
PARALLEL COMPUTING AND DOMAIN DECOMPOSITIONWILLIAM GROPP�Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439Email: gropp@mcs.anl.gov
Abstract. Domain decomposition techniques appear a natural way to make good use of parallel com-puters. In particular, these techniques divide a computation into a local part, which may be done withoutany interprocessor communication, and a part that involves communication between neighboring and distantprocessors.This paper discusses some of the issues in designing and implementing a parallel domain decompositionalgorithm. A framework for evaluating the cost of parallelism is introduced and applied to answeringquestions such as which and how many processors should solve global problems and what impact loadbalancing has on the choice of domain decomposition algorithm. The sources of performance bottlenecks arediscussed. This analysis suggests that domain decomposition techniques will be e�ective on high-performanceparallel processors and on networks of workstations.1. Introduction. Domain decomposition methods have become very popular in re-cent years. Of the many advantageous features claimed for these methods, the ability tobe used on parallel computers is one of the most cited and least examined. In this paper,we discuss some of the issues in developing an e�cient parallel domain decomposition algo-rithm and the reasons that domain decomposition is, in fact, a good approach for parallelcomputers. The paper starts by describing the structure of domain decomposition methodsas it applies to parallel computing. Then, the realities of parallel computing are discussed,and a mathematical model for the additional terms in a time-complexity analysis of a par-allel algorithm is described. A key feature of this model is its two-level memory structure.This two-level structure is shown to re
ect the structure of many domain decompositionalgorithms. Finally, the overheads and bottlenecks in these algorithms are discussed. Forthe reader who wishes the punchline in advance, there are two major points to this paper.� This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



Fig. 1. Sample communication structure of domain decomposition algorithmsFirst, domain decomposition algorithms with their two- (or three-) level structure e�cientlymatch the two- (or three-) level structure of actual high-performance parallel computers.Second, the costs of interprocessor communication and load balancing are important andcan e�ectively guide the design and implementation of domain decomposition algorithms.For a more detailed examination of the time complexities of domain decompositionalgorithms, see [6, 15]. For a sampling of results about parallel domain decompositionmethods, see [1, 3, 7, 8, 9, 10, 11, 14, 16].2. Structure of Parallel Domain Decomposition Methods. Domain decomposi-tion methods seem ideally suited for parallel computers. In their simplest form, each domainmay be solved on a separate processor, yielding an apparently perfectly parallel algorithm.For a number of reasons, this is an illusion. Most important, any domain decompositionalgorithm involves some communication or coordination between the computations on eachdomain; a typical case is shown in Figure 1.The most important fact to notice in Figure 1 is that there are three levels: the domainsthemselves (shaded in gray), communication with neighboring domains (double headed ar-rows), and global communication (the wire frame connecting all of the domains). Theselevels correspond to the operations in a domain decomposition algorithm, which usually in-volves three kinds of computation. These computations are an interior solve, an evaluationof the matrix-vector product, and the computation of a small number of quantities over thewhole domain (e.g., dot products, cross-point solutions). The e�ciency of a domain decom-position method depends on how well these levels can be mapped onto a parallel computer.As we shall show, from the point of view of parallelism, it is the global communicationpart that has the largest impact on the available parallelism. Determining the best way tohandle this part is the focus of this paper. No choice of method will eliminate some loss ofparallel e�ciency at this step.These observations on communication requirements apply to both implicit and explicitalgorithms, and to \asymptotic" domain decomposition (where the domains are chosenbased on the local properties of the equations). For problems without a global part (the\wire frame" in Figure 1), load balancing is the biggest concern.



3. Realities of Parallel Computing. In a perfect world, parallel computers wouldbe as easy to use as uniprocessor computers. Unfortunately, parallel computers representa series of design compromises. Of course, any parallelism in the processor is an admissionthat a single processor could not be made that met desired performance or cost require-ments. There are two principal places where parallelism is introduced in order to improveperformance: processors and memory. The kind of connection between the processors andthe memory is the primary basis for distinguishing among types of parallel processor. Com-mon forms of processor-to-memory connection are shown in Figures 2 and 3. These twoforms are distinguished by how much of the total memory each processor can access. In ashared-memory parallel computer, all of the memory is accessible to every processor. Com-munication between processors is carried out by writing and reading shared memory. In adistributed-memory parallel computer, only the memory attached to a processor is accessibleby that processor. Communication between processors is carried out by sending messagesfrom one processor to another. In both kinds of parallel computer, it takes more time toaccess a memory location that is \far away." The penalty for accessing faraway memorycan be large; actual values range from a factor of 3 (on a network-based shared-memorymachine) to several orders of magnitude (on a distributed-memory machine). Thus, it is im-portant to manage the use of memory in order to achieve good e�ciency. The best approachis to understand the sources and relative sizes of the costs; this can be done in a relativelysimple way by modeling the cost of communicating information between processors.A number of metrics for measuring the performance of a parallel algorithm have beenproposed. The simplist are e�ciency, de�ned as Ep = T1=(pTp), and speedup, de�ned asSp = T1=Tp. Here, T1 is the time to execute an algorithm on a single processor, and Tp is thetime to execute the same algorithm on p processors. At the very least, we wish @Sp=@p > 0(otherwise, adding processors slows down the computation). A perfectly parallel algorithmhas E = 1. It is important to note that since T1 and Tp refer to the same algorithm,neither speedup nor e�ciency is a reliable indicator of quality. For example, by pickinga poor, computation-intensive algorithm, the e�ciency can be made very close to one.Perhaps the best measure of e�ciency would have T1 refer to the best algorithm on a singleprocessor. Unfortunately, it is di�cult to get any agreement on what the best algorithmfor any problem is.3.1. The Important Parameters. In analyzing the time complexity of a parallelprogram, there are two new major costs. One is communication, and the other is loadbalancing. For most distributed-memory computers, communication costs may be modeledas s+ rn;where s is the start-up time, r is the time to transfer a single word, and n is the number ofwords. For a bus-oriented shared-memory computer, the cost is roughlyrnmin(k; p);where k is the maximum number of simultaneous requests on the bus [13].It is convenient to express the times s and r relative to the cost to do a single 
oating-point operation (f), and we will do so throughout this paper. For many (but not all)distributed-memory parallel computers,s� r > f:
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Fig. 2. Shared memory. A bus-based machine is shown in (a) and a network-based machine is shownin (b).
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Note that this gives a very clear two-level structure to memory. Local memory may beaccessed quickly (typically with time approximately f). Global memory, that is, memoryon another processor, can be accessed only at much greater cost (s� f).3.2. Load Imbalances. In any parallel computation where the parallel processorsmust coordinate their work, it is di�cult to keep all processors busy all of the time. Often,some processors have to wait for others to �nish their work before they can proceed withtheir next task. For example, consider the case where p � 1 processors have work W1 andthe last has work W2 > W1. The best possible speedup is thenSp = (p� 1)W1 +W2W2= 1 + (p� 1)W1W2 :Because the smallest practical unit of work is not a single arithmetic operation, but a\module" or \subroutine," it becomes increasingly di�cult to keep the range of work smallas the scale of parallelism increases.4. Unavoidable Overhead. It is natural to ask whether an e�cient, perfectly parallelalgorithm for solving partial di�erential equations (PDEs) numerically exist. Unfortunately,there is no such algorithm. Worley [17] has shown that perfectly parallel algorithms forPDEs do not exist and that, for a given accuracy, there is a lower bound on the time it willtake to achieve this accuracy. It is important to note that this is not a bound on speedup:by adding more purely local work, speedup can be made arbitrarily close to 1.In practice, this overhead shows up as local communication, global communication, andcoordination. Each of these may be traded o� against the others, though with potentiallygreat cost. For example, by using only local communication such as in a relaxation algo-rithm, the cost per iteration may be kept independent of the number of processors, but thealgorithm will require more iterations to compute the solution. Asynchronous algorithmsdo away with the coordination cost, but again at a penalty in iteration count. Thus the truegoal in the design of a parallel algorithm for solving a PDE is to achieve the most e�cientcombination of these overheads, where e�ciency is in terms of minimum elapsed time. Do-main decomposition algorithms are good candidates for e�cient parallel algorithms becausetheir structure matches that of parallel computers.4.1. The cross-point problem. The global cross-point problem is source of boththe algorithmic e�ciency of many domain decomposition algorithms and the parallel ine�-ciency. In this section, the behavior of various approaches to solving the global cross-pointproblem is analyzed.4.2. Duplicate work. One sometimes surprising feature of parallel algorithms is thefact that it is sometimes more e�cient for many processors to compute the same result(a redundant computation) than to have one processor compute and distribute that sameresult. It turns out that the solution of the cross-point system in domain decompositionalgorithms can be such a case. In fact, many of the issues in analyzing a parallel algorithmare illustrated by �nding an answer to the question, \How should the cross-point grid systembe solved?"There are, of course, an great many ways to solve the cross-point system. Some obviouspossibilities are1. in parallel,
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Fig. 4. On all processors. A parallel solve looks like this, except the solve and exchange steps areintermixed.2. on one processor,3. on all processors separately, and4. on a subset of processors.Naturally, the answer to the question will depend not only on the details of the parallelcomputer but also on the particular choice of numerical algorithm. To cover the mostground, we shall consider several di�erent numerical algorithms for solving the linear system.Also, for concreteness we shall consider an n � n grid of cross-points and a distributed-memory parallel computer with p processors. Note that since the cross-point system willprobably be small relative to the size of the parallel processor (probably n2 = p), resultsthat are for n=p! 1 may be misleading.4.3. All or one. Let us �rst look at the question of solving the cross-point system onall the processors in parallel, or solving the problem in serial on one (or more) processors.The critical point here is that there is a tension between communication and computation.We can look at the minimum costs to communicate the data �rst, and then compare withthe computational costs.If each processor solves the cross-point system, the only communication is the collectionof the right-hand-sides. This is illustrated in Figure 4. The communication takes timeTexch = (s+ n2r) log p:If we use banded Gaussian elimination on the each processor to solve the system of equations,the total cost is Tserial � n3 + (s+ n2r) log p:Now, consider using parallel banded Gaussian elimination. The cost for this isTparallel > n3=p+ 2(p� 1) s+ n2p r! ;where important load-imbalance e�ects have been ignored. (See [4, 12] and references therefor a detailed discussion of the time complexity of parallel banded Gaussian elimlination.The time here is for only the solve and does not include the cost of factorization.)



Fig. 5. Comparison of serial and parallel banded Gaussian elimination. The solid line is the time forthe parallel algorithm; the dashed line is the time for the uni-processor algorithm on each processor.For the parallel solve to be faster, we needn3=p+ 2(p� 1) s+ n2p r! < n3 + (s+ n2r) log p:The high communication cost of the parallel solver will often overwhelm the reduced com-putation. For example, consider the case of one cross-point on each processor: n2 = p.Then we would need n+ 2(n2 � 1)(s+ r) < n3 + (s+ n2r)2 logn:For parallel computers with large s, this is very roughly2n2s < n3 + 2(s+ n2r) logn:This inequality will not be satis�ed if both n2s > n3 and n2s > 2(s+ n2r) logn. The �rstis just s > n = pp, which is true for most distributed-memory computers. The second isroughly s > r log p, which is again true for most distributed-memory computers. Thus, forthis relatively small system of equations, it is slower to use many processors than to useone processor.If a method other than banded Gaussian elimination is used, then the analysis must berepeated. Note, however, that a su�cient condition for the solve on a single processor tobe more e�cient is for Tserial < Tparallel communication :For example, if multigrid (V cycle) is used instead of banded Gaussian elimination, eachhalf-cycle requires log(n) communication steps, with the ith step sending data a distanceof 2i (see [2] for a discussion of the time complexity of parallel multigrid). If there are Icycles, the time will be roughlyTparallel communication = I(lognXi=0 (s+ 2ir)) = I(s logn + nr);



and the serial time will be Tserial = In2 + (s+ n2r) logn:Comparing these, we see that for the parallel version to be faster, we needI(s logn+ nr) < In2 + (s+ n2r) logn:For p = n2, this reduces toI(s logn+ nr) < In2 + (s+ n2r) logn;or roughly Is logn < In2or s < n2logn = 2plog p:While this is a less severe constraint than Equation 4.3, it is still a stringent requirement,and one that most distributed memory parallel computers do not meet.Thus it can be cheaper to do duplicate work. (An intermediate choice is suggested byFigure 5|use clusters of p0 < p processors.) The problem here is the communication time;a method requiring less computation may not require less communication, thus reducing themethod's parallel e�ciency. Another way to look at the situation is that there is not enoughdata per communication. A similar computation can be carried out to decide whether tofactor the problem, when using Gaussian elimination, on all or some of the processors.4.4. Overlapped Work. Once we have decided that it is better to solve each cross-point problem on a single processor, we must ask whether it is better to solve on a singleprocessor and distribute the results to the other processors, or solve the identical problemon all of the processors. Intuitively, we might expect to be able to accomplish some other\useful" work on the other processors if we solve the cross-point problem on a single pro-cessor. This is illustrated in Figure 6. However, this requires us to distribute the solutionthat is computed on the single processor, and we shall see that this can be a signi�cant cost.The cost has two components: balancing the work and sharing the results of the cross-pointgrid solution.An example of a method that allows the overlap of the solution of the cross-pointproblem and other work are the additive methods, such as the additive Schwarz method [5].These methods allow all of the subproblems to be solved in parallel, seemingly avoiding anycoordination overhead. However, di�erent phases of this computation have di�ering loads:� Solves|one processor has the cross-point system in addition to local solves.� Matrix multiply, dot products, updates|work is proportional to the number ofmesh points.While the di�ering loads presented by these two phases are an important consideration (seeFigure 7), we shall analyze only the additional communication cost incurred by having onlyone processor solve the cross-point system.
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Fig. 6. On one processor4.5. Distributing the solution. Let the cross-point system be solved with an opti-mal method: Tsolve = cn2:The total cost to solve the cross-point problem on one processor and distribute is (summedover all processors) 2pTcoll + Tsolve:If each processor solves the same cross-point problem, the total time isp(Tcoll + Tsolve):Less total time is consumed in solving the cross-point problem ifTcoll < p� 1p Tsolve:This is true if (s+ rn2) log p < �p� 1p � cn2r < �p� 1p � clog p � sn2< clog p � sn2 :
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Fig. 7. Sample load distribution when one processor solves the cross-point problem. Dark gray indicatescommunication (an exchange of data), light gray idle or wasted time, \coarse" the solution of the cross-pointproblem, and \�ne" operations on the subdomains.Since s=n2 is likely to be small, this depends critically on c. For fast enough solvers, the costof moving the data around can exceed the cost of solving the cross-point system (particularlyif an approximate solution can be used). Thus, there may be no savings in overlapping thework of the cross-point system with other work.It is also important to note that even if the above analysis suggests that it is best tosolve the cross-point system on one processor, Figure 7 shows that there can be an additionalcost. Since the application of the preconditioner contains an operation on the cross-pointsystem but the formation of the matrix-vector product does not, it is impossible staticallyto equally distribute the computational load across all of the processors. The amount ofimbalance depends on details of the algorithm and should be considered in chosing animplementation strategy.5. Domain Decomposition on Networks. Now that we have a description of do-main decomposition as appropriate for computers with two-level memory hierarchies, wecan look at other computer architectures that might be appropriate for domain decompo-sition algorithms. An obvious candidate is a network of workstations. A network of 50workstations can have signi�cant computing power (at 4 mega
ops each, such a networkhas an aggregate power of 200 mega
ops), but, more important, such a network has a verylarge amount of physical memory. For example, with a mere 16 megabytes of memory perworkstation, a 50-workstation network will have 800 megabytes of physical memory. Thus,a modest-sized network of workstations has enough memory and computational power toattack signi�cant problems.This is a good point to raise another issue. Why not use a single workstation and



Fig. 8. Computation rates for a DAXPY operation as a function of vector length on a Sun SPARCSta-tion 1.exploit virtual memory? (Another version of this question is, Why not let parallelizingcompilers �gure out how to organize the algorithm?) The answer is that page thrashingreduces e�ective computation rate. This is illustrated in Figure 8, where the computationrates for a simple calculation on a workstation are shown. Knowledge of this e�ect (ande�ects related to cache memory) is important; it explains so-called superlinear speedup thatis sometimes observed. An example is presented below.The cost of communicating between processors in a network of workstations can be mod-eled just as the distributed-memory parallel computers were above. The only di�erence isthat the parameters s and r will probably be somewhat larger. To see how this commu-nication cost a�ects the performance of domain decomposition algorithms on a network,consider a three-dimensional problem on an n� n�n mesh and the cost of computation ofthe matrix-vector product.If we assume that the subproblems (each domain) �t in physical memory, the time tocompute one iteration or step of the problem is2(s+ rn2) + n3p ;where the domain has been divided into n � n� n=p slabs. The speedup isSp = n32(s+ rn2) + n3p ;so @Sp=@p > 0. Thus, adding processors improves the performance. The one special case isp = 2; here, as long as 2(s+ rn2) < n3p ;the parallel version will be faster.There is a more important e�ect that is related to the discussion of \page thrashing"above. Let the problem be so large that it does not �t in the physical memory of a single



processor. Then the time on a single processor may be modeled asn3�;where � > 1 represents the scaling of processor speed when a problem does not �t inmemory (� is about 20 for the computation in Figure 8). Let the parallel version of thealgorithm use enough processors so that the problem �ts within the physical memory of theensemble of processors. Then, for n = 100 (16-Mbyte workstation), the speedup isSp = n3�2(s+ rn2) + n3p= �p2p(s+ r104)=106+ 1= �p2� 10�6(s + r104) + 1:Even for large s and r, this is nearly �p, \superlinear" speedup.This is one of a few situations where small degrees of parallelism are interesting|�tting a problem into memory that would not �t before. Otherwise it is better to use asingle processor and wait a little longer.6. DD and Block Methods. Block methods are methods that divide a problem intoblocks and process one block at a time. Such approaches are important in getting themaximum performance out of many vector and matrix operations, including the solutionof dense systems of linear equations. These methods do not reduce the actual number of
oating-point operations that are used (in some cases, there are actually more operationsperformed). Instead, they reduce the number of times a data item is read from memory.Block methods are usually organized with a single level of blocks; the block sizes are chosento match the fast memory of the target computer (cache or vector registers).Thus, block methods can be considered a form of domain decomposition that has nospecial treatment of interfaces or global problems. Further, some of the programmingtools and methods that have been developed for block methods may be applicable to moregeneral domain decomposition methods. In particular, domain decomposition methods cantake advantage of very e�cient block method routines to perform local operations suchas matrix-vector product and solution of \interior" problems. Other programming tools(such as array sections) can be used to simplify the expression of domain decompositionalgorithms.7. Conclusions. In this paper we have looked at parallel computing applied to domaindecomposition algorithms. The keys points to remember are that� domain decomposition re
ects computer hardware (memory hierarchy);� since perfect parallelism is impossible, speedup can be a misleading measure ofe�ectiveness; and� time (and space!) complexities may be easily estimated.As an example of these points, an analysis of the cost of a global cross-point solver suggeststhat even where the cross-point problem could be computed in parallel with other work, itmay be less e�cient to do so.The analysis here also suggests a number of future research areas. Focusing on minimiz-ing computer memory use suggests that single-precision preconditioners may be valuable.Some new RISC processors already have single precision performance that is as much as
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