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The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).Our last coarse space, which has much in common with one developed and analyzedrecently by Mandel and Brezina [42], has only one degree of freedom per substructure.This space, V hC ; is de�ned as the range of the interpolation operatorIhCuh(x) =Xi �uh@
i�1=2i �yi (x):The summation is over all substructures that do not intersect �0 in more than one ora few points. �yi (x) is the pseudo inverse of the function de�ned in formula (14) exceptthat it is also set to zero at single points of �0 if @
i intersects �0 in just one or a fewpoints. �uh@
i is the average value of uh over the set @
i;h.The only essential di�erence between this coarse space and the one introduced in[42] is that the exponent of �i is 1=2 rather than 1: In fact, any exponent greater thanor equal to 1=2 may be used, see Dryja, Sarkis, and Widlund [22]. We also note thatour careful treatment of the boundary substructures that do not share a face with theboundary @
 allows us to obtain good bounds without imposing extra restrictions onthe intersection of the boundaries of the individual substructures and that of the originalregion.The bilinear form is chosen asbC0 (uh; vh) = (1 + log(H=h))2Xi s(i)(uh; vh):Algorithm 6.13. Use a Schwarz method with the global space V hC and the bilinearform bC0 (�; �) and the local subspaces ~V hi ; choosing the bilinear forms as in formulas (16)and (17) according to the rule given in Section 5.Theorem 6.13. Algorithm 6.13 satis�es the three assumptions withC20 � C; �(E) � C; ! � C(1 + log(H=h))2:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cients of (5).A proof of this result is given in Dryja and Widlund [29].REFERENCES[1] P. E. Bj�rstad, R. Moe, and M. Skogen, Parallel domain decomposition and iterativere�nement algorithms, in Parallel Algorithms for PDEs, Proceedings of the 6th GAMM-Seminar held in Kiel, Germany, January 19{21, 1990, W. Hackbusch, ed., Vieweg-Verlag,Braunschweig, Wiesbaden, 1990.[2] P. E. Bj�rstad and M. Skogen, Domain decomposition algorithms of Schwarz type, designedfor massively parallel computers, in Fifth International Symposiumon Domain Decomposition33



Algorithm 6.10. Use a Schwarz method with the subspaces given by ~V hB , ~V hF i ,~V h�Ej ; and ~V h�V j and the bilinear form associated with bB0 (uh; uh):Theorem 6.10. Algorithm 6.10 satis�es the three assumptions withC20 � C(1 + log(H=h)); �(E) � C; ! � C:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).Proof. Except for an upper bound on bB0 (uh; uh), the estimate of C20 is almost thesame as in the proofs of Theorems 6.3 and 6.7. We use the interpolant IhBuh to de�nethe coarse space component u0: Using similar techniques as before, we can establish theestimates kuh � IhBuhk2L2(
i) � H2(1 + log(H=h))juhj2H1(
i)and jIhBuhj2H1(
i) � C(1 + log(H=h))juhj2H1(
i):The upper bound bB0 (u0; u0) � C(1 + log(H=h))a(uh; uh)now follows from these inequalities, and that of Poincar�e, choosing �!i = �uhW i:Finally, we use the same bounds and an inverse inequality to establish that a(uh; uh) �CbB0 (uh; uh):We can also use the Neumann-Neumann solvers for the local components of thepreconditioner.Algorithm 6.11. Use a Schwarz method obtained from Algorithm 6.5 by replacingthe coarse space ~V hW by ~V hB and the bilinear form bW0 (�; �) by bB0 (�; �).Theorem 6.11. Algorithm 6.11 satis�es the three assumptions withC20 � C; �(E) � C; ! � C(1 + log(H=h))2:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).Proofs of this and the next result are given in Dryja and Widlund [29].Algorithm 6.12. Use a Schwarz method obtained from Algorithm 6.6 by replacingthe coarse space ~V hW by ~V hB and the bilinear form bW0 (�; �) by bB0 (�; �).Theorem 6.12. Algorithm 6.12 satis�es the three assumptions withC20 � C(1 + log(H=h)); �(E) � C; ! � C(1 + log(H=h))2:32



Inequality (22) follows from Lemmas 4.4 and 4.6.The second inequality, (23), is established by using Lemmas 4.3, 4.4, 4.6, 4.7, andPoincar�e's inequality.The estimate bM0 (u0; u0) � C(1 + log(H=h))a(uh; uh)follows from Lemmas 4.3, 4.4, 4.6 and Poincar�e's inequality.Finally, we use Lemma 4.4 and an inverse inequality to establish thata(uh; uh) � CbM0 (uh; uh); 8uh 2 ~V hM :We again consider two algorithms based on Neumann-Neumann solvers.Algorithm 6.8. Use a Schwarz method obtained from Algorithm 6.5 by replacingthe coarse space ~V hW by ~V hM and the bilinear form bW0 (�; �) by bM0 (�; �).Theorem 6.8. Algorithm 6.8 satis�es the three assumptions withC20 � C; �(E) � C; ! � C(1 + log(H=h))2:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).Proofs of this and the next result are given in Dryja and Widlund [29].Algorithm 6.9. Use a Schwarz method obtained from Algorithm 6.6 by replacingthe coarse space ~V hW by ~V hM and the bilinear form bW0 (�; �) by bM0 (�; �).Theorem 6.9. Algorithm 6.9 satis�es the three assumptions withC20 � C(1 + log(H=h)); �(E) � C; ! � C(1 + log(H=h))2:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).We can decrease the dimension of the global space just considered. Rather thanusing the coarse subspace, involving all of the nodes on the edges, only one degree offreedom per edge, an average value, can be used. The resulting space, denoted by ~V hB ,is the range of the interpolation operatorIhBuh(x) = XV k2�uh(V k)'k(x) + XEi�W �uhEi�Ei(x) + XF k�� �uhF k�F k(x):Here �uhEi is the average of the values of uh on Eih and �Ei the discrete harmonic functionwhich equals 1 on that set and vanishes elsewhere on �h: We de�ne the bilinear formfor this space by bB0 (uh; uh) =Pi �imin�!ifhPV k2@
i (uh(V k)� �!i)2 +HPEi�@
i (�uhEi � �!i)2 +H(1 + log(H=h))PF k�@
i (�uhF k � �!i)2g:31



6.3. Face Based Algorithms. We know from the previous subsection that thevertex space method, Algorithm 6.3, has a condition number that is independent of theparameters h and H but that this bound might not be independent of the variations ofthe coe�cients across the interface �: We could explore the possibility of replacing thecoarse space ~V H by the wire basket space ~V hW as in Algorithm 6.4 and the use of thebilinear form bW0 (�; �): The local spaces could be chosen as in Algorithm 6.3. This leadsto an algorithm for which we can prove the same type of bounds as in Theorem 6.4, i.e.the condition number is bounded by C(1+ log(H=h))2: We can also show that a boundof C(1 + log(H=h)) holds if we allow the constant to depend on the variation of the �i:However, we have recently discovered two alternative coarse spaces for which it ispossible to derive bounds on the condition number that are independent of the valuesof �i and that are linear in (1+log(H=h)). The main ideas behind the �rst of these newalgorithms is to expand the coarse space by allowing an additional degree of freedomfor each face, rather than specifying the values on the face in terms of values on allor part of the wire basket. Later in this subsection, we will explore two more spaceswhich all have in common that the average values over the faces, or entire substructureboundaries, are important in the interpolation formulas that de�ne the coarse spacecomponent and the coarse space as a whole.The �rst coarse space of this kind, ~V hM , can be viewed as the range of the followinginterpolation operator:IhMuh(x) = Xxk2Wh uh(xk)'k(x) + XF k�� �uhF k�F k(x):The bilinear form is given bybM0 (uh; uh) =Xi min�!i �ifhjju� �!iz(i)jj2l2(W i) +H(1 + log(H=h)) XF k�@
i (�uhF k � �!i)2g:Algorithm 6.7. Use a Schwarz method with the subspaces given by ~V hM , ~V hF i , ~V h�Ej ;and ~V h�V j and the bilinear form just given by bM0 (uh; uh).Theorem 6.7. Algorithm 6.7 satis�es the three assumptions withC20 � C(1 + log(H=h)); �(E) � C; ! � C:The constants in the bounds are independent of the values �i of the coe�cient of (5).Proof. The proof of the �rst assumption is almost identical to that given for The-orem 6.3 in Smith [58] except that we now use u0 = IhMuh: Instead of Lemma 4.2, weuse the following estimates:kuh � IhMuhk2L2(
i) � CH2juhj2H1(
i)(22)and jIhMuhj2H1(
i) � C(1 + log(H=h))juhj2H1(
i):(23) 30



Let uhF k = H(#F k(uh� uh0))� �uh@F k�F k ; where �uh@F k is de�ned in Lemma 4.6 and uh0is the �nite element function that equals uh on the wire basket nodes, vanishes on thefaces, and is discrete harmonic in the interior of the subdomains.Noting that the values of uh0 are irrelevant since #F k vanishes on the wire basket,we then �nd thata(uhF k ; uhF k) � Cf�i(jIh(#F k(uh � uh0))j2H1(
i) + (�uh@F k)2j�F kj2H1(
i))+�j(jIh(#F k (uh � uh0))j2H1(
j) + (�uh@F k)2j�F k j2H1(
j))g� C(1 + log(H=h))2(�ijuhj2H1(
i) + �jjuhj2H1(
j)):Here, we use Lemmas 4.3{4.6. The full H1 norm on the right hand side can be reducedto the seminorm by noting that uhF k is invariant under the addition of a constant to uh.We then sum over the subregions to obtain the necessary bound.We next consider two Neumann-Neumann algorithms.Algorithm 6.5. Use a Schwarz method with the subspaces given by ~V hW and ~V hi :The bilinear form for the global space is given by bW0 (uh; uh); and those for the localspaces by the bilinear forms given by (16) and (17), as described in Section 5.Algorithm 6.6. Use a Schwarz method obtained from Algorithm 6.5 by replacingthe local spaces ~V hi by ~V hi;mix: For all these local subspaces, the bilinear forms are givenby (16).Theorem 6.5. Algorithms 6.5 and 6.6 satisfy the three assumptions withC20 � C(1 + log(H=h))2; �(E) � C; ! � C(1 + log(H=h))2:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).A proof of these results can be given using the techniques of Dryja and Widlund[27]. Details will not be provided since these results are of relatively limited interest.We conclude this subsection by discussing two earlier wire basket based algorithmsdue to Bramble, Pasciak, and Schatz [7]. Their work has inuenced much of the laterwork in the �eld. One of their coarse spaces is given in terms of the averages of thenodal values over the entire substructure boundaries @
i. The other space is de�ned byextending the wire basket values as a two dimensional discrete harmonic function ontothe faces, and then as discrete harmonic function into the interiors of the subdomains.For both methods, Bramble, Pasciak, and Schatz proved, cf. [7],Theorem 6.6. The condition number of the preconditioned problem is bounded byC(1 + log(H=h))2; where the constant is independent not only of the mesh size and thenumber of substructures, but also of the values �i of the coe�cient of (5).29



We then take derivatives with respect to �!i and u and obtain the linear systemz(i)TB(i)(u(i) � z(i)�!i) = 0; 8i;Bu�Xi B(i)z(i)�!i = r:(21)Here, B is the diagonal matrix obtained by subassembling the B(i): We then eliminateu and get the following system for the �!i :(z(i)TB(i)z(i))�!i � z(i)TB(i)B�1Xj B(j)z(j)�!j = z(i)TB(i)B�1r:Once the �!i are known, u can be found by solving (21).Algorithm 6.4. Use a Schwarz method with the subspaces given by ~V hW and ~V hF kand the bilinear form given by bW0 (uh; uh) for the space ~V hW :Theorem 6.4. Algorithm 6.4 satis�es the three assumptions withC20 � C(1 + log(H=h))2; �(E) � C; ! � C:The constants in the bounds are independent not only of the mesh size and the numberof substructures, but also of the values �i of the coe�cient of (5).Proof. We begin by estimating !: For the spaces ~V hF k ; ! = 1; trivially, since weuse exact projections. Let uh0 2 ~V hW and let u(i);h0 be the restriction of uh0 to �
i: Letw(i);h0 = u(i);h0 � �u(i);h0 , where �u(i);h0 is the average of u(i);h0 over the wire basket. We splitw(i);h0 into two parts, w(i);h0 = P �wh0;F k�F k + w(i);hW : The �rst has constant values on thefaces while the second vanishes there. Then, using Lemmas 4.4, 4.6, and 4.7, we obtaina(uh0; uh0) = Xi �iju(i);h0 j2H1(
i)= Xi �ijw(i);h0 j2H1(
i)� CXi �i(Xk ( �wh0;F k)2j�F k j2H1(
i) + jw(i);hW j2H1(
i))� C(1 + log(H=h))Xi �ijjw(i);h0 jj2L2(W i)� CbW0 (uh0; uh0):We now estimate C20 : We bound bW0 (uh0; uh0); using the interpolation operator andLemma 4.3, by bW0 (uh0; uh0) � (1 + log(H=h))Xi �ijjuh0 � �uh0 jj2L2(W i)� C(1 + log(H=h))2Xi �ijuhj2H1(
i)= C(1 + log(H=h))2a(uh; uh):28



Smith [59]. We note that Bramble, Pasciak, and Schatz [7] pioneered the use of similarideas. Here, we begin by describing a method introduced in Smith [56]; cf. also [57].For the wire basket based methods, we work with the block matrix (10) rather than(9). Let T T be the operator that maps the values on the wire basket onto the faces byassigning, to each node on a face, the average value of the nodal values on the boundaryof the face. This represents an alternative change of basis of the space. S can now bewritten as S =  I 0�T I ! SFF �SFW�STFW �SWW ! I �T T0 I ! :We note the similarity with (20), but we are now using piecewise constant interpolationonto the faces rather than piecewise linear interpolation onto the faces and edges. Weproceed as in the preceding subsection and drop the coupling between pairs of faces,and the faces and the wire basket. We obtainB�1 =  I T T0 I ! �S�1FF 00 �S�1WW ! I 0T I !and B�1S = RT0 �S�1WWR0S +Xi RTF iS�1F iF iRF iS;where R0 = (T I): This is also an additive Schwarz scheme that uses the same facespaces ~V hF i as the vertex based algorithms. The coarse space, ~V hW ; can conveniently bede�ned as the range of an interpolation operator IhW : ~V h ! ~V hW ; de�ned byIhWuh = Xxk2Wh uh(xk)'k +Xk �uh@F k�F k :Here, 'k is the discrete harmonic extension of the standard nodal basis functions �k.The resulting �nite element function is continuous across all substructure boundaries.Therefore, ~V hW is a conforming subspace of ~V h:We use the bilinear form given bybW0 (uh; uh) = (1 + log(H=h))hXi �imin�!i jju� �!iz(i)j2l2(W i)for this subspace. Here all the components of the vector z(i) are equal to one. Theintroduction of this bilinear form corresponds to replacing �SWW by a matrix that,locally on each substructure, is a simple rank-one perturbation of a multiple of theidentity matrix. To solve the corresponding linear system, we can use a fast techniquesuggested by Mandel [37]; cf. also Smith [56], [57].Letting B(i) = h(1 + log(H=h))�iI; we rewrite the problem asminu Xi min�!i 12(u(i) � �!iz(i))TB(i)(u(i) � �!iz(i))� uTr:27



In [58], Smith proved the following result.Theorem 6.3. Algorithm 6.3 satis�es the three assumptions withC20 � C; �(E) � C; ! = 1:Here we cannot guarantee that the estimate of C20 is independent of the jumps in thecoe�cient of (5).Using the de�nitions given above, we �nd thatB�1 = RTHK�1H RH +Xi RTF iS�1F iF iRF i +Xj RT�Ej S�1�Ej�EjR�Ej +Xk RT�V kS�1�V k�V kR�V k :We note that the �rst term essentially involves solving a system associated with a blockof S, represented in the partial hierarchical basis, while the other terms involve systemsgiven by blocks of S in the usual nodal basis. In practical implementations, the SF iF i,S�Ej�Ej , and S�V k�V k need not be formed explicitly. Instead we can solve problems suchas (13). Another approach to cutting costs is to use probing to obtain approximationsof the blocks of the Schur complement; cf. e.g. Chan and Mathew [14] and Chan,Mathew, and Shao [15].In the analysis given in [58], Smith considered only the case when the overlap wasgenerous, i.e. on the order of H: However, numerical experiments in two dimensionssuggest that good convergence can also be obtained with minimal overlap. Thus moti-vated, Dryja and Widlund [28] showed that if the overlap is uniformly on the order of�; then Algorithm 6.3 satis�es C20 � C(1 + log(H=�))2:In the same paper, they also demonstrated that for the standard overlapping Schwarzmethod with small overlap, C20 � C(1 +H=�):Numerical experiments, cf. Bj�rstad et al. [1], [2] and Gropp and Smith [32] con�rmthat the rate of convergence of this algorithm is very satisfactory.6.2. Wire Basket Based Algorithms. We now consider another class of coarseproblems based on averages and the wire basket. Methods of this class use a di�erentapproach to overcome the di�culties associated with the piecewise linear interpolationover the coarse triangulation, which led to the poor result of Theorem 6.1 or to esti-mates that are not known to be valid uniformly for all values of the coe�cient of (5).Instead, we now essentially interpolate using averages of uh over the wire basket. Thesealgorithms work extremely well for problems with large jumps in the coe�cients �i; cf.26



Here D�W is the global diagonal matrix constructed from the weights �Ei and �V i as informula (12).Algorithm 6.2. Use a Schwarz method with the subspaces ~V H, ~V hF i , and ~V hW : Inaddition, on the spaces ~V hW , use the bilinear form given by huTD�Wu:Theorem 6.2. Algorithm 6.2 satis�es the three assumptions withC20 � C(1 + log(H=h))2; �(E) � C; ! � C:Here we cannot guarantee that the estimate of C20 is independent of the jumps in thecoe�cients of (5).Proof. The proof is almost identical to that given above except that we use uh0 =QHuh and Lemma 4.2 rather than IHuh and Lemma 4.1.We can increase the overlap between the subspaces and obtain methods with condi-tion numbers that are uniformly bounded and independent of H and h. Such a methodwas given in Smith [58]. This algorithm, known as the Vertex Space or Copper Moun-tain algorithm, has much in common with the original additive Schwarz method ofDryja and Widlund [24]; cf. also Dryja and Widlund [28] and Nepomnyaschikh [46].
Fig. 3. Face, edge, and vertex spaces.To de�ne this algorithm, we �rst de�ne edge spaces associated with a set �Ej thatincludes all parts of the faces adjacent to the edge Ej that are within a distance cHfrom the edge, see Fig. 3. We also de�ne the vertex region �V j as the part of � that isat a distance less than cH from the jth vertex of the substructure. The space relatedto this set is ~V h�V j = fuh 2 ~V hjuh(x) = 0; 8x 2 �h n �V jg;with a similar de�nition for ~V h�Ej : For this algorithm, we �rst use exact projections.Therefore the algorithm is completely de�ned by its subspaces.Algorithm 6.3. Use a Schwarz method with the subspaces given by ~V H , ~V hF i ,~V h�Ej ; and ~V h�V j : 25



wh = uh � IHuh; and let uhF k = H(#F kwh): Here Hvh denotes the discrete harmonicextension of the function vh given on the interface �: Then,a(uhF k ; uhF k) � C(�ijjuhF k jj2H1(
i) + �j jjuhF kjj2H1(
j))� C(1 + log(H=h))2(�ijjwhjj2H1(
i) + �j jjwhjj2H1(
j))� CHh (1 + log(H=h))2(�ijuhj2H1(
i) + �j juhj2H1(
j)):Therefore, Xk a(uhF k ; uhF k) � CHh (1 + log(H=h))2a(uh; uh):Let uhEi be the restriction of (uh � IHuh) to Ei: Then, by Lemmas 4.1 and 4.3,Xi �EijjuhEijj2L2(Ei) � C(1 + log(H=h))Xi X@
j\Ei 6=; �jjjuh � IHuhjj2H1(
j)� CHh (1 + log(H=h))Xj �j juhj2H1(
j)� CHh (1 + log(H=h))a(uh; uh):To obtain a bound for !; we have only to consider the edge spaces. The constantupper bound follows directly from Lemma 4.7.It is easy to obtain a bound on �(E):We simply note that the subdomains associatedwith the local subspaces form an overlapping cover of the domain, and that every pointin the domain is covered by a �nite, uniformly bounded number of such subregions.The subregions can be grouped into sets, with elements that do not overlap, and thesubspaces related to these sets can be merged. The value of N is then reduced to aconstant and a uniform upper bound for �(E) is obtained. This argument is valid forall of the proofs in this section and will not be repeated.It is clear that the H=h term is directly attributable to the large energy of thecoarse mesh interpolant. In the proof given above, we must use IHuh because allfunctions in the other subspaces vanish at the vertices. In the next algorithm, we addthe one dimensional spaces associated with each vertex and its standard nodal basisfunction. After doing so, we obtain a much stronger result, but the bounds are nolonger independent of the variation of the coe�cient of (5) across the interface �: Theadditive Schwarz preconditioner is now given byB�1 =XRTF iS�1F iF iRF i +X 1h�EiRTEiREi +RTHK�1H RH +X 1h�V iRTV iRV i:We note that, as in (12), we can combine the edge and vertex spaces into a single wirebasket space, ~V hW ; with a corresponding restriction operator, RW : We obtainB�1 =XRTF iF iS�1F i RF i +RTHK�1H RH + 1hRTW (D�W )�1RW :24



As in the preceding section, we now drop the coupling between the faces, edges, andvertices, but we keep those between the vertices. We obtainB = 0B@ I 0 00 I 0�RF �RE I 1CA0B@ �SFF 0 00 �SEE 00 0 ~SV V 1CA0B@ I 0 �RTF0 I �RTE0 0 I 1CA :The preconditioner can now be written asB�1 = 0B@ I 0 RTF0 I RTE0 0 I 1CA0B@ �S�1FF 0 00 �S�1EE 00 0 ~S�1V V 1CA0B@ I 0 00 I 0RF RE I 1CAand B�1S =XRTF iS�1F iF iRF iS +XRTEiS�1EiEiREiS +RTH ~S�1V VRHS;where RH = (RF RE I). Thus, we obtain an additive Schwarz preconditioner with thesame face and edge spaces as before but with a coarse space, ~V H ; in place of the setof individual, local vertex spaces. In the case of piecewise linear �nite elements, thematrix ~SV V is equal to KH ; the sti�ness matrix obtained by treating the substructuresas elements. We can therefore replace the two last terms in the preconditioner andobtain B�1 =XRTF iS�1F iF iRF i +X 1h�EiRTEiREi +RTHK�1H RH:As before, there is no need to form the matrix S explicitly.Algorithm 6.1. Use a Schwarz method with the subspaces ~V H ; ~V hF i , and ~V hEj : Forall the ~V hEj spaces, use the bilinear forms associated with h�Eijjujj2l2(Ej).Theorem 6.1. Algorithm 6.1 satis�es the three assumptions withC20 � C(H=h)(1 + log(H=h))2; �(E) � C; ! � C:The constants are independent of the jumps in the coe�cient, �i:Proof. We estimate the �rst parameter, C0. We note that we are only going towork with discrete harmonic functions for which s(uh; uh) = a(uh; uh): Let uh0 = IHuh.We use Lemma 4.1 and �nd, by adding over the substructures, thata(uh0; uh0) � CXi �ijIHuhj2H1(
i) � CHh a(uh; uh):We next bound the energy for the parts of the decomposition of the function uh thatare associated with the faces. This requires the use of Lemmas 4.1 and 4.5. Let23



for the boundary substructures that touch �0 only at a point or along an edge. Theformer are treated as if they were interior substructures, i.e. (17) is used, and the latterin the same way as a substructure that shares an entire face with �0; i.e. (16) is used.An alternative approach to avoiding singular problems is to impose zero Dirich-let boundary conditions on the wire basket while Neumann boundary conditions aremaintained on the faces. In this case the local subspace associated with the individualsubstructures are given by~V hi;mix = fuh 2 ~V hi juh(x) = 0; 8x 2W ihg:(19)We will refer to these as the mixed Neumann-Neumann subspaces. We can use thebilinear forms given by (16). We refer to the resulting problem as a mixed Neumann-Neumann local solver. When no coarse problem is used, this preconditioner must beaugmented by terms related to the wire basket. We can, for instance, add the operatorX 1hRTW (D�W )�1RWpreviously introduced; see also the last section of Dryja and Widlund [29] for furtherdetails.6. Coarse Grid Algorithms and Condition Numbers. In addition to thelocal solvers discussed in the preceding section, any successful domain decompositionpreconditioner must also contain a global space component. We can either add a coarsesolver to a preconditioner based only on local solvers or replace part of the precondi-tioner. In this section, we will discuss a large number of coarse spaces. The �rst of themis based on the space V H of continuous, piecewise linear functions using the substruc-tures as elements. Conceptually this is clearly the simplest, but as will be shown, it canbe inadequate in three dimensions, basically because of Lemma 4.1. In the remainingsubsections, we discuss wire basket based and face based coarse problems.6.1. Vertex Based Methods. To incorporate a global component of the precon-ditioner, we �rst represent S in a partially hierarchical basis. The face and edge nodalbasis functions are not changed, but those associated with the vertices are replacedby piecewise linear functions on the coarse triangulation. The basis change from thepartial hierarchical to the nodal basis is represented by0B@ I 0 RTF0 I RTE0 0 I 1CA ;where the operators RTF and RTE represent coarse space linear interpolation from thevalues on the vertices to the faces and edges, respectively.The Schur complement can be rewritten asS = 0B@ I 0 00 I 0�RF �RE I 1CA0B@ SFF SFE ~SFVSTFE SEE ~SEV~STFV ~STEV ~SV V 1CA0B@ I 0 �RTF0 I �RTE0 0 I 1CA :(20) 22



where the �i are diagonal matrices with nonzero elements only for the components of@
i;h: The diagonal element of �i; which corresponds to x 2 @
i; is given by�i(x) =Xj �1=2j ;(14)where the sum is taken over all j such that x 2 @
j\@
i:We work with pseudo inverses,since the Neumann problems for interior substructures are singular and all the elementsof the diagonal matrix �i are set to zero for x 2 �h n @
i.The following formula has much in common with (13). However, the subscripts Iand B now represent the nodes of 
i and @
i; respectively:S(i)y = � 0 I �0@ K(i)II K(i)IBK(i)TIB K(i)BB 1Ay 0I ! :Again, there is no need to compute the Schur complements. Instead, in each iterationstep, we can solve a Neumann problem for each subdomain in order to calculate theaction of S(i)y on a vector.This second approach, with a di�erent scaling, originates in the work of Bourgat,Glowinski, Le Tallec, and Vidrascu [5]. Their algorithms have later been modi�ed,extended, and analyzed by Cowsar, Mandel, and Wheeler [17], De Roeck [18], De Roeckand Le Tallec [19], Dryja and Widlund [25], [27], [29], Le Tallec, De Roeck, and Vidrascu[35], Mandel [40], [41], and Mandel and Brezina [42].For these methods, the Schwarz subspaces are given by~V hi = fuh 2 ~V hjuh(x) = 0; 8x 2 �h n @
i;hg;(15)and the bilinear forms on these subspaces can be given bybi(uh; vh) = s(i)(Ih(�iuh); Ih(�ivh)):(16)For an interior subdomain, or a boundary substructure that does not touch theDirichlet part of the boundary, �0; the local Neumann problem is singular. There areseveral ways of dealing with this. Instead of working with the pseudo inverses of theSchur complements, which can be computationally expensive, we can solve a Neumannproblem for a di�erent elliptic operator. This is the main approach taken in Dryja andWidlund [29]. The local bilinear formbi(uh; vh) = ŝ(i)(Ih(�iuh); Ih(�ivh))(17)is used, where ŝ(i)(�; �) is the Schur complement of the bilinear formâ(i)(u; v) = Z
i ru � rvdx+ 1H2i Z
i uvdx:(18)We will refer to this as the standard Neumann-Neumann local solver. We note thatDryja and Widlund [29] contains a detailed discussion on the choice of bilinear forms21



To decrease the cost and to avoid computing the elements of the Schur complements,we make some further simpli�cations. We note that the matrices SEiEi are quite wellconditioned; it follows from Lemmas 4.3 and 4.7 that their condition numbers are O(1+log(H=h)): We therefore replace S�1EiEi; in the preconditioner, by 1=(h�Ei)I. Here I isan identity matrix and �Ei = P@
j\Ei 6=; �j: In the Schwarz framework, this correspondsto replacing the bilinear form s(�; �) on the spaces ~VEi by bEi(uh; uh) = h�Eijjujj2l2(Ei):We can also replace the diagonal element SV iV i by h�V i = hP@
j\V i 6=; �j : The modi�edpreconditioner can then be written asB�1 =XRTF iS�1F iF iRF i +X 1h�EiRTEiREi +X 1h�V iRTV iRV i:We note that the second and third sums could be combined into one. One of the termsof the sum will then correspond to the wire basket W (i) andB�1 =XRTF iS�1F iF iRF i + 1hRTW (D�W )�1RW :(12)Here the elements of the diagonal matrix D�W equal �Ei and �V i for the componentscorresponding to edge and vertex nodes, respectively.We should also provide a relatively inexpensive algorithm for calculating the actionof each S�1F kF k : We do so by solving a linear system associated with the two domains
i and 
j that share the face F k: Let K(ij) denote the submatrix of K associated with
ij = 
i [
j [ F k. ThenS�1F kF k = � 0 I �0@ K(ij)II K(ij)IBK(ij)TIB K(ij)BB 1A�1  0I ! :(13)Here the subscripts I and B represent the nodes of 
i [
j and F k, respectively. Hencethe action of S�1F kF k can be calculated by solving a homogeneous Dirichlet problem on
ij with a right hand side that di�ers from zero only on F kh : In this construction, wecould also replace 
ij by any shape regular region that contains the face F k in itsinterior. We stress that the solution of the local problems never requires the explicitconstruction of elements of S: Instead, in each iteration, independent Dirichlet boundaryvalue problems are solved for regions enclosing the individual faces.SF kF k can also be replaced by the J operator introduced in Dryja [20], or anotherof many other preconditioners that are known to be e�ective for problems on the unionof two substructures; cf. Bj�rstad and Widlund [3].In the splittings just considered, we eliminate the coupling between all pairs offaces. In our second main approach, we attempt to maintain this coupling. To keepthe problems local, we instead eliminate the coupling between neighboring subdomainsworking with the full Schur complements of the individual substructures.The preconditioner is given byB�1 = (Xi �yiS(i)y�yi );20



5. Local Solvers. Iterative substructuring algorithms with good convergence prop-erties are constructed from two types of components: many local solvers and a coarsegrid solver. In this section, we describe two basic methods of constructing the localsolvers.The �rst approach can essentially be viewed as a classical splitting of the Schur com-plement matrix. For simplicity, we write down the preconditioners only for the additivealgorithms; similar, but more complicated, formulas can be given for the multiplicativeSchwarz methods.We �rst recall that the Schur complement for the entire problem is obtained throughsubassembly of the matrices given in (9). This results in the formulaS = 0B@ SFF SFE SFVSTFE SEE SEVSTFV STEV SV V 1CA :(11)As in the classical theory for iterative methods, cf. Varga [60], a preconditioner for Scan be obtained by a splitting, i.e. by dropping certain blocks, or elements. Here weeliminate not only the o�-diagonal blocks of (11) but also the sub-blocks representingthe coupling between all pairs of faces, edges, and vertices. The resulting preconditionerhas the form B�1 = 0B@ �S�1FF 0 00 �S�1EE 00 0 �S�1V V 1CA :The matrix �SFF is block diagonal with a block for each face, �SEE has a block for eachedge, and �SV V is diagonal. This is a block-Jacobi preconditioner. We note that eachblock corresponds to a set of adjacent variables on the interface �:We need to introduce some additional notations. Let SF iF i be the submatrix of Sassociated with the face F i; and let SEiEi be that of the edge Ei: Similarly, SV iV i isthe diagonal element of S associated with the vertex V i: Let RF i be the rectangularrestriction matrix which returns only the components of a global vector associated withthe face F i: Similar restriction matrices, REi and RV i; are introduced for the edges andindividual vertices, respectively. We note that, for instance, SF iF i = RF iSRTF i:The preconditioner B�1 can now be rewritten asB�1 =XRTF iS�1F iF iRF i +XRTEiS�1EiEiREi +XRTV iS�1V iV iRV i;and we also �nd thatB�1S =XRTF iS�1F iF iRF iS +XRTEiS�1EiEiREiS +XRTV iS�1V iV iRV iS:This preconditioned matrix is the same as that obtained from an additive Schwarzmethod with the spaces ~V hF i = fu 2 ~V hju(x) = 0;8x 2 �h n F ihg; ~V hEi = fu 2 ~V hju(x) =0;8x 2 �h n Eihg; and ~V hV i = fu 2 ~V hju(x) = 0;8x 2 �h n V ig.19



The integral with respect to z can be bounded by using Lemma 4.3. We obtainXK�
j r�2jjuhjj2L2(K) � C(1 + log(H=h))jjuhjj2H1(
j) Z Hr=h r�1drand thus XK�
j jIh(#F k � �#F k)uhj2H1(K) � C(1 + log(H=h))2jjuhjj2H1(
j):We also need some trivial results.Lemma 4.6. Let �uhF k ; �uh@
k ; �uh@F k; �uhEk ; and �uhW k be the average of the nodal valuesof uh on F k; @
k; @F k; Ek; and W k, respectively. Then,(�uhF k)2 � C 1H2 jjuhjj2L2(F k);(�uh@
k)2 � C 1H2 jjuhjj2L2(@
k);(�uh@F k)2 � C 1H jjuhjj2L2(@F k);(�uhEk)2 � C 1H jjuhjj2L2(Ek);(�uhW k)2 � C 1H jjuhjj2L2(W k):The proofs are direct consequences of the Schwarz inequality.Lemma 4.7. Let uh be zero on the faces of 
j and discrete harmonic in 
j. Thenjuhj2H1(
j) � Cjjuhjj2L2(W j):This result follows by estimating the energy norm of the zero extension of the boundaryvalues and by noting that the harmonic extension has a smaller energy.We note that we will use both hkuk2l2(Ei)k and kuhk2L2(Ei): While the �rst expressionis appropriate when de�ning bilinear forms on a subspace related to the edge Ei; thetwo are, for all theoretical purposes, interchangeable since the mass matrix related tothe second expression is uniformly well conditioned.18



to determine the exact relationship between the geometry, e.g., the aspect ratios of thesubstructures, and the constants of the bounds.Lemma 4.5. Let #F k(x) be the functions introduced in the proof of Lemma 4.4,let F k be a face of the substructure 
j ; and let Ih denote the interpolation operatorassociated with the �nite element space V h: Then,Xk Ih(#F kuh)(x) = uh(x); 8x 2 
j;h nW jh ;and jIh(#F kuh)j2H1(
j) � C(1 + log(H=h))2jjuhjj2H1(
j):Proof. We provide a proof only for the case of a tetrahedral substructure. The�rst formula follows immediately from the proof of the previous lemma. To prove theother, we �rst consider the contributions to the energy from the elements that touchthe wire basket. By de�nition, #F k vanishes on the wire basket. It is then easy to showthat the energy contributed from this small neighborhood of the wire basket can bebounded by hPx juh(x)j2; where the sum is taken over all the nodal points that arewithin a mesh width of the wire basket. As in Lemma 4.3, this sum can be boundedby C(1 + log(H=h))jjuhjj2H1(
j):By using elementary considerations, we obtain,jIh(#F kuh)j2H1(
j) � 2 XK�
j j�#F kuhj2H1(K) + 2 XK�
j jIh(#F k � �#F k)uhj2H1(K):Here 0 < �#F k < 1 is the average of #F k over the element K. When we estimate thesesums, we can ignore the elements that touch the wire basket, since they have alreadybeen accounted for.The bound for the �rst term is trivial, but that of the second term is more compli-cated. We �rst use an inverse inequality and obtainjIh((#F k � �#F k)uh)j2H1(K) � Ch�2jjIh((#F k � �#F k)uh)jj2L2(K):By using the bound on the gradient of #F k , we can bound #F k � �#F k by Ch=r; where ris the distance to the wire basket. Hence,XK jIh((#F k � �#F k )uh)j2H1(K) � CXK r�2jjuhjj2L2(K):We partition the elements of 
i into groups, in accordance to the closest edge of 
i;the exact rule for the assignment of the elements that are halfway between is of noimportance. For each edge of the wire basket, we use a local cylindrical coordinatesystem with the z axis coinciding with the edge, and the radial direction, r; normal tothe edge. In cylindrical coordinates, we estimate the sum by an integralXK�
j r�2jjuhjj2L2(K) � C Z Hr=h Z� Zz(uh)2 rr2drd�dz:17



edges, and the estimate jr#F kj � C=h:To estimate the contribution to the energy from the rest of the substructure, weconsider one subtetrahedron at a time and introduce cylindrical coordinates using theappropriate substructure edge as the z-axis. The bound now follows from the boundon the gradient and elementary considerations. (We note that a similar argument, in asomewhat more complicated situation, is given in the proof of the next lemma.)We now turn to the proof of the second inequality. To avoid irrelevant scalingfactors, we consider the special case of H = 1; and we also denote the region by 
: Inthis case, we only have to prove that k�F kkL2(
) is bounded. We introduce an auxiliaryfunction u by solving �4u = �F k ; x 2 
; u = 0; x 2 @
:Since 
 is convex, a standard regularity result shows thatjujH2(
) � Ck�F kkL2(
):By Green's formula, k�F kk2L2(
) = Z
ru � r�F kdx� Z@
 @u@n�F kds:Since �F k is discrete harmonic, we �nd thatZ
ru � r�F kdx = Z
r(u� wh)r�F kdx; 8wh 2 V h(
) \H10 (
):The right hand side can be estimated from above byinfwh2V h\H10(
) ju� whjH1(
)j�F k jH1(
) � ChjujH2(
)j�F k jH1(
) � Chk�F kkL2(
)j�F k jH1(
):Here we have used a standard error bound and the regularity result. By using thebound for j�F k jH1(
), we see that the �rst term originating from the Green's formula iso(k�F kkL2(
)).For the second term, the line integral, we use Schwarz's inequality, a standard tracetheorem, and the regularity result. We obtainj Z@
 @u@n�F kdsj � Ck�F kkL2(
)k�F kkL2(@
):The argument can now easily be concluded by observing that k�F kkL2(@
) � C:The following lemma is an extension to three dimensions of a result of Dryja andWidlund [24]. The present approach makes it possible to prove nontrivial bounds for it-erative substructuring algorithms without the use of an extension theorem; cf. Widlund[61]. Here, we can always work in subspaces of the original �nite element spaces, andwe never need to use trace and extension theorems. One advantage of this approach isthat the constants obtained in the estimates can be calculated explicitly from geometricinformation. When working with the trace and extension theorems it is more di�cult16



establish this bound. The proof is then completed by noting that a discrete harmonicfunction has at least as small an energy as any other function with the same boundaryvalues. We consider in detail only the case of a tetrahedral substructure. The fourfunctions, which correspond to the four faces of the tetrahedron, also form a partitionof unity at all nodes of the closure of the substructure except those on the wire basket;this property will be used in the proof of Lemma 4.5.We will �rst construct four functions, which form a partition of unity, but which arenot �nite element functions. The four �nite element functions #F k are then obtained bypiecewise linear interpolation. It is easy to verify that these new functions also de�ne apartition of unity and that the bound on the gradient, previously obtained, is preserved.We will use the same notation for these two sets of functions.We divide the substructure into four tetrahedra by connecting its centroidC; by linesegments, to the four vertices of the tetrahedron. Similarly, we divide each triangularface of the substructure into three triangles by extending the bisectors of the threevertices of the triangle until they meet. We denote the resulting points on the facesby Ck, see Fig. 2. By connecting the Ck with C; we obtain the wire baskets of twelvetetrahedra.We construct the function #F k , associated with the face F k, as follows: At C thevalue is 1=4: We interpolate linearly between the value 1=4 and 1 or 0, whichever isappropriate, along the line segments connecting C to the Ck. The values elsewhere areconstant on the intersection of any plane, through the unique substructure edge thatbelongs to a speci�c subtetrahedron, and that same subtetrahedron. This constantvalue is determined by the value, already known, at the point on the appropriate linesegment, which is one of the edges of the same subtetrahedron. Finally, we modify thefunction by changing its values in the elements that have at least one vertex on an edgeof the substructure. We make the function zero on the wire basket and continuous,by piecewise linear interpolation, using the previously constructed values at the nodesthat are not on, but next to, the edge. We also replace the function elsewhere by itspiecewise linear interpolant.We return for a moment to consider the function prior to the interpolation. Thevalues on any two planes associated with two di�erent substructure edges, which inter-sect at a point on the appropriate line segment, are the same. The partition functionsare therefore continuous across the boundaries of the subtetrahedra. Explicit formulasfor the gradient and estimates thereof can, at least in principle, be given. The mostimportant observation is that jr#F kj � C=r; where r is the distance to the nearest edgeof the original tetrahedron.It is also easy to show that f#F kg form a partition of unity on the special linesegments, and everywhere else, except in the special elements next to the edges of theoriginal substructure.To complete the proof of the �rst inequality, we return to the �nite element functionsand �rst note that the contribution to the energy from the union of the elements withat least one vertex on an edge of the substructure can be bounded from above by CH:This follows by considering their combined volume, the fact that #F k vanishes at the15



Results very similar to those of the next lemma can be found in Bramble, Pasciak,and Schatz [7], Bramble and Xu [9], Dryja [21], and Dryja and Widlund [29].Lemma 4.3. Let �uhW j be the average value of uh on W jh ; the nodes of the wire basketof the subdomain 
j: Thenjjuhjj2L2(W j) � C(1 + log(H=h))jjuhjj2H1(
j);and jjuh � �uhW j jj2L2(W j) � C(1 + log(H=h))juhj2H1(
j):Similar bounds also hold for an individual substructure edge.
Ck

Cj
CFig. 2. Construction of the partition function in a tetrahedron.When we estimate the parameter C20 ; introduced in the abstract convergence theory,we must demonstrate that all functions in the �nite element space can be decomposedinto components in the subspaces in such a way that the sum of the resulting energiesare uniformly, or almost uniformly, bounded with respect to the parameters h, H, etc.The main technique for deriving such decompositions is the use of suitable partitionsof unity. In the next two lemmas, we explicitly construct such a partition.Lemma 4.4. Let �F k be the �nite element function that is equal one on F kh , whereF k is the face common to 
i and 
j ; zero on (@
i;h[@
j;h)nF kh ; and discrete harmonicin 
i and 
j : Then j�F k j2H1(
i) � C(1 + log(H=h))H;and jj�F kjj2L2(
i) � CH3:The same bounds also hold for the other subregion 
j:Proof. We begin with a proof of the �rst inequality. We prove this result byconstructing a function #F k , with the same boundary values as �F k ; for which we can14



We note that an application of B�1K to a vector need only involve B�1I twice, and B�1Sonce. It is also possible to use di�erent approximate interior solvers in the three factorsof B�1K and to construct nonsymmetric preconditioners of a similar form.In the analysis presented in this paper, we will always require exact interior sub-domain solvers. Progress has been made in analyzing algorithms that use approximateinterior solvers; cf. B�orgers [4] and Haase, Langer, and Meyer [33]. Since it is important�rst to fully understand the case when exact interior solvers are used, we will focus onthat case. We can then exclusively work with the space of discrete harmonic functions~V h and the bilinear form s(�; �): Numerical experiments, cf. B�orgers [4], Haase, Langer,and Meyer [33], Skogen [55], and Smith [59], indicate that a good rate of convergencecan be maintained when one multigrid V-cycle is used, instead of an exact solver, tosolve the interior problems.4. Technical Tools. A number of auxiliary results are needed for the Schwarzanalysis of the iterative substructuring algorithms. The relevant norms and seminormshave been introduced in the preceding section; some of them contain a large multipleof the L2 norm; cf. (7).The �rst lemma illustrates the limitations of the interpolation operator IH : V h !V H . IHuh is the result of piecewise linear interpolation of the �nite element functionuh onto the coarse space V H : The lemma follows easily from the inequalitykuhk2L1(
j) � C(1=h)kuhk2H1(
j);cf. Lemma 2.3 of Bramble and Xu [9], and by using Poincar�e's inequality. The givenbounds are sharp.Lemma 4.1. In three dimensions,jjuh � IHuhjj2L2(
j) � C(H=h)H2juhj2H1(
j);and jIHuhj2H1(
j) � C(H=h)juhj2H1(
j):The next lemma concerns an operator for which the bounds are much improved.We note that the norms are now given in terms of the entire region 
. In fact, it isnot possible to provide the same estimates for the H1 and L2 norms, weighted by thevalues �i of the coe�cient of the elliptic problem, if we require that the constants inthe estimates be independent of the �i; cf. Xu [64]. For a proof of Lemma 4.2 and ageneral discussion, see Bramble and Xu [9].Lemma 4.2. Let QHuh be the L2 projection of the �nite element function uh ontothe coarse space V H: Then, in three dimensions,jjuh �QHuhjj2L2(
) � CH2juhj2H1(
);and jQHuhj2H1(
) � Cjuhj2H1(
):13



Fig. 1. Faces, edges and wire baskets.face in the interior of the region 
 is common to exactly two substructures, an edge isshared by more than two, and a vertex is common to still more substructures. All thesubstructures, faces, and edges are regarded as open sets. The sets of nodes in 
j; F k;E`; and W j are denoted by 
i;h; F kh ; Eh̀; and W jh , respectively.The matrix S can be represented as a block matrix with a block for each face, edge,and vertex. We often combine all the edge and all the vertex blocks of 
i into singleblocks. We can also merge them all into a single block corresponding to the wire basket.We then obtain S(j) = 0BB@ S(j)FF S(j)FE S(j)FVS(j)TFE S(j)EE S(j)EVS(j)TFV S(j)TEV S(j)V V 1CCA(9)and S(j) = 0@ S(j)FF S(j)FWS(j)TFW S(j)WW 1A ;(10)respectively. Here S(j)FF is constructed from the blocks that correspond to the individ-ual faces, and to pairs of faces, of 
j , etc. We will use both block structures in thedescription of di�erent algorithms, as appropriate.All of the algorithms considered in this paper can be formulated by using inexactinterior solvers. We explain briey how this can be done. The exact inverse K�1 canbe written asK�1 =  I �K�1II KIB0 I ! K�1II 00 S�1 ! I 0�KBIK�1II I ! :If we have a good preconditioner for S, B�1S ; and a good preconditioner for KII , (i.e.an approximate solver B�1I for the interior problems), we can create a preconditionerfor K of the formB�1K =  I �B�1I KIB0 I ! B�1I 00 B�1S ! I 0�KBIB�1I I ! :12



Thus to multiply K by the vector u, we �rst restrict the vectors uI and uB to the sub-structures, then multiply them by the sti�ness matrices of the individual substructuresand, �nally, obtain the product Ku by padding with zeros and adding the resultingvectors.In most discussions of Schwarz methods, there are technically two spaces: thespace of �nite element functions V h, and the space of coe�cients of the �nite elementfunctions. We will denote functions in V h by uh and the coe�cient vectors of the �niteelement functions by u:In a �rst step of many iterative substructuring algorithms, the unknowns in theinterior of the subdomains are eliminated. In this step, the Schur complements, withrespect to the variables associated with the boundaries of the individual substructures,are calculated. The resulting linear system can be written as KII KIB0 S ! uIuB ! = Xj  K(j)II K(j)IB0 S(j)BB ! u(j)Iu(j)B ! =Xj 0@ f (j)If (j)B �K(j)TIB K(j)�1II f (j)I 1Awhere S(j) = S(j)BB = K(j)BB �K(j)TIB K(j)�1II K(j)IB ;and the reduced system is given by SuB = ~fB:Thus, the matrix S is obtained from the S(j) by subassembly. In practice, the matrix Sis often not formed explicitly, since this is a potentially expensive operation. Instead,a sparse representation of the K(j)IB and the sparse, triangular factors of the K(j)II arestored, and the action of S on a vector is calculated as needed.The space of discrete harmonic functions, ~V h � V h; is an important subspace,which is directly related to the Schur complements and to the values at the nodes on �:These functions satisfy the linear relationKIIuI+KIBuB = 0. It is easy to see that theyare completely de�ned by their values on the interfaces and that they are orthogonal,in the a(�; �) inner product, to the spaces V h \H10 (
j): In the analysis to be given, theimportant inner product is the one induced by S; we will de�ne our preconditionerswith respect to the inner product s(uh; vh) = uTBSvB; where uh; vh 2 ~V h; are discreteharmonic functions. We note that it is an elementary algebraic result thats(uh; uh) = minvhj�=uh a(vh; vh):Thus the discrete harmonic extension is the extension that minimizes the energy.We need to introduce notations related to certain geometrical objects, since theiterative substructuring algorithms are based on subspaces directly related to the sub-structures, faces, etc. Let 
ij be the union of two substructures 
i and 
j which sharea common face, and denote that face by F k: Let E` represent an edge, V m a vertex of asubstructure, and W j the wire basket of the subdomain 
j ; see Fig. 1. We note that a11



and the norm kuk2H1(
) = juj2H1(
) + kuk2L2(
):In the case of a region of diameter H; such as a substructure 
j; we use a norm withdi�erent relative weights,kuk2H1(
j) = juj2H1(
j) + 1H2kuk2L2(
j):(7) We introduce a discretization, which satis�es the usual rules for �nite element tri-angulations such as shape regularity of the elements; cf. Ciarlet [16]. Let V h(
) be thespace of continuous, piecewise linear functions on this triangulation, which vanish on�0: For the construction of the preconditioner, we assume that the set of elements ispartitioned into subsets forming disjoint substructures 
j. For many of the algorithmsconsidered in this paper, the shapes of the substructures can be quite arbitrary. How-ever, to simplify the analysis, we restrict our attention to the case where the 
i areshape regular �nite elements with a characteristic diameter H: We denote the interfacebetween the subdomains by � = [@
i n �0: We also assume that the �0 is the union ofthe closures of faces of some, or all, of the substructures.The discrete problem is then of the form: Find uh 2 V h(
) such thata(uh; vh) = (f; vh); 8 vh 2 V h(
):(8)If we expand uh in the standard nodal basis, uh =Pk uk�k; the variational problem (8)can be written as the linear system Ku = f:The elements of the sti�ness matrix K are given byKij = a(�i; �j)and those of the right hand side f byfi = (f; �i):The local contributions to the sti�ness matrix and the right hand side can be formedone subdomain at a time. The sti�ness matrix is then obtained by subassembly of theseparts. We order the nodes interior to the subdomains �rst, followed by those on theinterface �: All the matrices and vectors are expanded by zeros, giving them each thesame dimension as the global sti�ness matrix and the vector of unknowns. We can thenwrite the linear system as KII KIBKTIB KBB ! uIuB ! = Xj 0@ K(j)II K(j)IBK(j)TIB K(j)BB 1A u(j)Iu(j)B ! =Xj  f (j)If (j)B ! :10



are obtained by subassembly just as the bilinear form a(�; �) can be obtained froma(j)(u; v) = Z
j �jru � rv dx;see further discussion in Section 3. The case when the space V (j) is a direct sum ofthe local subspaces V (j)i has been considered by Mandel [38], [39]. He showed that if,for each 
j ; one of the local subspaces contains the null space of a(j)(�; �), then boundson the condition number of the global preconditioned problem can be obtained frombounds for individual subdomains. The local bounds can be obtained by using thetechniques outlined earlier in this section.We formulate a related result that is also useful when the local subspaces do notform a direct sum decomposition.Lemma 2.2. Assume that there exists constants C(j)0 so that for all u 2 V thereexists a representation u = Pi ui; ui 2 Vi; such thatXi b(j)i (ui; ui) � C(j)20 a(j)(u; u); 8j;then the C0 of Equation (2) is given by C0 = maxj C(j)0 :Proof. This result follows immediately by summing over the substructures.In the case of piecewise constant coe�cients, the construction of b(j)i (�; �) is straight-forward. We simply construct appropriate bilinear forms for the Laplacian and thenscale them by multiplying by �j: The bounds needed for the Lemma follow immediately.We note that an algorithm due to Smith [57] (Algorithm 6.4) and the standarditerative substructuring method (Algorithm 6.1) can be analyzed using substructureby substructure estimates. The overlapping additive Schwarz algorithms of Dryja andWidlund [23], [24], [25], [30], Widlund [63] and another algorithm due to Smith [58](Algorithm 6.3), on the other hand, are Schwarz methods for which we have beenunable to perform an analysis using only local estimates.3. The Elliptic Problem and Its Discretization. In this paper, we will con-sider only scalar, second-order, self adjoint, coercive, bilinear forms a(u; v) on 
 � R3; aLipschitz region of diameter 1; in fact, to simplify matters, we assume, without limitingthe generality of our theory, that the region is polyhedral. We impose a homogeneousDirichlet condition on �0 � @
 and Neumann boundary conditions on �1 = @
 n �0.We denote the subspace of H1(
) with zero trace on �0 by H1�0(
): We assume thatthe set �0 is of nonzero measure and that the underlying elliptic operator has no zeroorder terms. The variational problem is then: Find u� 2 H1�0(
) such thata(u�; v) = (f; v); 8 v 2 H1�0(
):An example of such a problem, (5), which will serve as our model problem, has alreadybeen introduced in the preceding section.The Sobolev space H1(
) is closely related to our family of elliptic problems. Thisspace is de�ned by the seminormjuj2H1(
) = Z
ru � ru dx(6) 9



The third parameter provides a bound on the norm of the operators Ti.� Let ! be the minimum constant such thata(u; u) � !bi(u; u); 8u 2 Vi; i = 0; � � � ; N:(4)It is easy to see that we can choose ! = maxkTika: We note that it is always possibleto scale bi(�; �) so that ! 2 [1; 2): Such a scaling will, of course, also a�ect the value ofC0: Basic convergence results for additive and multiplicative variants of the Schwarzmethod can now be given. Results for the additive form are due primarily to Dryja andWidlund [23],[25] and Nepomnyaschikh [46], while the result for multiplicative Schwarzmethods is a variant of results of Bramble, Pasciak, Wang, and Xu [8] and Xu [65]; seealso Lions [36] for early work on the case of two subspaces. A proof of Theorem 2.2is given in Dryja and Widlund [29], and a proof of Theorem 2.1 can also be deriveddirectly from the results of the same paper.Theorem 2.1. The abstract symmetric multiplicative Schwarz method satis�es�(Tsms) � (1 + 2!̂2�(E)2)C202 � !̂ :Here !̂ = max(1; !):Theorem 2.2. The abstract additive Schwarz method satis�es�(Ta) � !(�(E) + 1)C20 :In particular, 1=C20 is a sharp lower bound on the smallest eigenvalue of Ta =PTi; and!(�(E) + 1) an upper bound on the largest eigenvalue.2.2. Local Analysis. An example of the problems considered in detail in thispaper is provided by a(u; v) =Xj Z
j �jru � rv dx;(5)where �j > 0 is a constant in 
j, but with possibly large jumps between subdomains. Wewill develop our theory for the piecewise constant case, but all our results are equallyvalid for the case when the coe�cients vary moderately in each subdomain. When�j � 1;8j; we have the special case of Poisson's equation. In order to be successfulwith problems that have large variations in the coe�cients, it is important to be ableto carry out a local analysis. This can sometimes be done in a Schwarz framework:Let V (j) be the restriction of the functions in the solution space V to the subdomain
j. Decompose V (j) into subspaces V (j)i and introduce bilinear forms b(j)i (�; �) on V (j)i �V (j)i , where the bilinear forms bi(u; v) =Xj b(j)i (u; v)8



time as the local problems. In this way, one or several processors can work on thecoarse problem while the rest of the processors are assigned to the local problems. Wenote that in the standard multiplicative algorithms, there is a potential bottleneck withmany processors idly waiting for the solution of the coarse problem.Still another interesting possibility is to replace Tsms by the polynomialTms + T Tms:This operator, which is symmetric, has a larger smallest eigenvalue than Tsms and anupper spectral bound of 4, while the largest eigenvalue of Tsms is bounded by 2: Incomparison with the symmetric multiplicative Schwarz method, this new algorithminvolves only about half as many fractional steps per iteration if di�erent processorscan be assigned to the two parts of the operator.There is a remarkably simple formula for T�1a , (cf. Zhang [66], [67]), that plays animportant role in the understanding and systematic development of the theory.Lemma 2.1. a(T�1a u; u) = minui 2 ViPui = u X bi(ui; ui):(1)We note that if b0(u0; u0) is very large in comparison with a(u; u) for some u then theremust exist a quite small eigenvalue of Ta, and the convergence of the conjugate gradientmethod can then su�er.The abstract convergence theory centers around three parameters that measure theinteractions of the subspaces Vi and the bilinear forms bi(�; �), and their suitability inthe construction of preconditioners.We �rst consider the partitioning of the elements of V and the �rst parameter.� Let C0 be the minimum constant such that for all u 2 V there exists a represen-tation u = Pui; ui 2 Vi; with Xi bi(ui; ui) � C20a(u; u):(2)We note that it is sometimes natural to make a distinction between the case whenthe decomposition is a direct sum, i.e. when each element of u 2 V always is uniquelyrepresented by components in the Vi; and the case where there is some freedom in thechoice of the decomposition of u:The second parameter is given in terms of strengthened Cauchy-Schwarz inequal-ities. Here the angles between the di�erent subspaces are measured. The space V0;normally a global coarse space that intersects all the other spaces, is not included inthese bounds.� Let E be the matrix of strengthened Cauchy-Schwarz coe�cients, de�ned byja(vi; vj)j � �ija(vi; vi)1=2a(vj; vj)1=2; 8vi 2 Vi; 8vj 2 Vj ; i; j = 1; : : :N;(3)and let �(E) be its spectral radius. 7



u0  0For i = 0 until convergence,w  uiFor j = 0 to N;w  w + Tj(u� � w)End jFor j = N to 0;w  w + Tj(u� � w)End jui+1  wEnd iIf we use this scheme to de�ne a preconditioner for the conjugate gradient method,then the preconditioned operator is given byTsms = I � (I � T0) � � � (I � TN�1)(I � TN)(I � TN)(I � TN�1) : : : (I � T0)= I � (I � Tms)T (I � Tms) = Tms + T Tms � T TmsTms:We can simplify the algorithm by removing one of the factors (I � TN): If the exactprojection PN onto VN is used, the algorithm remains exactly the same. In the generalcase, we can still obtain a, somewhat weaker, bound on the rate of convergence of theresulting algorithm by interpreting it as a multiplicative Schwarz method using thespaces V0; V1; � � � ; VN�1; VN ; VN�1; � � � ; V1; V0:The second main iterative scheme is the additive Schwarz method:u0  0For i = 0 until convergence,ui+1  ui + � Pj Tj(u� � ui)End iHere � is a scalar parameter chosen to ensure a good rate of convergence.If we use this method to de�ne a preconditioner for the conjugate gradient method,then the preconditioned operator is Ta =XTi:We note that there are other interesting algorithms, based on the Ti, besides themultiplicative and additive Schwarz methods. Thus, with a balancing parameter  > 0,Cai [11] advocates the use of the polynomialT0 + I � (I � TN ) � � � (I � T1):This choice makes it possible to take advantage of the intrinsically more rapid conver-gence of a multiplicative method, while solving the special coarse problem at the same6



The bilinear form a(�; �) is symmetric, positive de�nite. We assume that there is adecomposition of the space V , V = V0 + V1 + � � �+ VN ;and that we are willing and can a�ord to solve problems of the following form: Givenan inner product bi(�; �) de�ned on Vi � Vi; and an element w 2 V; �nd Tiw such thatbi(Tiw; v) = a(w; v); 8v 2 Vi:We note that when bi(�; �) = a(�; �) then Tiw is the projection of w onto Vi that isorthogonal with respect to the energy inner product a(�; �): We will generally refer tothe Ti as approximate projections.If u is an approximation to the solution u�; then the approximate projection of theerror, u� � u; onto the subspace Vi can be calculated by using the fact thatbi(Ti(u� � u); v) = a(u� � u; v); 8v 2 Vi;= f(v)� a(u; v); 8v 2 Vi:Thus, we can approximately project the error onto the subspaces, without knowing thetrue solution.Several simple iterative methods can be built using the operators Ti. (Withoutlimiting the generality of the methods, we assume that we are starting from a zeroinitial approximation.) The �rst method is the multiplicative Schwarz method:u0  0For i = 0 until convergence,w  uiFor j = 0 to N;w  w + Tj(u� � w)End jui+1  wEnd iWe note that we can regard the algorithm as a simple iterative method for solvingthe equation Tmsu? = gmswhere the operator Tms satis�esTms = I � (I � TN) : : : (I � T0):This generally nonsymmetric operator equation can be solved with GMRES or a similariterative method.Since we are interested in using the conjugate gradient method, we will also considerthe symmetrized multiplicative Schwarz method:5



As we have already noted, it is crucial to have a satisfactory almost uniform boundon the energy of the coarse space interpolant. For rapid convergence, the coarse spaceinterpolating operator should also reproduce the null space of the given elliptic operator;see Mandel [38], [39] or Smith [56]. For the case of scalar elliptic problems consideredhere, the null space contains only constants; for the three dimensional linear elasticityoperator it is the six dimensional space of rigid body motions. Several examples ofiterative substructuring algorithms, which satisfy both these requirements for problemsin three dimensions, are given in the last section.In this paper, we focus on scalar, self-adjoint, second order elliptic problems includ-ing those with large variations in the coe�cients. The basic analysis is carried out forproblems without a zero order term; it is quite easy to extend the results to more generalself adjoint positive de�nite problems. We are also con�dent that much of the theorycan be carried over to systems of elliptic equations, such as those of linear elasticity.This paper is organized as follows. In the next section, we summarize an abstracttheory for the Schwarz methods that has been developed in earlier work; see in par-ticular Dryja and Widlund [29] for a recent overview of the theory. In Section 3, weintroduce the elliptic problems and the �nite element methods. We also introduce ma-trix notations, which are quite important in any discussion of the implementation ofthe algorithms. When analyzing the algorithms, we will work almost exclusively withthe bilinear forms bi(�; �), but in an implementation, the matrix representations of theoperators play the major role; we believe that both points of view are essential for acomplete description of a Schwarz algorithm. In Section 4, we develop and collect thetechnical tools needed in the analysis of iterative substructuring algorithms in three di-mensions. In Section 5, we discuss how various local solvers can be designed. Finally, inthe last section, a variety of coarse solvers are introduced and the resulting algorithmsare analyzed.2. Abstract Theory for Schwarz Methods. A Schwarz algorithm de�nes aniterative method for the solution of linear systems of algebraic equations arising in thediscretization of partial di�erential equations. The solution space is decomposed intosubspaces, and the approximation of the solution is updated by using corrections ob-tained by projecting the error onto these subspaces. In practice, the basic iterativeschemes are normally accelerated by a Krylov space method, the conjugate gradientmethod for symmetric problems, or, for instance, GMRES for problems with non-symmetric operators; cf. Hestenes [34] and Saad and Schultz [52], respectively. Fora recent survey on Krylov space methods, see Freund, Golub, and Nachtigal [31].2.1. Additive and Multiplicative Schwarz Methods. In this subsection, weoutline an abstract convergence theory for the Schwarz methods. We have written onthis topic before, most recently in Dryja and Widlund [29], where detailed proofs canbe found.Consider the following abstract variational problem: Find u� 2 V such thata(u�; v) = f(v); 8v 2 V:4



in Vi; i.e. u = Pi ui; ui 2 Vi; in such a way that P bi(ui; ui) can be bounded uniformlyby a relatively small multiple of a(u; u):In this paper, we use the abstract Schwarz theory to develop a uni�ed method forthe design and analysis of a variety of fast iterative substructuring methods for prob-lems in three dimensions. These methods form one of the major families of domaindecomposition algorithms. For these methods, the communication of information be-tween neighboring subdomains is con�ned to the exchange of values of the variablesdirectly associated with the interfaces.We both reexamine old algorithms, using the common framework, and also in-troduce new methods and estimates of their rates of convergence; to the best of ourknowledge Algorithms 6.2, 6.7, and 6.10 and Theorems 6.2, 6.7, and 6.10 are new.Among the new methods are two preconditioners with condition numbers on the orderof (1+log(H=h)): These bounds are also independent of jumps in the coe�cients acrosssubdomain boundaries.The global coarse problem, of any two-level Schwarz method, is completely de�nedby selecting the subspace V0 and the associated bilinear form b0(�; �): It would appearthat a natural candidate for V0 would be V H ; the space of continuous, piecewise linearfunctions using the substructures as elements. This approach is successful in the case oftwo dimensions but for the three dimensional problems considered in this paper quiteunsatisfactory algorithms can result; see Bramble, Pasciak, and Schatz [6], [7], Smith[56], [57], and Section 6 for a discussion. In certain cases when the decomposition of thefunctions into subspaces is unique, (i.e., when V is a direct sum of the subspaces Vi), wenecessarily obtain a poor bound on b0(u0; u0) and, as a consequence, a poor convergencerate. However, by introducing su�cient overlap between the local subspaces, rapidlyconvergent methods can be designed that use the V H space; see Dryja and Widlund[23], [24], [28], Smith [58], Widlund [63], and Section 6. A problem still remains for thesealgorithms, which use the V H space; it is not known if bounds for the condition numbercan be obtained that are independent of jumps in the coe�cients of the di�erentialoperator. We note that recent work by Dryja, Sarkis, and Widlund [22] shows thatpolylogarithmic bounds on the condition number can be obtained, for certain algorithmswhich use this coarse space, for problems with coe�cients that are quasi-monotone.An element of the space V H is de�ned completely by its values at the substructurevertices, with the values elsewhere obtained by linear interpolation; we therefore callsuch an algorithm vertex based. The alternative coarse spaces, considered in this paper,can also conveniently be characterized in terms of an interpolation and/or extensionprocess. Some of them are de�ned by the values at the nodes shared by more than twosubdomains, i.e. by the values on the wire baskets of the substructures; we call suchalgorithms wire basket based. These spaces can also straightforwardly be extended tomore complicated substructures, which are not necessarily conventional large elements.We note that the �rst algorithms of this class were introduced in an important paperof Bramble, Pasciak, and Schatz [7]. Others can be called face based; the values onthe di�erent faces of the substructures are essential in determining the values of theinterpolant. There are also many opportunities to create hybrid algorithms.3



for the given partial di�erential equation restricted to subregions, also called substruc-tures, into which the given region is subdivided or from which it originally has beenassembled. Each of these subregions can naturally be associated with a set of nodesand a �nite element subspace.All algorithms of this kind known to us, which have satisfactory convergence prop-erties for the case of many subregions, have one feature in common. In addition tosubspaces and subproblems directly related to individual or small groups of adjacentsubstructures, there is a global, coarse subspace. Only a few global degrees of freedomper subregion are associated with this special subspace. As demonstrated in Widlund[62], using only simple arguments, the absence of such a subspace always results in slowconvergence. This e�ect is also clearly evident in numerical experiments; cf. e.g., Smith[59]. We note that it is also quite natural to include additional levels; cf. e.g. Dryja,Sarkis, and Widlund [22], Dryja and Widlund [26], Xu [65], and Zhang [66]. However,in this paper, we will focus exclusively on two level algorithms.The design, analysis, and implementation of the coarse space problem pose the mostchallenging technical problems in work of this kind. In this paper, we demonstrate thatit is pro�table to view any coarse space as the range of an interpolation operator, often ofa quite unconventional type, and that many questions in the analysis reduce to providingan estimate of the norm of this operator. In the study of the local components of thepreconditioners, we can draw on the extensive knowledge of substructuring methods fora few subdomains; cf. e.g. Bj�rstad and Widlund [3].Throughout, we regard our methods as Schwarz methods, generalizations of thealternating method of Schwarz [54] discovered more than 120 years ago. HistoricallySchwarz methods have primarily been associated with a division of the region into over-lapping subregions. In recent years, research on this classical method and its additivevariants has been quite active; cf. e.g. Dryja and Widlund [24], [25], Widlund [63],Matsokin and Nepomnyaschikh [45], and Nepomnyaschikh [46], [47]. It has been knownfor about �ve years that the iterative substructuring methods, based on a decomposi-tion into nonoverlapping subregions, also �t well into a common Schwarz framework;see Dryja and Widlund [24]. This will be our point of view in this paper.The idea behind the Schwarz methods is straightforward; the solution space V isdivided into subspaces Vi and the solution in V of the given problem is determined in aniteration by projecting the current error onto these subspaces. We can use projectionsPi; which are orthogonal with respect to the bilinear form a(�; �) naturally associatedwith the elliptic problem, or operators Ti de�ned in terms of alternative bilinear formsbi(�; �) de�ned on Vi�Vi: A particular choice of the subspaces and bilinear forms providesa complete mathematical description of a Schwarz algorithm. For recent work in whichsuch a framework is developed and used, see Bramble, Pasciak, Wang, and Xu [8],Cai [10], Cai and Widlund [12], [13], Dryja and Widlund [24], [25], [27], [28], [29],[30], Lions [36], Mathew [43], [44], Nepomnyaschikh [46], Pavarino [48], [49], Pavarinoand Widlund [50], [51], Sarkis [53], Smith [56], [57], [58], [59], Widlund [63], Xu [65],and Zhang [66], [68]. In Section 2, we will demonstrate that rapid convergence of theiterative methods occurs if and only if all u 2 V can be decomposed into components2
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