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Abstract (Summary):

We continue the work of Part I, treating in detail the theory of numerical quadrature over a square [0,1)?
using an m? copy, Q) of a one-point quadrature rule. As before, we determine the nature of an asymptotic
expansion for the quadrature error functional Q") F — I'F in inverse powers of m and related functions, valid
for specified classes of the integrand function F'. The extreme case treated here is one in which the integrand
function has a full-corner algebraic singularity. This has the form xky“rp(x, y). Here A, p, and p need not
be integer, and r, is (z? + yz)% or some other similar homogeneous function. The error expansion forms the

theoretic basis for the use of extrapolation for this kind of integrand.

Mathematics Subject Classifications (1991). 65D32, 65B15

1 Introduction

The successful practice of extrapolation in quadrature requires that it be based on the expansion of
the error functional Q™) f — I f that corresponds to the nature of the integrand function. Romberg in-
tegration is based on the Euler-Maclaurin expansion and so is efficient for well-behaved functions. The
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construction of error functional expansions for other integrand functions is no trivial task. Recently,
however, significant progress has been reported. The theory has been extended to integrand functions
having end-point algebraic and logarithmic singularities (Navot [5] [6]), to multidimensional hyper-
cubes and simplices, and to some of the more sophisticated multidimensional algebraic and logarithmic
singularities (Lyness [2], Sidi [7]).

The present paper is a contribution to this latter theory. In Part I (Lyness and de Doncker-Kapenga
[3]) we assembled some known results relating to two-dimensional quadrature. These were mainly
minor extensions of one-dimensional results of Navot and other results of Sidi. There we established
the notational framework that we use here extensively to handle a more intransigent singularity, which
we term the full corner singularity. To keep this part self-contained, we have redefined here all terms
used. The reader should refer to Part I for motivation and discussion of these terms.

We denote by

1
_m,

m—1m— ﬁ
—_— 1
5 Sl "
the m? copy of the one-point quadrature rule Q,5G = G(a, 3), which approximates the integral IG
of G(z,y) over the unit square
Hy:0<e <1, 0<y<1. (2)

We assume that («,3) € Hy, but this assumption is not essential. For some classes of function,

(m)

expansions for the error functional Qaﬁ —IG are known. The most familiar error functional expansion
is the Fuler-Maclaurin expansion. A two-dimensional version is given as Theorem 1 below.

THEOREM 1. When G(x,y) and its partial derivatives of order p are integrable over Hy, then

H27Qaﬁv )

mS

QaﬁG IG‘|‘Z

s=1

where R, = O(m™7).

—I_Rp(m;H?anﬁvG)v (3)

As is well known, the coeflicients can be expressed in terms of double integrals. We use a concise
notation for these, which was introduced in Part I and is useful subsequently. We set

DeriNiTION 1 (1.3.19)
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Here ' and #? take the values 1 or 0 only. The quadrature rule parameters enter through the kernel
functions

B = @) = BB)(sH,  s>0,
W@ = (BB - Bu(B-1)/(s), s>1,



where By(2) and B,(x) are the sth Bernoulli polynomial and its periodic extension. In terms of these,
we have

Bs(Hz2,Qup, G Ztks (LG)g (5)
and
IERE 11
Rp(m§H27QozﬁvG) = W Ztk.;p—k(lvG)OO' (6)
k=0

Here the superscript [..], which occurs in most remainder terms in this paper, is simply an abbreviation
for an index pair [0} P 0p k p] each member of which is 1 or 0. Possible choices are specified in Definition
3.1 of Part I; one choice is

[0,1] k—1i>2,
[ellc,i+k7022,z’+k] = [070} Z —1=1,0,
1,0 —1< -1

The actual choice plays no essential role in the present argument.

Theorem 2 below is a two-dimensional generalization of a theorem first proved by Navot [5] [6] . It
deals with an integrand function with a singularity on an edge of the square. Theorem 2 was proved
by Sidi [7]. The conditions stated below are minor variants of those used by him.

THEOREM 2. Let
F/\($,y) = $/\G($,y), A> -1,

where G(T’S)(x, y) is continuous over the square when 0 <r <pand0<s<|p—A|, p>1. Then

[p—A]-1
o(Hy, Qup, T E Ho,Qup,T
Z 27@ 5] /\) 4 Z /\-I—l-l-t( 2 Q 5] /\)

m/\—l—l—l—t

= t=0

+Ry(m; Ha, Qop. Tn) + BV (ms Ha, Qup, ), (7)

with Rél) =0(m™?) and f%él) :O(m_p_{A}),

For later convenience we have divided the remainder term into two parts of different orders, given
explicitly in (11) and (12) below.

In both of the formulas (3) and (7), the coefficients By and F)y14¢ are independent of m but
depend on a and S. In (7), By is not generally given by the same formula (5) as before, both
because it is not valid and also because, if applied, it does not converge. In Part I we showed how
to circumvent this difficulty by a technique akin to subtracting out the singularity. The subtraction

functions used are ¢! (z,y) and ¢2(wz,y). The first is the function given in (1.3.29) and designed
so that, when 0 < a@ < b < o0, the function qﬁlLk_AJ(k’q)(x,y) is integrable over [1,00) X [a,b], and
FE(z,y) - tk_AJ(k’q)(x,y) is integrable over [0, 1] X [a,b]. The second is analogous, the roles of x
and y being reversed.



DEFINITION 2
(bv}u(wvy) Z;U:_Ol F/%—l—ﬁ(wvy) = Z[ 0 x/\-l-f G( )( 73/)/(”)7

OL(r,y) = Y Flo(wy) = iyt GO, 0)/(0).

Note that Fy,,(x,y) is of the form assumed by Theorem 1.3.2 (1.3.13), as long as G19)(0,y) has a
sufficient number of integrable derivatives.

Simple integral representations for all the coefficients in Theorem 2 may be stated in terms of the
integrals in Definition 1. These are

(8)

By(H3,Qup, ) = Z{tks Loh b+ (L P = ol 8} (9)

(1) ~ o)

EA+1+t(H2anﬁvFA ZU iy 1 FAH 0> (10)
=0

LS~/ e T

Rp(H3, Qap, I'n) = WZ{ kp— k(1 ¢Lk /\J)ooo—l_tk,s—k(lvr/\ —¢Lk—AJ)oo}a (11)
k=0

B 1 I_p—AJ—l

RIO(H2,Qup 1) = — o D Ohiinr)yp U pperny (1 FAp oo (12)

=0
Here we have set
k (m7 /\/)C - tsk m /\/ Zt m /\/ _a_qC tp,k (m /\/)OO co ( 3)

where 5 and P can take any values satisfying 0 <35 < XN +1 <P, a, = 0,2,00 when v < 0, v = 0
or v > 0 respectively, and Fy/ is of the form xA/G(y), with G(y) and its first p derivatives integrable.
Note that in context, ¢ and d are finite and the explicit choice of ¥ = s — X' — 1 in the integration
limit @, ensures that the integral exists. When A’ is integer, the terms on the right of (13) are zero

2
when the order of the z-derivative exceeds A'. In this case, U,Ee ](m,FA/)g is also zero. In the next
section, we shall use expression (13) with the function FAI,H(QC, y) as integrand. There, when ¢ and d
are omitted, it is assumed that d = 1 and ¢ = ag_(,4,-¢)—1; that is, ¢ is chosen to make the integral

converge in the y direction. A similar function, Vk[el](m F,)%, is defined in (1.3.21a). This may be
obtained from (13) by interchanging the roles of z and y.

We note that the validity of Theorem 2 above can also be established under the less strict condition
of continuity of the partial derivatives G(T’S)(x, y) whenever 0 < r+ s < [p— Al

The principal purpose of Part I was not to prove these theorems, both of which are well known,
but to establish a unified notation and, using this, to establish explicit integral representations both
for the coefficients By and E)yi4¢ and for the remainder terms R,. In this part, we use these integral
forms to obtain corresponding expansions for functions having more sophisticated singularities.

The reader interested in verifying our subsequent results in detail should consult Part I to obtain

the details of some of the conventions we employ. However, to follow the thrust of the developments,

a?



the reader need only bear in mind that (4) is merely an abbreviated notation for a two-dimensional
integral, the important aspects of which are the region [a,b] X [¢,d] and the factor F(j’k)(ac, y) in the
integrand function.

Our fundamental result, obtained in Sections 2 and 3, is for the integrand function

F(z,y) = 2"y r,(2,y),

where r, is homogeneous of order p (see Definition 1 below). We note that when p and p/2 are
integer, the integrand function is of the correct form for Sidi’s theorem to apply; while when A and p
are integer, the expansion is also known (Lyness [2] [1]). Our derivation of the expansion for general
A, pt, and p is by no means straightforward. It requires nearly all the results in Part I and constitutes
an extensive generalization of the approach in [2].

2 The Full-Corner Algebraic Singularity — Elements of the Expan-
sion
In this section and in Section 3, we treat the integrand function
F(w,y):xAy“rp(x,y), A>—1, pu>—-1, A+pu+p>-2, (14)
where 7,(z,y) is homogeneous of degree p and has no singularity in Hy other than possibly at the

origin.

DEFINITION 3. A function f(z,y) is homogeneous of degree p about the origin if

f(mz,my) =m’f(z,y) for all m>0, (z,y)#(0,0).

We shall treat homogeneous functions r,(z,y) whose derivatives of all orders exist in Hy = [0,1)?
except possibly at the origin.
Simple examples of r,(z,y) include

ro(z,y) =717, (vx+ny)’, withvy, >0, andr’h(6),

where r? = 2% + y2, 6 = arctan(y/z), and k() is analytic in 8 for 0 < 6 < 7/2.

The error expansion for Q.3 — [F given at the end of this section, in (25-27), is not in Euler-
Maclaurin form (in inverse powers of m and with coefficients independent of m). The additional work
in Section 3 is needed to obtain the standard Fuler-Maclaurin form of the expansion.

For the subsequent development, we subdivide the plane #? into squares of unit side.

DEFINITION 4
Ho(ki, ko) ki <o <hki+1; ko<y<ky+1.

H5(0,0) coincides with H; defined in (2) above. We adopt the following approach. Let us rescale the
problem of integration over H; using an m? copy of Q to one of integration over [0, m) x [0, m). In this
context the quadrature rule used over each of the m? squares [ky,k; + 1) X [k2, ko + 1) is a translated
version of the rule ¢) over Hy. We deal with each square individually and assemble the results. It is



convenient to define four different rectangles.

DEFINITION 5

R(1,1) = [0,1)x[0,1) = Hy(0,0)= Hy,
R(l,m) = [0,1)x[l,m) = UPZiH(0,ks),
R(m,1) = [Lm)x[0,1) = UPZiH,(ks,0),
R(m,m) = [L,m)x [l,m) = UPZhUpRzh Halky, ko).

These comprise 1, m — 1, m — 1, and (m — 1)? unit squares, respectively.
We now present the calculation of an expansion for Q%)F Since F(x,y) given by (14) is homo-
geneous of degree A 4+ p + p, we may set

RO BH R o 0bit) a4 1)

m m

Then, using (1), we may scale the problem as follows:

Qpr - LYY peth 2tk
m k1=0 ko=0 m m

m—1m—1

= m—(/\-l-u-l-/)-l-? Z F Oé + kl,ﬁ + kg) (15)
k1=0 k=0
m—1m—1

= Ohetet?) Qup(Halky, k2))F.
k1=0 k=0

This expresses Q( )(H27 F) as a sum of one-point rules applied to each of m? unit squares.

The integrand functlon has no singularity in R(m,m). In all the (m — 1)? squares in R(m,m)
we employ the standard two-dimensional Euler-Maclaurin expansion (3) above. In each of the m — 1
squares of R(1,m), the integrand has an z* singularity on the left-hand edge. Here we employ
expansion (7) above, which explicitly treats this singularity. The m — 1 squares of R(m, 1) are treated
by using an analogous expansion. The anomalous contribution from R(1,1) is already in the correct
form to contribute to the term in m~+#+e+2) of the expansion.

We now treat the terms in (16) corresponding to the squares in R(1,m). As mentioned above, we
apply (7) to each of the squares to obtain a result of the form

m—1 p—1 [p—A]-1
S Qus(Ho(0, ko)) F = 3" By(l,m)+ S EVL L (1m) 4+ Ry(1,m) + RID(1, m). (16)
ko=1 s=0 t=0

To proceed, we need the explicit forms for the coefficients in (7) given in (9-12). Inserting these into
(7) and collecting like terms, we find

Z{tks R (1, O /\J)ioqb—l'tgcs]k(l F =[] } (17)
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~ 1

B m) = Y 0L BT (18)
=0

P
Z{ bk (Ll R+ (L7 = el T ) (19)
B [p—A]-1
R;l)(l, m) = Z 01/\—|—£+1J P Up— [A0+1] (17 F/%-l-ﬁ);n (20)
/=0

We note that these are obtained from (9-12) by simply setting m = 1in (11) and (12) and replacing
the integration limits (0, 1) in the y variable by (1, m). The justification for this procedure lies partly
in that the kernel functions h[so](ﬁ,y) are periodic with period 1. Note also that the m dependence
does not occur in the integrand functions, but only in the integration limits, as we are adding together
m — 1 contributions each of which is m independent.

Using the same procedure for the set of terms in (16) corresponding to squares lying in R(m,1)
gives a result of the same character as (16), namely,

m—1 -1 [p—ul-1
> Qup(Ha(k1,0) ZB (m, )+ > ED Lm0+ Ry(m, 1) + RP (m, 1), (21)
k=1 s=0 t=0

p(2)

The formulas for EZ-I-I-H and R, correspond to (18) and (20); p replaces A, 8% replaces 6%, and a V

coefficient replaces a U coefficient. The formulas for By(m, 1) and R,(m,1) will be needed again in
(26-27) below.

An analogous procedure applied to the set of squares lying in R(m, m) gives a simpler result; using
the standard two-dimensional Euler-Maclaurin expansion (3), we find

m—1 m-—1 p—1
Q(HQ(klka))F = ZBs(mvm)—l_ Rp(mvm)v (22)
k1=1ky=1 s=0
with
By(m,m) =Y 4 (1L F) Y (23)
k=0
and
: L]
Ry(m,m) =) 75 (1L P (24)
k=0
Thus, substituting (16), (21), and (22) into the right-hand side of (16), we obtain
( ) 1 p—l I_p AJ -1
Qo5 (H2)F = W{Qaﬁ(fb F+Y Bo+ Y. E/\-l—l-l—t(l m)
s=0 t=0
lp—p]-1 , R R R
+ Y B Om )+ Byt RO(1,m) + RP(m, 1)}, (25)
t=0



B, = By(1,m) + Bs(m,m)+ By(m,1) (26)
and
R, = R,(1,m)+ Ry(m,m) + R,(m,1). (27)

Explicit integral representations now have been given for all of the above coeflicients that carry
a tilde and have the argument (m,m) or (1, m). These appear in (17-20), (23), and (24). Integral
representations for coefficients with the argument (m, 1) have not been given explicitly but can be
obtained from (17-20) by interchanging the roles of z and y.

3 Error Expansion in Euler-Maclaurin Form

The error expansion (25) involves many terms, defined by integral representations having various
integrands over several different integration regions. These terms depend on m through the region
of integration. The present section is devoted to the somewhat lengthy task of re-expressing the
coefficients as sums of inverse powers of m and collecting like terms. The result is Theorem 3 below.

We treat first the contribution of the two terms (18) and (20) to the sum in (25). This contribution
is given in (31) below, the relevant m independent coefficients being defined in (32-35). All these
involve the U coefficient defined in (13). To this end we establish the following lemma.

LEMMA 1
UL B r = (et = UL L) et p 1= 020,
(28)
= —logym UM(LFL )L p4p+1-t=0;
0 m 0
UIE—]LAJ—£—1(17FA1+£)1 = = zE—]LAJ—f—l(l’FAl”)io
LN ot2 UZEO_]L/\J—K—I(m’FAlM)éO’ (29)

p>A+pu+p+2.

Proor. By its definition (13), the U coefficient is a sum of terms each of the form tE,e

with various values of s and 6'. By definition (4) when 6% = 1, the integral in the y coordinate in each
of these integrals is of the form

m s, 6—4
/1 FL, 7, y)dy,

where FAlH(x, y) is homogeneous of degree u+p—~in y. The key part of this proof is to note that every
element of the subtraction function is homogeneous of degree A + u 4 p and that element FAl_M(x, )
is of the form xM*y#+r=f To establish (28), we need establish the same result for the integral above.
This task is relatively simple. We may apply the first part of Lemma [.2.3 with A replaced by p+p—¢
and s replaced by t — £. This produces the result stated above for each ¢ coefficient separately, and
applying (13) again yields (28) as written. A similar treatment, using (1.2.15), yields (29).

1792 m
AL )L

ayl o
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Note that in the situation where p 4 p — € integer > 0 and p + p < ¢, both sides of (28) reduce
to zero. In particular, when p 4 p — ¢ + 1 = 1, both sides of the second part of (28) are zero unless
p+p—LC=—-landt—-{¢=0.

Substituting (28) and (29) into (18) and (20) gives

~(1 _ 1
E/(\-|21-|-t(17m) = Zé:o(mw—p—l—l - 1)Ut[—]£(17F/%+£)7 ptp+1-t#£0,
1 1
= —logym ZE:O Ut[_]z(laFAIH)% = —logym U(E](LFAI—I—K)%?

H‘|‘P‘|‘1—t:07

0 —
= > O, UL F )l = w2 gl B L),

If we introduce

C=pt+tp+l, (30)

the contribution of the above terms to the sum in (25) is

[p—A]-1 [p=Al-1 (1)
1 ~(1 ~ I (H27QozﬁvF)
—rl Y B (Lm)+ RO(Lm)y =y LA
mn =0 t=0 m
Af\l-lzl-l—t*(H?? Qap, I') + Cgl-|21+t*(H2v Qap, I')logy m (1)
—I_ mA+1+t* —I_Rp (H27Q057F)7 (31)
where
t
E/(\l-|21+t(H27 Qap, I (1= 8¢y Z U 1 F/\+€ (32)
=0
5 T [l
RO (m; Hy, Qag, ) = m™7~ Z Oier)p Upe 1 —e—1 (75 Fiyo)ion (33)
® [p—A]-1 )
A/\_H_H*(H%Qaﬁv Z E/\_|_1_|_t(H27Qozﬁv ) Rél)(lv H?anﬁvF)v (34)
t=0
0 -
C/\-|—1+t*(H27 Qap F) = _5{t*} Z Ut*_z(lv FAI-M)%
=0
= —5{t*}U(El](17FA1+£)%- (35)

9



Here, 6g = 1 and 6, = 0 when «a # 0.

We note that the expansion (31) has a different form depending on whether t* =+ p+ 1 is an
integer. Generally it is not an integer. The logy,m term is then absent from the expansion; and the
expansion contains terms in m~( 1)t = 0,1, ..., and a single term in m~+1+") However, when
t* is an integer, one of the set of terms in m~ (A1) (the one with ¢ = t*) apparently coincides in form
with the single term in m~(+1+) However, the factors (1 — 6;_¢«) and 64y in (32) and (35) resolve
the situation by removing one of these terms and including instead a term in log, m/m 141" This
is a familiar phenomenon.

AL, m) and f{él)(l, m) in (25) in the required
form in (31). The terms Efﬁgl_l_t( 1) and fi(z)(m 1) can be expressed in an analogous manner. The

term Qaﬁ(HQ)F is already independent of m. It remains then to deal with the B, and R The
derivation for R, resembles closely that for B, and is not given completely. The derivation for the

(1)

terms B, is significantly more complicated than the one just given for E and Rp
n (48-51) below.

According to (27), R, is the sum of terms given by (24), (19), and a formula analogous to (19).
These involve in total many different integrals, each of which is expressed in terms of (4). For manip-
ulative convenience we introduce more symbols.

At this point we have re-expressed the terms B

. The result is given

DEFINITION 6

1,62 016 m t,62 m
7O, F,0,), = &7 P @) m + A0, P — @)

(36)
6t ,6% m gl 62 m
ST R A S VR T S
Here F, @, and ¥ are functions of z and y. Using this notation, we find (from (17), (19), (23), (24),
(26), and (27)) that

B, —ZTksk1F¢Lk A Plo—tp I (37)
and
5Nl
Ry = ZTk.,];—k(lvFv ¢1Lk—AJ)m, (38)
k=0

where F, ¢l and @2 are given by (14) and (8).
To simplify (36), we first generalize it.

DEFINITION 8

b a a b
a0 = [do [Cayr-wy+ [Cde [y -o)

b b b 00
—I—/ dx/ dy(F—'iI)—\IJ)—I—/dx/ dy (—
a a a b
00 b
—I—/ dx/ dy (—
b a

10



It is straightforward to verify that
Ty (B, @, 9) + Iy o) (F, @, ) = I o (F, @, V) (39)
and

T, F, 0, 9), = Iy (FED, 000 w(t0),

The reason for introducing If, ;) is in part that the dependence of I[Lm)(F(k’f), AGOR \IJ(W)) on m,
which occurs in the integration limits, can be isolated easily, as shown in the following lemma.

Lemma 2. If Fs, g, and ¥4 are homogeneous about the origin of degree 6, and if I[M)(Fg,(I)g,\IJg)
exists for finite @ and b, then the integrals occurring on the right below also exist and

Iy (Fs, ®5,95) = (m®T2 = 1)l 1y(Fy, @5, Us), 6> =2,
= logy m I}y o)(Fs, 5, ¥s), b=-2, (40)

= —(m"T2 = )}y ooy (Fs, ®5,¥s), & < —2.
ProoF. The key to the proof is the identity
I[a,b)(F57 ®s5,Vs5) = m_5_2][ma7mb)(F57 bs, Us). (41)

This follows as a simple exercise using the homogeneity property of the integrand functions. In view
of (41) we may define

It ooy (Fs, @5, W) :nlijréoZf[mkmkﬂ)(Fg,cbg,m). (42)
k=0

So long as the limits exist, we use (41) with m replaced by m* and with [a,b) = [1,m) to re-express

(42) in the form

ooy (Fs, @5, W) = lim >~ mFOT 1 (s, @5, Uy). (43)

n—oo

k=0

When ¢ < —2, the limit on the right exists, and the third relation given in the lemma follows im-
mediately. The first relation may be established in a similar manner. When é = —2, one may use
(41) to show that I, 3)(Fl2, ®_2,¥_5) is a function of b/a, say x(b/a), and use (39) to show that this
function has the property x(2z1) 4+ x(22) = x(z122). The only nontrivial function with this property
is a multiple of log z, and this leads to the second relation in (40).

a

While Lemma 2 will be used to isolate the m dependence in B, given by (37), the following lemma
will allow us to deal with R, given by (38).

LEmMA 3. Let h(Z) = h(x,y) be bounded for all z, y and periodic with period 1. Let § < —2.

11



Then

Iy oy (R(E)Es 5 W(E)®s , W(E)¥s) = i) (MT)Fs , M(T)Ps , h(@)Vs) (44)

—m 2 Iy ooy (W(m)Fs , h(m@)®s , h(mi)Vs).

By direct application of Lemma 2 and Lemma 3 with the functions used in (17) and (19), and with
the corresponding subtraction functions used along y = 0, we obtain

1,1
T]E,S—]k(17 F7 ¢1Lk—AJ ’ gbfs—k—p,] )m
= (mA-I—u-I—p—s-l—? _ 1)T£S’1_]k(1, F, (blLk—/\y(bfs—k—uJ )o, Adp+p—s>-2,
= - 10g2 m T]E%;l_]k(lv F7 qblLk_/\ngbfs_k_MJ )27 A + H + p—s= _27
= _(m/\-l-u-l-p—s-l-? - 1)T]£%571_]k(17 F7 qblLk_/\ngbfs_k_MJ )007 A + H + p—s< _27
T]E;Z;]_k(lv F7 ¢1Lk_AJ ) bep_k_uj )m = T]E,p]—k(lv F7 ¢1Lk—AJ > ¢[2p—k—u])00 (45)

_m/\+u+p—p+2T]£'J;]_k(1, F, (blLk_/\J ) ¢[2p—k—u] )so-

This puts us in a position to re-specify the contribution of B, and Rp to the sum in (25). Setting

sT=A+pu+p+2, (46)
we obtain
1 = D, 2, = BS(H%QaﬁvF) ASQ)(H?anﬁvF)
mA+M+p+2{SZ:;)BS + Rp} = SZ:;J o + "o (47)

05172)(1127 Qap, F')logy m

n s + R (m; Hy, Qug, F),
where
Bs(H27 Qaﬁv F) = (1 - 65—5*) Z Tlggl—]k(l’ F’ (blLk—/\J ’ (be—k_“J )aS_S“ (48)
k=0
I &
Rél’z)(m; H,Qap, F) = TP Z TIE,p]—k(l’ F, ¢1Lk—AJ’¢[2p—k—ﬂ])°°’ (49)
k=0
p—1
Agl72)(H27 Qaﬁa F) = - Z BS(H27 Qaﬁv F) - Rém)(l? H27 QO‘B’ F)’ (50)

s=0

12



and
COD(Hy, Qupy ) = =800 }ZT AT S 20 N SRS o (51)

Replacing the corresponding part of expansion (25) with (48) and taking (31) into account, we are
now ready to reformulate (25) as an expansion in inverse powers of m. This leads us to the principal
result of this paper.

TuEOREM 3. Let F(z,y) = 2™y r,(z,y), Apu>—1, Adp+p>-2, and p>A+pu+p+2.
Then

(m) o _
Qup I'=
pz_:l Bs(H2,Qup, I') . Angpgpr2(Hz, Qap, ) + Cxyygpy2(Ha, Qup, ) logy m
—~ ms mA+utet2
[p—A]— ( [p—ul-1 (2)
/\ (H27Qozﬁv ) E —|—1—|—t(H27QOZﬁ7F)
+ Z S PSP + > + Ry(m; Ha, Qap, F), (52)

t=0
where the coefficients B, A, C, EW, and E® are independent of m and
R,=0(m™").
O

Two of the coefficients, B, and E(!), have already been given explicitly (by (48) and (32), respectively).
The rest of the coefficients and the remainder comprise

Antprpro(H2, Qapy ) = Qap(Ha, Qap)F + AW + A1) 4 4B,
C/\—I—u—l—p—I—Q(H?v Qaﬁv F) = C(l) —I_ 0(172) —I_ 0(2)7 (53)
Ry(m; Hy, Qup, F) = RM 4+ M 4 BB,

and E®) respectively. The coefficients with superscript (1,2) are given explicitly by (49-51), the
coefficients with superscript (1) by (32-35), and the coefficients with superscript (2) by formulas
analogous to those with superscript (1).

Note furthermore that Theorem 3 is stated for a value of p > A+ p + p + 2. However, for
any p, 0 < p < p, one could truncate the summations listed in (52) to retain terms whose order
exceeds O(1/mP) only, and absorb all terms of orders < O(1/mP) in a remainder term R; = O(1/mP).

Notationally, the case p = 0 reduces to Ro(m; Hz, Qup, F) = Q%)(HQ)F

We close this section with a remark about the conditions under which some of these terms in (52)
vanish. The term of the form (C,logm)/m" occurs only when A, u, and p are such that one of s* or
t* defined in (46) or (30) or w* = A+ p + 1 is integer. Detailed reference to these formulas reveals
that C, = 0 unless the same subscript 7 occurs in one of the three other summations in (52). (See the

remarks just after equation (35).)
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We remind the reader that the corresponding expansion for the m? copy of a standard quadrature
rule

QF =3 w; f(0;.5) (54)

J=1

is simply the weighted sum of m? copies of v distinct one-point quadrature rules (a,p,- Consequently
we have treated here only the one-point rule. The reader should bear in mind that while assembling
the expansion for the rule (54) is straightforward, there is a chance of some terms disappearing. For
example, when @) f is symmetric, the terms

H?vQ f Zw] H?an]ﬁjvf) (55)

occurring in (3) and (7) are zero for all odd s.
In addition, if the rule @) in (54) above is of polynomial degree d, B, given by (55) vanishes for
€ [1,d]. In fact, the contribution to C's denoted by C(1:2) also satisfies these conditions. However, the
other contributions to Cs do not. In the special case in which A and p are both integers, ' satisfies
these conditions. This is the case treated in Lyness [2].

4 Applications

These asymptotic expansions have a natural application in cubature by extrapolation, particularly in
the context of the finite element. We have carried out extensive numerical experiments, both to verify
the expansions numerically and to assess their utility in the cubature context.

We arrange this extrapolation so as to calculate the analogues of the terms that would occur
in the classical Romberg table. We choose an increasing sequence of mesh ratios mg, mq,... and
assume an expansion containing the non-zero terms in (52). As in the T-table, the element T} , is an
approximation to I f based on p + 1 approximations Q™) f with j € [k,p+ k]. Specifically, it is the
solution for By of the set of p 4 1 linear equations obtained by discarding all but the first p 4+ 1 terms
of (52). In standard Romberg integration, one may use the Neville algorithm to calculate elements of
the table recursively. Here we have simply used a linear equation solver.

Naturally, the cost of cubature by extrapolation depends on the number of terms in the expansion
that have to be eliminated. Any unnecessary term included is likely to increase the cost significantly.
But any necessary term omitted slows down the convergence to a rate commensurate with that term.

Because of this cost pattern, we have to be concerned that, in any particular case, all displayed
terms in (52) are needed. When we consider the special cases f(z,y) = ", and y” and r* separately,
we see that any umbrella expression such as (52) has to include either these terms or analogous se-
quences of terms of a similar nature and number. Nevertheless, we have carried out many numerical
examples to satisfy ourselves that at least the early terms are usually present. In doing so we found
extensive numerical evidence that, under some readily recognizable circumstances, some do not occur.
We express this as a conjecture.

CONJECTURE. When A+ p+ p = —1, the coefficient € occurring in (52) is zero, unless all of A, p,
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and p are integers.

We have no proof. Since r(z,y) is a general homogeneous function, there may be a class of
these functions that we have overlooked for which the conjecture is not valid. However, since each
additional term in the expansion adds significantly to the expense, we feel obliged to mention this
possible economy.

The following example is included to give the reader some feeling for the large difference in cost
that may be experienced in the same problem using variant mesh ratio sequences and expansions. It
is anecdotal in nature and is typical of our experience.

NUMERICAL EXAMPLE. f(z,y) = (2yr?)=%2. Using the mid-square rule (« = 3 = 1/2), we see from
(52) that the principal term in the error expansion is of form (logm)/m®®, and the other terms are
m~7 with j = 0.8,1.8,2,2.8,3.8,4,....

(i) The proper investigation of this expansion requires a highly accurate, reliable numerical approx-
imation for the integral If. Making the substitution # = X® and y = Y produces an easier
integral over the same square. The new integrand function F(X,Y) = 25X?Y?/(X10 4 y10)04
is homogeneous of degree 2 and has a much simpler error expansion. This can be evaluated by
extrapolation or by an adaptive quadrature routine.

(i1) Returning to the original example, our first numerical task was to verify the expansion numerically.
Using the correct expansion, and the geometric sequence 1,2,4,8.16, ... of mesh ratios, we can
obtain nine-figure accuracy after nine iterations. The last approximation uses 256% = 65,536
function values, the total being about 87,381. We can do better than this using the conventional
F-sequence 1,2,3,4,6,8,12,...0of mesh ratios which includes 1,2, 3 and the double of any member
already present. Here, we obtain ten figures after twelve iterations, the final one using 64? =
4,096 function values, the total being about 8,530. The harmonic sequence 1,2,3,4,5,6...
became unstable before we reached nine figures; while we cannot recommend them, for the
record we note that we can find near-harmonic sequences that obtain nine-figure accuracy in
this example using between 1200 and 2000 function values. In all cases, we found a T-table
of the expected form, and no evidence that there could be a missing term in the expansion or
that there was an unnecessary term. Nevertheless, several numerical experiments of the type
described in (iii) and (iv) below were carried out.

(iii) We introduced an extra term By/m into the expansion. Using the same geometric or F-sequences
as before gave results less accurate by about two decimal places. When we extended the cal-
culation to obtain the same accuracy as before, we needed one extra extrapolation using the
geometric sequence and two using the F-sequence. In both cases this additional extrapolation
involved quadrupling the cost.

(iv) We omitted the term By/m? from the expansion. This procedure essentially destroyed the
calculation. Terminating at the same point as before, we found five or six correct figures in place
of nine or ten. Qur estimate of the cost of obtaining nine or ten ran into the millions.
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Our conclusion is that this sort of integration shares many of the features of the classical two-
dimensional analogue of Romberg integration. So long as the proper expansion is used, the accuracy
pattern in the T-table is much the same.

5 Concluding Remarks

In this paper, we have managed to avoid the use of asymptotic theorems. Naturally we have stated
the order of remainder terms, which of course is vital to the purpose for which these expansions are
obtained. However, in all cases, we have provided completely specified integral representations for
the remainder terms. Thus, the asymptotic expansions have the status of identities. This can be of
significant help when the theory comes to be extended, as it often happens that elements of some
remainder term contribute to earlier terms in a more developed expansion.

The expansion for an integrand function having a singularity of the form

fx,y) =2ty (56)

is much simpler to derive. One obtains with little difficulty almost the same expansion as that obtained
by setting p = 0 in (52). The difference is that in the corresponding expansion for (56) the logarithmic
term is omitted, whether or not A + p is an integer. This term appears in (52) with a non-zero
coeflicient when A 4+ u + p is an integer. This difference arises because, in two dimensions, there are
homogeneous functions of degree zero that are not constant. These are functions of 8, the second polar
coordinate. For this wider class of function, the extra logarithmic term is required. While even then
this coefficient is generally zero, it is non-zero when A 4+ u is an integer; this situation includes all the
simple cases in which A and p are both integers.

The result of Section 3 may be readily extended and generalized in several ways. For example, an
obvious extension is to the integrand function

fxy) =2y rp(w, y)g(z,y)

where g(z,y) is regular, the other terms being subject to the restrictions of Theorem 3. This is

(m) B Antptptite + Ongutptj+2 108, m
Qag [~ Oﬁ + Z;) mA Rt ti+2 (57)
5= ]:
£ 2)

FE
A14¢ pA14t
+ ; mAHL+e + Z_: At

A derivation of integral representations for the expansion coeflicients and the remainder term is
not given in this paper. It is trivial to write these down in the case in which g(z,y) is a polynomial.

Extensions to integration over a triangle, rather than a square, follow the lines of a similar gener-
alization described in Lyness and Monegato [4] and lead to an expansion of precisely the same form as
(57) above. Other extensions to integrand functions having logarithmic singularities are clearly pos-
sible, but require detailed justification along the lines of Section 5 of Lyness [2]. Our understanding
is that expansions of this type are needed to handle elements required in some of the more recent
applications of the boundary element method.
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Most of this work was carried out during a three-month visit by one author to Argonne National

Laboratory in 1979. Our original proof was longer than the present one, and less general. Since then,
we have searched at length for a less extended and detailed proof of these results, with only limited
success. We have decided to discontinue this search temporarily; we have presented this proof in its
present form in the expectation that others, armed with a clear description of and confidence in the
results, may be more successful than we were in condensing it.
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APPENDIX

Remarks and Errata
On Quadrature Error Expansions. Part I. JCAM 17 131-149 (1987)

e P134. Sentence after Equation (2.13). Replace p < A by p < A+ 1 (or A integer).

e P135. Third equation of Lemma 2.3. Note that both sides reduce to 0 for s = A + 1.
o P136. First sentence after the proof of Theorem 2.4. Replace p > A+ 1 by p > A+ 1.
e P137. Equation (2.27). Replace subscript A+ 1 by A + 1.

e P138. Line before (2.38). Replace final (0) by (1).

e P139. Equation (2.41). Replace exponent p+t+ 1 by g+t — 1. Equation (2.46). Replace -2 in
the upper bound on the second summation by -1. Replace p > 1 by p > 1.

e P142. Definition 3.1. Replace p > 1 by p > 1. Sentence after Equation (3.9). Replace (3.4) by
(3.5).

e P143. Theorem 3.2. Add the condition p > 1.
e P144. Line after Equation (3.21a). Replace p by p.

e P145. Theorem 3.4 and Theorem 3.5. Add the condition p > 1. Equation (3.31). Replace p as
a subscript of ) in the first term on the right by 3.

o P145. Before Theorem 3.5. Add the following sentence: Note that the following theorem was
proved by Sidi (Journal of Approximation Theory 39, 1983, pp. 39-53), under slightly different
conditions.

o P147. First sentence. Replace “leads” by “lead”.

e P147. Add before Section 4: Theorem 3.5 can be proved valid under the less strict condition of
continuity on the derivatives G(T’S)(x, y)for0 <r+4+s<[p—AJ

e P148. The second displayed equation in Section 5 should contain on the right-hand side the
additional term

A4,
ZZZ S R
=1 7= 3t>0

e P136 (first sentence of Theorem 2.5), P139 (top sentence and first sentence of Theorem 2.8),
P145 (Theorem 3.5). Replace the requirement “integrable” on the indicated derivatives by
“continuous”.
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