971), 304-318.

[^0]: *Research supported in part by the National Science Foundation
 ${ }^{\dagger}$ This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.

