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The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

Our last coarse space, which has much in common with one developed and analyzed
recently by Mandel and Brezina [42], has only one degree of freedom per substructure.
This space, V2, is defined as the range of the interpolation operator

Ihut(z) = Yuh oA (2).

The summation is over all substructures that do not intersect I'y in more than one or
a few points. )\:r(:z;) is the pseudo inverse of the function defined in formula (14) except
that it is also set to zero at single points of I'y if 99, intersects I'y in just one or a few
points. ﬂgm is the average value of u” over the set 0f), ;.

The only essential difference between this coarse space and the one introduced in
[42] is that the exponent of p; is 1/2 rather than 1. In fact, any exponent greater than
or equal to 1/2 may be used, see Dryja, Sarkis, and Widlund [22]. We also note that
our careful treatment of the boundary substructures that do not share a face with the
boundary 0f) allows us to obtain good bounds without imposing extra restrictions on
the intersection of the boundaries of the individual substructures and that of the original
region.

The bilinear form is chosen as

bS (u, v") = (1 + log(H/h))* > sO(uk, vh).

K3

ALGORITHM 6.13. Use a Schwarz method with the global space Vi and the bilinear
form b5 (-, -) and the local subspaces ‘N/Z.h, choosing the bilinear forms as in formulas (16)
and (17) according to the rule given in Section 5.

THEOREM 6.13. Algorithm 6.13 satisfies the three assumptions with
Cr <, p(€) < C, w< C(1+1log(H/R))%

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficients of (5).

A proof of this result is given in Dryja and Widlund [29].
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ALGORITHM 6.10. Use a Schwarz method with the subspaces given by ‘N/];L, Vi

Fiv
VFhE], and Vrhw and the bilinear form associated with bF(u”, u").

THEOREM 6.10. Algorithm 6.10 satisfies the three assumptions with
C2<C(14los(H/R),  p€)<C,  w<C

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

Proof. Except for an upper bound on b8 (u”, u"), the estimate of C2 is almost the
same as in the proofs of Theorems 6.3 and 6.7. We use the interpolant ILu” to define
the coarse space component u,. Using similar techniques as before, we can establish the
estimates

||uh — ]guhH%Z)(Qi) < H?(1 +log(H/h))|u" %Il(ﬂi)
and
10 By < L+ og(H IR
The upper bound
b (ug, ) < C (1 + log(H[h))a(u”, u")
b
Wi

Finally, we use the same bounds and an inverse inequality to establish that a(u”, u") <
CHoB(ur,ul). O

We can also use the Neumann-Neumann solvers for the local components of the

now follows from these inequalities, and that of Poincaré, choosing w; = u

preconditioner.

ALGORITHM 6.11. Use a Schwarz method obtained from Algorithm 6.5 by replacing
the coarse space Vi, by Vi and the bilinear form b}V (-,-) by b5(-,-).

THEOREM 6.11. Algorithm 6.11 satisfies the three assumptions with
Cr <, p(€) < C, w< C(l+1log(H/R)).

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

Proofs of this and the next result are given in Dryja and Widlund [29].

ALGORITHM 6.12. Use a Schwarz method obtained from Algorithm 6.6 by replacing
the coarse space Vi, by Vi and the bilinear form b}V (-,-) by b5(-,-).
THEOREM 6.12. Algorithm 6.12 satisfies the three assumptions with

C2 < C(1+1log(H/R)),  plE)<C,  w< C(1+]log(H/h))?.
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Inequality (22) follows from Lemmas 4.4 and 4.6.

The second inequality, (23), is established by using Lemmas 4.3, 4.4, 4.6, 4.7, and
Poincaré’s inequality.

The estimate

b g, ) < C(1 + log(H/h))a(u", u")

0

follows from Lemmas 4.3, 4.4, 4.6 and Poincaré’s inequality.
Finally, we use Lemma 4.4 and an inverse inequality to establish that

a(ul uh) < COM(uh,ul), Yul e ‘N/J\Z

We again consider two algorithms based on Neumann-Neumann solvers.

ALGORITHM 6.8. Use a Schwarz method obtained from Algorithm 6.5 by replacing
the coarse space Vi, by VI and the bilinear form b}V (-,-) by bM(-,-).

THEOREM 6.8. Algorithm 6.8 satisfies the three assumptions with
Cr <, p(€) < C, w< C(l+1log(H/R)).

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

Proofs of this and the next result are given in Dryja and Widlund [29].

ALGORITHM 6.9. Use a Schwarz method obtained from Algorithm 6.6 by replacing
the coarse space Vi, by VI and the bilinear form b}V (-,-) by bM(-,-).

THEOREM 6.9. Algorithm 6.9 satisfies the three assumptions with
2O +log(HID),  plE)<C,  w< C(1+log(H/M)Y.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

We can decrease the dimension of the global space just considered. Rather than
using the coarse subspace, involving all of the nodes on the edges, only one degree of
freedom per edge, an average value, can be used. The resulting space, denoted by ‘N/Jg,
is the range of the interpolation operator

Ituh(z) = ST uh (VW) + > ult O () + > ().
VEkel E'CW FkCD
Here ", is the average of the values of u" on E¢ and 0 the discrete harmonic function
which equals 1 on that set and vanishes elsewhere on I';,. We define the bilinear form

for this space by

bB(uh, ul) =57, p; ming {h Yvreaq, (uh(VF) —w;)? +

H Y picag, (tly — ;) + H(1 4 log(H/R)) Y- preag, (U —©;)?}.
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6.3. Face Based Algorithms. We know from the previous subsection that the
vertex space method, Algorithm 6.3, has a condition number that is independent of the
parameters h and H but that this bound might not be independent of the variations of
the coefficients across the interface I'. We could explore the possibility of replacing the
coarse space VH by the wire basket space ‘N/Vf{, as in Algorithm 6.4 and the use of the
bilinear form 6} (-, -). The local spaces could be chosen as in Algorithm 6.3. This leads
to an algorithm for which we can prove the same type of bounds as in Theorem 6.4, i.e.
the condition number is bounded by C'(1+log(H/h))?. We can also show that a bound
of C(1+1log(H/h)) holds if we allow the constant to depend on the variation of the p;.

However, we have recently discovered two alternative coarse spaces for which it is
possible to derive bounds on the condition number that are independent of the values
of p;, and that are linear in (1 +log(H/h)). The main ideas behind the first of these new
algorithms is to expand the coarse space by allowing an additional degree of freedom
for each face, rather than specifying the values on the face in terms of values on all
or part of the wire basket. Later in this subsection, we will explore two more spaces
which all have in common that the average values over the faces, or entire substructure
boundaries, are important in the interpolation formulas that define the coarse space
component and the coarse space as a whole.

The first coarse space of this kind, ‘N/]@, can be viewed as the range of the following
interpolation operator:

Duh(x) = Y uM(ap)or(a) + D whbp ().
r€Wp FECT
The bilinear form is given by

B () = 3" min g, (Bl — @22 e, + H(+log(H/R) 3 (e —2,)2).

FkCaQ;

ALGORITHM 6.7. Use a Schwarz method with the subspaces given by ‘N/]@, ‘N/Fh” ‘N/FhE],

and ‘N/Fhvj and the bilinear form just given by b} (uh, uh).

THEOREM 6.7. Algorithm 6.7 satisfies the three assumptions with
2O +logH/N), o€ <C,  w<C,

The constants in the bounds are independent of the values p; of the coefficient of (5).

Proof. The proof of the first assumption is almost identical to that given for The-
orem 6.3 in Smith [58] except that we now use uy = I},u”. Instead of Lemma 4.2, we
use the following estimates:

(22) lu" = Iyu 72,y < CH UM )
and
(23) [ i @) < OO+ log(HR)) [ F g,
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Let ufy, = H(Jpr(uh — ul)) — ul . 0pr, where ul

is the finite element function that equals u" on the wire basket nodes, vanishes on the

-« 18 defined in Lemma 4.6 and ug

faces, and is discrete harmonic in the interior of the subdomains.

Noting that the values of ul are irrelevant since ¥« vanishes on the wire basket,
we then find that

a(u%k,u%k) < o[ pr (v — ug)) ?Jl(Qi) + (ung)ZWF’“BLIl(Qi))
‘|‘Pj(|]h(19Fk (u" — ug)) 12111(9]) + (ang)2|‘9Fk|12ql(Qj))}
< O log(H/h)* (pilu 3 q,) + " 1 q,))-

Here, we use Lemmas 4.3-4.6. The full H! norm on the right hand side can be reduced
to the seminorm by noting that u, is invariant under the addition of a constant to u”.
We then sum over the subregions to obtain the necessary bound. 0O

We next consider two Neumann-Neumann algorithms.

ALGORITHM 6.5. Use a Schwarz method with the subspaces given by ‘N/Vf{, and ‘N/Z.h.
The bilinear form for the global space is given by bYWV (u”,u*), and those for the local
spaces by the bilinear forms given by (16) and (17), as described in Section 5.

ALGORITHM 6.6. Use a Schwarz method obtained from Algorithm 6.5 by replacing
the local spaces VI by VI . . For all these local subspaces, the bilinear forms are given

by (16).
THEOREM 6.5. Algorithms 6.5 and 6.6 satisfy the three assumptions with
C2<C+log(H/MP,  p(€)SC, < O(1+log(H/h))

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

A proof of these results can be given using the techniques of Dryja and Widlund
[27]. Details will not be provided since these results are of relatively limited interest.

We conclude this subsection by discussing two earlier wire basket based algorithms
due to Bramble, Pasciak, and Schatz [7]. Their work has influenced much of the later
work in the field. One of their coarse spaces is given in terms of the averages of the
nodal values over the entire substructure boundaries 9€);. The other space is defined by
extending the wire basket values as a two dimensional discrete harmonic function onto
the faces, and then as discrete harmonic function into the interiors of the subdomains.
For both methods, Bramble, Pasciak, and Schatz proved, cf. [7],

THEOREM 6.6. The condition number of the preconditioned problem is bounded by
C(1 +log(H/h))?, where the constant is independent not only of the mesh size and the
number of substructures, but also of the values p; of the coefficient of (5).
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We then take derivatives with respect to w; and u and obtain the linear system

ST BOWO — 205y =0, Vi,
(21) Bu — ZB(i)g(i)@i =r.

Here, B is the diagonal matrix obtained by subassembling the B(). We then eliminate
u and get the following system for the w; :

(g(l)TB(Z)z( ))w — Z B 1ZB Z @4 — z(i)TB(i)B_lz_

Once the w; are known, u can be found by solving (21).

ALGORITHM 6.4. Use a Schwarz method with the subspaces given by ‘N/Vf{, and ‘N/ﬁﬁk
and the bilinear form given by bYV (uh,ut) for the space ‘N/Vf{,

THEOREM 6.4. Algorithm 6.4 satisfies the three assumptions with
C2<C0 +log(H/D?,  pl€)<C,  w=C.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).
Proof. We begin by estimating w. For the spaces ‘N/Fhk, w = 1, trivially, since we
use exact projections. Let ul € ‘N/h and let ug)’h be the restriction of u! to Q.. Let
(@h (D) (1)1 ( ) (1)1

wy " =y —uy’, where uy " is the average of uy " over the wire basket. We split

w(()i)’h into two parts, w(()) =Y w} lpe + wév) " The first has constant values on the

faces while the second vanishes there. Then, using Lemmas 4.4, 4.6, and 4.7, we obtain
a(“é?“@ = sz|u0 H1(
= ZMwo 2
ozpz P ol 20
C'(1 4 log(H/h)) Z/%Hwo 1122

< ObYV(ul,ul).

IA

IA

We now estimate C'2. We bound b}V (ul, ult), using the interpolation operator and

Lemma 4.3, by
B ) < (1 og(H/1) 3 il = e
< C(14log(H/h)) ZMU

= C(1+4log(H/h))? (u ul).
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Smith [59]. We note that Bramble, Pasciak, and Schatz [7] pioneered the use of similar
ideas. Here, we begin by describing a method introduced in Smith [56]; cf. also [57].
For the wire basket based methods, we work with the block matrix (10) rather than
(9). Let T'T be the operator that maps the values on the wire basket onto the faces by
assigning, to each node on a face, the average value of the nodal values on the boundary
of the face. This represents an alternative change of basis of the space. S can now be

g — I 0 Spr $Fw I =Tt
o\ =TT ST Sww 0 I '

We note the similarity with (20), but we are now using piecewise constant interpolation

written as

onto the faces rather than piecewise linear interpolation onto the faces and edges. We
proceed as in the preceding subsection and drop the coupling between pairs of faces,
and the faces and the wire basket. We obtain

g (1 TTY( Se 0 I 0
0 I 0 Sk J\T T

B1S = RTSzL RS + 3 RL, S5k Ry S,

and

where Ry = (T'I). This is also an additive Schwarz scheme that uses the same face

spaces ‘N/Fhl as the vertex based algorithms. The coarse space, Vi, can conveniently be

defined as the range of an interpolation operator I}, : V# — Vil defined by

Il = ST ul(ay)er + > ul 05
2

l’kEWh

Here, ;. is the discrete harmonic extension of the standard nodal basis functions ¢,.
The resulting finite element function is continuous across all substructure boundaries.
Therefore, ‘N/Vf{, is a conforming subspace of V7.

We use the bilinear form given by

by (uh,uh) = (1 +log(H/h)h Y pymin[lu — &,2O

for this subspace. Here all the components of the vector z(9 are equal to one. The
introduction of this bilinear form corresponds to replacing Sy by a matrix that,
locally on each substructure, is a simple rank-one perturbation of a multiple of the
identity matrix. To solve the corresponding linear system, we can use a fast technique
suggested by Mandel [37]; cf. also Smith [56], [57].

Letting B(®) = h(1 + log(H/h))p;1, we rewrite the problem as

. : N :
mlnz mln 5(&(2) — @Zg(l))TB(Z) (g(l) — @Zg(l)) — HTE-
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In [58], Smith proved the following result.
THEOREM 6.3. Algorithm 6.3 satisfies the three assumptions with
Cr<C, p(€) < C, w=1.

Here we cannot guarantee that the estimate of C2 is independent of the jumps in the

coefficient of (5).

Using the definitions given above, we find that

H

T -1 T o-1
Z RFEJ SFEJ e’ Ryps + Z Rrvk Srvk vk Rpys.
J k

We note that the first term essentially involves solving a system associated with a block
of S, represented in the partial hierarchical basis, while the other terms involve systems
given by blocks of 5 in the usual nodal basis. In practical implementations, the Sgip,
Speipes» and Spyrpve need not be formed explicitly. Instead we can solve problems such
as (13). Another approach to cutting costs is to use probing to obtain approximations
of the blocks of the Schur complement; cf. e.g. Chan and Mathew [14] and Chan,
Mathew, and Shao [15].

In the analysis given in [58], Smith considered only the case when the overlap was
generous, i.e. on the order of H. However, numerical experiments in two dimensions
suggest that good convergence can also be obtained with minimal overlap. Thus moti-
vated, Dryja and Widlund [28] showed that if the overlap is uniformly on the order of
0, then Algorithm 6.3 satisfies

02 < O(1 4 log(H/5))?

In the same paper, they also demonstrated that for the standard overlapping Schwarz
method with small overlap,

C2 < C(1+ H/$).

Numerical experiments, cf. Bjgrstad et al. [1], [2] and Gropp and Smith [32] confirm
that the rate of convergence of this algorithm is very satisfactory.

6.2. Wire Basket Based Algorithms. We now consider another class of coarse
problems based on averages and the wire basket. Methods of this class use a different
approach to overcome the difficulties associated with the piecewise linear interpolation
over the coarse triangulation, which led to the poor result of Theorem 6.1 or to esti-
mates that are not known to be valid uniformly for all values of the coefficient of (5).
Instead, we now essentially interpolate using averages of u” over the wire basket. These
algorithms work extremely well for problems with large jumps in the coefficients p,; cf.
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Here Dy, is the global diagonal matrix constructed from the weights pg: and py as in
formula (12).

ALGORITHM 6.2. Use a Schwarz method with the subspaces VH, ‘N/Fh” and ‘N/Vf{, In

addition, on the spaces VI

b, use the bilinear form given by hu® Dy, u.

THEOREM 6.2. Algorithm 6.2 satisfies the three assumptions with
2O +log(HILP,  oE)C,  wsC.

Here we cannot guarantee that the estimate of C2 is independent of the jumps in the
coefficients of (5).

Proof. The proof is almost identical to that given above except that we use ul =
Q" u" and Lemma 4.2 rather than /7 u" and Lemma 4.1. 0O

We can increase the overlap between the subspaces and obtain methods with condi-
tion numbers that are uniformly bounded and independent of H and h. Such a method
was given in Smith [58]. This algorithm, known as the Vertex Space or Copper Moun-
tain algorithm, has much in common with the original additive Schwarz method of

Dryja and Widlund [24]; cf. also Dryja and Widlund [28] and Nepomnyaschikh [46].

N

'
NN

~
~

Fia. 3. Face, edge, and vertex spaces.

To define this algorithm, we first define edge spaces associated with a set I'g; that
includes all parts of the faces adjacent to the edge EJ that are within a distance cH
from the edge, see Fig. 3. We also define the vertex region I'y,; as the part of I' that is
at a distance less than ¢H from the jth vertex of the substructure. The space related
to this set is

Vi, ={uh e Viul(z) =0, Yo € Ty \ Ty},
with a similar definition for ‘N/hE]. For this algorithm, we first use exact projections.
Therefore the algorithm is completely defined by its subspaces.

ALGORITHM 6.3. Use a Schwarz method with the subspaces given by VH, ‘N/Fi,

VFhEJ, and Vrhw.
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wh = uh — [Huk, and let u?, = H(0prw"). Here Ho? denotes the discrete harmonic

extension of the function v given on the interface I'. Then,

a(uly,ul,) < C(Pi““%k“%ﬂ(m)+pi||u%k”%ﬂ(ﬂj))
< C(l—|—10g(H/h))2(P¢||wh||fql(m)"’pJ‘HwhH%Il(QJ))

AN

IA

H
Cf(l + log(H/h))*(p;|u” Higay T 2 )

Therefore,

Zk:a(u%k,qu) < C ; (1 +log(H/R))2a(u", u).

Let u?,; be the restriction of (u" — IH#uh) to I%. Then, by Lemmas 4.1 and 4.3,

Yrpllplliy < CO+logHMY 3 pyllut = 1Tl
i 9Q,;NE#£D

Vi
C—(L+1og(H/h) 3 pjlu*i g,
J

IA

C[Z(l—l—log(H/h)) (', ul).

To obtain a bound for w, we have only to consider the edge spaces. The constant

IA

upper bound follows directly from Lemma 4.7.

It is easy to obtain a bound on p(&). We simply note that the subdomains associated
with the local subspaces form an overlapping cover of the domain, and that every point
in the domain is covered by a finite, uniformly bounded number of such subregions.
The subregions can be grouped into sets, with elements that do not overlap, and the
subspaces related to these sets can be merged. The value of N is then reduced to a
constant and a uniform upper bound for p(€) is obtained. This argument is valid for
all of the proofs in this section and will not be repeated. O

It is clear that the H/h term is directly attributable to the large energy of the
coarse mesh interpolant. In the proof given above, we must use [Hu" because all
functions in the other subspaces vanish at the vertices. In the next algorithm, we add
the one dimensional spaces associated with each vertex and its standard nodal basis
function. After doing so, we obtain a much stronger result, but the bounds are no
longer independent of the variation of the coefficient of (5) across the interface I'. The
additive Schwarz preconditioner is now given by

B =S RS R+ Y

RT Ry + REK Ry + 5

1
hpgs hpy:

We note that, as in (12), we can combine the edge and vertex spaces into a single wire
basket space, V}l,, with a corresponding restriction operator, Ry,. We obtain

1
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As in the preceding section, we now drop the coupling between the faces, edges, and
vertices, but we keep those between the vertices. We obtain

I 0 0 Spp 00 I 0 —RIL
—Rr —Rp 1 0 0  Syv 00 I
The preconditioner can now be written as
I 0 RE Sk 701 0 I 0 0
B='=|0 I RL 0 Sgg 0 0 I 0
00 I 0 0 Syv Ry Rp 1

and
B'S =Y RLSpL RS+ > RL S RyeS + RLSL Ry S,

where Ry = (Rp RgI). Thus, we obtain an additive Schwarz preconditioner with the
same face and edge spaces as before but with a coarse space, VH_ in place of the set
of individual, local vertex spaces. In the case of piecewise linear finite elements, the
matrix Syy is equal to Ky, the stiffness matrix obtained by treating the substructures
as elements. We can therefore replace the two last terms in the preconditioner and
obtain

1

As before, there is no need to form the matrix S explicitly.

ALGORITHM 6.1. Use a Schwarz method with the subspaces VH, VI,

H||122(EJ)'

and ‘N/gj For

all the ‘N/gj spaces, use the bilinear forms associated with hpg:
THEOREM 6.1. Algorithm 6.1 satisfies the three assumptions with
Co < C(H[R)(1 + log(H[h))?, pl&)<C, w=sC.

The constants are independent of the jumps in the coefficient, p;.

Proof. We estimate the first parameter, ;. We note that we are only going to
work with discrete harmonic functions for which s(u”, u*) = a(u”,u"). Let ult = [Hu".
We use Lemma 4.1 and find, by adding over the substructures, that

h o h H, k|2 q oo
a(u()?uo) S Czpz|] u |H1(Qz) S Cza(u )y U )
We next bound the energy for the parts of the decomposition of the function u” that

are associated with the faces. This requires the use of Lemmas 4.1 and 4.5. Let
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for the boundary substructures that touch I'y only at a point or along an edge. The
former are treated as if they were interior substructures, i.e. (17) is used, and the latter
in the same way as a substructure that shares an entire face with I'y, i.e. (16) is used.
An alternative approach to avoiding singular problems is to impose zero Dirich-
let boundary conditions on the wire basket while Neumann boundary conditions are
maintained on the faces. In this case the local subspace associated with the individual
substructures are given by
(19) ‘N/thm = {uh € VI|uh(z) =0, Yo € Wi}.
We will refer to these as the mized Neumann-Neumann subspaces. We can use the
bilinear forms given by (16). We refer to the resulting problem as a mixed Neumann-
Neumann local solver. When no coarse problem is used, this preconditioner must be
augmented by terms related to the wire basket. We can, for instance, add the operator

1
Z %R%(D%)_IRW

previously introduced; see also the last section of Dryja and Widlund [29] for further
details.

6. Coarse Grid Algorithms and Condition Numbers. In addition to the
local solvers discussed in the preceding section, any successful domain decomposition
preconditioner must also contain a global space component. We can either add a coarse
solver to a preconditioner based only on local solvers or replace part of the precondi-
tioner. In this section, we will discuss a large number of coarse spaces. The first of them
is based on the space V# of continuous, piecewise linear functions using the substruc-
tures as elements. Conceptually this is clearly the simplest, but as will be shown, it can
be inadequate in three dimensions, basically because of Lemma 4.1. In the remaining
subsections, we discuss wire basket based and face based coarse problems.

6.1. Vertex Based Methods. To incorporate a global component of the precon-
ditioner, we first represent S in a partially hierarchical basis. The face and edge nodal
basis functions are not changed, but those associated with the vertices are replaced
by piecewise linear functions on the coarse triangulation. The basis change from the
partial hierarchical to the nodal basis is represented by

[0 RL
0 [ RL |,
00 I

where the operators RL and RL represent coarse space linear interpolation from the
values on the vertices to the faces and edges, respectively.
The Schur complement can be rewritten as

I 0 0\ (Ser Sew Sev\ (1 0 —RE
~Rp —Ry 1)\ 8L, ST, S /)\0 0 I
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where the A; are diagonal matrices with nonzero elements only for the components of
99, . The diagonal element of A;, which corresponds to x € J{);, is given by
(14) M) =30,

_Pj
J
where the sum is taken over all j such that x € 92, N0S);. We work with pseudo inverses,
since the Neumann problems for interior substructures are singular and all the elements
of the diagonal matrix A; are set to zero for x € I'; \ 0€),.
The following formula has much in common with (13). However, the subscripts [
and B now represent the nodes of €, and 01);, respectively:

. . +
. K% K 0
L. II IB

S()_(O ])([’(i)T I((B% (])

B

Again, there is no need to compute the Schur complements. Instead, in each iteration
step, we can solve a Neumann problem for each subdomain in order to calculate the
action of SO on a vector.

This second approach, with a different scaling, originates in the work of Bourgat,
Glowinski, Le Tallec, and Vidrascu [5]. Their algorithms have later been modified,
extended, and analyzed by Cowsar, Mandel, and Wheeler [17], De Roeck [18], De Roeck
and Le Tallec [19], Dryja and Widlund [25], [27], [29], Le Tallec, De Roeck, and Vidrascu
[35], Mandel [40], [41], and Mandel and Brezina [42].

For these methods, the Schwarz subspaces are given by
(15) Vi = {uh e Vhul(z) =0, Yo e I', \ 90},
and the bilinear forms on these subspaces can be given by
(16) bi(ul, o) = sO (I (N uh), (A 0h)).

For an interior subdomain, or a boundary substructure that does not touch the
Dirichlet part of the boundary, I'y, the local Neumann problem is singular. There are
several ways of dealing with this. Instead of working with the pseudo inverses of the
Schur complements, which can be computationally expensive, we can solve a Neumann
problem for a different elliptic operator. This is the main approach taken in Dryja and

Widlund [29]. The local bilinear form
(17) bi(uh, o) = SO(IM(Aul), I"(Aio"))
is used, where $()(-,+) is the Schur complement of the bilinear form

. 1
(18) &(2)(u,v) = /Qz Vu - Vvdz + ?22 /Qz uvdz.

We will refer to this as the standard Neumann-Neumann local solver. We note that
Dryja and Widlund [29] contains a detailed discussion on the choice of bilinear forms
21



To decrease the cost and to avoid computing the elements of the Schur complements,
we make some further simplifications. We note that the matrices Sgip: are quite well
conditioned; it follows from Lemmas 4.3 and 4.7 that their condition numbers are O(1+
log(H/h)). We therefore replace Sz, in the preconditioner, by 1/(hpg:)I. Here [ is
an identity matrix and ppi = 325 npizp ;- In the Schwarz framework, this corresponds

to replacing the bilinear form s(-,-) on the spaces Vgi by bgi(uh, uh) = hpp E||122(Ei).

We can also replace the diagonal element Sy.iy: by hpy: = h 3 50 avize p;- The modified
preconditioner can then be written as

1
hpvi

1
B='=> RLS: iR+ hpg R Rpi +) RL Ry
We note that the second and third sums could be combined into one. One of the terms
of the sum will then correspond to the wire basket W) and

(12) B = Y RI,S:L Ry + %R%},(Dﬁv)—ll%w.
Here the elements of the diagonal matrix Dj, equal pg and py: for the components
corresponding to edge and vertex nodes, respectively.

We should also provide a relatively inexpensive algorithm for calculating the action
of each S;;Fk We do so by solving a linear system associated with the two domains
Q; and €, that share the face F'*. Let K() denote the submatrix of K associated with
Q= Q,UQ; U F* Then

.. .. -1
K)o gt 0
-1 _ 17 IB
(13) Sitpe=1(0 1) ( K7 i) ( / ) .

Here the subscripts [ and B represent the nodes of ; U€); and F'*, respectively. Hence
the action of S;;Fk can be calculated by solving a homogeneous Dirichlet problem on
Q;; with a right hand side that differs from zero only on FF. In this construction, we
could also replace €);; by any shape regular region that contains the face F'* in its
interior. We stress that the solution of the local problems never requires the explicit
construction of elementsof 5. Instead, in each iteration, independent Dirichlet boundary
value problems are solved for regions enclosing the individual faces.

Sprpx can also be replaced by the J operator introduced in Dryja [20], or another
of many other preconditioners that are known to be effective for problems on the union
of two substructures; cf. Bjgrstad and Widlund [3].

In the splittings just considered, we eliminate the coupling between all pairs of
faces. In our second main approach, we attempt to maintain this coupling. To keep
the problems local, we instead eliminate the coupling between neighboring subdomains
working with the full Schur complements of the individual substructures.

The preconditioner is given by
Bt = (3 AISONA]),
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5. Local Solvers. Iterative substructuring algorithms with good convergence prop-
erties are constructed from two types of components: many local solvers and a coarse
grid solver. In this section, we describe two basic methods of constructing the local
solvers.

The first approach can essentially be viewed as a classical splitting of the Schur com-
plement matrix. For simplicity, we write down the preconditioners only for the additive
algorithms; similar, but more complicated, formulas can be given for the multiplicative
Schwarz methods.

We first recall that the Schur complement for the entire problem is obtained through
subassembly of the matrices given in (9). This results in the formula

SFF SFE SFV
SIJ;V S:EFV Svv

As in the classical theory for iterative methods, cf. Varga [60], a preconditioner for S
can be obtained by a splitting, i.e. by dropping certain blocks, or elements. Here we
eliminate not only the off-diagonal blocks of (11) but also the sub-blocks representing
the coupling between all pairs of faces, edges, and vertices. The resulting preconditioner
has the form

Ser 0 0
Bl=| 0 Szp O
0 0 Syv

The matrix Spp is block diagonal with a block for each face, Spg has a block for each
edge, and Sy is diagonal. This is a block-Jacobi preconditioner. We note that each
block corresponds to a set of adjacent variables on the interface I'.

We need to introduce some additional notations. Let Spip: be the submatrix of S
associated with the face F*, and let Sgig: be that of the edge Et. Similarly, Sy is
the diagonal element of S associated with the vertex Vi. Let Ry be the rectangular
restriction matrix which returns only the components of a global vector associated with
the face F'*. Similar restriction matrices, Ry and Ry, are introduced for the edges and
individual vertices, respectively. We note that, for instance, Spipi = Rpi SRL..

The preconditioner B~! can now be rewritten as

and we also find that

This preconditioned matrix is the same as that obtained from an additive Schwarz
method with the spaces Vi = {u € V' u(z) = 0,Ya e )\ Fi}, VI = {u e Viu(z) =
0,¥e € Ty, \ Ei}, and Vi = {u € Vh|u(x) = 0,Yz € T, \ Vi}.
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The integral with respect to z can be bounded by using Lemma 4.3. We obtain

H
S gy < OO+ log( B/ g, [ 7t

KCQ,

and thus
Do MW = O )ul oy < C(L+log(H/R)2{[uh |31 g .
KCQ,

U

We also need some trivial results.

LEMMA 4.6. Let qu, ng, ﬂng, ﬂ%k, and ﬂ{jvk be the average of the nodal values
of u on % 0Q, 0% E% and WF, respectively. Then,

B 1
(qu)2 < C ||u ||L2 (Fk)
(ﬂggk)Z < CﬁHuth (9% )°
—h 2 < Ci h||2
(uaFk) > HHU ||L2(8Fk)7
B 1
(uEk)Q <C— ||uh||L2 (Ek)

B 1
(u%k)z < Cﬁ||uh| |%2(Wk)-

The proofs are direct consequences of the Schwarz inequality.
LEMMA 4.7. Let ut be zero on the faces of 1, and discrete harmonic in Q. Then

|uh2 H(Q, < C||uh||L2 (Wi)*

This result follows by estimating the energy norm of the zero extension of the boundary
values and by noting that the harmonic extension has a smaller energy.

We note that we will use both hHngZQ(E

is appropriate when defining bilinear forms on a subspace related to the edge E?, the

2 (B While the first expression

two are, for all theoretical purposes, interchangeable since the mass matrix related to
the second expression is uniformly well conditioned.
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to determine the exact relationship between the geometry, e.g., the aspect ratios of the
substructures, and the constants of the bounds.

LEMMA 4.5. Let Upx(x) be the functions introduced in the proof of Lemma 4.4,
let F'* be a face of the substructure Q;, and let I™ denote the interpolation operator
associated with the finite element space Vh. Then,

ST gt (x) = ut(x), Yo e, \ Wi,
k

and

120 ) s gy < CCL+ log(H /D)2 a2,

Proof. We provide a proof only for the case of a tetrahedral substructure. The
first formula follows immediately from the proof of the previous lemma. To prove the
other, we first consider the contributions to the energy from the elements that touch
the wire basket. By definition, ¥+ vanishes on the wire basket. It is then easy to show
that the energy contributed from this small neighborhood of the wire basket can be
bounded by kY, |u(x)]?, where the sum is taken over all the nodal points that are
within a mesh width of the wire basket. As in Lemma 4.3, this sum can be bounded
by C(1 -+ log(H/B) [ 2

By using elementary considerations, we obtain,

|]h(19Fku ) ( )< 2 Z |19Fku (IX —|—2 Z |]h 19Fk ﬂFk)u |H1 IX

KCQ; KCQ;

Here 0 < ¥ < 1 is the average of ¥p« over the element K. When we estimate these
sums, we can ignore the elements that touch the wire basket, since they have already
been accounted for.

The bound for the first term is trivial, but that of the second term is more compli-
cated. We first use an inverse inequality and obtain

(e =D )u) s ey < CRZ (O = eI )

By using the bound on the gradient of ¥+, we can bound ¥z — ¥ x by Ch/r, where r
is the distance to the wire basket. Hence,

Zuh((ﬁF’“ _Ing) )|H1 K) < CZT_QHU}LH]} K)
K

We partition the elements of {); into groups, in accordance to the closest edge of €1;;
the exact rule for the assignment of the elements that are haltway between is of no
importance. For each edge of the wire basket, we use a local cylindrical coordinate
system with the z axis coinciding with the edge, and the radial direction, r, normal to
the edge. In cylindrical coordinates, we estimate the sum by an integral

> ”WWBB_C/ // www

KCQ;



edges, and the estimate |V | < C/h.

To estimate the contribution to the energy from the rest of the substructure, we
consider one subtetrahedron at a time and introduce cylindrical coordinates using the
appropriate substructure edge as the z-axis. The bound now follows from the bound
on the gradient and elementary considerations. (We note that a similar argument, in a
somewhat more complicated situation, is given in the proof of the next lemma.)

We now turn to the proof of the second inequality. To avoid irrelevant scaling
factors, we consider the special case of H = 1, and we also denote the region by ). In
this case, we only have to prove that ||0px[|;2(q) is bounded. We introduce an auxiliary
function u by solving

—ANu=0px, x€Q, u=0, z €N
Since {2 is convex, a standard regularity result shows that

[l 2y < OO0l 120y

By Green’s formula,

) ou
1054112, :/Qvu-vedex— [ bpuds.

Since @5« is discrete harmonic, we find that
/ Vi - Vpede = / V(- wh)Vopede, Y € VA(Q) N H(Q).
Q Q
The right hand side can be estimated from above by

: _ b
whevlhrrlﬁfHé(Q) [u — W gy [0y < Chlulgaio)l 0l n) < ChlOpslr20)0pk 11 q)-
Here we have used a standard error bound and the regularity result. By using the
bound for [0px|y1(q), we see that the first term originating from the Green’s formula is
o([|0p]2(g))-

For the second term, the line integral, we use Schwarz’s inequality, a standard trace
theorem, and the regularity result. We obtain

U
——Oprds| < Cll0pr]12(0)l|0F+ | 12(50)-

0

| 20 On

The argument can now easily be concluded by observing that ||0x|p2ag) < C. O
The following lemma is an extension to three dimensions of a result of Dryja and
Widlund [24]. The present approach makes it possible to prove nontrivial bounds for it-
erative substructuring algorithms without the use of an extension theorem; cf. Widlund
[61]. Here, we can always work in subspaces of the original finite element spaces, and
we never need to use trace and extension theorems.  One advantage of this approach is
that the constants obtained in the estimates can be calculated explicitly from geometric
information. When working with the trace and extension theorems it is more difficult
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establish this bound. The proof is then completed by noting that a discrete harmonic
function has at least as small an energy as any other function with the same boundary
values. We consider in detail only the case of a tetrahedral substructure. The four
functions, which correspond to the four faces of the tetrahedron, also form a partition
of unity at all nodes of the closure of the substructure except those on the wire basket;
this property will be used in the proot of Lemma 4.5.

We will first construct four functions, which form a partition of unity, but which are
not finite element functions. The four finite element functions ¥ x are then obtained by
piecewise linear interpolation. It is easy to verify that these new functions also define a
partition of unity and that the bound on the gradient, previously obtained, is preserved.
We will use the same notation for these two sets of functions.

We divide the substructure into four tetrahedra by connecting its centroid C', by line
segments, to the four vertices of the tetrahedron. Similarly, we divide each triangular
face of the substructure into three triangles by extending the bisectors of the three
vertices of the triangle until they meet. We denote the resulting points on the faces
by C}, see Fig. 2. By connecting the (', with ', we obtain the wire baskets of twelve
tetrahedra.

We construct the function ¥ zx, associated with the face F'*, as follows: At C the
value is 1/4. We interpolate linearly between the value 1/4 and 1 or 0, whichever is
appropriate, along the line segments connecting (' to the (. The values elsewhere are
constant on the intersection of any plane, through the unique substructure edge that
belongs to a specific subtetrahedron, and that same subtetrahedron. This constant
value is determined by the value, already known, at the point on the appropriate line
segment, which is one of the edges of the same subtetrahedron. Finally, we modify the
function by changing its values in the elements that have at least one vertex on an edge
of the substructure. We make the function zero on the wire basket and continuous,
by piecewise linear interpolation, using the previously constructed values at the nodes
that are not on, but next to, the edge. We also replace the function elsewhere by its
piecewise linear interpolant.

We return for a moment to consider the function prior to the interpolation. The
values on any two planes associated with two different substructure edges, which inter-
sect at a point on the appropriate line segment, are the same. The partition functions
are therefore continuous across the boundaries of the subtetrahedra. Explicit formulas
for the gradient and estimates thereof can, at least in principle, be given. The most
important observation is that |V x| < C/r, where r is the distance to the nearest edge
of the original tetrahedron.

It is also easy to show that {¥p«} form a partition of unity on the special line
segments, and everywhere else, except in the special elements next to the edges of the
original substructure.

To complete the proof of the first inequality, we return to the finite element functions
and first note that the contribution to the energy from the union of the elements with
at least one vertex on an edge of the substructure can be bounded from above by C' H.
This follows by considering their combined volume, the fact that Jpx vanishes at the
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Results very similar to those of the next lemma can be found in Bramble, Pasciak,
and Schatz [7], Bramble and Xu [9], Dryja [21], and Dryja and Widlund [29].

LEMMA 4.3. Let uly,; be the average value of u on W, the nodes of the wire basket
of the subdomain ;. Then

M1y < CCL+ Yo/ B
and
||u — a%w”%?(vw) <C(1+ log(H/h))|uh ,21[1(9])-

Stmilar bounds also hold for an individual substructure edge.

Fia. 2. Construction of the partition function in a tetrahedron.

When we estimate the parameter C'?, introduced in the abstract convergence theory,
we must demonstrate that all functions in the finite element space can be decomposed
into components in the subspaces in such a way that the sum of the resulting energies
are uniformly, or almost uniformly, bounded with respect to the parameters h, H, etc.
The main technique for deriving such decompositions is the use of suitable partitions
of unity. In the next two lemmas, we explicitly construct such a partition.

LEMMA 4.4. Let Opx be the finite element function that is equal one on I}, where

F* is the face common to Q; and §);, zero on (08, , V08, ;)\ FF, and discrete harmonic
in Q; and ;. Then

|‘9Fk|12111(9i) < C(1+log(H/h))H,
and

The same bounds also hold for the other subregion §1;.
Proof. We begin with a prooft of the first inequality. We prove this result by
constructing a function ¥px, with the same boundary values as 0px, for which we can
14



We note that an application of Bi' to a vector need only involve B! twice, and Bg"
once. It is also possible to use different approximate interior solvers in the three factors
of Bx! and to construct nonsymmetric preconditioners of a similar form.

In the analysis presented in this paper, we will always require exact interior sub-
domain solvers. Progress has been made in analyzing algorithms that use approximate
interior solvers; cf. Borgers [4] and Haase, Langer, and Meyer [33]. Since it is important
first to fully understand the case when exact interior solvers are used, we will focus on
that case. We can then exclusively work with the space of discrete harmonic functions
V' and the bilinear form (-, -). Numerical experiments, cf. Borgers [4], Haase, Langer,
and Meyer [33], Skogen [55], and Smith [59], indicate that a good rate of convergence
can be maintained when one multigrid V-cycle is used, instead of an exact solver, to
solve the interior problems.

4. Technical Tools. A number of auxiliary results are needed for the Schwarz
analysis of the iterative substructuring algorithms. The relevant norms and seminorms
have been introduced in the preceding section; some of them contain a large multiple
of the L, norm; cf. (7).

The first lemma illustrates the limitations of the interpolation operator IH : Vi —
VH_ [Hyh is the result of piecewise linear interpolation of the finite element function
u” onto the coarse space V. The lemma follows easily from the inequality

bl < COMH B,

cf. Lemma 2.3 of Bramble and Xu [9], and by using Poincaré’s inequality. The given
bounds are sharp.
LEMMA 4.1. In three dimensions,
h_ JH,h h

||u — IMu ||%2(Q]) < C(H/h)H2|u 12111(%)7

and
H,h h
| 17w |12111(Q]) < C(H/h)|u 121[1(9]).

The next lemma concerns an operator for which the bounds are much improved.
We note that the norms are now given in terms of the entire region €. In fact, it is
not possible to provide the same estimates for the H' and L? norms, weighted by the
values p; of the coefficient of the elliptic problem, if we require that the constants in
the estimates be independent of the p;; cf. Xu [64]. For a proof of Lemma 4.2 and a
general discussion, see Bramble and Xu [9].

LEMMA 4.2. Let QHu” be the L? projection of the finite element function u” onto
the coarse space VH. Then, in three dimensions,

||uh - QHU}LH%?(Q) < CH2|uh|12ql(Q)v
and

Q2 g < Clutl,
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FiG. 1. Faces, edges and wire baskets.

face in the interior of the region {2 is common to exactly two substructures, an edge is
shared by more than two, and a vertex is common to still more substructures. All the
substructures, faces, and edges are regarded as open sets. The sets of nodes in Q;, F'¥,
Et, and Wi are denoted by €, ,, FF, Bt and Wg, respectively.

The matrix S can be represented as a block matrix with a block for each face, edge,
and vertex. We often combine all the edge and all the vertex blocks of §; into single
blocks. We can also merge them all into a single block corresponding to the wire basket.

We then obtain
Sik SPh SE
| Ok |
(9) SO = | SPp o SEE S

o Sep Sp
SE SE SV

and
Q) o)
(10) S6) = ( i ),
SFW SWW

respectively. Here SI(;JI)T is constructed from the blocks that correspond to the individ-
ual faces, and to pairs of faces, of 2;, etc. We will use both block structures in the
description of different algorithms, as appropriate.

All of the algorithms considered in this paper can be formulated by using inexact
interior solvers. We explain briefly how this can be done. The exact inverse K~1 can
be written as

o (1 —Ei'Kps \ [ Ki' o0 I 0
0 I 0 S )\ —Kg, K7 1)

If we have a good preconditioner for S, Bs', and a good preconditioner for K;;, (i.e.
an approximate solver B! for the interior problems), we can create a preconditioner
for K of the form

g (1 —Bi'Kw )\ (B 0 Iy
K 0 I 0 Bj O |
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Thus to multiply K by the vector u, we first restrict the vectors u; and ug to the sub-
structures, then multiply them by the stiffness matrices of the individual substructures
and, finally, obtain the product Ku by padding with zeros and adding the resulting
vectors.

In most discussions of Schwarz methods, there are technically two spaces: the
space of finite element functions V", and the space of coefficients of the finite element
functions. We will denote functions in V" by u” and the coefficient vectors of the finite
element functions by wu.

In a first step of many iterative substructuring algorithms, the unknowns in the
interior of the subdomains are eliminated. In this step, the Schur complements, with
respect to the variables associated with the boundaries of the individual substructures,
are calculated. The resulting linear system can be written as

Ky Kip Uy Af}? K}g H(Ij) i(j)
S =2 (0 0 =2\ o _ O 0 0
0 Up ; 0  Sgp up 7\ [y K K £

where

and the reduced system is given by

SQB = iB'

Thus, the matrix S is obtained from the SU) by subassembly. In practice, the matrix
is often not formed explicitly, since this is a potentially expensive operation. Instead,

(7) (7)

a sparse representation of the K}z and the sparse, triangular factors of the K7 are
stored, and the action of S on a vector is calculated as needed.

The space of discrete harmonic functions, VP C V%, is an important subspace,
which is directly related to the Schur complements and to the values at the nodes on T'.
These functions satisfy the linear relation Kjju;+ Kygug = 0. It is easy to see that they
are completely defined by their values on the interfaces and that they are orthogonal,
in the a(-,-) inner product, to the spaces VN H}(€);). In the analysis to be given, the
important inner product is the one induced by 5; we will define our preconditioners
with respect to the inner product s(u”,v*) = uLSvg, where vk, v € Vi, are discrete

harmonic functions. We note that it is an elementary algebraic result that

s(uh uh) = Uhﬁl;li:%h a(vh, vh).
Thus the discrete harmonic extension is the extension that minimizes the energy.

We need to introduce notations related to certain geometrical objects, since the
iterative substructuring algorithms are based on subspaces directly related to the sub-
structures, faces, etc. Let €1, be the union of two substructures €1; and {2, which share
a common face, and denote that face by F'*. Let E* represent an edge, V™ a vertex of a
substructure, and W/ the wire basket of the subdomain €);; see Fig. 1. We note that a

11



and the norm

In the case of a region of diameter I, such as a substructure {2, we use a norm with
different relative weights,

1
(7) HUH?'_Il(QJ) = |u|12111(gj) + EHUH%Q(Q])‘

We introduce a discretization, which satisfies the usual rules for finite element tri-
angulations such as shape regularity of the elements; cf. Ciarlet [16]. Let V() be the
space of continuous, piecewise linear functions on this triangulation, which vanish on
I'y. For the construction of the preconditioner, we assume that the set of elements is
partitioned into subsets forming disjoint substructures ;. For many of the algorithms
considered in this paper, the shapes of the substructures can be quite arbitrary. How-
ever, to simplify the analysis, we restrict our attention to the case where the ), are
shape regular finite elements with a characteristic diameter H. We denote the interface
between the subdomains by I' = U9, \ T'y. We also assume that the [y is the union of
the closures of faces of some, or all, of the substructures.

The discrete problem is then of the form: Find u® € V() such that

(8) a(u,vh) = (f,0h), Vol e VHQ).

If we expand u” in the standard nodal basis, u" = ¥_; u, ¢y, the variational problem (8)
can be written as the linear system

Ku=f.
The elements of the stiffness matrix K are given by
Kz’j = a(¢i7 </5j)
and those of the right hand side f by

The local contributions to the stiffness matrix and the right hand side can be formed
one subdomain at a time. The stiffness matrix is then obtained by subassembly of these
parts. We order the nodes interior to the subdomains first, followed by those on the
interface I'. All the matrices and vectors are expanded by zeros, giving them each the
same dimension as the global stiffness matrix and the vector of unknowns. We can then
write the linear system as

( Kir Kip ) ( Uy ) Z Af}? K}g ( M(Ij) ) Z ( f ({j) )
. . = A7 . . = -1, .
KT, Kpg )\ ug =\ KT kG W A\ [
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are obtained by subassembly just as the bilinear form a(-,-) can be obtained from
al)(u,v) = /Q p; Vu - Vovdz;

see further discussion in Section 3. The case when the space V) is a direct sum of

the local subspaces Vi(]) has been considered by Mandel [38], [39]. He showed that if,
for each ;, one of the local subspaces contains the null space of a(9)(-,-), then bounds
on the condition number of the global preconditioned problem can be obtained from
bounds for individual subdomains. The local bounds can be obtained by using the
techniques outlined earlier in this section.

We formulate a related result that is also useful when the local subspaces do not
form a direct sum decomposition. 4

LEMMA 2.2. Assume that there exists constants Cé]) so that for all w € V there

exists a representation v =Y, u;, u; € V;, such that

S0 (ugyup) < CFali) (u,w), vj,

then the Cy of Equation (2) is given by Cy = max; Céj).

Proof. This result follows immediately by summing over the substructures. 0O

In the case of piecewise constant coefficients, the construction of bgj)(-, -) is straight-
forward. We simply construct appropriate bilinear forms for the Laplacian and then
scale them by multiplying by p;. The bounds needed for the Lemma follow immediately.

We note that an algorithm due to Smith [57] (Algorithm 6.4) and the standard
iterative substructuring method (Algorithm 6.1) can be analyzed using substructure
by substructure estimates. The overlapping additive Schwarz algorithms of Dryja and
Widlund [23], [24], [25], [30], Widlund [63] and another algorithm due to Smith [58]
(Algorithm 6.3), on the other hand, are Schwarz methods for which we have been
unable to perform an analysis using only local estimates.

3. The Elliptic Problem and Its Discretization. In this paper, we will con-
sider only scalar, second-order, self adjoint, coercive, bilinear forms a(u,v)on Q@ C R?, a
Lipschitz region of diameter 1; in fact, to simplify matters, we assume, without limiting
the generality of our theory, that the region is polyhedral. We impose a homogeneous
Dirichlet condition on I'; C 9 and Neumann boundary conditions on I'y = 99 \ T'.
We denote the subspace of H'(2) with zero trace on I'y by HE (©). We assume that
the set I'y is of nonzero measure and that the underlying elliptic operator has no zero
order terms. The variational problem is then: Find u* € Hllo(ﬂ) such that

a(us,v) = (f,v), VYve Hllo(ﬂ).

An example of such a problem, (5), which will serve as our model problem, has already
been introduced in the preceding section.

The Sobolev space H'(Q) is closely related to our family of elliptic problems. This
space is defined by the seminorm

9



The third parameter provides a bound on the norm of the operators 7.

o Let w be the minimum constant such that
(4) a(u7u)§wbz(u7u)7 VUGVZ, 12077]\/'

It is easy to see that we can choose w = max||T;||,. We note that it is always possible

to scale b;(+,-) so that w € [1,2). Such a scaling will, of course, also affect the value of
Co.

Basic convergence results for additive and multiplicative variants of the Schwarz
method can now be given. Results for the additive form are due primarily to Dryja and
Widlund [23],[25] and Nepomnyaschikh [46], while the result for multiplicative Schwarz
methods is a variant of results of Bramble, Pasciak, Wang, and Xu [8] and Xu [65]; see
also Lions [36] for early work on the case of two subspaces. A proof of Theorem 2.2
is given in Dryja and Widlund [29], and a proof of Theorem 2.1 can also be derived
directly from the results of the same paper.

THEOREM 2.1. The abstract symmetric multiplicative Schwarz method satisfies

(1+2020(6)1)C2

2—w

K(T,,5) <

sms

Here & = max(1,w).
THEOREM 2.2. The abstract additive Schwarz method satisfies
K(T,) < w(p(€) + 1)CE.

In particular, 1/C? is a sharp lower bound on the smallest eigenvalue of T, = 3 T;, and
w(p(€)+ 1) an upper bound on the largest eigenvalue.

2.2. Local Analysis. An example of the problems considered in detail in this
paper is provided by

(5) alu,v) = Z/Q p; Vu-Vuvdz,

where p; > 0is a constant in {);, but with possibly large jumps between subdomains. We
will develop our theory for the piecewise constant case, but all our results are equally
valid for the case when the coefficients vary moderately in each subdomain. When
p; = 1,Vj, we have the special case of Poisson’s equation. In order to be successful
with problems that have large variations in the coefficients, it is important to be able
to carry out a local analysis. This can sometimes be done in a Schwarz framework:
Let V) be the restriction of the functions in the solution space V to the subdomain
Q;. Decompose V() into subspaces Vi(]) and introduce bilinear forms bgj)(-, -) on Vi(]) X

X/i(]), where the bilinear forms



time as the local problems. In this way, one or several processors can work on the
coarse problem while the rest of the processors are assigned to the local problems. We
note that in the standard multiplicative algorithms, there is a potential bottleneck with
many processors idly waiting for the solution of the coarse problem.

Still another interesting possibility is to replace T\, by the polynomial

T+ 17 .

This operator, which is symmetric, has a larger smallest eigenvalue than T, . and an
upper spectral bound of 4, while the largest eigenvalue of 7%, is bounded by 2. In
comparison with the symmetric multiplicative Schwarz method, this new algorithm
involves only about half as many fractional steps per iteration if different processors
can be assigned to the two parts of the operator.

There is a remarkably simple formula for T'-1, (cf. Zhang [66], [67]), that plays an
important role in the understanding and systematic development of the theory.

LEMMA 2.1.

(1) a(T7'u,u) = min Y b(u, ).

u; €V,
dou;p=u

We note that if by(ug, ug) is very large in comparison with a(u, u) for some u then there
must exist a quite small eigenvalue of T),, and the convergence of the conjugate gradient
method can then suffer.

The abstract convergence theory centers around three parameters that measure the
interactions of the subspaces V; and the bilinear forms b;(-,-), and their suitability in
the construction of preconditioners.

We first consider the partitioning of the elements of V' and the first parameter.

o Let Cy be the minimum constant such that for all w € V there exists a represen-

tation uw =Y u;,u; € V,, with

We note that it is sometimes natural to make a distinction between the case when
the decomposition is a direct sum, i.e. when each element of v € V' always is uniquely
represented by components in the V,, and the case where there is some freedom in the
choice of the decomposition of u.

The second parameter is given in terms of strengthened Cauchy-Schwarz inequal-
ities. Here the angles between the different subspaces are measured. The space V4,
normally a global coarse space that intersects all the other spaces, is not included in
these bounds.

o Let € be the matrix of strengthened Cauchy-Schwarz coefficients, defined by
(3)  a(vy,v;)| < ealv,v)Y2a(vs, )2, Yo, € Vi, Yo, €V, 4,5=1,...N,

1 Yy

and let p(E) be its spectral radius.



ud — 0
For « = 0 until convergence,
w — ut

For y =0 to N,
w&w—l—Tj(u*—w)

End j

For j = N to 0,
w&w—l—Tj(u*—w)

End j

uitl —

End :

It we use this scheme to define a preconditioner for the conjugate gradient method,
then the preconditioned operator is given by

Toms = 1- (]_ TO)"'(]_TN—I)(]_ TN)(]_ TN)(]_ TN—I)"'(]_TO)
= I- (] - Tms)T(] - Tms) = Tms + TTz;s - TTz;STms'

We can simplify the algorithm by removing one of the factors (I — Ty). If the exact
projection Py onto Vi is used, the algorithm remains exactly the same. In the general
case, we can still obtain a, somewhat weaker, bound on the rate of convergence of the
resulting algorithm by interpreting it as a multiplicative Schwarz method using the
spaces

‘/07‘/17'"7VN—17VN7VN—17"'7‘/17‘/0'

The second main iterative scheme is the additive Schwarz method:

ud — 0

For « = 0 until convergence,
witl — i 4 7 > Tj(u* — ut)

End

Here 7 is a scalar parameter chosen to ensure a good rate of convergence.
It we use this method to define a preconditioner for the conjugate gradient method,
then the preconditioned operator is

Ta — ZTZ

We note that there are other interesting algorithms, based on the T, besides the
multiplicative and additive Schwarz methods. Thus, with a balancing parameter ~ > 0,
Cai [11] advocates the use of the polynomial

o+ 1= =Ty)---(I =T).

This choice makes it possible to take advantage of the intrinsically more rapid conver-
gence of a multiplicative method, while solving the special coarse problem at the same
6



The bilinear form a(-,-) is symmetric, positive definite. We assume that there is a
decomposition of the space V,

Vo= Vok Vit Vi,

and that we are willing and can afford to solve problems of the following form: Given
an inner product b;(-,-) defined on V; x V;, and an element w € V, find T;w such that

b(T:w,v) = a(w,v), Yv e V.

We note that when b;(-,-) = a(-,-) then T;w is the projection of w onto V; that is
orthogonal with respect to the energy inner product a(-,-). We will generally refer to
the T, as approximate projections.

If u is an approximation to the solution u*, then the approximate projection of the
error, u* — u, onto the subspace V; can be calculated by using the fact that

bz(Tz(u* - u)vv) = a(u* - uvv)v Vo € ‘/z’v
= f(v)_a(uvv)v VUG‘/Z'.

Thus, we can approximately project the error onto the subspaces, without knowing the
true solution.

Several simple iterative methods can be built using the operators T;. (Without
limiting the generality of the methods, we assume that we are starting from a zero
initial approximation.) The first method is the multiplicative Schwarz method:

u — 0
For « = 0 until convergence,
w — ut
For y =0 to N,
w&w—l—Tj(u*—w)
End j
wtl — w

End ¢

We note that we can regard the algorithm as a simple iterative method for solving
the equation

*
Tmsu _gms

where the operator T, satisfies

T, ,=I1—(I—=Ty)...(I=T,).

ms

This generally nonsymmetric operator equation can be solved with GMRES or a similar
iterative method.

Since we are interested in using the conjugate gradient method, we will also consider
the symmetrized multiplicative Schwarz method:

5



As we have already noted, it is crucial to have a satisfactory almost uniform bound
on the energy of the coarse space interpolant. For rapid convergence, the coarse space
interpolating operator should also reproduce the null space of the given elliptic operator;
see Mandel [38], [39] or Smith [56]. For the case of scalar elliptic problems considered
here, the null space contains only constants; for the three dimensional linear elasticity
operator it is the six dimensional space of rigid body motions. Several examples of
iterative substructuring algorithms, which satisfy both these requirements for problems
in three dimensions, are given in the last section.

In this paper, we focus on scalar, self-adjoint, second order elliptic problems includ-
ing those with large variations in the coefficients. The basic analysis is carried out for
problems without a zero order term; it is quite easy to extend the results to more general
self adjoint positive definite problems. We are also confident that much of the theory
can be carried over to systems of elliptic equations, such as those of linear elasticity.

This paper is organized as follows. In the next section, we summarize an abstract
theory for the Schwarz methods that has been developed in earlier work; see in par-
ticular Dryja and Widlund [29] for a recent overview of the theory. In Section 3, we
introduce the elliptic problems and the finite element methods. We also introduce ma-
trix notations, which are quite important in any discussion of the implementation of
the algorithms. When analyzing the algorithms, we will work almost exclusively with
the bilinear forms b;(-,-), but in an implementation, the matrix representations of the
operators play the major role; we believe that both points of view are essential for a
complete description of a Schwarz algorithm. In Section 4, we develop and collect the
technical tools needed in the analysis of iterative substructuring algorithms in three di-
mensions. In Section 5, we discuss how various local solvers can be designed. Finally, in
the last section, a variety of coarse solvers are introduced and the resulting algorithms
are analyzed.

2. Abstract Theory for Schwarz Methods. A Schwarz algorithm defines an
iterative method for the solution of linear systems of algebraic equations arising in the
discretization of partial differential equations. The solution space is decomposed into
subspaces, and the approximation of the solution is updated by using corrections ob-
tained by projecting the error onto these subspaces. In practice, the basic iterative
schemes are normally accelerated by a Krylov space method, the conjugate gradient
method for symmetric problems, or, for instance, GMRES for problems with non-
symmetric operators; cf. Hestenes [34] and Saad and Schultz [52], respectively. For
a recent survey on Krylov space methods, see Freund, Golub, and Nachtigal [31].

2.1. Additive and Multiplicative Schwarz Methods. In this subsection, we
outline an abstract convergence theory for the Schwarz methods. We have written on
this topic before, most recently in Dryja and Widlund [29], where detailed proofs can
be found.

Consider the following abstract variational problem: Find u* € V' such that

a(u*,v) = f(v), Vv e V.
4



in V,,ie. u=3,;u;,u; €V, in such a way that 3 b,(u;, u;) can be bounded uniformly

by a relatively small multiple of a(u, u).

In this paper, we use the abstract Schwarz theory to develop a unified method for
the design and analysis of a variety of fast iterative substructuring methods for prob-
lems in three dimensions. These methods form one of the major families of domain
decomposition algorithms. For these methods, the communication of information be-
tween neighboring subdomains is confined to the exchange of values of the variables
directly associated with the interfaces.

We both reexamine old algorithms, using the common framework, and also in-
troduce new methods and estimates of their rates of convergence; to the best of our
knowledge Algorithms 6.2, 6.7, and 6.10 and Theorems 6.2, 6.7, and 6.10 are new.
Among the new methods are two preconditioners with condition numbers on the order
of (14+1log(H/h)). These bounds are also independent of jumps in the coefficients across
subdomain boundaries.

The global coarse problem, of any two-level Schwarz method, is completely defined
by selecting the subspace Vj and the associated bilinear form bg(-,-). It would appear
that a natural candidate for V would be VH_ the space of continuous, piecewise linear
functions using the substructures as elements. This approach is successful in the case of
two dimensions but for the three dimensional problems considered in this paper quite
unsatisfactory algorithms can result; see Bramble, Pasciak, and Schatz [6], [7], Smith
[56], [57], and Section 6 for a discussion. In certain cases when the decomposition of the
functions into subspaces is unique, (i.e., when V is a direct sum of the subspaces V), we
necessarily obtain a poor bound on by(ug, ug) and, as a consequence, a poor convergence
rate. However, by introducing sufficient overlap between the local subspaces, rapidly
convergent methods can be designed that use the V# space; see Dryja and Widlund
[23], [24], [28], Smith [58], Widlund [63], and Section 6. A problem still remains for these
algorithms, which use the VH space; it is not known if bounds for the condition number
can be obtained that are independent of jumps in the coefficients of the differential
operator. We note that recent work by Dryja, Sarkis, and Widlund [22] shows that
polylogarithmic bounds on the condition number can be obtained, for certain algorithms
which use this coarse space, for problems with coefficients that are quasi-monotone.

An element of the space VH is defined completely by its values at the substructure
vertices, with the values elsewhere obtained by linear interpolation; we therefore call
such an algorithm vertex based. The alternative coarse spaces, considered in this paper,
can also conveniently be characterized in terms of an interpolation and/or extension
process. Some of them are defined by the values at the nodes shared by more than two
subdomains, i.e. by the values on the wire baskets of the substructures; we call such
algorithms wire basket based. These spaces can also straightforwardly be extended to
more complicated substructures, which are not necessarily conventional large elements.
We note that the first algorithms of this class were introduced in an important paper
of Bramble, Pasciak, and Schatz [7]. Others can be called face based; the values on
the different faces of the substructures are essential in determining the values of the
interpolant. There are also many opportunities to create hybrid algorithms.
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for the given partial differential equation restricted to subregions, also called substruc-
tures, into which the given region is subdivided or from which it originally has been
assembled. Fach of these subregions can naturally be associated with a set of nodes
and a finite element subspace.

All algorithms of this kind known to us, which have satisfactory convergence prop-
erties for the case of many subregions, have one feature in common. In addition to
subspaces and subproblems directly related to individual or small groups of adjacent
substructures, there is a global, coarse subspace. Only a few global degrees of freedom
per subregion are associated with this special subspace. As demonstrated in Widlund
[62], using only simple arguments, the absence of such a subspace always results in slow
convergence. This effect is also clearly evident in numerical experiments; cf. e.g., Smith
[59]. We note that it is also quite natural to include additional levels; cf. e.g. Dryja,
Sarkis, and Widlund [22], Dryja and Widlund [26], Xu [65], and Zhang [66]. However,

in this paper, we will focus exclusively on two level algorithms.

The design, analysis, and implementation of the coarse space problem pose the most
challenging technical problems in work of this kind. In this paper, we demonstrate that
it is profitable to view any coarse space as the range of an interpolation operator, often of
a quite unconventional type, and that many questions in the analysis reduce to providing
an estimate of the norm of this operator. In the study of the local components of the
preconditioners, we can draw on the extensive knowledge of substructuring methods for
a few subdomains; cf. e.g. Bjgrstad and Widlund [3].

Throughout, we regard our methods as Schwarz methods, generalizations of the
alternating method of Schwarz [54] discovered more than 120 years ago. Historically
Schwarz methods have primarily been associated with a division of the region into over-
lapping subregions. In recent years, research on this classical method and its additive
variants has been quite active; cf. e.g. Dryja and Widlund [24], [25], Widlund [63],
Matsokin and Nepomnyaschikh [45], and Nepomnyaschikh [46], [47]. It has been known
for about five years that the iterative substructuring methods, based on a decomposi-
tion into nonoverlapping subregions, also fit well into a common Schwarz framework;
see Dryja and Widlund [24]. This will be our point of view in this paper.

The idea behind the Schwarz methods is straightforward; the solution space V' is
divided into subspaces V; and the solution in V' of the given problem is determined in an
iteration by projecting the current error onto these subspaces. We can use projections

P.

., which are orthogonal with respect to the bilinear form a(-,-) naturally associated

with the elliptic problem, or operators T; defined in terms of alternative bilinear forms
b;(+,-) defined on V; x V;. A particular choice of the subspaces and bilinear forms provides
a complete mathematical description of a Schwarz algorithm. For recent work in which
such a framework is developed and used, see Bramble, Pasciak, Wang, and Xu [8],
Cai [10], Cai and Widlund [12], [13], Dryja and Widlund [24], [25], [27], [28], [29],
[30], Lions [36], Mathew [43], [44], Nepomnyaschikh [46], Pavarino [48], [49], Pavarino
and Widlund [50], [51], Sarkis [53], Smith [56], [57], [58], [39], Widlund [63], Xu [65],
and Zhang [66], [68]. In Section 2, we will demonstrate that rapid convergence of the
iterative methods occurs if and only if all u € V' can be decomposed into components
2
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Abstract. Domain decomposition methods provide powerful preconditioners for the iterative
solution of the large systems of algebraic equations that arise in finite element or finite difference
approximations of partial differential equations. The preconditioners are constructed from exact or
approximate solvers for the same partial differential equation restricted to a set of subregions into
which the given region has been divided. In addition, the preconditioner is often augmented by
a coarse, second level approximation, that provides additional, global exchange of information that
can enhance the rate of convergence considerably. The iterative substructuring methods, based on
decompositions of the region into non-overlapping subregions, form one of the main families of such
algorithms.

Many domain decomposition algorithms can conveniently be described and analyzed as Schwarz
methods. These algorithms are fully defined in terms of a set of subspaces and auxiliary bilinear forms.
A general theoretical framework has previously been developed. In this paper, these techniques are
used in an analysis of iterative substructuring methods for elliptic problems in three dimensions. A
special emphasis is placed on the difficult problem of designing good coarse models and obtaining
robust methods for which the rate of convergence is insensitive to large variations in the coefficients of
the differential equation.

Domain decomposition algorithms can conveniently be built from modules, that represent local and
global components of the preconditioner. In this paper, a number of such possibilities are explored,
and it 18 demonstrated how a great variety of fast algorithms can be designed and analyzed.

Key Words. domain decomposition, finite elements, iterative substructuring, Schwarz methods
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1. Introduction. Domain decomposition algorithms are preconditioned iterative
methods where the preconditioners are constructed from exact or approximate solvers

* Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland. Electronic
mail address: dryja@mimuw.edu.pl. This work was supported in part by the National Science Foun-
dation under Grant NSF-CCR-8903003, in part by Polish Scientific Grant 211669101, and in part by
the Center for Computational Sciences of the University of Kentucky at Lexington.

T Department of Mathematics, University of California at Los Angeles, 405 Hilgard Avenue, Los
Angeles, CA 90024-1555. Electronic mail address: bsmith@math.ucla.edu. This work was supported
in part by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-
Eng-38 while the author was at Argonne National Laboratory, and by the Office of Naval Research
under contract ONR N00014-90-J-1695.

! Courant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012. Electronic
mail address: widlund@widlund.cs.nyu.edu. This work was supported in part by the National Science
Foundation under Grant NSF-CCR-9204255 and in part by the U. S. Department of Energy under
contracts DE-FG02-92ER25127 and DE-FG02-88ER25053.

1



