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construction of error functional expansions for other integrand functions is no trivial task. Recently,however, signi�cant progress has been reported. The theory has been extended to integrand functionshaving end-point algebraic and logarithmic singularities (Navot [5] [6]), to multidimensional hyper-cubes and simplices, and to some of the more sophisticated multidimensional algebraic and logarithmicsingularities (Lyness [2], Sidi [7]).The present paper is a contribution to this latter theory. In Part I (Lyness and de Doncker-Kapenga[3]) we assembled some known results relating to two-dimensional quadrature. These were mainlyminor extensions of one-dimensional results of Navot and other results of Sidi. There we establishedthe notational framework that we use here extensively to handle a more intransigent singularity, whichwe term the full corner singularity. To keep this part self-contained, we have rede�ned here all termsused. The reader should refer to Part I for motivation and discussion of these terms.We denote byQ(m)�� G = 1m2 m�1Xj=0 m�1Xk=0 G(�+ jm ; � + km ) (1)the m2 copy of the one-point quadrature rule Q��G = G(�; �), which approximates the integral IGof G(x; y) over the unit squareH2 : 0 � x < 1; 0 � y < 1: (2)We assume that (�; �) 2 H2, but this assumption is not essential. For some classes of function,expansions for the error functional Q(m)�� �IG are known. The most familiar error functional expansionis the Euler-Maclaurin expansion. A two-dimensional version is given as Theorem 1 below.Theorem 1. When G(x; y) and its partial derivatives of order p are integrable over H2, thenQ��G = IG+ p�1Xs=1 Bs(H2; Q��; G)ms +Rp(m;H2; Q��; G); (3)where Rp = O(m�p).As is well known, the coe�cients can be expressed in terms of double integrals. We use a concisenotation for these, which was introduced in Part I and is useful subsequently. We setDefinition 1 (I.3.19)t[�1;�2]j;k (m;F )b da c = Z ba dx Z dc dy h[�1]j (�;mx) h[�2]k (�;my) F (j;k)(x; y): (4)Here �1 and �2 take the values 1 or 0 only. The quadrature rule parameters enter through the kernelfunctionsh[1]s (�; t) = cs(�) = Bs(�)=(s!); s � 0;h[0]s (�; t) = (Bs(�)� Bs(� � t))=(s!); s � 1;2



where Bs(x) and Bs(x) are the sth Bernoulli polynomial and its periodic extension. In terms of these,we haveBs(H2; Q��; G) = sXk=0 t[1;1]k;s�k(1; G)1 10 0 (5)and Rp(m;H2; Q��; G) = 1mp pXk=0 t[::]k;p�k(1; G)1 10 0: (6)Here the superscript [::], which occurs in most remainder terms in this paper, is simply an abbreviationfor an index pair [�1k;p; �2p�k;p] each member of which is 1 or 0. Possible choices are speci�ed in De�nition3.1 of Part I; one choice ish�1k;i+k ; �2i;i+ki = 8><>: [0; 1] k � i � 2;[0; 0] k � i = 1; 0;[1; 0] k � i � �1:The actual choice plays no essential role in the present argument.Theorem 2 below is a two-dimensional generalization of a theorem �rst proved by Navot [5] [6] . Itdeals with an integrand function with a singularity on an edge of the square. Theorem 2 was provedby Sidi [7]. The conditions stated below are minor variants of those used by him.Theorem 2. Let��(x; y) = x�G(x; y); � > �1;where G(r;s)(x; y) is continuous over the square when 0 � r � p and 0 � s � bp� �c, p � 1. ThenQ(r;s)�� �� = p�1Xs=0 Bs(H2; Q��;��)ms + bp��c�1Xt=0 E�+1+t(H2; Q��;��)m�+1+t+Rp(m;H2; Q��;��) + ~R(1)p (m;H2; Q��;��); (7)with R(1)p =O(m�p) and ~R(1)p =O(m�p�f�g).For later convenience we have divided the remainder term into two parts of di�erent orders, givenexplicitly in (11) and (12) below.In both of the formulas (3) and (7), the coe�cients Bs and E�+1+t are independent of m butdepend on � and �. In (7), Bs is not generally given by the same formula (5) as before, bothbecause it is not valid and also because, if applied, it does not converge. In Part I we showed howto circumvent this di�culty by a technique akin to subtracting out the singularity. The subtractionfunctions used are �1w(x; y) and �2w(x; y). The �rst is the function given in (I.3.29) and designedso that, when 0 < a < b < 1, the function �1bk��c(k;q)(x; y) is integrable over [1;1) � [a; b], andF (k;q)(x; y)� �1bk��c(k;q)(x; y) is integrable over [0; 1]� [a; b]. The second is analogous, the roles of xand y being reversed. 3



Definition 2�1w(x; y) = Pw�1`=0 F 1�+`(x; y) = Pw�1`=0 x�+` G(`;0)(0; y)=(`!);�2w(x; y) = Pw�1`=0 F 2�+`(x; y) = Pw�1`=0 y�+` G(0;`)(x; 0)=(`!): (8)Note that F 1�+`(x; y) is of the form assumed by Theorem I.3.2 (I.3.13), as long as G(`;0)(0; y) has asu�cient number of integrable derivatives.Simple integral representations for all the coe�cients in Theorem 2 may be stated in terms of theintegrals in De�nition 1. These areBs(H2; Q��;��) = sXk=0nt[1;1]k;s�k(1; �1bk��c)1 11 0 + t[1;1]k;s�k(1; F � �1bk��c)1 10 0o ; (9)E(1)�+1+t(H2; Q��;��) = tX̀=0U [1]t�`(1; F 1�+`)10; (10)Rp(H2; Q��;��) = 1mp pXk=0nt[: :]k;p�k(1; �1bk��c)1 11 0 + t[: :]k;s�k(1;�� � �1bk��c)1 10 0o ; (11)~R(1)p (H2; Q��;��) = 1mp+� bp��c�1X̀=0 �1b�+`+1c;p Up�b�+`+1c(1; F 1�+`)10: (12)Here we have setU [�2]k (m;F�0)dc = t[0;�2]s;k (m;F�0)1 d0 c � p�1Xs=s t[1;�2]s;k (m;F�0)1 das��0�1c � t[0;�2]p;k (m;F�0)1 d1 c; (13)where s and p can take any values satisfying 0 � s < �0 + 1 < p, a� = 0; 2;1 when � < 0, � = 0or � > 0 respectively, and F�0 is of the form x�0G(y), with G(y) and its �rst p derivatives integrable.Note that in context, c and d are �nite and the explicit choice of � = s � �0 � 1 in the integrationlimit a� ensures that the integral exists. When �0 is integer, the terms on the right of (13) are zerowhen the order of the x-derivative exceeds �0. In this case, U [�2]k (m;F�0)dc is also zero. In the nextsection, we shall use expression (13) with the function F 1�0+`(x; y) as integrand. There, when c and dare omitted, it is assumed that d = 1 and c = ak�(�+��`)�1 ; that is, c is chosen to make the integralconverge in the y direction. A similar function, V [�1]k (m;F�)ba, is de�ned in (I.3.21a). This may beobtained from (13) by interchanging the roles of x and y.We note that the validity of Theorem 2 above can also be established under the less strict conditionof continuity of the partial derivatives G(r;s)(x; y) whenever 0 � r + s � bp� �c.The principal purpose of Part I was not to prove these theorems, both of which are well known,but to establish a uni�ed notation and, using this, to establish explicit integral representations bothfor the coe�cients Bs and E�+1+t and for the remainder terms Rp. In this part, we use these integralforms to obtain corresponding expansions for functions having more sophisticated singularities.The reader interested in verifying our subsequent results in detail should consult Part I to obtainthe details of some of the conventions we employ. However, to follow the thrust of the developments,4



the reader need only bear in mind that (4) is merely an abbreviated notation for a two-dimensionalintegral, the important aspects of which are the region [a; b]� [c; d] and the factor F (j;k)(x; y) in theintegrand function.Our fundamental result, obtained in Sections 2 and 3, is for the integrand functionF (x; y) = x�y�r�(x; y);where r� is homogeneous of order � (see De�nition 1 below). We note that when � and �=2 areinteger, the integrand function is of the correct form for Sidi's theorem to apply; while when � and �are integer, the expansion is also known (Lyness [2] [1]). Our derivation of the expansion for general�, �, and � is by no means straightforward. It requires nearly all the results in Part I and constitutesan extensive generalization of the approach in [2].2 The Full-Corner Algebraic Singularity { Elements of the Expan-sionIn this section and in Section 3, we treat the integrand functionF (x; y) = x�y�r�(x; y); � > �1; � > �1; �+ � + � > �2; (14)where r�(x; y) is homogeneous of degree � and has no singularity in H2 other than possibly at theorigin.Definition 3. A function f(x; y) is homogeneous of degree � about the origin iff(mx;my) = m�f(x; y) for all m > 0; (x; y) 6= (0; 0):We shall treat homogeneous functions r�(x; y) whose derivatives of all orders exist in H2 = [0; 1)2except possibly at the origin.Simple examples of r�(x; y) includer�(x; y) = r�; (
x+ �y)�; with 
; � > 0; and r�h(�);where r2 = x2 + y2, � = arctan(y=x), and h(�) is analytic in � for 0 � � � �=2.The error expansion for Q��F � IF given at the end of this section, in (25{27), is not in Euler-Maclaurin form (in inverse powers of m and with coe�cients independent of m). The additional workin Section 3 is needed to obtain the standard Euler-Maclaurin form of the expansion.For the subsequent development, we subdivide the plane <2 into squares of unit side.Definition 4H2(k1; k2) : k1 � x < k1 + 1; k2 � y < k2 + 1:H2(0; 0) coincides with H2 de�ned in (2) above. We adopt the following approach. Let us rescale theproblem of integration over H2 using an m2 copy of Q to one of integration over [0; m)� [0; m). In thiscontext the quadrature rule used over each of the m2 squares [k1; k1+ 1)� [k2; k2+ 1) is a translatedversion of the rule Q over H2. We deal with each square individually and assemble the results. It is5



convenient to de�ne four di�erent rectangles.Definition 5R(1; 1) = [0; 1)� [0; 1) = H2(0; 0) = H2;R(1; m) = [0; 1)� [1; m) = [m�1k2=1H2(0; k2);R(m; 1) = [1; m)� [0; 1) = [m�1k1=1H2(k1; 0);R(m;m) = [1; m)� [1; m) = [m�1k1=1 [m�1k2=1 H2(k1; k2):These comprise 1, m� 1, m� 1, and (m� 1)2 unit squares, respectively.We now present the calculation of an expansion for Q(m)�� F . Since F (x; y) given by (14) is homo-geneous of degree �+ �+ �, we may setF (�+ k1m ; � + k2m ) = m�(�+�+�)F (� + k1; � + k2):Then, using (1), we may scale the problem as follows:Q(m)�� F = 1m2 m�1Xk1=0 m�1Xk2=0F (� + k1m ; � + k2m )= m�(�+�+�+2) m�1Xk1=0 m�1Xk2=0F (� + k1; � + k2) (15)= m�(�+�+�+2) m�1Xk1=0 m�1Xk2=0Q�;�(H2(k1; k2))F:This expresses Q(m)�� (H2; F ) as a sum of one-point rules applied to each of m2 unit squares.The integrand function has no singularity in R(m;m). In all the (m � 1)2 squares in R(m;m)we employ the standard two-dimensional Euler-Maclaurin expansion (3) above. In each of the m � 1squares of R(1; m), the integrand has an x� singularity on the left-hand edge. Here we employexpansion (7) above, which explicitly treats this singularity. The m� 1 squares of R(m; 1) are treatedby using an analogous expansion. The anomalous contribution from R(1; 1) is already in the correctform to contribute to the term in m�(�+�+�+2) of the expansion.We now treat the terms in (16) corresponding to the squares in R(1; m). As mentioned above, weapply (7) to each of the squares to obtain a result of the formm�1Xk2=1Q��(H2(0; k2))F = p�1Xs=0 ~Bs(1; m) + bp��c�1Xt=0 ~E(1)�+1+t(1; m) + ~Rp(1; m) + ~R(1)p (1; m): (16)To proceed, we need the explicit forms for the coe�cients in (7) given in (9{12). Inserting these into(7) and collecting like terms, we �nd~Bs(1; m) = sXk=0nt[1;1]k;s�k(1; �1bk��c)1 m1 1 + t[1;1]k;s�k(1; F � �1b��c)1 m0 1 o ; (17)6



~E(1)�+1+t(1; m) = tX̀=0U [1]t�`(1; F 1�+`)m1 ; (18)~Rp(1; m) = pXk=0nt[: :]k;p�k(1; �1bk��c)1 m1 1 + t[: :]k;s�k(1; F � �1bk��c)1 m0 1 o ; (19)~R(1)p (1; m) = bp��c�1X̀=0 �1b�+`+1c;p Up�b�+`+1c(1; F 1�+`)m1 : (20)We note that these are obtained from (9{12) by simply setting m = 1 in (11) and (12) and replacingthe integration limits (0; 1) in the y variable by (1; m). The justi�cation for this procedure lies partlyin that the kernel functions h[0]s (�; y) are periodic with period 1. Note also that the m dependencedoes not occur in the integrand functions, but only in the integration limits, as we are adding togetherm� 1 contributions each of which is m independent.Using the same procedure for the set of terms in (16) corresponding to squares lying in R(m; 1)gives a result of the same character as (16), namely,m�1Xk1=1Q��(H2(k1; 0))F = p�1Xs=0 ~Bs(m; 1)+ bp��c�1Xt=0 ~E(2)�+1+t(m; 1) + ~Rp(m; 1)+ ~R(2)p (m; 1): (21)The formulas for ~E2�+1+t and ~R(2)p correspond to (18) and (20); � replaces �, �2 replaces �1, and a Vcoe�cient replaces a U coe�cient. The formulas for ~Bs(m; 1) and ~Rp(m; 1) will be needed again in(26{27) below.An analogous procedure applied to the set of squares lying in R(m;m) gives a simpler result; usingthe standard two-dimensional Euler-Maclaurin expansion (3), we �ndm�1Xk1=1 m�1Xk2=1Q(H2(k1; k2))F = p�1Xs=0 ~Bs(m;m) + ~Rp(m;m); (22)with ~Bs(m;m) = sXk=0 t[1;1]k;s�k(1; F )m m1 1 (23)and ~Rp(m;m) = pXk=0 t[: :]k;p�k(1; F )m m1 1 : (24)Thus, substituting (16), (21), and (22) into the right-hand side of (16), we obtainQ(m)�� (H2)F = 1m�+�+�+2 fQ��(H2)F + p�1Xs=0 ~Bs + bp��c�1Xt=0 ~E(1)�+1+t(1; m)+ bp��c�1Xt=0 ~E(2)�+1+t(m; 1)+ ~Rp + ~R(1)p (1; m) + ~R(2)p (m; 1)g; (25)7



where ~Bs = ~Bs(1; m) + ~Bs(m;m) + ~Bs(m; 1) (26)and ~Rp = ~Rp(1; m) + ~Rp(m;m) + ~Rp(m; 1): (27)Explicit integral representations now have been given for all of the above coe�cients that carrya tilde and have the argument (m;m) or (1; m). These appear in (17{20), (23), and (24). Integralrepresentations for coe�cients with the argument (m; 1) have not been given explicitly but can beobtained from (17{20) by interchanging the roles of x and y.3 Error Expansion in Euler-Maclaurin FormThe error expansion (25) involves many terms, de�ned by integral representations having variousintegrands over several di�erent integration regions. These terms depend on m through the regionof integration. The present section is devoted to the somewhat lengthy task of re-expressing thecoe�cients as sums of inverse powers of m and collecting like terms. The result is Theorem 3 below.We treat �rst the contribution of the two terms (18) and (20) to the sum in (25). This contributionis given in (31) below, the relevant m independent coe�cients being de�ned in (32{35). All theseinvolve the U coe�cient de�ned in (13). To this end we establish the following lemma.Lemma 1U [1]t�`(1; F 1�+`)m1 = (m�+�+1�t � 1)U [1]t�`(1; F 1�+`); � + �+ 1� t 6= 0;= � log2m U [1]t�l(1; F 1�+`)12; �+ �+ 1� t = 0; (28)U [0]p�b�c�`�1(1; F 1�+`)m1 = �U [0]p�b�c�`�1(1; F 1�+`)11+m�p+[�]+�+�+2 U [0]p�b�c�`�1(m;F 1�+`)11;p > �+ � + �+ 2: (29)Proof. By its de�nition (13), the U coe�cient is a sum of terms each of the form t[�1;�2]s;t�` (1; F 1�+`)1 ma�1 ,with various values of s and �1. By de�nition (4) when �2 = 1, the integral in the y coordinate in eachof these integrals is of the formZ m1 F 1�+`(s;t�`)(x; y)dy;where F 1�+`(x; y) is homogeneous of degree �+��` in y. The key part of this proof is to note that everyelement of the subtraction function is homogeneous of degree � + � + � and that element F 1�+`(x; y)is of the form x�+`y�+��`. To establish (28), we need establish the same result for the integral above.This task is relatively simple. We may apply the �rst part of Lemma I.2.3 with � replaced by �+�� `and s replaced by t � `. This produces the result stated above for each t coe�cient separately, andapplying (13) again yields (28) as written. A similar treatment, using (I.2.15), yields (29).8



2Note that in the situation where � + � � ` integer � 0 and � + � < t, both sides of (28) reduceto zero. In particular, when � + � � t + 1 = 1, both sides of the second part of (28) are zero unless�+ �� ` = �1 and t � ` = 0.Substituting (28) and (29) into (18) and (20) gives~E(1)�+1+t(1; m) = Pt̀=0(m�+�+1�t � 1)U [1]t�`(1; F 1�+`); � + �+ 1� t 6= 0;= � log2m Pt̀=0 U [1]t�`(1; F 1�+`)12 = � log2m U [1]0 (1; F 1�+`)12;� + �+ 1� t = 0;~R(1)�+1+t(1; m) =� [p��]�1X̀=0 �1[�+`+1];p (U [0]p�b�c�`�1(1; F 1�+`)11 � m�p+[�]+�+�+2 U [0]p�b�c�`�1(m;F 1�+`)11):If we introducet� = � + �+ 1; (30)the contribution of the above terms to the sum in (25) is1m�+1+t� f[p��]�1Xt=0 ~E(1)�+1+t(1; m) + ~R(1)p (1; m)g = [p��]�1Xt=0 E(1)�+1+t(H2; Q��; F )m�+1+t+A(1)�+1+t�(H2; Q��; F ) + C(1)�+1+t�(H2; Q��; F ) log2mm�+1+t� +R(1)p (H2; Q��; F ); (31)whereE(1)�+1+t(H2; Q��; F ) = (1� �t�t�) tX̀=0U [1]t�`(1; F 1�+`); (32)R(1)p (m;H2; Q��; F ) = m�p�b�c bp��c�1X̀=0 �1b�+`+1c;p U [0]p�b�c�`�1(m;F 1�+`)11; (33)A(1)�+1+t�(H2; Q��; F ) = � bp��c�1Xt=0 E(1)�+1+t(H2; Q��; F )�R(1)p (1;H2; Q��; F ); (34)C(1)�+1+t�(H2; Q��; F ) = ��ft�g t�X̀=0U [1]t��`(1; F 1�+`)12= ��ft�gU [1]0 (1; F 1�+`)12: (35)9



Here, �0 = 1 and �� = 0 when � 6= 0.We note that the expansion (31) has a di�erent form depending on whether t� = � + �+ 1 is aninteger. Generally it is not an integer. The log2m term is then absent from the expansion; and theexpansion contains terms in m�(�+1+t), t = 0; 1; :::, and a single term in m�(�+1+t�). However, whent� is an integer, one of the set of terms in m�(�+1+t) (the one with t = t�) apparently coincides in formwith the single term in m�(�+1+t�). However, the factors (1� �t�t�) and �ft�g in (32) and (35) resolvethe situation by removing one of these terms and including instead a term in log2m=m(�+1+t�). Thisis a familiar phenomenon.At this point we have re-expressed the terms ~E(1)�+1+t(1; m) and ~R(1)p (1; m) in (25) in the requiredform in (31). The terms ~E(2)�+1+t(m; 1) and ~R(2)p (m; 1) can be expressed in an analogous manner. Theterm Q��(H2)F is already independent of m. It remains then to deal with the ~Bs and ~Rp. Thederivation for ~Rp resembles closely that for ~Bs and is not given completely. The derivation for theterms ~Bs is signi�cantly more complicated than the one just given for ~E and ~R(1)p . The result is givenin (48{51) below.According to (27), ~Rp is the sum of terms given by (24), (19), and a formula analogous to (19).These involve in total many di�erent integrals, each of which is expressed in terms of (4). For manip-ulative convenience we introduce more symbols.Definition 6T [�1;�2]k;` (�; F;�;	)m = t[�1;�2]k;` (�;�)1 m1 1 + t[�1 ;�2 ]k;` (�; F � �)1 m0 1+t[�1 ;�2]k;` (�; F )m m1 1 + t[�1;�2]k;` (�;	)m 111 + t[�1 ;�2 ]k;` (�; F �	)m 11 0 : (36)Here F , �, and 	 are functions of x and y. Using this notation, we �nd (from (17), (19), (23), (24),(26), and (27)) that~Bs = sXk=0T [1;1]k;s�k(1; F; �1bk��c; �2bs�k��c)m (37)and ~Rp = pXk=0T [: :]k;p�k(1; F; �1bk��c)m; (38)where F , �1w, and �2w are given by (14) and (8).To simplify (36), we �rst generalize it.Definition 8I[a;b)(F;�;	) = Z ba dx Z a0 dy (F �	) + Z a0 dx Z ba dy(F � �)+ Z ba dx Z ba dy (F � �� 	) + Z ba dx Z 1b dy (�	)+ Z 1b dx Z ba dy (��): 10



It is straightforward to verify thatI[a;b)(F;�;	)+ I[b;c)(F;�;	) = I[a;c)(F;�;	) (39)and T [1;1]k;` (1; F;�;	)m = I[1;m)(F (k;`);�(k;`);	(k;`)):The reason for introducing I[a;b) is in part that the dependence of I[1;m)(F (k;`), 	(k;`), 	(k;`)) on m,which occurs in the integration limits, can be isolated easily, as shown in the following lemma.Lemma 2. If F�, ��, and 	� are homogeneous about the origin of degree �, and if I[a;b)(F�;��;	�)exists for �nite a and b, then the integrals occurring on the right below also exist andI[1;m)(F�;��;	�) = (m�+2 � 1)I[0;1)(F�;��;	�); � > �2;= log2m I[1;2)(F�;��;	�); � = �2;= �(m�+2 � 1)I[1;1)(F�;��;	�); � < �2: (40)Proof. The key to the proof is the identityI[a;b)(F�;��;	�) = m���2I[ma;mb)(F�;��;	�): (41)This follows as a simple exercise using the homogeneity property of the integrand functions. In viewof (41) we may de�neI[1;1)(F�;��;	�) = limn!1 nXk=0 I[mk ;mk+1)(F�;��;	�): (42)So long as the limits exist, we use (41) with m replaced by mk and with [a; b) = [1; m) to re-express(42) in the formI[1;1)(F�;��;	�) = limn!1 nXk=0mk(�+2)I[1;m)(F�;��;	�): (43)When � < �2, the limit on the right exists, and the third relation given in the lemma follows im-mediately. The �rst relation may be established in a similar manner. When � = �2, one may use(41) to show that I[a;b)(F�2;��2;	�2) is a function of b=a, say �(b=a), and use (39) to show that thisfunction has the property �(x1) + �(x2) = �(x1x2). The only nontrivial function with this propertyis a multiple of log x, and this leads to the second relation in (40). 2While Lemma 2 will be used to isolate the m dependence in ~Bs given by (37), the following lemmawill allow us to deal with ~Rp given by (38).Lemma 3. Let h(~x) = h(x; y) be bounded for all x, y and periodic with period 1. Let � < �2.11



ThenI[1;m) (h(~x)F� ; h(~x)�� ; h(~x)	�) = I[1;1) (h(~x)F� ; h(~x)�� ; h(~x)	�) (44)�m�+2 I[1;1) (h(m~x)F� ; h(m~x)�� ; h(m~x)	�):By direct application of Lemma 2 and Lemma 3 with the functions used in (17) and (19), and withthe corresponding subtraction functions used along y = 0, we obtainT [1;1]k;s�k(1; F; �1bk��c; �2bs�k��c)m= (m�+�+��s+2 � 1)T [1;1]k;s�k(1; F; �1bk��c; �2bs�k��c)0; �+ � + �� s > �2;= � log2m T [1;1]k;s�k(1; F; �1bk��c; �2bs�k��c)2; �+ � + �� s = �2;= �(m�+�+��s+2 � 1)T [1;1]k;s�k(1; F; �1bk��c; �2bs�k��c)1; �+ � + �� s < �2;T [: :]k;p�k(1; F; �1bk��c; �2bp�k��c)m = T [: :]k;p�k(1; F; �1bk��c; �2[p�k��])1 (45)�m�+�+��p+2T [: :]k;p�k(1; F; �1bk��c; �2[p�k��])1:This puts us in a position to re-specify the contribution of ~Bs and ~Rp to the sum in (25). Settings� = �+ � + �+ 2; (46)we obtain 1m�+�+�+2 fp�1Xs=0 ~Bs + ~Rpg = p�1Xs=0 Bs(H2; Q��; F )ms + A(1;2)s� (H2; Q��; F )ms� (47)+C(1;2)s� (H2; Q��; F ) log2mms� +R(1;2)p (m;H2; Q��; F );whereBs(H2; Q��; F ) = (1� �s�s�) sXk=0T [1;1]k;s�k(1; F; �1bk��c; �2bs�k��c)as�s� ; (48)R(1;2)p (m;H2; Q��; F ) = � 1mp pXk=0T [: :]k;p�k(1; F; �1bk��c; �2[p�k��])1; (49)A(1;2)s� (H2; Q��; F ) = � p�1Xs=0Bs(H2; Q��; F )� R(1;2)p (1;H2; Q��; F ); (50)12



and C(1;2)s� (H2; Q��; F ) = ��fs�g s�Xk=0T [1;1]k;s��k(1; F; �1bk��c; �2[s��k��])2: (51)Replacing the corresponding part of expansion (25) with (48) and taking (31) into account, we arenow ready to reformulate (25) as an expansion in inverse powers of m. This leads us to the principalresult of this paper.Theorem 3. Let F (x; y) = x�y�r�(x; y); �; � > �1; �+ �+ � > �2; and p > �+ �+ �+ 2.ThenQ(m)�� F =p�1Xs=0 Bs(H2; Q��; F )ms + A�+�+�+2(H2; Q��; F ) + C�+�+�+2(H2; Q��; F ) log2mm�+�+�+2+ [p��]�1Xt=0 E(1)�+1+t(H2; Q��; F )m�+1+t + [p��]�1Xt=0 E(2)�+1+t(H2; Q��; F )m�+1+t + Rp(m;H2; Q��; F ); (52)where the coe�cients B, A, C, E(1), and E(2) are independent of m andRp = O(m�p): 2Two of the coe�cients, Bs and E(1), have already been given explicitly (by (48) and (32), respectively).The rest of the coe�cients and the remainder compriseA�+�+�+2(H2; Q��; F ) = Q��(H2; Q��)F +A(1) +A(1;2) +A(2);C�+�+�+2(H2; Q��; F ) = C(1) + C(1;2) + C(2);Rp(m;H2; Q��; F ) = R(1)p +R(1;2)p +R(2)p ; (53)and E(2), respectively. The coe�cients with superscript (1,2) are given explicitly by (49{51), thecoe�cients with superscript (1) by (32{35), and the coe�cients with superscript (2) by formulasanalogous to those with superscript (1).Note furthermore that Theorem 3 is stated for a value of p > � + � + � + 2. However, forany �p; 0 � �p � p, one could truncate the summations listed in (52) to retain terms whose orderexceeds O(1=m�p) only, and absorb all terms of orders � O(1=m�p) in a remainder term �R�p = O(1=m�p).Notationally, the case �p = 0 reduces to �R0(m;H2; Q��; F ) = Q(m)�� (H2)F .We close this section with a remark about the conditions under which some of these terms in (52)vanish. The term of the form (Cr logm)=mr occurs only when �, �, and � are such that one of s� ort� de�ned in (46) or (30) or w� = � + � + 1 is integer. Detailed reference to these formulas revealsthat Cr = 0 unless the same subscript r occurs in one of the three other summations in (52). (See theremarks just after equation (35).) 13



We remind the reader that the corresponding expansion for the m2 copy of a standard quadraturerule Qf = �Xj=1!jf(�j ; �j) (54)is simply the weighted sum of m2 copies of � distinct one-point quadrature rules Q�j�j . Consequentlywe have treated here only the one-point rule. The reader should bear in mind that while assemblingthe expansion for the rule (54) is straightforward, there is a chance of some terms disappearing. Forexample, when Qf is symmetric, the termsBs(H2; Q; f) = �Xj=1wjBs(H2; Q�j�j ; f) (55)occurring in (3) and (7) are zero for all odd s.In addition, if the rule Q in (54) above is of polynomial degree d, Bs given by (55) vanishes fors 2 [1; d]. In fact, the contribution to Cs denoted by C(1;2) also satis�es these conditions. However, theother contributions to Cs do not. In the special case in which � and � are both integers, Cs satis�esthese conditions. This is the case treated in Lyness [2].4 ApplicationsThese asymptotic expansions have a natural application in cubature by extrapolation, particularly inthe context of the �nite element. We have carried out extensive numerical experiments, both to verifythe expansions numerically and to assess their utility in the cubature context.We arrange this extrapolation so as to calculate the analogues of the terms that would occurin the classical Romberg table. We choose an increasing sequence of mesh ratios m0, m1,... andassume an expansion containing the non-zero terms in (52). As in the T -table, the element Tk;p is anapproximation to If based on p+ 1 approximations Q(mj)f with j 2 [k; p+ k]. Speci�cally, it is thesolution for B0 of the set of p+ 1 linear equations obtained by discarding all but the �rst p+ 1 termsof (52). In standard Romberg integration, one may use the Neville algorithm to calculate elements ofthe table recursively. Here we have simply used a linear equation solver.Naturally, the cost of cubature by extrapolation depends on the number of terms in the expansionthat have to be eliminated. Any unnecessary term included is likely to increase the cost signi�cantly.But any necessary term omitted slows down the convergence to a rate commensurate with that term.Because of this cost pattern, we have to be concerned that, in any particular case, all displayedterms in (52) are needed. When we consider the special cases f(x; y) = x�, and y� and r� separately,we see that any umbrella expression such as (52) has to include either these terms or analogous se-quences of terms of a similar nature and number. Nevertheless, we have carried out many numericalexamples to satisfy ourselves that at least the early terms are usually present. In doing so we foundextensive numerical evidence that, under some readily recognizable circumstances, some do not occur.We express this as a conjecture.Conjecture. When �+ � + � = �1, the coe�cient C1 occurring in (52) is zero, unless all of �, �,14



and � are integers.We have no proof. Since r(x; y) is a general homogeneous function, there may be a class ofthese functions that we have overlooked for which the conjecture is not valid. However, since eachadditional term in the expansion adds signi�cantly to the expense, we feel obliged to mention thispossible economy.The following example is included to give the reader some feeling for the large di�erence in costthat may be experienced in the same problem using variant mesh ratio sequences and expansions. Itis anecdotal in nature and is typical of our experience.Numerical Example. f(x; y) = (xyr4)�0:2. Using the mid-square rule (� = � = 1/2), we see from(52) that the principal term in the error expansion is of form (logm)=m0:8, and the other terms arem�j with j = 0:8; 1:8; 2; 2:8; 3:8; 4; ::: .(i) The proper investigation of this expansion requires a highly accurate, reliable numerical approx-imation for the integral If . Making the substitution x = X5 and y = Y 5 produces an easierintegral over the same square. The new integrand function F (X; Y ) = 25X3Y 3=(X10+ Y 10)0:4is homogeneous of degree 2 and has a much simpler error expansion. This can be evaluated byextrapolation or by an adaptive quadrature routine.(ii) Returning to the original example, our �rst numerical task was to verify the expansion numerically.Using the correct expansion, and the geometric sequence 1; 2; 4; 8; 16; : : : of mesh ratios, we canobtain nine-�gure accuracy after nine iterations. The last approximation uses 2562 = 65; 536function values, the total being about 87; 381. We can do better than this using the conventionalF-sequence 1; 2; 3; 4; 6; 8; 12; : : : of mesh ratios which includes 1; 2; 3 and the double of any memberalready present. Here, we obtain ten �gures after twelve iterations, the �nal one using 642 =4; 096 function values, the total being about 8; 530. The harmonic sequence 1; 2; 3; 4; 5; 6 : : :became unstable before we reached nine �gures; while we cannot recommend them, for therecord we note that we can �nd near-harmonic sequences that obtain nine-�gure accuracy inthis example using between 1200 and 2000 function values. In all cases, we found a T-tableof the expected form, and no evidence that there could be a missing term in the expansion orthat there was an unnecessary term. Nevertheless, several numerical experiments of the typedescribed in (iii) and (iv) below were carried out.(iii) We introduced an extra term B1=m into the expansion. Using the same geometric or F-sequencesas before gave results less accurate by about two decimal places. When we extended the cal-culation to obtain the same accuracy as before, we needed one extra extrapolation using thegeometric sequence and two using the F-sequence. In both cases this additional extrapolationinvolved quadrupling the cost.(iv) We omitted the term B2=m2 from the expansion. This procedure essentially destroyed thecalculation. Terminating at the same point as before, we found �ve or six correct �gures in placeof nine or ten. Our estimate of the cost of obtaining nine or ten ran into the millions.15



Our conclusion is that this sort of integration shares many of the features of the classical two-dimensional analogue of Romberg integration. So long as the proper expansion is used, the accuracypattern in the T-table is much the same.5 Concluding RemarksIn this paper, we have managed to avoid the use of asymptotic theorems. Naturally we have statedthe order of remainder terms, which of course is vital to the purpose for which these expansions areobtained. However, in all cases, we have provided completely speci�ed integral representations forthe remainder terms. Thus, the asymptotic expansions have the status of identities. This can be ofsigni�cant help when the theory comes to be extended, as it often happens that elements of someremainder term contribute to earlier terms in a more developed expansion.The expansion for an integrand function having a singularity of the formf(x; y) = x�y� (56)is much simpler to derive. One obtains with little di�culty almost the same expansion as that obtainedby setting � = 0 in (52). The di�erence is that in the corresponding expansion for (56) the logarithmicterm is omitted, whether or not � + � is an integer. This term appears in (52) with a non-zerocoe�cient when � + � + � is an integer. This di�erence arises because, in two dimensions, there arehomogeneous functions of degree zero that are not constant. These are functions of �, the second polarcoordinate. For this wider class of function, the extra logarithmic term is required. While even thenthis coe�cient is generally zero, it is non-zero when �+ � is an integer; this situation includes all thesimple cases in which � and � are both integers.The result of Section 3 may be readily extended and generalized in several ways. For example, anobvious extension is to the integrand functionf(x; y) = x�y�r�(x; y)g(x; y)where g(x; y) is regular, the other terms being subject to the restrictions of Theorem 3. This isQ(m)�� f � Xs=0 Bsms + Xj=0 A�+�+�+j+2 + C�+�+�+j+2 log2mm�+�+�+j+2 (57)+Xt=0 E(1)�+1+tm�+1+t + Xt=0 E(2)�+1+tm�+1+t :A derivation of integral representations for the expansion coe�cients and the remainder term isnot given in this paper. It is trivial to write these down in the case in which g(x; y) is a polynomial.Extensions to integration over a triangle, rather than a square, follow the lines of a similar gener-alization described in Lyness and Monegato [4] and lead to an expansion of precisely the same form as(57) above. Other extensions to integrand functions having logarithmic singularities are clearly pos-sible, but require detailed justi�cation along the lines of Section 5 of Lyness [2]. Our understandingis that expansions of this type are needed to handle elements required in some of the more recentapplications of the boundary element method. 16



Most of this work was carried out during a three-month visit by one author to Argonne NationalLaboratory in 1979. Our original proof was longer than the present one, and less general. Since then,we have searched at length for a less extended and detailed proof of these results, with only limitedsuccess. We have decided to discontinue this search temporarily; we have presented this proof in itspresent form in the expectation that others, armed with a clear description of and con�dence in theresults, may be more successful than we were in condensing it.References[1] Lyness, J. N. (1976): Applications of extrapolation techniques to multidimensional quadrature ofsome integrand functions with a singularity. Journal of Computational Physics 20, 346{364[2] Lyness, J. N. (1976): An error functional expansion for N-dimensional quadrature with an inte-grand function singular at a point. Mathematics of Computation 30, 1{23[3] Lyness, J. N., de Doncker-Kapenga, E. (1987): On quadrature error expansions. Part I. Journalof Computational and Applied Mathematics 17, 131{149[4] Lyness, J. N., Monegato, G. (1980): Quadrature error expansions for the simplex when theintegrand has singularities at vertices. Mathematics of Computation 34, 213{225[5] Navot, I. (1961): An extension of the Euler-Maclaurin summation formula to functions with abranch singularity. Journal of Mathematics and Physics 40, 271{276[6] Navot, I. (1962): A further extension of the Euler-Maclaurin summation formula. Journal ofMathematics and Physics 41, 155{163[7] Sidi, A. (1983): Euler-Maclaurin expansions for integrals over triangles and squares of functionshaving algebraic/logarithmic singularities along an edge. Journal of Approximation Theory 39,39{53
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Appendix Remarks and ErrataOn Quadrature Error Expansions. Part I. JCAM 17 131-149 (1987)� P134. Sentence after Equation (2.13). Replace p � � by p � �+ 1 (or � integer).� P135. Third equation of Lemma 2.3. Note that both sides reduce to 0 for s = �+ 1.� P136. First sentence after the proof of Theorem 2.4. Replace p > �+ 1 by p � �+ 1.� P137. Equation (2.27). Replace subscript �+ 1 by �+ l.� P138. Line before (2.38). Replace �nal (0) by (1).� P139. Equation (2.41). Replace exponent �+ t+ 1 by �+ t� 1. Equation (2.46). Replace -2 inthe upper bound on the second summation by -1. Replace p > 1 by p � 1.� P142. De�nition 3.1. Replace p > 1 by p � 1. Sentence after Equation (3.9). Replace (3.4) by(3.5).� P143. Theorem 3.2. Add the condition p � 1.� P144. Line after Equation (3.21a). Replace � by �p.� P145. Theorem 3.4 and Theorem 3.5. Add the condition p � 1. Equation (3.31). Replace p asa subscript of Q in the �rst term on the right by �.� P145. Before Theorem 3.5. Add the following sentence: Note that the following theorem wasproved by Sidi (Journal of Approximation Theory 39, 1983, pp. 39-53), under slightly di�erentconditions.� P147. First sentence. Replace \leads" by \lead".� P147. Add before Section 4: Theorem 3.5 can be proved valid under the less strict condition ofcontinuity on the derivatives G(r;s)(x; y) for 0 � r + s � [p� �].� P148. The second displayed equation in Section 5 should contain on the right-hand side theadditional term2Xi=1 4Xj=3Xt�0 A�i+�j+t+2m�i+�j+t+2 :� P136 (�rst sentence of Theorem 2.5), P139 (top sentence and �rst sentence of Theorem 2.8),P145 (Theorem 3.5). Replace the requirement \integrable" on the indicated derivatives by\continuous". 18


