ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

A PARALLEL GRAPH COLORING HEURISTIC*

Mark T. Jones and Paul E. Plassmann

Mathematics and Computer Science Division
Preprint MCS-P246-0691
June 1991
(Revised February 1992)

ABSTRACT

The problem of computing good graph colorings arises in many diverse applica-
tions, such as in the estimation of sparse Jacobians and in the development of
efficient, parallel iterative methods for solving sparse linear systems. In this pa-
per we present an asynchronous graph coloring heuristic well suited to distributed
memory parallel computers. We present experimental results obtained on an Intel
iPSC/860 which demonstrate that, for graphs arising from finite element applica-
tions, the heuristic exhibits scalable performance and generates colorings usually
within three or four colors of the best-known linear time sequential heuristics. For
bounded degree graphs, we show that the expected running time of the heuristic
under the P-RAM computation model is bounded by EO(log(n)/loglog(n)). This
bound is an improvement over the previously known best upper bound for the
expected running time of a random heuristic for the graph coloring problem.

Key words: distributed memory computers, graph coloring heuristics, parallel
algorithms, random algorithms, sparse matrices

AMS(MOS) subject classifications: 65F10, 65F50, 65Y05, 68Q22, 68R10

* This work was supported by the Applied Mathematical Sciences subprogram of
the Office of Energy Research, U.S. Department of Energy, under Contract W-31-
109-Eng-38.

1. Introduction. The determination of the chromatic number of a general
graph is a well-known NP-hard problem [4]. However, a number of practical prob-
lems require the determination of nearly optimal graph colorings. For example, it
has been shown [3] that the problem of directly estimating a sparse Jacobian by
finite differences with a minimum number of function evaluations is equivalent to
a graph coloring problem. Also, it has been shown [10] that the minimum num-
ber of parallel steps in the solution of the triangular systems involving incomplete
Cholesky factors can be obtained by a matrix reordering derived from the solu-
tion of a graph coloring problem. Thus, the development of an effective parallel
heuristic is of great practical, as well as theoretical, interest.

In this paper we present an asynchronous graph coloring heuristic well suited
to distributed memory parallel computers. Our heuristic consists of two phases:
an initial, parallel phase that uses a random heuristic, followed by a local phase
that utilizes one of several good sequential coloring heuristics. The initial phase
maintains the good expected running time bounds obtained for a Monte Carlo al-
gorithm for determining a maximal independent set [8]. In fact, for bounded degree
graphs, we show that an upper bound for the expected running time of our heuris-
tic under the P-RAM computation model is FO(log(n)/loglog(n)). This bound
is an improvement over the previously known best upper bound of EO(log(n)) for
a random heuristic.

To illustrate the performance of this heuristic, we present experimental results
obtained on an Intel iPSC/860. The results demonstrate that, for graphs arising
from finite element applications, the heuristic exhibits scalable performance. In
addition, for these problems the heuristic is shown to generate colorings usually
using no more than three or four more colors than the best linear time sequential
heuristics.

This paper is organized as follows. In §2 we introduce a new Monte Carlo
heuristic that eliminates the need for global synchronization of the processors and
allows for the more efficient use of data structures. We prove, in §3, that under
the P-RAM computational model the expected running time of the asynchronous
heuristic affords an improvement over the upper bound for a Monte Carlo algorithm
based on finding maximal independent sets. A distributed memory implementation
of the asynchronous heuristic is detailed in §4. In §5 we present and discuss
experimental results obtained on the iPSC/860. Finally, in §6 we discuss possible
avenues for improving the heuristic.

2. An Asynchronous Parallel Graph Coloring Heuristic. In this sec-
tion we introduce a graph coloring heuristic suitable for asynchronous parallel
machines. First we review the graph coloring problem. Consider the symmetric
graph GG = (V, E) with vertex set V, with |V| = n, and edge set £. We say that
the function o : V' — {1,...,s} is an s-coloring of G, if o(v) # o(w) for all edges
(v,w) € E. The minimum possible value for s is known as the chromatic number

1

of G, which we denote as y(G).

The question as to whether a general graph G is s-colorable is NP-complete
[4]. It is known that unless P = NP, there does not exist a polynomial ap-
proximation scheme for solving the graph coloring problem [4]. In fact, the best
polynomial time heuristic known [6] can theoretically guarantee a coloring of only
size ¢(n/logn) x(G), where ¢ is some constant.

Given these pessimistic theoretical results, it is quite surprising that, for cer-
tain classes of graphs, there exist a number of sequential graph coloring heuristics
that are very effective in practice. For graphs arising from a number of applica-
tions, it has been demonstrated that these heuristics are often able to find colorings
that are within one or two of an optimal coloring [3, 7].

ViV,

For:=1,...,n do
Choose a vertex v; from V'
o(v;) = smallest available consistent color;
V=V \ {ul;

enddo

Fic. 1. A sequential greedy coloring heuristic

It is known that an optimal coloring can be obtained with a greedy heuristic
if the vertices are visited in the correct order [1]. The basic structure of the greedy
heuristic is shown in Figure 1. The only aspect of the sequential heuristic that must
be specified is the rule for choosing the vertex v;. Many strategies for obtaining
this vertex ordering have been proposed. One of the most effective heuristics is
the saturation degree ordering (SDO) suggested by Brélaz [2]. The SDO vertex
ordering is defined as follows. Suppose that vertices vy, ..., v;_; have been chosen
and colored. Vertex v; is chosen to be a vertex adjacent to the maximum number
of different colors in the vertex set {vq,...,v;_1}. Note that this heuristic can
be implemented to run in time proportional to Y,¢y deg®(v), where deg(v) is the
degree of vertex v.

A modification of the SDO heuristic is the incidence degree ordering (IDO)
introduced by Coleman and Moré in their work [3] on using coloring heuristics
to obtain consistent partitions for sparse Jacobian estimation. The IDO vertex
ordering has the advantage that its running time is a linear function of the number
of edges. To describe the IDO heuristic, we again suppose that vertices vy, ..., v,
have been chosen. Vertex v; is chosen to be a vertex whose degree is a maximum
in the subgraph of (¢ induced by the vertex set {vy,...,v;,_1} U{v;}. This heuristic
can be implemented to run in time proportional to Y°,cy deg(v), or O(|E]) time.

2

Unfortunately, these heuristics are essentially breadth-first searches of the
graph and, as such, do not represent scalable, parallel heuristics. To do better, one
notes that if the vertices v and w are not adjacent in (¢ (i.e., are independent in (7),
then these vertices can be colored in parallel. Thus, a heuristic for determining an
independent set in parallel could be adapted to a parallel coloring heuristic. This
observation motivates the parallel coloring heuristic shown in Figure 2.

Vi —V;

While V' # () do
Choose an independent set I from V';
Color [in parallel;
Vi VI

enddo

Fia. 2. Outline of a parallel coloring heuristic

The problem of determining an independent set in parallel has been the focus
of much theoretical research. An approach that has been successfully analyzed is
to determine an independent set, I, based on the following Monte Carlo rule. Here
we denote the set of vertices adjacent to vertex v by adj(v).

1. For each vertex v € V' determine a distinct, random number p(v).
22.vel & p(v) > plw), Yw € adj(v).

In the Monte Carlo algorithm described by Luby [8], this initial independent set is
augmented to obtain a maximal independent set. The approach is the following.
After the initial independent set is found, the set of vertices adjacent to a vertex in
I, the neighbor set N([), is determined. The union of these two sets is deleted from
V', the subgraph induced by this smaller set is constructed, and the Monte Carlo
step is used to choose an augmenting independent set. This process is repeated
until the candidate vertex set is empty and a maximal independent set (MIS) is
obtained. The complete Monte Carlo algorithm suggested by Luby for generating
an MIS is shown in Figure 3. In this figure we denote by G(V"') the subgraph of
induced by the vertex set V'. Luby shows that an upper bound for the expected
time to compute an MIS by this algorithm on a CRCW P-RAM is FO(log(n)). The
algorithm can be adapted to a graph coloring heuristic by using it to determine a
sequence of distinct maximal independent sets and by coloring each MIS a different
color. Thus, this approach will solve the (A + 1) vertex coloring problem, where
A is the maximum degree of (&, in expected time EO((A + 1)log(n)).

A major deficiency of this approach on currently available parallel computers
is that each new choice of random numbers in the MIS algorithm requires a global
synchronization of the processors. A second problem is that each new choice of

3

I« {;
Vi —V;
G — G;
While ¢’ # () do
Choose an independent set I in G
I—1Ul
X — I'UNU";
Vi VX
G — GV
enddo

Fia. 3. Luby’s Monte Carlo algorithm for determining a mazimal independent set

random numbers incurs a great deal of computational overhead, because the data
structures associated with the random numbers must be recomputed. In Figure 4
we present an asynchronous heuristic that avoids both of these drawbacks. The
heuristic is written assuming that each vertex v is assigned to a different processor
and the processors communicate by passing messages.

With the asynchronous heuristic the first drawback (global synchronization)
is eliminated by choosing the independent random numbers only at the start of
the heuristic. With this modification, the interprocessor communication can pro-
ceed asynchronously once these numbers are determined. The second drawback
(computational overhead) is alleviated because with this heuristic, once a proces-
sor knows the values of the random numbers of the vertices to which it is adjacent,
the number of messages it needs to wait for can be computed and stored. Like-
wise, each processor computes only once the processors to which it needs to send a
message once its vertex is colored. Finally, note that this heuristic has more of the
“flavor” of the sequential heuristic, since we choose the smallest color consistent
with the adjacent vertices previously colored.

One should be concerned that the expected running time of this heuristic is
comparable to the expected running time of the heuristic based on the MIS Monte
Carlo algorithm. In the next section we show that under the P-RAM computational
model, one is able to obtain an improvement over the upper bound for the expected
running time of the MIS algorithm.

3. Expected Running Time of the Asynchronous Heuristic. In this
section we derive an upper bound for the expected running time of the heuristic
presented in Figure 4 under the P-RAM computational model. Most of the prac-
tical problems we are concerned with are generated from local, physical models.
Thus, the maximum degree of the associated graphs is independent of the size of

4

Choose p(v);
n-wait = 0;
send-queue = (;
For each w € adj(v) do
Send p(v) to processor responsible for w;
Receive p(w);
if (p(w) > p(v)) then n-wait = n-wait + 1;
else send-queue «— send-queue U {w};
enddo
n-recv = 0;
While (n-recv < n-wait) do
Receive o(w);
n-recv = n-recv + 1;
enddo
o(v) = smallest available color consistent with the
previously colored neighbors of v;
For each w € send-queue do
Send o(v) to processor responsible for w;

enddo

Fig. 4. An asynchronous parallel coloring heuristic

the system. It is reasonable, therefore, to consider the model problem of a graph
G with n vertices and bounded degree A. Since we assume that A is bounded, the
previous work by Luby [8] shows that a random heuristic for the (A + 1) vertex
coloring problem can be accomplished on the P-RAM model in £O(log(n)) time.
As discussed above, this heuristic is based on a synchronous random algorithm for
determining a sequence of maximal independent sets.

To analyze the running time of our heuristic, we make the following observa-
tions. First, for the sake of comparison, we note that this heuristic can also be
considered to be synchronous. Second, we assume that each vertex v € V' chooses
a unique independent random number p(v). Define a monotonic path of length ¢ to
be a path of ¢ vertices {vy,vq,...,v:} in G such that p(v1) > p(ve) > ... > p(vy).
We have the following lemma.

LEmMMA 3.1. The running time of the P-RAM version of the asynchronous
heuristic is proportional to the mazimum length monotonic path in G.

Proof: We assume that the asynchronous heuristic can be made synchronous
by including a global synchronization point in the receive and send loops (i.e.,
all processors that have messages to send, send them; all available messages are

5

received; and then the processors synchronize). Since each vertex has degree at
most A, the number of messages to be received and sent by each processor is
bounded by this constant. Under the P-RAM computational model we can assume
that messages are sent between processors in constant time. Thus, the running
time of the heuristic is proportional to the number of these synchronized steps.

It is clear that the number of steps is at least as long as the longest monotonic
path in (. If the number of steps were longer, there would exist some step where
the random number of a processor was greater than all its neighbors, yet for some
reason it did not send its messages. Hence, we have that the running time of the
heuristic is proportional to the maximum length monotonic path. O

To analyze the expected running time of the heuristic, we need to construct an
upper bound to the probability of the existence of a monotonic path. We construct
this bound in two parts, first by finding a bound on the number of paths of length
t, and then by determining the probability that a path is monotonic. The following
lemma gives a bound on the number of paths of length ¢ in the graph G.

LEMMA 3.2. The number, n(t), of different paths in G' of length t is bounded
by
(3.1) n(t) < nA(A —1)72

Proof: This bound can be obtained by induction. For ¢ = 2, the number of paths
is at most nA. Now suppose the lemma holds for paths of length ¢ — 1. Consider
some vertex v and all paths of length ¢ — 1 starting from this vertex. Each of these
paths ends at some vertex w. Because an extension of this path cannot return
along the edge it used to get to w, there are at most A — 1 ways to extend this
path. Multiplying the bound for the number of paths of length t — 1 by A — 1
yields the desired result. O

Let X be the random variable equal to the maximum length monotonic path
in (. Since the random numbers assigned to the vertices are independent, the
probability that a path of length ¢ is monotonic is (1/t!). Let P{X = t} be
the probability that the maximum length monotonic path is . This probability
is bounded by the probability that there exists a monotonic path of length t¢.
Including the bound given in Lemma 3.2, we find

(3.2) P{X =1t} < @
nA(A — 1)72
< (.)

THEOREM 3.3. The expected value of the mazimum length monotonic path,
EX, is bounded by
(3.3) EX <T+(A-1"
6

for any K, where T is the minimum integer satisfying

(3.4) T > nAA = 1)TE T exp(A —1) .

Proof: The expected value of X is given by

(3.5) EX = Zn:tP{X =1}

t=2

For any integer T' > 2 we have that

(3.6) EX <T+ znj tP{X =1} .

t=T+1
Thus, we can include the bound on the probability given in equation (3.2) to obtain

o] _ t—2
(3.7) EX < T+ Z tw

7
t=T+1
DA E(A—1)
<7
S T+a-pX

nA (:A — T
(A-1) 1!

< T+ exp(A—1) .

It we choose T' to be the minimum integer such that

(3.8) TV > nAA — DI exp(A - 1),

we have that the expected maximum length monotonic path is bounded by
(3.9) EX <T+(A-1".

a

As a corollary, we are able to achieve a bound in terms of n for the expected
running time of this algorithm. To prove this corollary, we require the following
short lemma.

LEMMA 3.4. The inequality
! r °
(3.10) = > \ors (M)

holds forr > s > 1.

Proof: First, we recall the Gamma function identity
(3.11) rl=rT(r)
and the formula

o(z)

(3.12) I'(x) =V27 175 7% 17

which holds for # > 1 and for 0 < #(x) < 1. For r > 1, we compute the lower
bound

(3.13) T(r) > ﬁ (g)

by setting § = 0 in equation 3.12. Thus, we have the bound
! r
(3.14) = > \Vorr (i) .
s" se

We set § = 1 in equation 3.12 to obtain an upper bound for the Gamma function
and assume that r > s> 1. We let r’ = r/s and find

))

(3.15) V2rr (L) N
L 2r (7 !
= V2rr|enz —,(—) e 124 —
r e 27

27

V278

Se

Y

Y

Combining equations 3.14 and 3.15, we obtain the desired bound

(3.16) :_'Z\/%(er_%%) . 0O

The Gamma function is not monotonic for x > 1. However, it is monotonic
for slightly larger =, for example, @ > 3/2. To avoid this lack of uniqueness, we
define the function I'*(y) = max{z |['(z) = y }, which is well defined for y > 1.
We now prove the following corollary to Theorem 3.3.

8

COROLLARY 3.5. For A > 2, the expected number of steps, EX, for the
random heuristic is bounded by

1
13

(3.17) EX<(A-1T* (7 €12 (WA—U) E) +2.

Proof: Choosing K = 0 in Theorem 3.3 and subtracting one from T in equa-
tion 3.4, we have the following inequality:

(T —1)! nA

(3.18) TN IR Ty

exp(A—1).

We assume that (T'—1) > (A — 1) > 1, and by Lemma 3.4 we have

_L

(3.19) J2r(A = 1) (i/gr (i:i)) < H .

Combining the bounds in equations 3.18 and 3.19, we obtain

(3.20) F(T_1)< 5 —(na)ﬁ
. S E— TerR | ———— .
A-1)7 V2r (A=1)2

Using the asymptotic inverse to the Gamma function defined above, we obtain the

bound

13

(3.21) rT-1<(A-pre (Irets (WA—U)A_) .

Because we have chosen K = 0, by Theorem 3.3 we have that £X < T + 1. Thus,
consistent with our original assumption that 7' > A, we have the desired bound

for KX,

(3.22) EX<(A-1Tt (2mel?/1? (WA—U) m) +2. 0

By using the lower bound for the Gamma function obtained by choosing
f(x) = 0 in equation 3.12 we note that, for fixed A, this bound is asymptoti-
cally EFO(log(n)/loglog(n)). This bound is an improvement over the £O(log(n))
upper bound obtained by Luby [8].

The bound given in Theorem 3.3 yields a surprisingly close fit to what we
have observed in practice. In Figure 5 we compare the bound for KX with our
experimental results for regular graphs of degree 4. In the plot the open circles are

9

20 N ° *
°
[] i e
15 n ° i (0]
Number ° °
of ©
. o)
Steps 10 o
5 -
0 T T T T T T
2 3 4) 6 7
log;o(n)
Fi1Gc. 5. Bound obtained by choosing K = —1 for the expected value (o) versus experimental

average (o) for regular, A =4, graphs

the observed average number of steps for the asynchronous heuristic as a function
of the base 10 logarithm of n. The closed circles are obtained from the bound
given in Theorem 3.3 where we have chosen K = —1. The points are obtained by
choosing a value for T" and then solving equation 3.4 for the largest n that satisfies
the inequality.

As a final note, we emphasize that, although the heuristics described above
have a random component, their behavior in practice is essentially deterministic.
In the above analysis, note that the probability that there exists a monotonic path
of length greater than ¢t asymptotically decays faster than exponentially. Thus, the
bounds on the expected running time hold with very high probability. In addition,
Luby [8] gives a prescription for converting his Monte Carlo MIS algorithm into
a deterministic algorithm with the same running time. Hence, these heuristics
are fundamentally different from those based on simulated annealing. Although
the simulated annealing algorithms can be shown to ultimately obtain optimal
solutions, running time bounds comparable to those above do not exist.

4. A Medium Grain Heuristic for Distributed Memory Computers.
Our primary interest is the development of a heuristic suitable for distributed
memory computers. In this section we describe how the asynchronous Monte Carlo
heuristic presented in the preceding section can be combined with the heuristics
that have been successful on sequential machines. Using this approach, in the
next section we experimentally demonstrate that for certain classes of problems
the performance is scalable.

Consider a distributed memory computer with p processors. We assume that
the vertices of the graph G = (V, E) are partitioned across these processors by
the sets {Vi,...,V,}. Let the function = : V. — {1,...,p} return the number of
the partition, or processor, to which each vertex is assigned. We define the edge

10

separator E° to be the set of edges E® C F where the edge (v,w) € E° & 7(v) #
7(w). In addition, we define the set of global vertices to be the vertex set V*,
where a vertex is in this set if and only if the vertex is an endpoint for some edge
in /. Let the set of local vertices, VL, be the set V '\ V°. Finally, denote by V:°
and VZ»L the vertex sets VSNV, and VN V.

The following theorem shows that it is possible to decompose the asynchronous
heuristic into two parts, the first part to color the global vertices, and the second
part to color the local vertices. We show that the vertex labeling obtained by
piecing together these colorings is a coloring for (G. In this theorem we denote the
subgraph of G induced by the vertex set V; by G(V;).

THEOREM 4.1. Let o5 be a coloring for G(V?). This coloring, restricted to
Vi3, can be independently extended to a coloring o; for the subgraph G(V;). If we

K3

define the function o by o(v) = o;(v) where v € V;, then o is a coloring for G.

Proof: Consider the vertices V; on processor . We assume that vertices V° are
consistently colored when the random heuristic colors G(V*). Thus, only the
vertices V' remain to be colored on this processor. By definition, the vertices Vi
can be connected only to vertices in V;. Because V:* has been colored, the vertices
VX may be colored independently from any other vertices in V. By the same

observation, we note that if the coloring chosen for each V% is consistent for G/(V;),
then these colorings combine to form a consistent coloring for the entire graph. O

From Theorem 4.1, we observe that the parallel graph coloring problem can
be accomplished in two phases:

1. Color G(V?®) using the asynchronous Monte Carlo heuristic.
2. On processor i, color G(ViF) given os5(V:®) using a sequential heuristic.

A subtle point is that we need the Monte Carlo algorithm to generate independent
sets in the graph Gs = (V®, E9), not the graph G(V?®). Note that (s is a sparser
graph than G(V*), since (s does not contain edges (v, w) where v,w € V* but
7(v) = m(w). Such edges are included in G(V*). We use the notation Ag = A(Gs)
and ns = |V®]. Thus, we have As < A(G(V?)), and the bounds detailed in
Theorem 3.3 depend on the values of Ag and ng.

In Figure 6 we outline the complete distributed heuristic to be executed by the
t-th processor. The heuristic calls two procedures: Seg-color and Pack-and-send.
Given a partial coloring of vertices stored in the array o and a list queue of local
vertices to be colored, Seq-color(o, queue) colors these vertices with a sequential
heuristic (such as the IDO heuristic discussed earlier). The procedure Pack-and-
send sends the vertices in queue and their colors ¢ to nonlocal, adjacent vertices
on other processors with lower random numbers. For vertex v this set is stored in
the array send-queue(v) which is initialized at the beginning of the heuristic.

The ability to pack vertex information into messages allows for the optimiza-
tion of interprocessor communication. For example, messages sent between pro-

11

Determine V.°, Vi; {Partition vertices}
color-queue = ();
For cach v € V" do {Set up queues for separator vertices}
n-wait (v) = 0;
send-queue (v) = {J;
For cach edge (v,w) € E° do
Compute p(w);
if (p(w) > p(v)) then n-wait(v) = n-wait(v) 4 1;
else send-queue (v) «— send-queue (v) U {w};
enddo
if (n-wait (v) = 0) then
color-queue «— color-queue U {v};
enddo
Seq-color (o, color-queue); {Color any vertices in V;* not}
n-colored = | color-queue |; {waiting for messages}
Pack-and-send (o, color-queue, send-queue);
color-queue = ();
While (n-colored < |V°]) do
Receive msg;
For each w € msg.vertez-list do
o(w) = msg.vertex-color,
For each v € msg.vertex-ady do
n-wait (v) = n-wait(v) —1;
if (n-wait (v) = 0) then
color-queue «— color-queue U {v};

enddo
enddo
Seq-color (o, color-queue); {Color subsets of V.* once required}
n-colored = n-colored 4 | color-queue|; {messages are received}

Pack-and-send (o,color-queue, send-queue);
color-queue = ();

enddo

Seq-color (o, ViF); {Color local vertices last }

K3

Fia. 6. A distributed memory parallel coloring heuristic for the i-th processor

12

cessors can be packed to overcome the high message startup cost on machines like
the Intel iPSC/860. The data structure msg that a processor receives contains
a packed list of vertices, their colors, and the vertices assigned to the receiving
processor to which they are adjacent. As before, the number of nonlocal vertices
that must be colored before vertex v is computed at the beginning of the heuristic
and stored in n-wait (v).

One last optimization to note is that if the pseudo-random number generator
used to determine p(v) depends only on the vertex number, then these values do
not need to be sent between processors. Instead, each processor can determine
these values locally, and the overhead involved with this interprocessor communi-
cation can be avoided. This optimization is included in the initialization section

of Figure 6.

5. Experimental Results. We have implemented the heuristic described in
Figure 6 in the C programming language on a 64-node Intel iPSC/860. In this
section we present results obtained with this implementation. One of our main
objectives is to demonstrate the scalability of this heuristic consistent with the
definition given in [5]. Thus, we would like to show that, for a fixed number of
vertices per processor, the running time of the heuristic is only a slowly increasing
function of the number of processors used.!

To achieve this objective, we have chosen test problems whose size can be
easily scaled and are also representative of problems encountered in applications.
The problems we consider are generated from finite element models of structures
and from finite difference schemes for two and three dimensional regular domains.

We consider two sets of structures problems; both are modeled by using three-
dimensional, hexagonal linear elements, where the nonzero structure of the result-
ing assembled sparse system is used as a test matrix. The problems in Problem
Set I are obtained from a model of a long rectangular beam of varying lengths,
seven by seven finite elements thick, with the degrees of freedom constrained at
both ends. The problems in the Problem Set II are generated from a model of a
multistoried building of varying heights with constraints applied by elimination of
the bottom layer of vertices.

For these two problem sets the vertex to processor assignment was made by
assigning to each processor contiguously numbered blocks of columns based on an
initial numbering. These blocks consist of n/p columns, where n is the order of the
matrix and p is the number of processors. The initial numbering of the columns is
chosen such that nearby nodes in the finite element models are generally close in
number. Thus, this matrix partition scheme roughly corresponded to a physical
partition.

! In our case, the running time will increase with problem size according to the slowly growing
function given in Theorem 3.3.

13

TABLE 1
Problem Set I

Problem ‘ n m ‘ A ‘ X1DO ‘ XsSDo ‘

CUBEL 1,701 | 46,623 | 72| 21 | 18
CUBE2 3,888 | 113,304 |72| 20 | 18
CUBE4 8,262 | 246,666 | 72| 20 | 19
CUBES | 17,010 | 513,390 | 72| 21 | 19
CUBEL6 | 34,506 | 1,046,838 | 72 | 21 | 19
CUBE32 | 69,498 | 2,113,734 |72 | 21 | 19
CUBEG4 | 139,482 | 4,247,526 | 72 | 21 | 19

TABLE 2
Problem Set 11

Problem ‘ n m ‘ A ‘ X1DO ‘ XSDO ‘

SKY1 6,270 | 145554 |75] 19 | 19
SKY?2 12,540 | 298,751 | 76 | 21 | 20
SKY4 25,080 | 605,145 |76 | 21 | 21
SKYS 50,160 | 1,217,933 [76 | 21 | 21
SKY16 | 100,320 | 2,443,509 | 76 | 21 | 21
SKY32 | 200,640 | 4,804,661 | 76 | 22 | 22

In Table 1 and Table 2 we show the sizes of the problems contained in these
two sets. The number of vertices in the graphs is listed in column labeled n,
the number of edges is listed under m, and the maximum degree of the graph is
shown under A. The number of colors used by a sequential implementation of
the incidence degree ordering (IDO) heuristic and the saturation degree ordering
(SDO) heuristic is given in the columns labeled by yipo and xspo.

We also consider two sets of problems arising from standard finite differencing
schemes for regular domains. In Table 3 we show the sizes of the test problems
generated for the nine point stencil on a square, two dimensional domain. For
these problems the domain is partioned into subsquares of equal size, resulting in
equal numbers of vertices being assigned to each processor. To keep the aspect
ratio of the subsquares the same as the problem is scaled, we change the size of
the problems by a factor of four as the problem is scaled. In Table 4 we show the
sizes of the test problems generated for the twenty-seven point stencil on a cubic,
three dimensional domain. Again, equal numbers of vertices are assigned to each
processor because the domain is partioned into subcubes of equal size. For these
problems the problem size increases by a factor of eight as the problem is scaled.

Scaling results obtained for Problem Sets I through IV are shown in Table 5
to Table 8. For the results presented in these four tables, the partitioning ensures

14

TABLE 3
Problem Set IIT

Problem n m ‘ A ‘ X1DO ‘ XSDO ‘
9PT1 2,500 19,404 | 8 5 4
9PT4 10,000 78,804

8| 5 4
OPT16 | 40,000 | 317,604 |8 | 5 4
OPT64 | 160,000 | 1,275,204 | 8 | 5 4

TABLE 4
Problem Set IV

‘ Problem ‘ n ‘ m ‘ A ‘ XIDO ‘ XSDO ‘
27PT1 2,197 48,456 | 26 | 12 11
27PT8 17,576 | 421,400 | 26 | 12 12
27PT64 | 140,608 | 3,511,656 | 26 | 13 12

that the average number of vertices per processor, < n >, is essentially constant.
The number of processors used is listed in the column labeled p. The number of
vertices and maximum degree of (g are given under ng and Ag, respectively. The
maximum time in seconds used by a processor in coloring G's is given under T.
T7, is the maximum time in seconds used by a processor to solve its local coloring
problem. The average number of messages sent by the processors is listed under
< N >. Also shown are xg, the number of colors used in coloring (s, and Yy,
the number of colors used to color the entire graph. For these results the IDO
heuristic is used to solve the local coloring problems.

Note that although we used the incidence degree heuristic to solve the local
coloring problem, for GGy, for the results presented in Tables 5 through 8, one could
also employ the more expensive saturation degree heuristic. Recall that the SDO
heuristic requires the colors used to color adjacent vertices to compute the satu-
ration degree of each vertex. This information has already been communicated to
each processor prior to the coloring of (G ; therefore, the SDO heuristic can be used
to color G, without necessitating any additional interprocessor communication. In
Table 9 through Table 12 we present the results for the parallel heuristic modified
in this manner.

The results shown in Table 5 through Table 12 demonstrate the scalable per-
formance of the heuristic: for a fixed number of nonzeros per processor, the time
required by the global and local phases is essentially constant [5]. Note that as the
size of Gig increases, the average number of messages sent per processor gradually
increases. By maintaining a reasonable average message size, the high communi-
cation overhead on the iPSC/860 can be partially amortized. Also, note that by
using the SDO heuristic to solve the local coloring problem, a slight improvement

15

TABLE b
Parallel coloring results for Problem Set I, IDO used to solve local problem

| Problem [p [<n>[ns [As| Ts | To | <Nus>|Xs]| ¥ |
CUBEL [1 [1701 [© 0 [0.000]0.330] 0.0 0 [21
CUBE2 | 2 [1944 [486 | 27 | 0.076 [0.368 | 65 [1421
CUBE4 [4 [2091 [2,136 [66 | 0273 [0.379 [202 |24 [26
CUBES [8 [2126 [5436 [66 | 0.541 [0.376 [28.6 | 24 [25
CUBEL6 | 16 | 2157 [11,975 [69 | 0.531 [0.375 [36.1 | 25 | 26
CUBE32 | 32 [2172 [25,004 | 70 [0.488 | 0.378 | 37.8 |27 | 27
CUBE64 | 64 | 2179 [51,031 [70 | 0.588 [0.381 [39.0 |26 | 26

TABLE 6
Parallel coloring results for Problem Set 11, IDO used to solve local problem

| Problem | p [<n>] ns [As| Ts | T [<Nug>|xs]| v]
SKY1 2 [3,135] 1,518 [59 [0.226 [0.417 | 31.5 [21]23
SKY?2 413,135 3,624 | 65 [0.408 [0.408 | 1182 |23 |24
SKY4 8 [3,135] 7,836 | 65 | 0.572]0.420 | 152.2 |22 |24
SKYS |16 [3,135 | 16,260 | 65 | 0.584 | 0.412 | 166.8 | 23 | 25
SKY16 |32 3,135 | 33,108 | 65 [0.582 | 0.410 | 174.1 |24 |25
SKY32 |64 3,135 | 66,804 | 65 | 0.583 | 0.408 | 177.4 |25 | 26

TABLE 7
Parallel coloring results for Problem Set I1I, IDO used to solve local problem

Problem‘p‘<n>‘ ns ‘As‘ T's ‘ 17, ‘<Nmsg>‘>~(s‘>z‘

9PT1 1 1 2,500 0 0 | 0.000 | 0.084 0.0 015

9PT4 4 | 2,500 396 5 | 0.015 | 0.089 3.2 4 |7

9PT16 16 | 2,500 | 2,364 5 10.017 | 0.090 5.1 5 |7

9PT64 64 | 2,500 | 11,004 | 5 | 0.028 | 0.089 5.1 5 |7
TABLE &8

Parallel coloring results for Problem Set IV, IDO used to solve local problem

Problem | p [<n>] ns [As|[Ts | TL | <Nug>|Xs| X |
27PTL [1 [2197] 0 0 [0.0000.183] 0.0 0 [12
27PT8 |8 | 2,197 | 3,752 [19 [0.024 | 0179 | 824 |14 |15
27PT64 | 64 | 2,197 [43272 | 19 [0.270 [0.176 | 179.9 |15 | 17

16

TABLE 9
Parallel coloring results for Problem Set I, SDO used to solve local problem

| Problem [p [<n>[ns [As| Ts | To | <Nus>|Xs]| ¥ |
CUBEL [1 [1701 [© 0 [0.0006.167] 0.0 0 [18
CUBE2 [2 [1944 [486 [27 [0.077 7630 65 |14 [18
CUBE4 | 4 [2091 [2,136 | 66 | 0.274 [7.675 | 202 [24[25
CUBES [8 [2126 [5436 [66 | 0.550 [7.722 [28.6 |24 |25
CUBEL6 | 16 | 2157 [11,975 [69 | 0.536 | 7.577 [36.1 | 25 | 25
CUBE32 | 32 [2172 [25,004 | 70 [0.498 | 7.771 | 378 |27 | 27
CUBE64 | 64 | 2179 [51,031 [70 [0.593 [7.732 [39.0 |26 | 26

TaBLE 10
Parallel coloring results for Problem Set II, SDO used to solve local problem

| Problem | p [<n>| ns [As| Ts | Tp [<Numg>]|Xs| X |
SKYL [2[3,135] 1,518 [59 [0.233[6.361 [315 [21 |22
SKY2 [4 [3,135] 3,624 [65 [0.415|6.130 | 1182 [23 |24
SKY4 |8 |3,135]| 7,836 | 65 | 0578 | 6.357 | 1524 |22 |23
SKY8 |16 | 3,135 | 16,260 | 65 | 0.584 | 6.097 | 166.9 |23 |24
SKY16 |32 3,135 33,108 | 65 | 0.585 | 6.141 | 1742 |24 |25
SKY32 |64 3,135 66,804 | 65 | 0.588 | 6.018 | 1774 |24 |25

TABLE 11
Parallel coloring results for Problem Set III, SDO used to solve local problem

Problem‘p‘<n>‘ ns ‘As‘ T's ‘ 17, ‘<Nmsg>‘>~(s‘>z‘

9PT1 1 1 2,500 0 0 | 0.000 | 0.364 0.0 0 |4

9PT4 4 | 2,500 396 5 10.015 | 0.407 3.2 4 16

9PT16 16 | 2,500 | 2,364 5 1 0.025 | 0.405 5.1 5 |7

9PT64 64 | 2,500 | 11,004 | 5 | 0.028 | 0.403 5.6 5 |7
TABLE 12

Parallel coloring results for Problem Set IV, SDO used to solve local problem

Problem | p [<n>] ns [As|[Ts | TL | <Nug>|Xs| X |
27PTL [1 [2197] 0 0 [0.000 [1.666] 0.0 0 [11
27PT8 |8 | 2,197 | 3,752 [19 [0.126 | 1.540 | 824 |14 |15
27PT64 | 64 | 2,197 [43,272 [19 [0.275 | 1.618 | 1793 |15 | 16

17

TABLE 13
Parallel coloring results for Problem Set I, p = 32

| Problem | <n>| ns [As| Ts | T [<Nug>]|Xs| X |
CUBEL [53 [1,701 [71 [0.061 [0.003 [6.4 [24]26
CUBE2 [122 [3888 [70 [0.127 [0.009 | 161 |25 |27
CUBE4 [258 [8,217 [70 [0.202 [0.020 [328 |25 |28
CUBES [532 [15,561 [70 | 0.309 [0.056 [56.5 |26 | 29
CUBEL6 [1,078 [28,842 [69 | 0.385 [0.138 [82.5 |23 [30
CUBE32 [2,172 [25,004 | 70 [0.488 | 0.378 | 378 |27 |27
CUBE64 | 4,359 | 25,166 | 70 [0.573 | 0.853 | 38.7 |25 |27

TABLE 14
Parallel coloring results for Problem Set II, p = 32

Problem ‘ <n> ‘ ns ‘ Ag ‘ Ts ‘ 17, ‘ < Ninsg > ‘ Xs ‘ X ‘
SKY1 196 | 6,270 | 64 | 0.128 | 0.011 23.0 23 | 25
SKY?2 392 | 11,313 | 65 | 0.212 | 0.043 45.7 25 | 26
SKY4 784 | 18,012 | 65 | 0.396 | 0.081 74.3 24 |25
SKYS 1,568 | 22,716 | 65 | 0.432 | 0.199 | 104.4 24 | 25
SKY16 | 3,135 | 33,108 | 65 | 0.582 | 0.410 | 174.1 24 | 25
SKY32 | 6,270 | 28,272 | 24 | 0.491 | 0.988 | 106.3 21 |24

in the total number of colors can be obtained. However, the saturation degree or-
dering heuristic is significantly more expensive than the incidence degree ordering
heuristic in solving the local coloring problem.

In Table 13 and Table 14 we fix the number of processors at 32 and examine
the effect on the performance of the heuristic by varying the number of nonzeros
per processor. For these results we use the IDO heuristic to solve the local coloring
problem.

Overall, the number of colors required is relatively constant, even though the
percentage of the vertices in (g varies dramatically. To some extent this effect can
be explained by noting that even though the relative size of G'g is increasing, the
local structure of the separators is essentially the same, since the separators arise
from physical partitions of a regular domain. In Table 14, when the relative size of
(s does became small enough to allow Ag to decrease, the number of colors used
to color Gi's, s, decreased. Finally, we note the good performance of the heuristic,
both in terms of the number of colors used and execution time, as the size of the
local problems becomes quite small.

6. Concluding Remarks. We have presented a new parallel graph color-
ing heuristic well suited to distributed memory computers. Experimental results
demonstrate that this heuristic is scalable and that it produces colorings usually

18

requiring no more than three or four more colors than the best-known linear time
sequential heuristics. We have also shown that under the P-RAM computational
model, this heuristic has a expected run time bounded by EO(log(n)/loglog(n)).

This parallel heuristic takes full advantage of locality in the generation of the
graph. For example, if the graph is generated by the assembly of a structures model
or obtained from the spatial decomposition of a physical model, the asynchronous
random phase of the heuristic can efficiently color the global separator. After the
separator is colored, the remaining problem decomposes into independent local
coloring problems. The only constraint on these local colorings is that they be
consistent with the coloring determined for the separator. Thus, any sequential
heuristic can be used to solve each of these local coloring problems simultaneously.

For many problems a physical partition can be used to generate a good vertex
to processor assignment. When the determination of a partition is not straightfor-
ward, a partitioning heuristic would have to be used. For example, recent advances
in the automatic partitioning of three dimensional domains [11] or in spectral dis-
section methods [9] could be employed. We note that a partitioning that maintains
locality is advantageous, although not essential, to the performance of the parallel
heuristic. The heuristic requires only that the number of vertices assigned per
processor allow for good load balancing.

An interesting observation is that even if the coloring obtained for the sep-
arator uses more colors than a good sequential heuristic, the separator subgraph
is usually sparser than the entire graph. Thus, when coloring the denser local
subgraphs, some of the difference between the parallel and sequential heuristics in
the number of colors used for the separator subgraph can be offset by the use of a
good sequential heuristic to color the remaining local subgraphs.

Finally, motivated by the following observation, we note a possible avenue for
improving the heuristic. When one observes the distribution of colors produced
by the heuristic, one often sees very few vertices using the highest colors. For
example, when coloring the graph 27PT8 on 8 processors, the results in Table 12
show that 15 colors were required by the parallel algorithm, but only 12 by the
sequential algorithm. However, the number of vertices using the colors 15, 14, and
13 were 2, 12, and 70, respectively. An interesting topic for further research might
be the introduction of a postprocessing step that would attempt to recolor these
few vertices with lower color values, and thus decrease the total number of colors
used.

Acknowledgment. We thank Tim Kiemel for help in the probabilistic analysis of
the expected maximum length monotone path, and John Gilbert for bringing the
paper by Michael Luby to our attention. We also thank the referees for detailed
and helpful comments.

19

[1] B.
[2] D.

3] T.

[4] M.

REFERENCES

BoiLoBAs, Graph Theory, Springer-Verlag, New York, 1979.

BRELAZ, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251
256.

F. CoLEMAN AND J. J. MoRE, FEstimation of sparse Jacobian matrices and graph
coloring problems, SITAM Journal on Numerical Analysis, 20 (1983), pp. 187-209.

R. GAREY AND D. S. JoHNSON, Computers and Intractability, W. H. Freeman, New
York, 1979.

[5] J. L. GusTaFsoN, G. R. MoNTRY, AND R. E. BENNER, Development of parallel methods

[10] R.

for a 1024-processor hypercube, STAM Journal on Scientific and Statistical Computing,
9 (1988), pp. 609-638.

. S. JOHNSON, Worst case behavior of graph coloring algorithms, in Proceedings Hth

Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas
Mathematica Publishing, Winnipeg, 1974, pp. 513-527.

. T. JoNES AND P. E. PLASSMANN, Scalable iterative solution of sparse linear systems,

Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill.; 1991.

. LuBy, A simple parallel algorithm for the mazimal independent set problem, STAM

Journal on Computing, 4 (1986), pp. 1036-1053.

. PoTHEN, H. SiMON, AND K.-P. Liou, Partitioning sparse matrices with eigenvectors

of graphs, STAM Journal on Matrix Analysis, 11 (1990), pp. 430-452.
SCHREIBER AND W .-P. TANG, Vectorizing the conjugate gradient method. Unpublished
manuscript, Department of Computer Science, Stanford University, 1982.

[11] S. Vavasis, Automatic domain partitioning in three dimensions, STAM Journal on Scientific

and Statistical Computing, 12 (1991), pp. 950-970.

20

