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[11]. Other large-scale experimental work in domain decomposition is described inBj�rstad and Hvidsten [1], Bj�rstad, Moe, and Skogen [2], Keyes and Gropp [14], [15],De Roeck [8], De Roeck and Le Tallec [9], Le Tallec, De Roeck, and Vidrascu [16], andMandel [17].Any good iterative substructuring algorithm with exact interior solvers can be re-formulated to use approximate interior solvers. This approach has been analyzed withsome success in B�orgers [3] and Haase, Langer, and Meyer [13]. In this paper we reporton experiments in which both approximate and exact interior solvers are used. We usemultigrid for the approximate interior solver in our experiments.This paper is organized as follows. In Section 2 we introduce the algorithm us-ing matrix notation. In Section 3 we discuss the implementation of the algorithm ondistributed-memorymachines. In Section 4, we present numerical results for some piece-wise constant coe�cient problems. In Section 5, we discuss future work which will focuson the application of the algorithms to more di�cult multicomponent elliptic partialdi�erential equations.2. Matrix Form of Preconditioner. Consider a scalar, second-order, self-adjoint,H1-coercive, bilinear form a
(u; v) on 
 � R3 and impose a homogeneous Dirichletboundary condition on �0 � @
 and a Neumann boundary condition on @
 n �0: Weassume that the underlying elliptic operator has no zero-order terms. Let H1�0(
) bethe subspace of functions in H1(
) that vanish on �0: The variational problem is to�nd u 2 H1�0(
) such that a
(u; v) = (f; v); 8 v 2 H1�0(
):We triangulate the domain 
 using the usual rules for �nite element triangula-tions. Let V h(
) � H1�0(
) be the space of continuous, piecewise linear, functions onthe triangulation that vanish on �0: In addition, for the construction of the precon-ditioner, we assume that the set of elements is partitioned into disjoint substructures
i. Let H be the characteristic diameter of the substructures; that is, assume thatthere exist constants c and C independent of h and H such that for all substructurescH � diam(
i) � CH: In the experiments reported here, the substructures are alwaysbrick-shaped, but this is not necessary for the algorithm.The discrete problem is to �nd uh 2 V h(
) such thata
(uh; vh) = (f; vh); 8 vh 2 V h(
):(1)If uh is expanded in the standard nodal basis, uh = Pk uk�k; the variational problem(1) can be written as the linear systemKu = f :In previous work [19], we constructed preconditioners for this system that involveseparately solving linear systems associated with the interiors of the subdomains, thefaces shared by pairs of subdomains, and a system associated with the remaining degreesof freedom. The application of our preconditioner results in a convergence rate that is2



independent of the number of subdomains and is independent of jumps in the coe�cientsof the partial di�erential equation between subdomains.Convergence of the preconditioned conjugate gradient method is determined bythe distribution of the eigenvalues of the preconditioned matrix, B�1K: In particular,the number of iterations needed to achieve a �xed accuracy of the solution can bebounded by a constant times the square root of the condition number of the matrix,�(B�1K): Most of the theoretical work on domain decomposition algorithms focuseson obtaining bounds on the condition number. In this work, we report on conditionnumbers, iteration counts, and total solution time and compare these to the behaviorpredicted by theory.We partition the unknown coe�cients into those associated with the interiors ofthe subdomains, uI ; those associated with the faces shared by exactly two subdomains,uF ; and those shared by more than two subdomains (the wirebasket), uW : We useuB to denote the vector of coe�cients (uF ; uW ): In addition, we let u(i) represent thecoe�cients associated with the closure of subdomain 
i:We express the inverse of the sti�ness matrix in partially factored form.0B@ I �K�1II KIF �K�1II KIW0 I 00 0 I 1CA0B@ I 0 00 I �S�1FF SFW0 0 I 1CA0B@K�1II 0 00 S�1FF 00 0 S�1WW1CA0B@ I 0 00 I 00 �STFWS�1FF I 1CA0B@ I 0 0�KTIFK�1II I 0�KTIWK�1II 0 I 1CA :The matrix SFF represents that part of the Schur complement, after the interiornodes have been eliminated, that is associated with the coupling between the nodeson the faces of the subdomains. SWW is the Schur complement associated with thewirebasket once the unknowns of the interior and the faces have been eliminated. Wedo not explicitly form these matrices; instead, the preconditioner is constructed byreplacing various blocks with more computationally attractive matrices. We note thatK�1II , S�1FF , S�1FFSFW , and S�1WW may potentially be replaced.The KII is a block diagonal matrix with a block for each subdomain interior. ForK�1II we use either a sparse factorization (in particular, the Yale Sparse Matrix Packagewhich uses the minimum-degree algorithm to reorder to reduce �ll-in) or one or severalmultigrid V-cycles to approximate the action of the inverse. In the latter case, theapproximate inverse can be written as ~K�1II = (I � M�)K�1II : M� is the symmetricerror iteration matrix for � multigrid V-cycles, and �(M�) < 1: We note that thereis considerable freedom in choosing the multigrid solver and the number of V-cycles.When exact interior solvers are used, we can eliminate the unknowns uI initially anditerate on only uB, using one solver involving KII per iteration. Once uB is known, wecan backsolve for uI : If an approximate solver is used for the interior, then two interiorsolvers are needed per iteration, and all of the variables are present in the iterativeprocess.We replace the Schur complement SFF with a block diagonal matrix with oneblock for each face. Let ~SFF be the generic substitution. Several candidates exist forthe matrix blocks. They are all derived by extending earlier results for problems in twodimensions. 3



1. We can explicitly use the blocks from the Schur complement. The advantage ofthis approach is that the block is automatically well adapted for each di�erentialequation. Unfortunately, it is quite expensive to calculate the blocks except forsmall subdomains. This method may be needed for extremely ill-conditionedproblems where no good substitutes exist.2. We can use a suitable scaling of the J operator. The J operator is the squareroot of the two-dimensional discrete Laplacian on a regular, rectangular mesh.See Bramble, Pasciak, and Schatz [4] for a discussion of why this leads to goodresults. It has been shown that J is spectrally equivalent to the explicit block ofthe Schur complement. It is computationally cheap to apply the action of J�1to a vector. It does not, however, adapt to the particular partial di�erentialequation.3. For constant-coe�cient elliptic partial di�erential equations on rectangular sub-domains with a uniform �nite di�erence mesh, we can exactly diagonalize theSchur complement associated with a face, using fast sine transforms. For twodimensions, Chan and Hou [5] have proposed the use of this fast spectral de-composition to approximate the actual Schur complement. This approach couldbe extended to three dimensions. Again, as with the J operator, this requiresthat we use a regular, rectangular mesh on brick-shaped subdomains.4. We could use a multilevel preconditioner. This is an extension to three dimen-sions of the hierarchical Schur complement preconditioner considered in Smithand Widlund [21]; see also Haase, Langer, and Meyer [13].5. Another approach is to use the tangential component of the original operatorrestricted to that face. It can be obtained easily and adapts reasonably wellto the partial di�erential equation. This approach is taken in Chan and Keyes[6] and Keyes and Gropp [15]. It does not perform well, however, when thecomponents of the operator that are normal to the face dominate.6. The method of probing (see Chan and Keyes [6] and Chan and Mathew [7])could be used to calculate diagonal or band diagonal approximations to theSchur complement on each face.We observe that the operator S�1FFSFW maps values from the boundaries of the facesto the faces. It is known that the most important property of the mapping is that itmaps a constant value on the boundary of the face onto the face as the same constant.We use a simple mapping that preserves this property. We map the average of theunknowns on the boundary of the face onto the face; see Smith [19] for the underlyingtheory. Let T T denote this mapping. More sophisticated interpolation schemes are alsopossible and may be needed for more di�cult problems.For S�1WW , inspired by Mandel [18], we use the matrix de�ned by the followingminimization problem:minu Xmin�w(i) �i(H=h)(u(i)W � �w(i)z(i))T I(u(i)W � �w(i)z(i))� uTWfW :(2)The z(i) is a vector of all ones of the same dimension as u(i)W : We let GWW denote thematrix de�ned by the minimization given above. For nontrivial problems, a diagonal,4



or block diagonal, matrix, that is adapted to the particular partial di�erential equationmay be substituted in place of the identity matrix in the above formula. A simpler choicefor this part of the preconditioner would be the block diagonal part of the originalsti�ness matrix associated with the wirebasket. This choice, however, results in apreconditioned system whose condition number grows faster than C=H2; while theformer choice results in a condition number bounded by (1 + log(H=h))2; see Smith[19].We write the generic form of the inverse of the preconditioner as0B@ I � ~K�1II KIF � ~K�1II KIW0 I 00 0 I 1CA0B@ I 0 00 I �TT0 0 I 1CA0B@ ~K�1II 0 00 ~S�1FF 00 0 ~S�1WW1CA0B@ I 0 00 I 00 �T I 1CA0B@ I 0 0�KTIF ~K�1II I 0�KTIW ~K�1II 0 I 1CA :We consider �ve speci�c preconditioners in the numerical studies.1. Diagonal preconditioning of the original sti�ness matrix. We denote the pre-conditioner by D.2. Two preconditioners that use exact interior solvers.a) The �rst version involves solving the wirebasket problem with the tech-nique introduced above and in Smith [19]. We can express the preconditioneras B�1G =  T TI !G�1WW � T I �+  I0 ! ~S�1FF � I 0 � :b) In the second version, we solve the wirebasket problem using a diagonalmatrix B�1D =  0I !D�1WW � 0 I �+  I0 ! ~S�1FF � I 0 � :3. The next two versions use approximate solvers on the interior subproblems.a) B�1GA =  I � ~K�1II KIB0 I ! ~K�1II 00 B�1G ! I 0�KTIB ~K�1II I ! :b) B�1DA =  I � ~K�1II KIB0 I ! ~K�1II 00 B�1D ! I 0�KTIB ~K�1II I ! :For the piecewise constant coe�cient problems considered in this paper, we use a multi-ple of the J operator as our face preconditioner. For our model problems this approachworks almost as well as the computationally more expensive explicit Schur complement.5



3. Implementation Issues. We have implemented the algorithm on a distributed-memory machine. Each processor has its own local memory and can communicate,either directly or indirectly, with all other processors by using explicit message passing.The speci�c architecture is that of the Intel iPSC/860 and Touchstone DELTA System.These machines have from 8 to 528 Intel i860 processors, each of which is capable ofsustained rates of more than 4 megaops with compiled Fortran or C. Their peak per-formance for hand-coded assembler is considerably higher. Each processor has between8 and 16 megabytes of local memory. The Intel iPSC/860 machine has a hypercubeconnection between the nodes, while the Touchstone DELTA has a two-dimensionalmesh connection.Communication time on these machines is slow compared to the oating-pointspeed. Hence, data locality and the minimization of communication are vital.3.1. Basic Description of Our Implementation. The particular implemen-tation of the algorithm introduced above is closely related to the work of Keyes andGropp [14] for problems in two dimensions. Keyes and Gropp subdivide the domaininto rectangular tiles. Each tile is then discretized by using a regular mesh. This is avery natural approach combining exibility of the domain with regular subdomains andthe possibility of local uniform mesh re�nement.The three-dimensional domain is partitioned into brick-shaped subdomains each ofwhich is assigned a uniform �nite element or �nite di�erence mesh. To simplify thecoding, we require that adjacent subdomains share an entire face, entire edge, or avertex; see Fig. 3.1. This requirement is necessary for our implementation, but not forthe underlying mathematical algorithms. ......... . . . . . .����. . . . . . . . . . . ............... . . . . . . . . . . ...... ........ . . . �������� ��........�� ........ ����. . . . . . . . . . ..... . . .. . . . . . ..... . . . . . . . . . .����................����Acceptable partitionUnacceptable partitionFig. 1. Acceptable and unacceptable partitions of a domainEach processor is assigned one or more subdomains. The information pertaining tothe interior of the subdomain is uniquely owned by that processor and is not directlyavailable to any other processor. Each face, edge, and vertex is jointly owned by severalsubdomains and hence potentially by several processors. Because of this joint ownership,whenever a change is made to the part of the solution associated with a face, edge, orvertex of one subdomain, this information must be conveyed to the other joint owners6



by using explicit message passing. We refer to this process as merging of partial data.For each face, vertex, and edge we designate one of the joint owners as the main ownerand the others as auxiliary owners.Essentially three types of communication between processors are required when thepreconditioned conjugate gradient method is used to solve the linear system. The �rstis multiplication by the sti�ness matrix. After the calculation of the local contributionto the matrix multiplication, the parts of the product vector that are shared by two ormore processors must be merged. This merging of partial results can be performed inseveral ways. At this time a naive approach is used. The partial sums on each face, edge,and vertex are accumulated by the main owner and then sent out to the joint owners.For large problems, when using the full preconditioner, we �nd that less than �vepercent of the time is spent doing communication related to the matrix multiplication.With diagonal preconditioning, the matrix multiply dominates the entire solution time.Hence, optimizing the communication in the matrix multiply becomes important.The application of the preconditioner is the most expensive operation in terms ofcommunication. The principal reason is that the preconditioner is designed to providefor global communication of information in each step of the iteration process. Whenless communication is provided, more iterations are needed, however, at a lower costper iteration. With simple diagonal preconditioning, for instance, no cross-processorcommunication is needed. This fact suggests that for many well-conditioned problemsdiagonal scaling is the optimal approach for parallel computing systems of the typeconsidered in this paper.We list below the steps currently used in the application of the preconditioner B�1G .The steps in braces are the additional steps needed when approximate interior solversare used.1. fApproximate solvers on interior problems.g2. fMerge results.g3. Interpolate face averages onto the edges.4. Merge results.5. Calculate an average on the wirebasket for each subdomain, and send o� tocoarse solver.6. Solve face problems and coarse problem simultaneously.7. Interpolate coarse solution to the wirebasket.8. Merge results.9. fApproximate solvers on interior problems.gThe conjugate gradient method requires several inner products per iteration. Whenpossible, we use a direct call to a low-level implementation of a cross{processor innerproduct.4. Experimental Results for Piecewise Constant Coe�cient Problems.In this section we report on experiments with scalar elliptic problems with piecewiseconstant coe�cients. The reason for examining such problems is threefold: we cancompare the well-developed theory with the numerical results, we can obtain a lowerbound on how well the algorithm performs for more di�cult problems, and we can7



resolve questions about the optimal scaling of di�erent parts of the preconditioner.The total solution time depends on the number of iterations needed and the averageamount of time needed per iteration. Information useful to compare di�erent algorithmsis provided by the number of iterations needed to obtain a �xed accuracy of the solution.The square root of condition number of the preconditioned system gives a bound onthe number of iterations needed.4.1. On the Local Bounds. In this algorithm, as with most iterative substruc-turing algorithms (see Dryja, Smith, and Widlund [11]), it is possible to bound thecondition number of the preconditioned matrix by bounds obtained locally, that is,�(B�1G S) � maxCimin ci ;where the ci and Ci satisfyciu(i)TB(i)G u(i) � u(i)TS(i)u(i) � Ciu(i)TB(i)G u(i); 8u(i):We wish to determine how close the local bounds are to the actual condition numbers asa function of the number of subdomains. We have performed two sets of experiments,one using the exact blocks of the Schur complement, and the other using the J operatoras the face preconditioner. We make two observations from Table 1:� The condition numbers when using either the explicit Schur complement or theJ operator are virtually identical for the Laplace operator.� The bounds obtained from the local analysis quite closely predict the conditionnumbers even for a relatively small number of subdomains.The positions in the table denoted by a dash are cases for which experiments were notcarried out because of time or memory constraints.Table 1Condition numbers and local boundsExplicit Schur Complement J OperatorLocal Number of Subdomains Local Number of SubdomainsH=h Bound 27 64 125 216 Bound 27 64 125 2164 9.66 8.33 8.77 8.82 9.22 10.25 8.72 9.41 9.35 9.925 11.18 9.57 10.28 10.20 10.68 12.10 9.86 10.78 10.61 11.306 12.40 10.87 11.52 11.43 { 13.64 11.05 12.07 11.85 12.897 14.04 11.83 12.63 { { 15.07 11.96 13.56 13.30 14.518 15.86 12.83 14.05 { { 16.31 12.87 15.00 14.70 16.069 17.59 13.62 { { { 17.54 13.63 16.37 { {10 19.23 { { { { 19.26 14.38 17.67 17.61 18.9116 { { { { { { 21.12 24.20 24.16 25.9820 { { { { { { 24.15 27.88 27.78 29.838



4.2. On the Scaling of the Coarse Problem. We can express the precondi-tioned problem when using exact interior solvers asB�1G =  T TI !G�1WW � T I �+  I0 ! ~S�1FF � I 0 � :The mathematical analysis of the algorithm (see Smith [19] and Dryja, Smith, andWidlund [11]) tells us that asymptotically, for large H=h; we should scale GWW by afactor �i(H=h) = C(1 + log(H=h)): The analysis gives no information, however, aboutthe selection of the constant C nor whether the scaling is important for relatively smallvalues of H=h: We shall refer to the case with �i(H=h) = 1 as the natural scaling. Inour experiments, we determine for each mesh size the optimal scaling �i(H=h) using asimple bisection method and compare the condition number to that obtained using thenatural scaling. The results are presented in Table 2.A related question is whether, in the construction of GWW (see equation (2)), weshould scale the diagonal elements for the nodes associated with the vertices of thesubdomains di�erently from those nodes associated with the edges. The most naturalchoice is to scale the former elements by 1=2, since those nodes are contained in exactlytwice as many subdomains. We refer to the resulting choice as a weighted GWW . Wemake the following conclusions from Table 2:� For the range of computationally practical meshes on the subdomains (i.e.,H=h � 32), the natural scaling is only trivially worse than the optimal scaling.� Using the weighted GWW results in only a trivial improvement in the conditionnumber. Table 2Natural vs. optimal scaling of coarse problem: condition numbersG(i) Scaling H=h4 8 12 16 20 24 28 32Natural Natural 9.4 15.0 20.1 24.2 27.9 31.1 33.9 36.5Optimal 8.8 14.0 19.3 23.8 27.6 30.9 33.9 36.5Weighted Natural { 14.2 19.3 23.6 27.2 { { {Optimal { 13.6 18.8 23.3 27.1 { { {4.3. The Growth of the Condition Numbers. Mathematical analysis predictsthe growth in the condition number as a function of the mesh re�nement, H=h, andthe number of subdomains, but it does not give good estimates of the actual numericalvalues. Our results are given in Tables 3 and 4. For the preconditioner labeled BGA wehave used one multigrid V{cycle to solve the subdomain problems approximately. Thedi�erence in the condition number between using one multigrid V{cycle, two multigridV{cycles, and an exact interior solver is very small. Similar results have previously beennoted by B�orgers [3] and Haase, Langer, and Meyer [13] for problems in two dimensionsbut have they not yet been fully explained theoretically.9



Table 3Growth in condition numbers for 64 subdomains (H = 1=4)H=h Unknowns K S B�1G S B�1GAK B�1D S B�1DAK4 3,375 103 53.81 9.4 9.4 67.6 67.78 29,791 414 122 15.0 15.0 107 10712 103,823 933 192 20.1 20.1 131 13316 250,047 1,656 261 24.2 24.4 150 15220 493,039 2,593 331 27.9 28.1 165 16624 857,375 3,734 401 31.1 31.3 { {28 1,367,631 5,083 { 33.9 34.2 { {32 2,048,383 6,640 { 36.5 36.9 { {Observed Growth (1=h)2 1=h (1 + log(H=h))2 (1=H2)(1 + log(H=h))2Table 4Growth in condition numbers for 216 subdomains (H = 1=6)H=h Unknowns K S B�1G S B�1GAK B�1D S B�1DAK4 12,167 232 119 9.9 9.9 155 1498 103,823 933 269 16.1 16.1 230 23212 357,911 2,099 421 21.5 21.5 281 28316 857,375 3,734 573 26.0 26.1 318 32120 1,685,159 5,835 726 29.8 30.0 436 350Observed Growth (1=h)2 1=h (1 + log(H=h))2 (1=H2)(1 + log(H=h))24.4. A Comparison with a Bramble, Pasciak, and Schatz Algorithm.Since our basic algorithm is similar to one of the important algorithms introducedby Bramble, Pasciak, and Schatz [4], we have reproduced the experiments reported intheir paper using the preconditioner B�1G : The �rst set of experiments is for a unit cubedivided into eight subcubes. The sti�ness matrix is derived from the usual �nite dif-ference discretization for the Laplace operator. The second problem is for a unit cubedivided in 27 subcubes with a di�erent constant coe�cient on each subcube; see [4] forthe values used. We see from Tables 5 and 6 that for this class of problem, the twopreconditioners produce similar condition numbers. We note that these are relativelysmall problems and that diagonal scaling also works well.Table 5Comparison with BPS IV: Laplacian operatorCondition numbersH=h Diagonal BPS B�1G S Unknowns4 25.3 13.9 10.3 3438 103 17.7 12.9 3,37516 414 23 18.4 29,79110



Table 6Comparison with BPS IV: coe�cients with jumpsCondition numbersH=h Diagonal BPS B�1G S Unknowns4 63.4 14.1 9.0 1,3318 265.4 18.3 14.5 12,1674.5. Timings. We next present timing results on a 32-node Intel iPSC/860 hyper-cube for a set of intentionally simple examples. We consider three problems. The �rsttwo problems are on the unit cube; the third is on a more complicated region depictedin Fig. 4.5. The unit cube is uniformly divided into subcubes 
ijk: In the third problemwe use 244 subdomains which are not cubes; their aspect ratios are 4:5:20.� Problem 1. Find uh such thatXijk Z
ijk �ijk(ruh;rvh) = Z
 fvh; 8vh 2 V h:The boundary conditions are given by uh = 0 on @
. The coe�cients �ijk areconstant on each subdomain and have large jumps between neighboring sub-domains. Speci�cally, �ijk = sin2(16z)(e18x sin(4y) + e15(1�x)) + 1; where (x; y; z)is the center of 
ijk: The right-hand side is given by f(x; y; z) = zex sin(y):� Problem 2. Find uh such thatZ
(ruh;rvh) = Z
 fvh; 8vh 2 V h:The solution uh is constrained to be zero on one face of the cube and is free onthe rest of the boundary. The right-hand side is the same as in Problem 1.� Problem 3. This problem is the same as in Problem 2 except that the domainis as depicted in Fig. 4.5. The solution uh is �xed on the bottom of the objectand free on the rest of the object's boundary.All the results are for one multigrid V-cycle sweep as an approximate solver for theinterior problems, that is, two sweeps per subdomain per iteration. This choice wasmade because additional multigrid sweeps did not result in a decrease in the numberof outer iterations. The times needed when exact interior solvers are used (i.e. withB�1G S) are much higher than those for the approximate solver. In addition, we cannotrun the large problems when using exact interior solvers, as the sparse factors take alarge percentage of the available space. For instance, for Problem 2 with 64 subdomains,the largest problem we could solve using the sparse interior solver was with a mesh ofH=h = 16; while with multigrid we could solve problems with meshes up to H=h =32: This fact suggests that for well-behaved problems like the Poisson problem, exactinterior solvers, such as banded or sparse linear system solvers, are too expensive tobe competitive. For more di�cult problems, we do not yet know which approach issuperior. We used the ordering routines in the Yale Sparse Matrix Package to orderthe unknowns for the sparse interior solvers. The nested dissection ordering might be abetter choice. The results for Problems 1 and 2 are given in Tables 7 and 8, respectively.11
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Fig. 2. Domain for problem 3For Problem 3 (see Table 9), the iteration counts are slightly higher than for Prob-lem 2. It is well known that increasing aspect ratios cause a decay in the convergencerate of domain decomposition algorithms. In Problem 3 the algorithm with a diagonalscaling as the wirebasket problem performs poorly; see the column labeled B�1DAK inTable 9. This poor performance is because the condition number of the preconditionedproblem grows like 1=H2, so the preconditioner becomes less e�ective when a largenumber of subdomains is used.4.6. Speed of Computational Kernels. Most large numerical codes have a fewroutines that perform the bulk of the numerical calculations and use most of the CPUtime. We refer to these routines as the computational kernels. The best-known compu-tational kernels are the BLAS and FFT. The computational kernels involve no commu-nication with other processes and should ideally vectorize and pipeline well. It is alsoimportant that they use the data and instruction caches well. Since the computationalkernels dominate the time of the entire calculation, their optimization is important. Oncertain processors, the Intel i860 for example, the replacement of Fortran or C com-putational kernels with assembler language kernels can result in large decreases in thetime of the calculation at the expense of a great deal of careful hand-coding of assem-bler code. We note that improvement in the speeds of computational kernels is a localoptimization and does not involve communication or parallelization.The present code is all written with standard Fortran and C computational kernels.We have observed the following oating-point speeds; see Fig. 4.6.� Dot product; 4.9 million oating-point operations per second (MFLOPS).� Matrix multiply; 7.8 MFLOPS. 12



Table 7Problem 1 with 64 subdomains (time in seconds)Number NumberH=h Unknowns Processors Diagonal B�1GAK B�1DAK8 29,791 Number of Iterations 86 19 42Condition Numbers 221 14.1 624 14.1 14.8 23.08 8.3 8.8 12.816 5.7 5.4 8.032 3.9 3.7 5.016 250,047 Number of Iterations 169 24 49Condition Numbers 885 23.1 894 94.2 85.6 155.18 51.7 44.9 80.916 31.2 25.9 44.332 17.0 14.3 23.220 493,039 Number of Iterations 212 26 50Condition Numbers 1,379 26.6 998 113.0 109.4 187.716 65.2 58.7 98.932 34.2 30.4 50.724 857,375 Number of Iterations 256 28 53Condition Numbers 1,984 29.5 1078 193.7 163.5 290.516 110.1 86.8 151.932 57.4 44.8 77.632 2,048,383 Number of Iterations 343 30 55Condition Numbers 3,525 34.0 11932 153.9 119.3 207.3� DAXPY; 4.8 MFLOPS.� Multigrid solver; 3.4 MFLOPS.� Diagonal preconditioner; 2.7 MFLOPS.� Sparse factorization; 3.8 MFLOPS.� Sparse triangular solvers; 4.9 MFLOPS.These results were obtained from the largest set of problems listed in Table 8. They donot �t completely in cache.In the problem with 2,130,048 unknowns listed in Table 8, the per-processor oprate for the entire calculation (from distributing the geometric information to thenodes, to solving the system) was 4.0 MFLOPS for the diagonal preconditioner and 3.1MFLOPS for the more sophisticated preconditioner. Yet the diagonal preconditionertook more than twice as much time. The lower overall op rate for the sophisticated13



Table 8Problem 2 with 64 subdomains (time in seconds)Number NumberH=h Unknowns Processors Diagonal B�1GAK B�1DAK8 34,848 Number of Iterations 129 17 65Condition Numbers 4,972 16.9 1,2004 24.1 16.6 40.78 15.5 9.0 22.216 8.5 5.5 13.032 5.4 3.9 7.516 270,400 Number of Iterations 262 23 78Condition Numbers 19,916 27.2 1,6444 159.8 92.9 261.78 86.9 48.2 136.116 49.7 26.1 72.232 26.6 14.1 37.620 524,880 Number of Iterations 325 25 83Condition Numbers 31,121 31.6 1,7888 168.0 89.9 265.316 94.1 48.2 138.432 49.8 25.3 71.424 903,264 Number of Iterations 388 28 89Condition Numbers 44,817 38.8 1,9118 304.2 170.3 481.616 168.2 89.5 248.532 87.6 46.8 129.132 2,130,048 Number of Iterations 522 32 91Condition Numbers 79,682 51.0 2,10132 233.4 130.8 347.8preconditioner can be explained by the much lower op rate of the multigrid solver.The per-processor op rate was obtained by taking the total number of oating-point operations performed on the processor and dividing by the total time the processorwas in operation, including the time it is communicating with the other processors.While this number is a useful indicator of how well the processor is being utilized, itshould not be overemphasized. The goal is to minimize total computation time. Thebest algorithm is the one that does exactly that, even if its per-processor op rate islower than that for other algorithms.In Figures 4.6 and 4.6, we graph the percentage of total wall-clock time spent in eachportion of the code for the diagonal preconditioned and fully preconditioned problems.This gives a clear indication of what in the code can most fruitfully be optimized. Wealso graph, in Fig. 4.6, the percentage of wall-clock time spent in various parts of the14



Table 9Problem 3 with 244 subdomains (time in seconds)Number NumberH=h Unknowns Processors Diagonal B�1GAK B�1DAK8 132,792 Number of Iterations 309 20 152Condition Numbers 19,657 20.8 4,7108 143.2 54.9 217.416 78.2 35.9 114.932 48.3 26.6 66.416 1,030,512 Number of Iterations 617 35 179Condition Numbers 78,486 74.1 6,42816 427.1 155.1 629.032 237.2 88.5 332.120 2,000,460 Number of Iterations 772 39 187Condition Numbers 122,582 93.9 6,98132 453.4 157.5 622.7Dot ProductMatrix MultiplyDAXPYMultigrid SolverDiagonal ScaleSparse FactorizationSparse SolversFace Solvers0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0MFLOPSFig. 3. Flop rate in the computational kernelscode for Problem 2 when the sparse interior solver is used. This is for 64 subdomainswith a mesh of H=h = 16, the largest problem we could �t onto 32 processor nodeswhile using the sparse direct solver to solve the interior problems. The overall op rateobtained here was 3.8 MFLOPS.For the largest problem for which the sparse solver was used, 4.7% of the totalcomputation time was spent on interprocessor communication. When multigrid wasused to approximately solve the interior problems, the communication time increasedto 11.7% of the total time. With diagonal preconditioning, 26.2% of the time wasdevoted to interprocessor communication.5. Conclusions and Future Directions. We believe that our results indicatethat the iterative substructuring approach is a viable technique for the solution ofelliptic partial di�erential equations in three dimensions on modern distributed-memorymachines. For model problems, the iterative substructuring algorithm performs better15



Setup GeometryForm RHSSetup MatricesLocal Dot Prod.Transfer Dot Prod.Local MultiplyTransfer MultiplyDAXPYDiagonal Scaling 0 5 10 15 20 25 30 35Percentage of total timeFig. 4. Percentage of time in di�erent states, diagonal preconditionerSetup GeometryForm RHSSetup MatricesLocal Dot Prod.Transfer Dot Prod.Local MultiplyTransfer MultiplyDAXPYMultigrid SolverFace + Coarse Pre.Transfer Pre. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80Percentage of total timeFig. 5. Percentage of time in di�erent states, full preconditionerthan diagonal scaling, but not by an enormous factor. In fact, it would appear that isnot enough to justify the extra burden imposed by coding the algorithms. However,we believe that for nontrivial problems, the di�erence between the two approaches interms of computational time will increase.We also note that for solving extremely large problems, it is important to useapproximate solvers for the interior problems. The �ll from a band or sparse solverbegins to dominate the memory usage, making it impossible to solve extremely largeproblems. For di�cult problems, we may not be able to �nd an iterative solver forthe interior problems that performs well enough to serve as replacement for the directsolver, and this fact might limit the size of the problems that we could solve.The iterative substructuring algorithm considered here works well on simple, piece-wise, constant coe�cient problems. To be useful in practice, it must be adaptable to awide range of multicomponent elliptic partial di�erential equations. We therefore planto focus on adapting each piece of the algorithm to a wide range of di�erential equations.The parts of the algorithm that must be generalized are the face preconditioners, the16
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