
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439A PARALLEL GRAPH COLORING HEURISTIC�Mark T. Jones and Paul E. PlassmannMathematics and Computer Science DivisionPreprint MCS-P246-0691June 1991(Revised February 1992)ABSTRACTThe problem of computing good graph colorings arises in many diverse applica-tions, such as in the estimation of sparse Jacobians and in the development ofe�cient, parallel iterative methods for solving sparse linear systems. In this pa-per we present an asynchronous graph coloring heuristic well suited to distributedmemory parallel computers. We present experimental results obtained on an InteliPSC/860 which demonstrate that, for graphs arising from �nite element applica-tions, the heuristic exhibits scalable performance and generates colorings usuallywithin three or four colors of the best-known linear time sequential heuristics. Forbounded degree graphs, we show that the expected running time of the heuristicunder the P-RAM computation model is bounded by EO(log(n)= log log(n)). Thisbound is an improvement over the previously known best upper bound for theexpected running time of a random heuristic for the graph coloring problem.Key words: distributed memory computers, graph coloring heuristics, parallelalgorithms, random algorithms, sparse matricesAMS(MOS) subject classi�cations: 65F10, 65F50, 65Y05, 68Q22, 68R10� This work was supported by the Applied Mathematical Sciences subprogram ofthe O�ce of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.



1. Introduction. The determination of the chromatic number of a generalgraph is a well-known NP-hard problem [4]. However, a number of practical prob-lems require the determination of nearly optimal graph colorings. For example, ithas been shown [3] that the problem of directly estimating a sparse Jacobian by�nite di�erences with a minimum number of function evaluations is equivalent toa graph coloring problem. Also, it has been shown [10] that the minimum num-ber of parallel steps in the solution of the triangular systems involving incompleteCholesky factors can be obtained by a matrix reordering derived from the solu-tion of a graph coloring problem. Thus, the development of an e�ective parallelheuristic is of great practical, as well as theoretical, interest.In this paper we present an asynchronous graph coloring heuristic well suitedto distributed memory parallel computers. Our heuristic consists of two phases:an initial, parallel phase that uses a random heuristic, followed by a local phasethat utilizes one of several good sequential coloring heuristics. The initial phasemaintains the good expected running time bounds obtained for a Monte Carlo al-gorithm for determining a maximal independent set [8]. In fact, for bounded degreegraphs, we show that an upper bound for the expected running time of our heuris-tic under the P-RAM computation model is EO(log(n)= log log(n)). This boundis an improvement over the previously known best upper bound of EO(log(n)) fora random heuristic.To illustrate the performance of this heuristic, we present experimental resultsobtained on an Intel iPSC/860. The results demonstrate that, for graphs arisingfrom �nite element applications, the heuristic exhibits scalable performance. Inaddition, for these problems the heuristic is shown to generate colorings usuallyusing no more than three or four more colors than the best linear time sequentialheuristics.This paper is organized as follows. In x2 we introduce a new Monte Carloheuristic that eliminates the need for global synchronization of the processors andallows for the more e�cient use of data structures. We prove, in x3, that underthe P-RAM computational model the expected running time of the asynchronousheuristic a�ords an improvement over the upper bound for a Monte Carlo algorithmbased on �nding maximal independent sets. A distributed memory implementationof the asynchronous heuristic is detailed in x4. In x5 we present and discussexperimental results obtained on the iPSC/860. Finally, in x6 we discuss possibleavenues for improving the heuristic.2. An Asynchronous Parallel Graph Coloring Heuristic. In this sec-tion we introduce a graph coloring heuristic suitable for asynchronous parallelmachines. First we review the graph coloring problem. Consider the symmetricgraph G = (V;E) with vertex set V , with jV j = n, and edge set E. We say thatthe function � : V ! f1; : : : ; sg is an s-coloring of G, if �(v) 6= �(w) for all edges(v;w) 2 E. The minimum possible value for s is known as the chromatic number1



of G, which we denote as �(G).The question as to whether a general graph G is s-colorable is NP-complete[4]. It is known that unless P = NP , there does not exist a polynomial ap-proximation scheme for solving the graph coloring problem [4]. In fact, the bestpolynomial time heuristic known [6] can theoretically guarantee a coloring of onlysize c (n= log n)�(G), where c is some constant.Given these pessimistic theoretical results, it is quite surprising that, for cer-tain classes of graphs, there exist a number of sequential graph coloring heuristicsthat are very e�ective in practice. For graphs arising from a number of applica-tions, it has been demonstrated that these heuristics are often able to �nd coloringsthat are within one or two of an optimal coloring [3, 7].V 0  V ;For i = 1; : : : ; n doChoose a vertex vi from V 0;�(vi) = smallest available consistent color;V 0  V 0 n fvig;enddo Fig. 1. A sequential greedy coloring heuristicIt is known that an optimal coloring can be obtained with a greedy heuristicif the vertices are visited in the correct order [1]. The basic structure of the greedyheuristic is shown in Figure 1. The only aspect of the sequential heuristic that mustbe speci�ed is the rule for choosing the vertex vi. Many strategies for obtainingthis vertex ordering have been proposed. One of the most e�ective heuristics isthe saturation degree ordering (SDO) suggested by Br�elaz [2]. The SDO vertexordering is de�ned as follows. Suppose that vertices v1; : : : ; vi�1 have been chosenand colored. Vertex vi is chosen to be a vertex adjacent to the maximum numberof di�erent colors in the vertex set fv1; : : : ; vi�1g. Note that this heuristic canbe implemented to run in time proportional to Pv2V deg2(v), where deg(v) is thedegree of vertex v.A modi�cation of the SDO heuristic is the incidence degree ordering (IDO)introduced by Coleman and Mor�e in their work [3] on using coloring heuristicsto obtain consistent partitions for sparse Jacobian estimation. The IDO vertexordering has the advantage that its running time is a linear function of the numberof edges. To describe the IDO heuristic, we again suppose that vertices v1; : : : ; vi�1have been chosen. Vertex vi is chosen to be a vertex whose degree is a maximumin the subgraph of G induced by the vertex set fv1; : : : ; vi�1g[fvig. This heuristiccan be implemented to run in time proportional to Pv2V deg(v), or O(jEj) time.2



Unfortunately, these heuristics are essentially breadth-�rst searches of thegraph and, as such, do not represent scalable, parallel heuristics. To do better, onenotes that if the vertices v and w are not adjacent in G (i.e., are independent in G),then these vertices can be colored in parallel. Thus, a heuristic for determining anindependent set in parallel could be adapted to a parallel coloring heuristic. Thisobservation motivates the parallel coloring heuristic shown in Figure 2.V 0  V ;While V 0 6= ; doChoose an independent set I from V 0;Color I in parallel;V 0  V 0 n I;enddo Fig. 2. Outline of a parallel coloring heuristicThe problem of determining an independent set in parallel has been the focusof much theoretical research. An approach that has been successfully analyzed isto determine an independent set, I, based on the following Monte Carlo rule. Herewe denote the set of vertices adjacent to vertex v by adj (v).1. For each vertex v 2 V 0 determine a distinct, random number �(v).2. v 2 I , �(v) > �(w); 8w 2 adj (v).In the Monte Carlo algorithm described by Luby [8], this initial independent set isaugmented to obtain a maximal independent set. The approach is the following.After the initial independent set is found, the set of vertices adjacent to a vertex inI, the neighbor set N(I), is determined. The union of these two sets is deleted fromV 0 , the subgraph induced by this smaller set is constructed, and the Monte Carlostep is used to choose an augmenting independent set. This process is repeateduntil the candidate vertex set is empty and a maximal independent set (MIS) isobtained. The complete Monte Carlo algorithm suggested by Luby for generatingan MIS is shown in Figure 3. In this �gure we denote by G(V 0) the subgraph of Ginduced by the vertex set V 0. Luby shows that an upper bound for the expectedtime to compute an MIS by this algorithm on a CRCWP-RAM is EO(log(n)). Thealgorithm can be adapted to a graph coloring heuristic by using it to determine asequence of distinct maximal independent sets and by coloring each MIS a di�erentcolor. Thus, this approach will solve the (� + 1) vertex coloring problem, where� is the maximum degree of G, in expected time EO((� + 1) log(n)).A major de�ciency of this approach on currently available parallel computersis that each new choice of random numbers in the MIS algorithm requires a globalsynchronization of the processors. A second problem is that each new choice of3



I  ;;V 0  V ;G0  G;While G0 6= ; doChoose an independent set I 0 in G0;I  I [ I 0;X  I 0 [N(I 0);V 0  V 0 nX;G0  G(V 0);enddoFig. 3. Luby's Monte Carlo algorithm for determining a maximal independent setrandom numbers incurs a great deal of computational overhead, because the datastructures associated with the random numbers must be recomputed. In Figure 4we present an asynchronous heuristic that avoids both of these drawbacks. Theheuristic is written assuming that each vertex v is assigned to a di�erent processorand the processors communicate by passing messages.With the asynchronous heuristic the �rst drawback (global synchronization)is eliminated by choosing the independent random numbers only at the start ofthe heuristic. With this modi�cation, the interprocessor communication can pro-ceed asynchronously once these numbers are determined. The second drawback(computational overhead) is alleviated because with this heuristic, once a proces-sor knows the values of the random numbers of the vertices to which it is adjacent,the number of messages it needs to wait for can be computed and stored. Like-wise, each processor computes only once the processors to which it needs to send amessage once its vertex is colored. Finally, note that this heuristic has more of the\
avor" of the sequential heuristic, since we choose the smallest color consistentwith the adjacent vertices previously colored.One should be concerned that the expected running time of this heuristic iscomparable to the expected running time of the heuristic based on the MIS MonteCarlo algorithm. In the next section we show that under the P-RAM computationalmodel, one is able to obtain an improvement over the upper bound for the expectedrunning time of the MIS algorithm.3. Expected Running Time of the Asynchronous Heuristic. In thissection we derive an upper bound for the expected running time of the heuristicpresented in Figure 4 under the P-RAM computational model. Most of the prac-tical problems we are concerned with are generated from local, physical models.Thus, the maximum degree of the associated graphs is independent of the size of4



Choose �(v);n-wait = 0;send-queue = ;;For each w 2 adj(v) doSend �(v) to processor responsible for w;Receive �(w);if (�(w) > �(v)) then n-wait = n-wait +1;else send-queue  send-queue [ fwg;enddon-recv = 0;While (n-recv < n-wait) doReceive �(w);n-recv = n-recv +1;enddo�(v) = smallest available color consistent with thepreviously colored neighbors of v;For each w 2 send-queue doSend �(v) to processor responsible for w;enddoFig. 4. An asynchronous parallel coloring heuristicthe system. It is reasonable, therefore, to consider the model problem of a graphG with n vertices and bounded degree �. Since we assume that � is bounded, theprevious work by Luby [8] shows that a random heuristic for the (� + 1) vertexcoloring problem can be accomplished on the P-RAM model in EO(log(n)) time.As discussed above, this heuristic is based on a synchronous random algorithm fordetermining a sequence of maximal independent sets.To analyze the running time of our heuristic, we make the following observa-tions. First, for the sake of comparison, we note that this heuristic can also beconsidered to be synchronous. Second, we assume that each vertex v 2 V choosesa unique independent random number �(v). De�ne a monotonic path of length t tobe a path of t vertices fv1; v2; : : : ; vtg in G such that �(v1) > �(v2) > : : : > �(vt).We have the following lemma.Lemma 3.1. The running time of the P-RAM version of the asynchronousheuristic is proportional to the maximum length monotonic path in G.Proof: We assume that the asynchronous heuristic can be made synchronousby including a global synchronization point in the receive and send loops (i.e.,all processors that have messages to send, send them; all available messages are5



received; and then the processors synchronize). Since each vertex has degree atmost �, the number of messages to be received and sent by each processor isbounded by this constant. Under the P-RAM computational model we can assumethat messages are sent between processors in constant time. Thus, the runningtime of the heuristic is proportional to the number of these synchronized steps.It is clear that the number of steps is at least as long as the longest monotonicpath in G. If the number of steps were longer, there would exist some step wherethe random number of a processor was greater than all its neighbors, yet for somereason it did not send its messages. Hence, we have that the running time of theheuristic is proportional to the maximum length monotonic path. 2To analyze the expected running time of the heuristic, we need to construct anupper bound to the probability of the existence of a monotonic path. We constructthis bound in two parts, �rst by �nding a bound on the number of paths of lengtht, and then by determining the probability that a path is monotonic. The followinglemma gives a bound on the number of paths of length t in the graph G.Lemma 3.2. The number, �(t), of di�erent paths in G of length t is boundedby �(t) � n�(�� 1)t�2 :(3.1)Proof: This bound can be obtained by induction. For t = 2, the number of pathsis at most n�. Now suppose the lemma holds for paths of length t� 1. Considersome vertex v and all paths of length t�1 starting from this vertex. Each of thesepaths ends at some vertex w. Because an extension of this path cannot returnalong the edge it used to get to w, there are at most � � 1 ways to extend thispath. Multiplying the bound for the number of paths of length t � 1 by � � 1yields the desired result. 2Let X be the random variable equal to the maximum length monotonic pathin G. Since the random numbers assigned to the vertices are independent, theprobability that a path of length t is monotonic is (1=t!). Let PfX = tg bethe probability that the maximum length monotonic path is t. This probabilityis bounded by the probability that there exists a monotonic path of length t.Including the bound given in Lemma 3.2, we �ndPfX = tg � �(t)t!(3.2) � n�(�� 1)t�2t! :Theorem 3.3. The expected value of the maximum length monotonic path,EX, is bounded by EX � T + (�� 1)K(3.3) 6



for any K, where T is the minimum integer satisfyingT ! � n�(�� 1)T�K�1 exp(�� 1) :(3.4)Proof: The expected value of X is given byEX = nXt=2 tPfX = tg :(3.5)For any integer T � 2 we have thatEX � T + nXt=T+1 tPfX = tg :(3.6)Thus, we can include the bound on the probability given in equation (3.2) to obtainEX � T + 1Xt=T+1 tn�(�� 1)t�2t!(3.7) � T + n�(�� 1) 1Xt=T (�� 1)tt!� T + n�(�� 1) (�� 1)TT ! exp(�� 1) :If we choose T to be the minimum integer such thatT ! � n�(�� 1)T�K�1 exp(�� 1) ;(3.8)we have that the expected maximum length monotonic path is bounded byEX � T + (�� 1)K :(3.9)2 As a corollary, we are able to achieve a bound in terms of n for the expectedrunning time of this algorithm. To prove this corollary, we require the followingshort lemma.Lemma 3.4. The inequalityr!sr � p2�s  �(r=s)e1=12p2�!s(3.10)holds for r � s � 1. 7



Proof: First, we recall the Gamma function identityr! = r �(r)(3.11)and the formula �(x) = p2� xx� 12 e�x e �(x)12(3.12)which holds for x � 1 and for 0 < �(x) < 1. For r � 1, we compute the lowerbound �(r) � s2�r �re�r(3.13)by setting � = 0 in equation 3.12. Thus, we have the boundr!sr � p2�r � rse�r :(3.14)We set � = 1 in equation 3.12 to obtain an upper bound for the Gamma functionand assume that r � s � 1. We let r0 = r=s and �ndp2�r � rse�r = p2�r0B@ r0e !r01CAs(3.15) = p2�r0B@e 112s2�r0  r0e !r0 e� 112s r02�1CAs� p2�r0@�(r0)e� 112s r02�1As� p2�s0@�(r0)e� 112p2�1As :Combining equations 3.14 and 3.15, we obtain the desired boundr!sr � p2�s �(r=s)e 112p2�!s : 2(3.16)The Gamma function is not monotonic for x � 1. However, it is monotonicfor slightly larger x, for example, x � 3=2. To avoid this lack of uniqueness, wede�ne the function �+(y) = maxfx j�(x) = y g, which is well de�ned for y � 1.We now prove the following corollary to Theorem 3.3.8



Corollary 3.5. For � � 2, the expected number of steps, EX, for therandom heuristic is bounded byEX � (�� 1) �+ 0@p2� e 1312  n�p2� (�� 1) 32 ! 1��11A+ 2 :(3.17)Proof: Choosing K = 0 in Theorem 3.3 and subtracting one from T in equa-tion 3.4, we have the following inequality:(T � 1)!(�� 1)T�1 � n�(�� 1) exp(�� 1) :(3.18)We assume that (T � 1) � (�� 1) � 1, and by Lemma 3.4 we haveq2�(�� 1)0@ e� 112p2���T � 1�� 1�1A��1 � (T � 1)!(�� 1)T�1 :(3.19)Combining the bounds in equations 3.18 and 3.19, we obtain��T � 1�� 1� � p2�e 1312  n�p2� (�� 1) 32 ! 1��1 :(3.20)Using the asymptotic inverse to the Gamma function de�ned above, we obtain thebound T � 1 � (�� 1) �+ 0@p2�e 1312  n�p2� (�� 1) 32 ! 1��11A :(3.21)Because we have chosen K = 0, by Theorem 3.3 we have that EX � T +1. Thus,consistent with our original assumption that T � �, we have the desired boundfor EX, EX � (�� 1) �+ 0@p2�e13=12  n�p2� (�� 1) 32 ! 1��11A + 2 : 2(3.22)By using the lower bound for the Gamma function obtained by choosing�(x) = 0 in equation 3.12 we note that, for �xed �, this bound is asymptoti-cally EO(log(n)= log log(n)). This bound is an improvement over the EO(log(n))upper bound obtained by Luby [8].The bound given in Theorem 3.3 yields a surprisingly close �t to what wehave observed in practice. In Figure 5 we compare the bound for EX with ourexperimental results for regular graphs of degree 4. In the plot the open circles are9



2 3 4 5 6 7log10(n)05101520NumberofSteps � � � � � �� � � � � � � �
Fig. 5. Bound obtained by choosing K = �1 for the expected value (�) versus experimentalaverage (�) for regular, � = 4, graphsthe observed average number of steps for the asynchronous heuristic as a functionof the base 10 logarithm of n. The closed circles are obtained from the boundgiven in Theorem 3.3 where we have chosen K = �1. The points are obtained bychoosing a value for T and then solving equation 3.4 for the largest n that satis�esthe inequality.As a �nal note, we emphasize that, although the heuristics described abovehave a random component, their behavior in practice is essentially deterministic.In the above analysis, note that the probability that there exists a monotonic pathof length greater than t asymptotically decays faster than exponentially. Thus, thebounds on the expected running time hold with very high probability. In addition,Luby [8] gives a prescription for converting his Monte Carlo MIS algorithm intoa deterministic algorithm with the same running time. Hence, these heuristicsare fundamentally di�erent from those based on simulated annealing. Althoughthe simulated annealing algorithms can be shown to ultimately obtain optimalsolutions, running time bounds comparable to those above do not exist.4. A Medium Grain Heuristic for Distributed Memory Computers.Our primary interest is the development of a heuristic suitable for distributedmemory computers. In this section we describe how the asynchronous Monte Carloheuristic presented in the preceding section can be combined with the heuristicsthat have been successful on sequential machines. Using this approach, in thenext section we experimentally demonstrate that for certain classes of problemsthe performance is scalable.Consider a distributed memory computer with p processors. We assume thatthe vertices of the graph G = (V;E) are partitioned across these processors bythe sets fV1; : : : ; Vpg. Let the function � : V ! f1; : : : ; pg return the number ofthe partition, or processor, to which each vertex is assigned. We de�ne the edge10



separator ES to be the set of edges ES � E where the edge (v;w) 2 ES , �(v) 6=�(w). In addition, we de�ne the set of global vertices to be the vertex set V S,where a vertex is in this set if and only if the vertex is an endpoint for some edgein ES . Let the set of local vertices, V L, be the set V n V S. Finally, denote by V Siand V Li the vertex sets V S \ Vi and V L \ Vi.The following theorem shows that it is possible to decompose the asynchronousheuristic into two parts, the �rst part to color the global vertices, and the secondpart to color the local vertices. We show that the vertex labeling obtained bypiecing together these colorings is a coloring for G. In this theorem we denote thesubgraph of G induced by the vertex set Vi by G(Vi).Theorem 4.1. Let �S be a coloring for G(V S). This coloring, restricted toV Si , can be independently extended to a coloring �i for the subgraph G(Vi). If wede�ne the function � by �(v) = �i(v) where v 2 Vi, then � is a coloring for G.Proof: Consider the vertices Vi on processor i. We assume that vertices V Si areconsistently colored when the random heuristic colors G(V S). Thus, only thevertices V Li remain to be colored on this processor. By de�nition, the vertices V Lican be connected only to vertices in Vi. Because V Si has been colored, the verticesV Li may be colored independently from any other vertices in V . By the sameobservation, we note that if the coloring chosen for each V Li is consistent for G(Vi),then these colorings combine to form a consistent coloring for the entire graph. 2From Theorem 4.1, we observe that the parallel graph coloring problem canbe accomplished in two phases:1. Color G(V S) using the asynchronous Monte Carlo heuristic.2. On processor i, color G(V Li ) given �S(V Si ) using a sequential heuristic.A subtle point is that we need the Monte Carlo algorithm to generate independentsets in the graph GS = (V S; ES), not the graph G(V S). Note that GS is a sparsergraph than G(V S), since GS does not contain edges (v;w) where v;w 2 V S but�(v) = �(w). Such edges are included in G(V S). We use the notation �S = �(GS)and nS = jV Sj. Thus, we have �S � �(G(V S)), and the bounds detailed inTheorem 3.3 depend on the values of �S and nS.In Figure 6 we outline the complete distributed heuristic to be executed by thei-th processor. The heuristic calls two procedures: Seq-color and Pack-and-send.Given a partial coloring of vertices stored in the array � and a list queue of localvertices to be colored, Seq-color (�, queue) colors these vertices with a sequentialheuristic (such as the IDO heuristic discussed earlier). The procedure Pack-and-send sends the vertices in queue and their colors � to nonlocal, adjacent verticeson other processors with lower random numbers. For vertex v this set is stored inthe array send-queue (v) which is initialized at the beginning of the heuristic.The ability to pack vertex information into messages allows for the optimiza-tion of interprocessor communication. For example, messages sent between pro-11



Determine V Si , V Li ; fPartition verticesgcolor-queue = ;;For each v 2 V Si do fSet up queues for separator verticesgn-wait (v) = 0;send-queue (v) = ;;For each edge (v;w) 2 ES doCompute �(w);if (�(w) > �(v)) then n-wait (v) = n-wait (v) + 1;else send-queue (v)  send-queue (v) [ fwg;enddoif (n-wait (v) = 0) thencolor-queue  color-queue [ fvg;enddoSeq-color ( �, color-queue ); fColor any vertices in V Si notgn-colored = j color-queue j; fwaiting for messagesgPack-and-send (�, color-queue, send-queue );color-queue = ;;While (n-colored < jV Si j) doReceive msg;For each w 2 msg.vertex-list do�(w) = msg.vertex-color;For each v 2 msg.vertex-adj don-wait (v) = n-wait (v) � 1;if (n-wait (v) = 0) thencolor-queue  color-queue [ fvg;enddoenddoSeq-color (�, color-queue); fColor subsets of V Si once requiredgn-colored = n-colored + j color-queue j; fmessages are receivedgPack-and-send (�,color-queue, send-queue);color-queue = ;;enddoSeq-color (�, V Li ); fColor local vertices lastgFig. 6. A distributed memory parallel coloring heuristic for the i-th processor12



cessors can be packed to overcome the high message startup cost on machines likethe Intel iPSC/860. The data structure msg that a processor receives containsa packed list of vertices, their colors, and the vertices assigned to the receivingprocessor to which they are adjacent. As before, the number of nonlocal verticesthat must be colored before vertex v is computed at the beginning of the heuristicand stored in n-wait (v).One last optimization to note is that if the pseudo-random number generatorused to determine �(v) depends only on the vertex number, then these values donot need to be sent between processors. Instead, each processor can determinethese values locally, and the overhead involved with this interprocessor communi-cation can be avoided. This optimization is included in the initialization sectionof Figure 6.5. Experimental Results. We have implemented the heuristic described inFigure 6 in the C programming language on a 64-node Intel iPSC/860. In thissection we present results obtained with this implementation. One of our mainobjectives is to demonstrate the scalability of this heuristic consistent with thede�nition given in [5]. Thus, we would like to show that, for a �xed number ofvertices per processor, the running time of the heuristic is only a slowly increasingfunction of the number of processors used.1To achieve this objective, we have chosen test problems whose size can beeasily scaled and are also representative of problems encountered in applications.The problems we consider are generated from �nite element models of structuresand from �nite di�erence schemes for two and three dimensional regular domains.We consider two sets of structures problems; both are modeled by using three-dimensional, hexagonal linear elements, where the nonzero structure of the result-ing assembled sparse system is used as a test matrix. The problems in ProblemSet I are obtained from a model of a long rectangular beam of varying lengths,seven by seven �nite elements thick, with the degrees of freedom constrained atboth ends. The problems in the Problem Set II are generated from a model of amultistoried building of varying heights with constraints applied by elimination ofthe bottom layer of vertices.For these two problem sets the vertex to processor assignment was made byassigning to each processor contiguously numbered blocks of columns based on aninitial numbering. These blocks consist of n=p columns, where n is the order of thematrix and p is the number of processors. The initial numbering of the columns ischosen such that nearby nodes in the �nite element models are generally close innumber. Thus, this matrix partition scheme roughly corresponded to a physicalpartition.1 In our case, the running time will increase with problem size according to the slowly growingfunction given in Theorem 3.3. 13



Table 1Problem Set IProblem n m � �IDO �SDOCUBE1 1,701 46,623 72 21 18CUBE2 3,888 113,304 72 20 18CUBE4 8,262 246,666 72 20 19CUBE8 17,010 513,390 72 21 19CUBE16 34,506 1,046,838 72 21 19CUBE32 69,498 2,113,734 72 21 19CUBE64 139,482 4,247,526 72 21 19Table 2Problem Set IIProblem n m � �IDO �SDOSKY1 6,270 145,554 75 19 19SKY2 12,540 298,751 76 21 20SKY4 25,080 605,145 76 21 21SKY8 50,160 1,217,933 76 21 21SKY16 100,320 2,443,509 76 21 21SKY32 200,640 4,894,661 76 22 22In Table 1 and Table 2 we show the sizes of the problems contained in thesetwo sets. The number of vertices in the graphs is listed in column labeled n,the number of edges is listed under m, and the maximum degree of the graph isshown under �. The number of colors used by a sequential implementation ofthe incidence degree ordering (IDO) heuristic and the saturation degree ordering(SDO) heuristic is given in the columns labeled by �IDO and �SDO.We also consider two sets of problems arising from standard �nite di�erencingschemes for regular domains. In Table 3 we show the sizes of the test problemsgenerated for the nine point stencil on a square, two dimensional domain. Forthese problems the domain is partioned into subsquares of equal size, resulting inequal numbers of vertices being assigned to each processor. To keep the aspectratio of the subsquares the same as the problem is scaled, we change the size ofthe problems by a factor of four as the problem is scaled. In Table 4 we show thesizes of the test problems generated for the twenty-seven point stencil on a cubic,three dimensional domain. Again, equal numbers of vertices are assigned to eachprocessor because the domain is partioned into subcubes of equal size. For theseproblems the problem size increases by a factor of eight as the problem is scaled.Scaling results obtained for Problem Sets I through IV are shown in Table 5to Table 8. For the results presented in these four tables, the partitioning ensures14



Table 3Problem Set IIIProblem n m � �IDO �SDO9PT1 2,500 19,404 8 5 49PT4 10,000 78,804 8 5 49PT16 40,000 317,604 8 5 49PT64 160,000 1,275,204 8 5 4Table 4Problem Set IVProblem n m � �IDO �SDO27PT1 2,197 48,456 26 12 1127PT8 17,576 421,400 26 12 1227PT64 140,608 3,511,656 26 13 12that the average number of vertices per processor, <n>, is essentially constant.The number of processors used is listed in the column labeled p. The number ofvertices and maximum degree of GS are given under nS and �S, respectively. Themaximum time in seconds used by a processor in coloring GS is given under TS.TL is the maximum time in seconds used by a processor to solve its local coloringproblem. The average number of messages sent by the processors is listed under<Nmsg>. Also shown are ~�S, the number of colors used in coloring GS , and ~�,the number of colors used to color the entire graph. For these results the IDOheuristic is used to solve the local coloring problems.Note that although we used the incidence degree heuristic to solve the localcoloring problem, for GL, for the results presented in Tables 5 through 8, one couldalso employ the more expensive saturation degree heuristic. Recall that the SDOheuristic requires the colors used to color adjacent vertices to compute the satu-ration degree of each vertex. This information has already been communicated toeach processor prior to the coloring of GL; therefore, the SDO heuristic can be usedto color GL without necessitating any additional interprocessor communication. InTable 9 through Table 12 we present the results for the parallel heuristic modi�edin this manner.The results shown in Table 5 through Table 12 demonstrate the scalable per-formance of the heuristic: for a �xed number of nonzeros per processor, the timerequired by the global and local phases is essentially constant [5]. Note that as thesize of GS increases, the average number of messages sent per processor graduallyincreases. By maintaining a reasonable average message size, the high communi-cation overhead on the iPSC/860 can be partially amortized. Also, note that byusing the SDO heuristic to solve the local coloring problem, a slight improvement15



Table 5Parallel coloring results for Problem Set I, IDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�CUBE1 1 1701 0 0 0.000 0.330 0.0 0 21CUBE2 2 1944 486 27 0.076 0.368 6.5 14 21CUBE4 4 2091 2,136 66 0.273 0.379 20.2 24 26CUBE8 8 2126 5,436 66 0.541 0.376 28.6 24 25CUBE16 16 2157 11,975 69 0.531 0.375 36.1 25 26CUBE32 32 2172 25,004 70 0.488 0.378 37.8 27 27CUBE64 64 2179 51,031 70 0.588 0.381 39.0 26 26Table 6Parallel coloring results for Problem Set II, IDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�SKY1 2 3,135 1,518 59 0.226 0.417 31.5 21 23SKY2 4 3,135 3,624 65 0.408 0.408 118.2 23 24SKY4 8 3,135 7,836 65 0.572 0.420 152.2 22 24SKY8 16 3,135 16,260 65 0.584 0.412 166.8 23 25SKY16 32 3,135 33,108 65 0.582 0.410 174.1 24 25SKY32 64 3,135 66,804 65 0.583 0.408 177.4 25 26Table 7Parallel coloring results for Problem Set III, IDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�9PT1 1 2,500 0 0 0.000 0.084 0.0 0 59PT4 4 2,500 396 5 0.015 0.089 3.2 4 79PT16 16 2,500 2,364 5 0.017 0.090 5.1 5 79PT64 64 2,500 11,004 5 0.028 0.089 5.1 5 7Table 8Parallel coloring results for Problem Set IV, IDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�27PT1 1 2,197 0 0 0.000 0.183 0.0 0 1227PT8 8 2,197 3,752 19 0.124 0.179 82.4 14 1527PT64 64 2,197 43,272 19 0.270 0.176 179.9 15 1716



Table 9Parallel coloring results for Problem Set I, SDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�CUBE1 1 1701 0 0 0.000 6.167 0.0 0 18CUBE2 2 1944 486 27 0.077 7.630 6.5 14 18CUBE4 4 2091 2,136 66 0.274 7.675 20.2 24 25CUBE8 8 2126 5,436 66 0.550 7.722 28.6 24 25CUBE16 16 2157 11,975 69 0.536 7.577 36.1 25 25CUBE32 32 2172 25,004 70 0.498 7.771 37.8 27 27CUBE64 64 2179 51,031 70 0.593 7.732 39.0 26 26Table 10Parallel coloring results for Problem Set II, SDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�SKY1 2 3,135 1,518 59 0.233 6.361 31.5 21 22SKY2 4 3,135 3,624 65 0.415 6.130 118.2 23 24SKY4 8 3,135 7,836 65 0.578 6.357 152.4 22 23SKY8 16 3,135 16,260 65 0.584 6.097 166.9 23 24SKY16 32 3,135 33,108 65 0.585 6.141 174.2 24 25SKY32 64 3,135 66,804 65 0.588 6.018 177.4 24 25Table 11Parallel coloring results for Problem Set III, SDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�9PT1 1 2,500 0 0 0.000 0.364 0.0 0 49PT4 4 2,500 396 5 0.015 0.407 3.2 4 69PT16 16 2,500 2,364 5 0.025 0.405 5.1 5 79PT64 64 2,500 11,004 5 0.028 0.403 5.6 5 7Table 12Parallel coloring results for Problem Set IV, SDO used to solve local problemProblem p <n> nS �S TS TL <Nmsg> ~�S ~�27PT1 1 2,197 0 0 0.000 1.666 0.0 0 1127PT8 8 2,197 3,752 19 0.126 1.540 82.4 14 1527PT64 64 2,197 43,272 19 0.275 1.618 179.3 15 1617



Table 13Parallel coloring results for Problem Set I, p = 32Problem <n> nS �S TS TL <Nmsg> ~�S ~�CUBE1 53 1,701 71 0.061 0.003 6.4 24 26CUBE2 122 3,888 70 0.127 0.009 16.1 25 27CUBE4 258 8,217 70 0.202 0.020 32.8 25 28CUBE8 532 15,561 70 0.309 0.056 56.5 26 29CUBE16 1,078 28,842 69 0.385 0.138 82.5 28 30CUBE32 2,172 25,004 70 0.488 0.378 37.8 27 27CUBE64 4,359 25,166 70 0.573 0.853 38.7 25 27Table 14Parallel coloring results for Problem Set II, p = 32Problem <n> nS �S TS TL <Nmsg> ~�S ~�SKY1 196 6,270 64 0.128 0.011 23.0 23 25SKY2 392 11,313 65 0.212 0.043 45.7 25 26SKY4 784 18,012 65 0.396 0.081 74.3 24 25SKY8 1,568 22,716 65 0.432 0.199 104.4 24 25SKY16 3,135 33,108 65 0.582 0.410 174.1 24 25SKY32 6,270 28,272 24 0.491 0.988 106.3 21 24in the total number of colors can be obtained. However, the saturation degree or-dering heuristic is signi�cantly more expensive than the incidence degree orderingheuristic in solving the local coloring problem.In Table 13 and Table 14 we �x the number of processors at 32 and examinethe e�ect on the performance of the heuristic by varying the number of nonzerosper processor. For these results we use the IDO heuristic to solve the local coloringproblem.Overall, the number of colors required is relatively constant, even though thepercentage of the vertices in GS varies dramatically. To some extent this e�ect canbe explained by noting that even though the relative size of GS is increasing, thelocal structure of the separators is essentially the same, since the separators arisefrom physical partitions of a regular domain. In Table 14, when the relative size ofGS does became small enough to allow �S to decrease, the number of colors usedto color GS , ~�S, decreased. Finally, we note the good performance of the heuristic,both in terms of the number of colors used and execution time, as the size of thelocal problems becomes quite small.6. Concluding Remarks. We have presented a new parallel graph color-ing heuristic well suited to distributed memory computers. Experimental resultsdemonstrate that this heuristic is scalable and that it produces colorings usually18



requiring no more than three or four more colors than the best-known linear timesequential heuristics. We have also shown that under the P-RAM computationalmodel, this heuristic has a expected run time bounded by EO(log(n)= log log(n)).This parallel heuristic takes full advantage of locality in the generation of thegraph. For example, if the graph is generated by the assembly of a structures modelor obtained from the spatial decomposition of a physical model, the asynchronousrandom phase of the heuristic can e�ciently color the global separator. After theseparator is colored, the remaining problem decomposes into independent localcoloring problems. The only constraint on these local colorings is that they beconsistent with the coloring determined for the separator. Thus, any sequentialheuristic can be used to solve each of these local coloring problems simultaneously.For many problems a physical partition can be used to generate a good vertexto processor assignment. When the determination of a partition is not straightfor-ward, a partitioning heuristic would have to be used. For example, recent advancesin the automatic partitioning of three dimensional domains [11] or in spectral dis-section methods [9] could be employed. We note that a partitioning that maintainslocality is advantageous, although not essential, to the performance of the parallelheuristic. The heuristic requires only that the number of vertices assigned perprocessor allow for good load balancing.An interesting observation is that even if the coloring obtained for the sep-arator uses more colors than a good sequential heuristic, the separator subgraphis usually sparser than the entire graph. Thus, when coloring the denser localsubgraphs, some of the di�erence between the parallel and sequential heuristics inthe number of colors used for the separator subgraph can be o�set by the use of agood sequential heuristic to color the remaining local subgraphs.Finally, motivated by the following observation, we note a possible avenue forimproving the heuristic. When one observes the distribution of colors producedby the heuristic, one often sees very few vertices using the highest colors. Forexample, when coloring the graph 27PT8 on 8 processors, the results in Table 12show that 15 colors were required by the parallel algorithm, but only 12 by thesequential algorithm. However, the number of vertices using the colors 15, 14, and13 were 2, 12, and 70, respectively. An interesting topic for further research mightbe the introduction of a postprocessing step that would attempt to recolor thesefew vertices with lower color values, and thus decrease the total number of colorsused.Acknowledgment. We thank Tim Kiemel for help in the probabilistic analysis ofthe expected maximum length monotone path, and John Gilbert for bringing thepaper by Michael Luby to our attention. We also thank the referees for detailedand helpful comments. 19



REFERENCES[1] B. Bollob�as, Graph Theory, Springer-Verlag, New York, 1979.[2] D. Br�elaz, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251{256.[3] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graphcoloring problems, SIAM Journal on Numerical Analysis, 20 (1983), pp. 187{209.[4] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, NewYork, 1979.[5] J. L. Gustafson, G. R. Montry, and R. E. Benner, Development of parallel methodsfor a 1024-processor hypercube, SIAM Journal on Scienti�c and Statistical Computing,9 (1988), pp. 609{638.[6] D. S. Johnson, Worst case behavior of graph coloring algorithms, in Proceedings 5thSoutheastern Conference on Combinatorics, Graph Theory, and Computing, UtilitasMathematica Publishing, Winnipeg, 1974, pp. 513{527.[7] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems,Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill., 1991.[8] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAMJournal on Computing, 4 (1986), pp. 1036{1053.[9] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectorsof graphs, SIAM Journal on Matrix Analysis, 11 (1990), pp. 430{452.[10] R. Schreiber and W.-P. Tang, Vectorizing the conjugate gradient method. Unpublishedmanuscript, Department of Computer Science, Stanford University, 1982.[11] S. Vavasis, Automatic domain partitioning in three dimensions, SIAM Journal on Scienti�cand Statistical Computing, 12 (1991), pp. 950{970.

20


