
Experiments with ROO,

a Parallel Automated Deduction System∗

Ewing L. Lusk

William W. McCune

Mathematics and Computer Science Division

Argonne National Laboratory

lusk@mcs.anl.gov

mccune@mcs.anl.gov

1 Introduction

The automated theorem prover Otter[11, 13] represents the state of the art in high-speed,
general purpose theorem provers. One way to increase Otter’s speed further is through the
exploitation of parallelism. A general, parallel algorithm for the computing the closure of
a set under an operation was presented in [17]. Since Otter’s fundamental algorithm can
be viewed as a closure computation, this algorithm can be applied to Otter. The result
is Roo, a parallel theorem prover compatible with Otter that runs on shared-memory
multiprocessors.

Roo itself is described in [7] and [8]. For completeness we present a summary of the
basic algorithm in Section 2. Compared with the numerical applications typically run
on today’s multiprocessors, Roo’s behavior is considerably more complex. Its algorithm
performs well in general, but in certain situations does badly. Some of these situations
reflect only certain phases of runs on particular problems. Sometimes Roo, even with only
one process, outperforms Otter, and sometimes it does much worse. Speedups are often
roughly linear, which is why we are well-satisfied with Roo. Sometimes they are far below
linear, and sometimes startlingly superlinear. In general, a full appreciation of the subtleties
of parallel computation in this application area can only be obtained by looking closely at
the behavior of Roo on a wide variety of theorem-proving problems.

The purpose of this paper is to provide such a detailed look. After summarizing the
algorithms of Otter and Roo in Section 2, we present a series of experiments taken from
a wide variety of test problems. These show Roo both at its best and its worst and exhibit
a number of surprising features. Since the problems themselves are of interest, we provide
(except in one rather tedious case) the complete set of input clauses that make up the
problem. For each problem we exhibit the performance of Roo and analyze the results.

Finally, the non-deterministic nature of parallel algorithms means that consecutive runs
of the same input file, on the same number of processes, can produce different results. In
Section 4 we address the question of the stability and reproducibility of the results we have
reported for Roo.

∗This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy

Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

2 Algorithms

2.1 A Sequential Theorem Proving Algorithm without Deletion

We present here a simplified form of the theorem-proving algorithm that has been used in
Argonne systems over the years[23, 10, 11]. For an introduction to the approach, see [21].
We assume that the goal is to prove a set of clauses unsatisfiable. We assume further that
the input clauses are divided into two sets, which we call Usable and Set of support (SOS),
in such a way that the Usable set is satisfiable. (If the input clauses make this difficult to
do, then the Usable set may be chosen to be the empty set.) Thus we will be using the
“set-of-support strategy” first described in [22].

While (the null clause has not been produced and SOS is not empty)
Choose a clause from the set of support, call it the given clause, and move it to

the Usable set
Generate all clauses that can be deduced from the given clause and

other clauses in the Usable set
For each new generated clause

Process it (rewrite to canonical form, merge literals, etc.)
Test if it is subsumed by any existing clause (in either Usable or SOS)
Test if it is too heavy
If the new clause survives

Add it to SOS
end if

end for
end while

Figure 1: Sequential Theorem-Proving Algorithm without Deletion (Algorithm 1)

The algorithm given in Figure 1 can complete with the empty clause found (giving a
proof that the input clause set is unsatisfiable), compete without the empty clause being
found (no proof), or it can fail to terminate with the constraints of time and memory. If
the filtering mechanism applied is appropriately chosen, then this scheme is complete: that
is, if the algorithm terminates without finding the empty clause, then the original set of
clauses is satisfiable.

The currently most effective implementation of this algorithm is Otter[11]. Otter

has a wide variety of inference rules and control parameters for adapting this algorithm to
a particular problem and sophisticated indexing methods to make each of the operations
quite fast, even when the set of kept clauses has grown to a hundred thousand clauses or
more.

This particular approach contrasts with some more recent “Prolog technology” theorem
provers[18, 16], which use the compilation techniques from WAM-based Prolog implementa-
tions to achieve extremely high inference rates, at a cost of possibly redundant computations.
The “closure” approach taken here is based on the expectation that a clause deduced and
processed is worth keeping as a filter for preventing the deduction and subsequent use of
duplicate or weaker clauses. Experience is on the side of the closure approach; although cer-
tain small problems can be done very quickly with the Prolog-technology approach, many

2

large problems done years ago with the closure approach remain out of reach of even the
best Prolog technology systems. An example is given in Section 3.1 below.

2.2 Roo Without Deletion

In this section we present the parallel version of Algorithm 1 and its implementation based
on Otter.

An early attempt to parallelize Algorithm 1 focused on the inner “for” loop. This is
relatively straightforward, since the rewriting, subsumption, and filtering of one new clause
is independent from that of another, as long as one finishes up the loop by checking for
subsumption among members of the batch. The problem with this approach is that even
when there are large numbers of clauses in each batch, the barrier at the end of the loop
meant that many processes were temporarily idle.

The key idea here is to parallelize the outer “while” loop instead. That is, we will
consider multiple “given” clauses simultaneously. This both increases the grain size of the
parallel computation and removes any barriers. The difficulty, of course, is that without
some care, two copies of the same clause might enter the permanent clause space, each
deduced and post-processed by a different process. We will also need to solve technical
problems associated with adding clauses to the clause space while it is in use by other
clauses.

Our approach is to use an intermediate holding area, which we will call (arbitrarily)
K. New clauses are first put in K, from which they are removed by a single process which
repeats the post-processing of the clause before adding it to the clause database. Thus we
break down the work to be done into two tasks: A and B. At any moment multiple processes
will be executing Task A, but at most one process will be executing Task B. Each instance
of Task A is associated with a given clause. Task B is only executed when the set K is
non-empty.

Fact Database

Infer New Facts
 (Task A) Update Database

 (Task B)

(Axioms + Set-of-support)

Facts to be added
 (K List)

Figure 2: Flow of Data in Simplified Roo

Note that there is not a separate process dedicated to Task B. Rather, we create a
uniform pool of processes, each of which performs the loop shown in Figure 5.

The loop continues until some process detects unit conflict or until the set of support is
empty and all processes are waiting for a clause to appear there.

3

Task A(given clause):
Generate new clauses
For each new clause

Rewrite it
Subsumption test
Filter
If it survives

Lock K
Put new clause in K
Unlock K

end if
end for

Figure 3: Task A

Task B:
While K is not empty

Lock K
Choose a clause from K
Unlock K
Redo rewrite, subsumption test, filter
If it survives

Integrate new clause into database
Put new clause in SOS

end if
end while

Figure 4: Task B

While it is not time to stop
If K is non-empty and no process is already doing it

Do Task B
else

If SOS is not empty
Choose a new given clause from SOS
Do Task A(given clause)

end if
end if

end while

Figure 5: Main loop performed by all processes

4

2.3 The Complete Roo Algorithm

In Section 2.2 we described a simplified version of Otter’s algorithm, in which no clauses
are deleted from the database once they have been added. In the complete version, back
subsumption tests are done on newly-derived clauses, causing deletions, and new rewrite
rules may be derived in the course of the run. These new rewrite rules are immediately
applied to existing clauses in the database, causing both deletions and new additions. Cop-
ing with deletions complexifies Roo since we do not want to interfere with the generation
of new clauses when deleting. It turns out that this problem can be solved by having
Task B handle actual deletions. Back subsumption and back demodulation processes can
run in parallel with all other processes, but instead of actually deleting clauses from the
database, they place their identifiers in shared lists where Task B (executed by only one
process at a time) can find them and carry out the actual deletions. This algorithm is shown
schematically in Figure 6.

Fact Database

To-be-deleted

Rewrite Facts
 (Task D)

Back Subsume
 (Task C)

Infer New Facts
 (Task A) Update Database

 (Task B)

(Axioms + Set-of-support)

Facts to be added
 (K List)

Figure 6: Flow of Data in Roo

The clause lists are held in shared memory with Otter’s elaborate data structures for
indexing. This makes the above algorithm very much a shared-memory parallel algorithm.

5

2.4 Some Important Features of Otter and Roo

In order to understand the experiments, it is necessary to be familiar with at least a few of
the many Otter and Roo features for controlling the algorithms given in this section.

1. The user must select one or more inference rules. Each of the experiments presented
here uses one of the inference rules hyperresolution, binary resolution, or paramodu-
lation.

2. The default method for selecting the next given clause is by weight—to take one with
the fewest number of symbols. An alternative is to use the SOS list as a queue, which
results in a breadth-first search. The ratio strategy combines those two methods:
The user specifies a ratio n, with n given clauses selected by weight for each selected
because it is first in SOS.

3. The Knuth-Bendix option causes Otter or Roo to use its paramodulation and de-
modulation as in the Knuth-Bendix completion method. With that option, the pro-
gram can find refutations as well as terminate with a complete set of reductions. The
user typically uses the lexicographic recursive path ordering (LRPO) and assigns an
ordering on function symbols.

4. The rule for distinguishing variables from constants in clauses is that a symbol is a
variable if and only if it starts with u–z.

2.5 Differences that Surface in the Experiments

The parallelism of Roo can significantly alter search spaces when compared to analogous
Otter runs. Both programs by default select the simplest clause in SOS as the given clause.
However, at the start of parallel Roo searches, many instances of Task A demand given
clauses before there are many to select from. The typical effect is that the first few kept
clauses become given clauses, regardless of their complexities. (After the set of support
has had a chance to grow, Task A can be more selective, and the behavior is similar to
Otter’s.) The typical result of Roo’s eagerness is that it takes a bit longer to find a proof;
but in some cases those early, complex given clauses can lead to quick and short proofs,
which are reflected in speedups that are superlinear, and in other cases, the complex clauses
can lead to prolific but useless paths in the search space. To give a more accurate picture of
the Roo’s performance, we list speedups with respect to the number of clauses generated
per second as well as for the run time.

Aside from the parallelism, there is another important difference between the ways that
Otter and Roo process generated clauses. Otter processes generated clauses in the order
in which they are generated. If a generated clause passes all of the retention tests, including
forward subsumption, it is immediately integrated into the database and becomes available
to subsume the next generated clause. In addition, if it is to become a demodulator, it
does so immediately and is able to rewrite the next generated clause. When Roo’s Task A
generates a clause which passes the retention tests, the clause goes into limbo in the K list,
and is not available to subsume or rewrite the next generated clause. Roo’s Task B removes
clauses from the K list shortest-first and integrates those that pass the second application
of the retention tests. Otter can perform better in some cases, because Roo must reapply
retention tests, and Roo can perform better in other cases, because it integrates simple

6

clauses before complex clauses. This behavior occurs in one-processor Roo searches as well
as in parallel searches.

3 Experiments

The following experiments come from a variety of areas: lattice theory, semigroup theory,
group theory, Boolean algebra, circuit design, calculus, non-classical logic, and robotics.
They include several standard theorem prover test problems from the literature as well as
some more exotic ones.

The tests were conducted on the 26-processor, 32 megabyte Sequent Symmetry in the
Advanced Computing Research Facility at Argonne National laboratory. We give results
for Otter as well as for Roo, (1) so that speedups can be measured against the best
known sequential algorithm, as they should be, (2) to show that the parallel algorithm with
one process is in general comparable to that of Otter, and (3) to illustrate the occasional
differences between Otter and Roo with one process.

We give statistics not only for elapsed time (in seconds) but also for the number of
clauses generated, because it is a rough measure of how much work was done during the
run. We aim for regular and predictable speedups in the amount of work done per unit of
time, even when the rearrangement of the search space caused by nondeterminism causes
sudden changes in the time Roo takes to discover a proof.

3.1 SAM’s Lemma

SAM’s Lemma, a problem in lattice theory named after the first theorem prover that proved
it, is a standard problem for evaluating theorem provers. It was one of the first non-trivial
problems done by an automated system. It was first described in [3]. Although its solution
was reported more than twenty years ago, it still remains beyond the reach of most current
systems. The main reason is common to many problems in algebra: there are many paths
to each derived clause, so any system that does not employ subsumption will explore a much
larger search space than is necessary. (Clauses 1–20 below are not a full axiomatization of
modular lattice theory.)

Clauses for SAM’s Lemma

Input Usable Clauses

1 join(1, x, 1).
2 join(x, 1, 1).
3 join(0, x, x).
4 join(x, 0, x).
5 meet(0, x, 0).
6 meet(x, 0, 0).
7 meet(1, x, x).
8 meet(x, 1, x).
9 meet(x, x, x).
10 join(x, x, x).
11 ¬meet(x, y, z) | meet(y, x, z).
12 ¬join(x, y, z) | join(y, x, z).

7

13 ¬meet(x, y, z) | join(x, z, x).
14 ¬join(x, y, z) | meet(x, z, x).
15 ¬meet(x, y, xy) | ¬meet(y, z, yz) | ¬meet(x, yz, xyz) | meet(xy, z, xyz).
16 ¬meet(x, y, xy) | ¬meet(y, z, yz) | ¬meet(xy, z, xyz) | meet(x, yz, xyz).
17 ¬join(x, y, xy) | ¬join(y, z, yz) | ¬join(x, yz, xyz) | join(xy, z, xyz).
18 ¬join(x, y, xy) | ¬join(y, z, yz) | ¬join(xy, z, xyz) | join(x, yz, xyz).
19 ¬meet(x, z, x) | ¬join(x, y, x1) | ¬meet(y, z, y1) | ¬meet(z, x1, z1) | join(x, y1, z1).
20 ¬meet(x, z, x) | ¬join(x, y, x1) | ¬meet(y, z, y1) | ¬join(x, y1, z1) | meet(z, x1, z1).

Input Set of Support Clauses

21 meet(a, b, c).
22 join(c, r2, 1).
23 meet(c, r2, 0).
24 meet(r2, b, e).
25 join(a, b, c2).
26 join(c2, r1, 1).
27 meet(c2, r1, 0).
28 meet(r2, a, d).
29 join(r1, e, a2).
30 join(r1, d, b2).
31 ¬meet(a2, b2, r1).

Strategy for SAM’s Lemma

The inference rule was hyperresolution, and forward subsumption (but not back subsump-
tion) was applied.

Results for SAM’s Lemma

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 30.70 32.04 7.91 4.37 2.57 2.85 1.98 1.62
Generated 5924 5981 5977 6079 6022 6208 6143 5837
Kept 134 134 131 131 130 130 129 124
Memory (K) 95 159 220 344 468 592 716 840
Gen/sec 192 186 755 1391 2343 2178 3102 3603

Speedups:
Proof 1.0 1.0 3.9 7.0 11.9 10.8 15.5 19.0
Gen/sec 1.0 1.0 3.9 7.2 12.2 11.3 16.2 18.8

Notes on SAM’s Lemma

The performance of Roo is excellent with up to 12 processes, because of the simple and
uniform nature of the clauses. Speedups with more than 12 processes are less than linear
because the problem is so short.

3.2 Imp-4

This problem in the implicational propositional calculus was first brought to our attention
in [14]. Clause 2 below is a single axiom (due to Lukasiewicz) for the calculus, clause 3

8

denies the law of hypothetical syllogism, and clause 1 is the representation of condensed
detachment. Any refutation of these three clauses shows that law of hypothetical syllogism
can be derived by condensed detachment from the single axiom.

Clauses for Imp-4

Input Usable Clauses

1 ¬P (x) | ¬P (i(x, y)) | P (y).

Input Set of Support Clauses

2 P (i(i(i(x, y), z), i(i(z, x), i(u, x)))).
3 ¬P (i(i(a, b), i(i(b, c), i(a, c)))).

Strategy for Imp-4

The inference rule was hyperresolution, and forward subsumption (but not back subsump-
tion) was applied. In addition, to conserve memory, generated clauses with more than 20
symbols were discarded.

Results for Imp-4

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24
Run time 29098.32 29984.67 7180.29 3440.89 2462.52 1844.03 1492.35 1269.28
Generated 6706380 6668046 6413924 6208570 6649996 6662397 6826296 7108289
Kept 20410 20342 20309 20242 20438 18281 19534 18759
Memory (K) 7185 7791 8653 9737 13119 14235 17109 19498
Gen/sec 230 222 893 1804 2700 3612 4574 5600
Speedups:
Proof 1.0 1.0 4.1 8.5 11.8 15.8 19.5 22.9
Gen/sec 1.0 1.0 3.9 7.8 11.7 15.7 19.9 24.3

Notes on Imp-4

Roo obtains nearly linear speedups on Imp-4. Note that with 24 processes, more clauses
are generated, but fewer are kept than in most other cases.

3.3 F3B2

It is possible for a free semigroup to be known to be finite yet for its size to remain unknown.
The semigroup can be represented in terms of generators and an operation, in which the
semigroup itself is the closure of the set of generators under that operation. Otter’s (and
therefore Roo’s) basic algorithm can thus be used to compute the size of the semigroup.
It is only necessary to describe the semigroup operation in terms of hyperresolution. this
process is described in detail in [9] for the case of the semigroup F2B2. The semigroup
F3B2 is larger, and potentially contains 5125 elements. The fact that there are actually only
1435 elements was first discovered by Itp, Otter’s predecessor[6, 5]. Again, this problem
relies heavily on subsumption.

9

Clauses for F3B2

The elements of F3B2 are 125-tuples of elements of the Bradt semigroup B2, whose multi-
plication table is as follows:

0 e f a b

0 0 0 0 0 0
e 0 e 0 a 0
f 0 0 f 0 b
a 0 0 a 0 e
b 0 b 0 f 0

Multiplication in F3B2 is componentwise. The generators of F3B2 can be written as

g1 = 05e5f5a5b5

g2 = (0efab)5

h1 = 05e5f5b5a5

h2 = (0efba)5

To find the size of F3B2, we use clauses (1) that say that these are the generators, (2) that
say that generators are elements of the semigroup, and (3) that say that the product of a
generator and an element is an element, where the product is defined by demodulators. The
complete set of clauses is a straightforward extension of the clauses given in [9] for F2B2.

Strategy for F3B2

The inference rule was hyperresolution, and forward subsumption (but not back subsump-
tion) was applied. No refutation is expected—the run terminates when the SOS list is
exhausted.

Results for F3B2

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20

Run time 1056.74 1062.74 277.06 142.83 98.62 77.80 65.97
Generated 8616 8616 8616 8616 8616 8616 8616
Kept 1435 1435 1435 1435 1435 1435 1435
Memory (K) 6642 6706 8716 11270 14652 18096 23139
Gen/sec 8 8 31 60 87 110 130

Speedups:
Run time 1.0 1.0 3.8 7.4 10.7 13.6 16.0
Gen/sec 1.0 1.0 3.9 7.5 10.9 13.8 16.3

Notes on F3B2

Performance of Roo is very regular, but we have not yet determined why the speedups are
not closer to being linear.

3.4 2-Inverter Problem

Is it possible to construct a 3-input, 3-output binary circuit, consisting of any number of
AND gates and OR gates, but only two NOT gates, in which each output is the inversion

10

of the corresponding input? This is a pleasing circuit design puzzle, described in [21] and
in [15]. The trick is to keep track not of every circuit that can be built, but only of the
output patterns that can be constructed, and the use of the inverters. An interesting result
derived by Otter is that any solution of this problem (of which there are many) must use
the two inverters in the same way; that is, to invert the same signals.

Clauses for 2-Inverter Problem

Input Usable Clauses

1 ¬function(x, v) | ¬function(y, v) | function($BIT AND(x, y), v).
2 ¬function(x, v) | ¬function(y, v) | function($BIT OR(x, y), v).
3 ¬function(x, v) | function($BIT AND(255, $BIT NOT(x)),

addinv(v, invtab($BIT AND(255, $BIT NOT(x))))).
4 ¬function(240, v) | ¬function(204, v) | ¬function(170, v).

Input Set of Support Clauses

5 function(15, v).
6 function(51, v).
7 function(85, v).

Input Demodulators

8 (addinv(l(x, y), z) = l(x, addinv(y, z))).
9 $CONDITIONAL($VAR(x), addinv(x, y), l(y, x)).

Strategy for 2-Inverter Problem

The clauses for this problem use several built-in functions (those that start with $BIT) to
perform bitwise operations. Boolean functions are encoded as integers, and demodulation
evaluates the built-in functions. Demodulators 8 and 9 manage the list of inverted signals.
$CONDITIONAL(α, β, γ) means “if α, then rewrite β to γ”.

The inference rule was hyperresolution, and forward subsumption (but not back sub-
sumption) was applied. Generated clauses representing circuits with more than two inverters
were discarded by weighting.

Results for 2-Inverter Problem

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24
Run time 47235.57 47704.68 12376.65 6219.20 4402.19 3141.14 2586.23 2236.77
Generated 6323644 6324501 6313683 6050605 6340536 6099702 5978269 6351410
Kept 21342 21343 21343 21343 21344 21343 21343 21343
Memory (K) 5588 5875 6033 6256 6762 6959 16184 18736
Gen/sec 133 132 510 972 1440 1941 2311 2839
Speedups:
Proof 1.0 1.0 3.8 7.6 10.7 15.0 18.3 21.1
Gen/sec 1.0 1.0 3.8 7.3 10.8 14.6 17.4 21.3

Notes on 2-Inverter Problem

Performance of Roo is regular, with excellent speedups.

11

3.5 Bledsoe-P1

This is first (easiest) of a sequence of five challenge problems from W. Bledsoe[1]. All of the
five problems are variants of the theorem that the sum of continuous functions is continuous.

Clauses for Bledsoe-P1

Input Usable Clauses

1 ¬LE(0, xE) | LE(0,D1(xE)).
2 ¬LE(0, xE) | LE(0,D2(xE)).
3 ¬LE(0, xE) | ¬LE(abs(+(x,¬(A))),D1(xE)) | LE(abs(+(F (x),¬(F (A)))), xE).
4 ¬LE(0, xE) | ¬LE(abs(+(x,¬(A))),D2(xE)) | LE(abs(+(G(x),¬(G(A)))), xE).
5 LE(0, E0).
6 ¬LE(0, xD) | LE(abs(+(XS(xD),¬(A))), xD).
7 ¬LE(z,MIN(x, y)) | LE(z, x).
8 ¬LE(z,MIN(x, y)) | LE(z, y).
9 ¬LE(0, x) | ¬LE(0, y) | LE(0,MIN(x, y)).
10 ¬LE(x,HALF(z)) | ¬LE(y,HALF(z)) | LE(+(x, y), z).
11 ¬LE(0, x) | LE(0,HALF(x)).

Input Set of Support Clauses

12 ¬LE(0, xD) |
¬LE(+(abs(+(F (XS(xD)),¬(F (A)))), abs(+(G(XS(xD)),¬(G(A))))), E0).

Strategy for Bledsoe-P1

The inference rule was binary resolution with factoring. (Factoring is not required). Forward
subsumption (but not back subsumption) was applied. Generated clauses with more than
40 symbols were discarded, and generated clauses in which any of the function symbols
HALF, abs, MIN, +, D1, or D2 was nested with itself were discarded.

Results for Bledsoe-P1

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 49.63 66.67 18.04 11.37 11.41 11.19 11.89 12.37
Generated 2594 2338 3056 3235 3136 3156 3143 3122
Kept 756 704 652 523 523 524 524 522
Memory (K) 510 574 1372 1880 1940 2000 2028 2216
Gen/sec 52 35 169 284 274 282 264 252

Speedups from Otter:
Proof 1.0 0.7 2.8 4.4 4.3 4.4 4.2 4.0
Gen/sec 1.0 0.7 3.3 5.5 5.3 5.4 5.1 4.9

Speedups from Roo-1:
Proof 1.3 1.0 3.7 5.9 5.8 6.0 5.6 5.4
Gen/sec 1.5 1.0 4.8 8.1 7.9 8.1 7.6 7.2

12

Notes on Bledsoe-P1

The difference in performance between Otter and Roo-1 results from extra forward sub-
sumption tests done by Roo-1. Generated clauses were typically nonunit, and subsumption
with nonunit clauses is very expensive. Statistics in the output files showed that Task B
was a bottleneck, requiring more than 10 seconds in each of the Roo runs, which is reflected
the poor speedups.

3.6 CD-12

Problem CD-12 is from the two-valued sentential calculus. Clauses 2–4 below are Lukasiewicz’s
axiomatization of the calculus, clause 5 denies a form of the law of syllogism, and clause 1
encodes condensed detachment. The symbols i and n can be interpreted as implication and
negation, respectively.

Clauses for CD-12

Input Usable Clauses

1 ¬P (i(x, y)) | ¬P (x) | P (y).

Input Set of Support Clauses

2 P (i(i(x, y), i(i(y, z), i(x, z)))).
3 P (i(i(n(x), x), x)).
4 P (i(x, i(n(x), y))).
5 ¬P (i(i(b, c), i(i(a, b), i(a, c)))).

Strategy for CD-12

The inference rule was hyperresolution, and both forward and back subsumption were ap-
plied. Generated clauses with more than 20 symbols were discarded.

Results for CD-12

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 373.96 398.19 108.89 54.30 27.13 24.82 8.42 8.15
Generated 78301 78303 79323 84353 67595 80796 31972 30692
Kept 7220 7122 7451 5183 2951 2480 803 612
Memory (K) 3576 3768 5459 7309 6668 8998 6188 6312
Gen/sec 209 196 728 1553 2491 3255 3797 3765

Speedups:
Proof 1.0 0.9 3.4 6.9 13.8 15.1 44.4 45.9
Gen/sec 1.0 0.9 3.5 7.4 11.9 15.6 18.2 18.0

Notes on CD-12

Performance of Roo appears to be regular with up to 16 processes. Roo-20 and Roo-24
apparently found shortcuts in the search spaces. (See Sections 2.5 and 4).

13

3.7 CD-13

Problem CD-13 is similar to CD-12, except that the goal is to prove Peirce’s law (denied in
clause 5 below) rather than the syllogism law.

Clauses for CD-13

Input Usable Clauses

1 ¬P (i(x, y)) | ¬P (x) | P (y).

Input Set of Support Clauses

2 P (i(i(x, y), i(i(y, z), i(x, z)))).
3 P (i(i(n(x), x), x)).
4 P (i(x, i(n(x), y))).
5 ¬P (i(i(i(a, b), a), a)).

Strategy for CD-13

The inference rule was hyperresolution, and both forward and subsumption were applied.
Generated clauses with more than 20 symbols were discarded.

Results for CD-13

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 373.07 416.12 104.20 58.68 34.21 9.38 7.62 18.78
Generated 78624 78773 80606 88026 83701 29850 29385 90541
Kept 7324 7292 7149 5270 3546 1016 739 1533
Memory (K) 3608 3800 5171 8138 8649 5615 5836 12220
Gen/sec 210 189 773 1500 2446 3182 3856 4821

Speedups:
Proof 1.0 0.9 3.6 6.4 10.9 39.8 49.0 19.9
Gen/sec 1.0 0.9 3.7 7.1 11.7 15.2 18.4 23.0

Notes on CD-13

Performance of Roo appears to be regular with up to 12 processes, but Roo-16 and Roo-20
apparently found shortcuts in the search spaces, and Roo-24 had to explore more of the
space. (See Sections 2.5 and 4).

3.8 CD-90

Problem CD-90, which is in the left group calculus[4], is to show a dependence in one of
J. Kalman’s original axiomatizations of the calculus[12]. The symbols P and e can be
interpreted as “is the identity” and left division in groups.

Clauses for CD-90

Input Usable Clauses

1 ¬P (e(x, y)) | ¬P (x) | P (y).

14

Input Set of Support Clauses

2 P (e(e(e(e(e(x, y), e(x, z)), e(y, z)), u), u)).
3 P (e(e(e(e(e(e(x, y), e(x, z)), u), e(e(y, z), u)), v), v)).
4 ¬P (e(e(e(e(a, b), c), d), e(e(e(a, p), c), e(e(b, p), d)))).

Strategy for CD-90

The inference rule was hyperresolution, and both forward and subsumption were applied.
Generated clauses with more than 20 symbols were discarded.

Results for CD-90

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20

Run time 825.46 867.62 221.31 120.80 156.27 146.37 160.18
Generated 149798 149806 151714 153693 261292 380548 542331
Kept 5909 5909 5951 5981 6047 6091 6100
Memory (K) 3097 3257 3766 6191 10309 14396 16821
Gen/sec 181 172 685 1272 1672 2599 3385

Speedups:
Proof 1.0 1.0 3.7 6.8 5.3 5.6 5.2
Gen/sec 1.0 1.0 3.8 7.0 9.2 14.4 18.7

Notes on CD-90

Performance of Roo appears to be regular with up to 8 processes, but with more processes,
Roo’s eagerness appears to have led it down fruitless paths.

3.9 Apabhp

This is the “blind hand problem”, a standard problem from the area of robotics. It is
included in many theorem prover test suites.

Clauses for Apabhp

Input Set of Support Clauses

1 ¬a(m(x), z, d(g(z), y)) | a(m(x), z, y) | i(m(x), y).
2 ¬a(m(x), z, y) | ¬a(h, z, y) | i(m(k(y)), d(p, y)).
3 ¬a(h, z, y) | a(m(x), z, y) | ¬i(m(x), y).
4 ¬a(m(x), z, y) | a(h, z, y) | ¬i(m(x), y).
5 ¬a(x, t, y) | c(y) | ¬r(x).
6 ¬a(m(x), z, y) | a(m(x), z, d(g(z), y)).
7 ¬i(m(x), y) | i(m(x), d(g(z), y)).
8 ¬a(h, z, y) | a(m(k(y)), z, y).
9 ¬a(x, z, y) | a(x, z, d(p, y)).
10 ¬a(x, z, y) | a(x, z, d(l, y)).
11 ¬a(x, z, d(l, y)) | a(x, z, y).
12 ¬a(x, e, n) | r(x).
13 ¬c(y).

15

14 ¬a(x, e, y) | ¬a(x, t, y).
15 ¬i(m(x), d(l, y)).
16 ¬r(h).
17 a(h, z, d(g(z), y)).
18 a(m(s), e, n).

Strategy for Apabhp

The inference rule was hyperresolution, and both forward and subsumption were applied.
Given clauses were selected with ratio 3 (Section 2.4).

Results for Apabhp

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 55.55 46.94 13.10 5.48 5.22 5.72 5.00 5.37
Generated 3103 2312 2485 2639 2583 2554 2564 2565
Kept 1621 1285 1403 583 495 493 494 494
Memory (K) 894 798 2329 2584 2580 2576 2732 2856
Gen/sec 55 49 189 481 494 446 512 477

Speedups:
Proof 1.0 1.2 4.2 10.1 10.6 9.7 11.1 10.3
Gen/sec 1.0 0.9 3.4 8.8 9.0 8.1 9.3 8.7

Notes on Apabhp

The reason Roo-1 performs better than Otter is that generated clauses from a given clause
are integrated smallest-first in Roo, and in this problem, given clauses generate many
clauses that properly subsume one another. The integration of smaller (more general)
clauses first prevents the integration of larger clauses they subsume.

Speedups are limited by Task B, which requires at least 4.2 seconds in each of the runs.

3.10 Robbins

A proof for this problem shows that if the hypothesis ∃x, x + x = x is added to a Robbins
algebra, then the resulting algebra is Boolean[20]. Clauses 2–4 axiomatize Robbins algebra,
clause 5 asserts the hypotheses, and clause 6 denies Huntington’s axiom. (Huntington’s
axiom together with clauses 2 and 3 axiomatize Boolean algebra.)

Clauses for Robbins

Input Usable Clauses

1 (x = x).
2 (+(x, y) = +(y, x)).
3 (+(+(x, y), z) = +(x, +(y, z))).

Input Set of Support Clauses

4 (n(+(n(+(x, y)), n(+(x, n(y))))) = x).
5 (+(C,C) = C).
6 (+(n(+(A,n(B))), n(+(n(A), n(B)))) 6= B).

16

Strategy for Robbins

The Knuth-Bendix option was used, with LRPO (+ > n > C > B > A, and + with LR
status). Generated and simplified clauses with more than 20 symbols were discarded. Two
sets of experiments were run: (1) selecting given clauses by symbol count, and (2) selecting
given clauses with ratio 3 (Section 2.4).

Results for Robbins (without Ratio)

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 349.17 320.41 72.94 10.60 9.93 11.23 10.89 14.82
Generated 8272 8874 11430 2961 4725 7567 10271 17366
Kept 456 401 451 257 263 274 236 385
Memory (K) 638 734 1116 1016 1396 1776 2284 2952
Gen/sec 23 27 156 279 475 673 943 1171

Speedups:
Proof 1.0 1.1 4.8 32.9 35.2 31.1 32.1 23.6
Gen/sec 1.0 1.2 6.8 12.1 20.7 29.3 41.0 50.9

Results for Robbins (with Ratio 3)

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 104.57 156.73 28.77 23.88 26.20 19.53 21.69 15.73
Generated 3543 4867 4302 7354 13717 13665 18793 17698
Kept 315 351 301 390 428 425 436 363
Memory (K) 479 670 892 1336 1972 2192 2508 2664
Gen/sec 33 31 149 307 523 699 866 1125

Speedups:
Proof 1.0 0.7 3.6 4.4 4.0 5.4 4.8 6.6
Gen/sec 1.0 0.9 4.5 9.3 15.9 21.2 26.3 34.1

Notes on Robbins

Note that the poor speedups in the ratio 3 experiments when compared to the experiments
without ratio are due mostly to the improvement in Otter performance.

3.11 Z22

This is a problem in combinatorial group theory first brought to our attention by J. Kalman.
It is one of a family of problems to determine the structure of certain groups, called Fibonacci
groups, defined by a symmetric set of relations. Some of these problems are still open. It
illustrates the performance of Roo on a Knuth-Bendix completion problem. The problem
is to show that the group on five generators with the five given relations (clauses 12–16)
is the cyclic group of order 22. We use a notation in which multiplication on the left is
expressed as the application of a function, and a1, b1 . . . represent the inverses of a, b,

Clauses for Z22

Input Usable Clauses

1 (x = x).

17

Input Set of Support Clauses

2 (a(a1(x)) = x).
3 (a1(a(x)) = x).
4 (b(b1(x)) = x).
5 (b1(b(x)) = x).
6 (c(c1(x)) = x).
7 (c1(c(x)) = x).
8 (d(d1(x)) = x).
9 (d1(d(x)) = x).
10 (h(h1(x)) = x).
11 (h1(h(x)) = x).
12 (a(b(c(x))) = d(x)).
13 (b(c(d(x))) = h(x)).
14 (c(d(h(x))) = a(x)).
15 (d(h(a(x))) = b(x)).
16 (h(a(b(x))) = c(x)).

Strategy for Z22

The Knuth-Bendix option was used, with LRPO (a > a1 > b > b1 > c > c1 > d > d1 >

h > h1). A refutation was not expected; rather we derive a set of equations in which each
generator is expressed in terms of h1 and h122(x) = x.

Results for Z22

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 398.38 274.19 144.29 418.55 328.30 491.96 400.89 543.02
Generated 2260 2438 2224 4491 3064 5273 4917 6405
Kept 2742 2058 573 501 293 339 310 378
Memory (K) 4885 4502 3767 7502 5522 8587 7305 9892
Gen/sec 5 8 15 10 9 10 12 11

Speedups:
Proof 1.0 1.5 2.8 1.0 1.2 0.8 1.0 0.7
Gen/sec 1.0 1.6 2.7 1.9 1.6 1.9 2.2 2.1

Notes on Z22

Extracting new demoulators from the K List by symbol count (Section 2.5) caused Roo-1
to perform better than Otter. However, due to extensive back demoduation, Task B was
a serious bottleneck in parallel Roo runs, which resulted in very poor speedups.

3.12 Luka-5

This problem is the equational (Wajsberg algebra) version of a problem in the many-valued
sentential calculus Lℵ0

of Lukasiewicz[19]. Equalities 2–5 axiomatize the logic, and clause
6 denies an equality that was included in the first axiomatizations of the logic.

18

Clauses for Luka-5

Input Usable Clauses

1 (x = x).

Input Set of Support Clauses

2 (i(T, x) = x).
3 (i(i(x, y), i(i(y, z), i(x, z))) = T).
4 (i(i(x, y), y) = i(i(y, x), x)).
5 (i(i(n(x), n(y)), i(y, x)) = T).
6 (i(i(i(a, b), i(b, a)), i(b, a)) 6= T).

Strategy for Luka-5

The Knuth-Bendix option was used, with LRPO (i > n > T). Back subsumption was not
applied.

Results for Luka-5

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 4871.68 3596.68 869.33 480.30 317.32 243.71 210.89 180.10
Generated 538329 533705 531348 578189 578895 592728 642889 624213
Kept 2496 2449 2460 2432 2415 2423 2420 2388
Memory (K) 3065 3161 3479 4149 5713 7595 9923 13879
Gen/sec 110 148 611 1203 1824 2432 3048 3465

Speedups from Otter:
Proof 1.0 1.4 5.6 10.1 15.4 20.0 23.1 27.0
Gen/sec 1.0 1.3 5.6 10.9 16.6 22.1 27.7 31.5

Speedups from Roo-1:
Proof 0.7 1.0 4.1 7.5 11.3 14.8 17.1 20.0
Gen/sec 0.7 1.0 4.1 8.1 12.3 16.4 20.6 23.4

Notes on Luka-5

The similarity in the number of generated and kept clauses in the Luka-5 searches indicates
that the search spaces were similar. The superlinear speedups are thus not explained by
the differences in the search spaces. However, the time difference between Otter and
Roo-1 hint at an explanation. The statistics in the output files show that Otter spent
approximately 1300 more seconds rewriting than Roo-1 did. We have not yet determined
the precise reason for the difference.

3.13 JimC-8

This problem was brought to our attention by J. Christian[2], who used it as a benchmark
for HIPER, his high-performance Knuth-Bendix completion program. The problem is to
find a complete set of reductions for an associative system with 24 left identities and 24
right inverses.

19

Clauses for JimC-8

Input Set of Support Clauses

1 (x = x).
2 (f(f(x, y), z) = f(x, f(y, z))).
3 (f(e1, x) = x).

...
26 (f(e24, x) = x).
27 (f(x, g1(x)) = e1).

...
50 (f(x, g24(x)) = e24).

Strategy for JimC-8

The Knuth-Bendix option was used, with LRPO (g24 > . . . > g1 > f > e24 > . . . > e1,
and f with LR status).

Results for JimC-8

Otter Roo-1 Roo-4 Roo-8 Roo-12 Roo-16 Roo-20 Roo-24

Run time 778.58 797.51 129.32 110.37 127.78 103.14 139.47 131.36
Generated 37495 37499 37339 48541 72881 54840 67275 75927
Kept 15802 15476 5767 2999 3230 2016 2201 1996
Memory (K) 10793 11879 10951 9447 11940 8617 10885 11780
Gen/sec 48 47 288 439 570 531 482 578

Speedups:
Run time 1.0 1.0 6.0 7.1 6.1 7.5 5.6 5.9
Gen/sec 1.0 1.0 6.0 9.2 11.9 11.1 10.0 12.0

Notes on JimC-8

Note the great disparity in the amount of work done (clauses generated) in the various runs.
Memory use, on the other hand, remains constant.

3.14 Problems Not Included

Some well-known test problems such as Wos-10 and Schubert’s Steamroller are not repre-
sented in the list of problems, because they are done by Otter in a few seconds and thus
are simply not difficult enough to warrant the use of Roo.

4 Stability of Experiments

The nondeterminism introduced by parallelism gives rise to the question of how repeatable
the experiments are. It is indeed true that Roo, unlike Otter, does not run the same way
every time, even with the same input file and the same number of processes. In this section
we report on some experiments to measure, at least on a limited sample of examples, the
extent of this phenomenon. We do this by running the very same problem ten times with
the same number of processes, and comparing the results.

20

