An Algorithm for Finding Optimal Integration
Lattices of Composite Order*

J. N. Lyness T. Sgrevik!
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Abstract

In this paper we describe a search algorithm that can be used to deter-
mine good lattices of order N when N = NjpNp has two nontrivial integer
factors. This algorithm is based on relationships between an integer lattice
Ap of order Ni and its various sublattices all of order V. Using this we have
determined all the four dimensional good lattices of order 599 or less. Our
list has 23 entries.

Subject Classification AMS(MOS); 65D30, 65D32
Keywords Multidimensional Quadrature, Lattice Rules, Good Lattices, Num-
ber Theoretic rules, Figure of merit, Hypercube, Periodic Functions.

1 Introduction

1.1 Background

A lattice rule is an s-dimensional quadrature rule for integration over an s-dimensional
hypercube. The lattice rule is particularly useful for those smooth periodic inte-
grands f(x) whose period coincides with the dimensions of the hypercube and which
have a high degree of continuity. Considerable effort has been applied to the task
of constructing cost effective lattice rules. Some of the methods employed involve
large scale computer searches. In this paper we shall describe a special technique
which under some circumstances can shorten this task. This is based on carrying
out the search in a manner in which the sublattice structure of the lattices can be

*This work was supported by the Applied Mathematical Sciences subprogram of the Office
of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, and by the
Norwegian Council for Humanities and Science.

TPresent address: Dept. of Informatics, University of Bergen, 5020 Bergen, Norway

exploited. In this introduction, we shall provide a very brief theoretical background
to lattices, together with some of the properties deemed desirable in a cost-effective
lattice rule. We also describe in simple terms the general nature of our standard
search algorithm [LySg91]. This enables us, in Section 2 to highlight the underly-
ing idea of the new algorithm in a simplified setting, and to provide an elementary
cost analysis. In Section 3 we show that the symmetry of the figure of merit (see
(2) below) can be exploited in the new algorithm in the same way as in the previ-
ous one. Section 4 written for the practitioner, deals with some of the less elegant
aspects of using these algorithms. It will appear that both algorithms are useful
in complementary contexts. In Section 5, we provide a table of four dimensional
lattices found mainly using these techniques. All but three of these 23 lattices are
new, and are improvements on presently known lattices of the corresponding order.
Without loss in generality, we shall follow convention and treat integration over the
unit hypercube [0, 1)®.

An s-dimensional lattice is an array of points in R®. It is conveniently described
by its generator matriz A. This is a nonsingular s x s matrix, and the elements of
the lattice are integer linear combinations of the rows of A. The generator matrix
of a given lattice is not unique. In fact, premultiplication of A by any unimodular
matrix leaves the lattice unchanged.

A particular lattice, known as the unit lattice Ag, comprises all points all of whose
components are integers. An integration lattice is one which contains the unit lattice
as a subset. The abscissa set of a lattice rule, (), includes all points of an integration
lattice (denoted here by Ag) which lie in [0,1)°. The number of these points is

N =| detA | (1)

which is an integer. The rule applies the same weight 1/N to each of these abscissae.

The product trapezoidal rule is itself a lattice rule. A lattice rule of order N
uses a subset of the N? points which would be required by the product N-panel
trapezoidal rule. Other well known lattice rules include the number theoretic rules
(Good Lattice Points) introduced by Korobov [Kor59]. There is a large literature
devoted to these rules. Niederreiter [Nie78] provides an excellent summary of the
present state of the theory. The theory of lattice rules is a development of the theory
of number theoretic rules [Slo85] [Nie88] and many of the definitions and properties
are analogous. It appears that the discretisation error made by a lattice rule is
closely related to a lattice A, the reciprocal lattice of Ag whose generator matrix is
B = (AT)"L

It is important not to confuse the integration lattice Ag whose elements are
abscissae of the lattice rule with its reciprocal lattice A. The former, whose generator
matrix has been denoted by A, contains the unit lattice Ag as a sublattice. Its
reciprocal lattice A is a sublattice of the unit lattice Ag having as generator matrix
an integer valued matrix B = (AT)~L.

In point of fact the elements of the reciprocal lattice other than the origin rep-
resent those elements of the multidimensional fourier expansion of f(x) which are

not integrated exactly and so contribute to the fourier expansion of the quadrature
error. This circumstance can be used to justify a standard measure of the accuracy
of a lattice rule. This is the figure of merit or Zaremba rho index, p(A), of the
reciprocal lattice A, [Zar66], defined as

S

PN = i o06) =g, Tlima(1 |) 2)
where r = (rq,rg,...,75). Clearly the value of p(A) depends on the ‘nearest’ element

of A which corresponds to the ‘lowest’ order term in the fourier expantion which is
not integrated exactly. Thus the figure of merit, p(A) is a measure of the accuracy
of the quadrature rule, when applied to a naturally periodic function.

Associated with each lattice A is its order N. This is the inverse point density of
A and is also the number of abscissas employed by the associated quadrature rule.
We denote the set of s-dimensional integer lattices of order N by L,(N). Of interest
are the optimal lattices of order N. These have figures of merit

pIN) = max p(A). (3)

In general, to find these, a computer aided search is required. One of the difficulties
encountered immediately is that, v;(N), the number of lattices in L;(N), is large.
This is a multiplicative number theoretic function defined by

(= 1) p prime @

vs(p') = (p
and satisfying
vs(MN) < vy(M)vs(N), ()

equality occurring if and only if (M, N) =1 (i.e., M and N are mutually prime). It
is shown in [LyS¢89] that there exists x(s) such that

(N°* —1)/(N — 1) < v(N) < k(s)N*"tloglog N VN,s > 1 (6)

and valid values for x(s) include £(3) = 2.93 and x(4) = 3.53. vs(/N) may be very
large. For example, v4(400) = 239,834,166 and r4(401) = 64,642,404, In [LyS¢91]
we have described at length a search for optimal lattices.

This search is based on representing each lattice by a generator matrix in upper
triangular lattice form (utlf). This is essentially the Hermite normal form and is
unique to the lattice.

Definition 1 An s x s integer matriz B is in upper triangular lattice form (utlf) if
and only if

17“21 i:1,2,...78

bij:() 1§]<Z§S
0 <by <by otherwise .

There is a one-to-one correspondence between the vs(V) distinct lattices of L;(N)
and the matrices B in utlf having det(B) = N. We shall refer to a search which
actually treats each of these lattices individually as a naive lattice search. An im-
plementation of such a simple search is described in Section 2.2 of [LySg91]. In fact
virtually all papers of practical import on this topic are devoted to accelerating the
search for an optimum lattice in one way or another. One way to reduce the scope
of the search is to take advantage of the symmetry of the function p(A). Lattices
obtained from one another by permuting the coordinate system have the same figure
of merit. (See also Section 3 below.) A major part of [LySe91] is devoted to showing
how this is exploited in our search program. It also describes a method by which
the program can in some cases recognise a priori that the figure of merit, p(A) of a
lattice just about to be treated is less than a currently available lower bound pr(N)
and hence can be disregarded. In the present paper, we shall show that when NV can
be factorised, further economies may be available.

1.2 Sublattices

In Section 2 we shall outline an algorithm for determining p(V) based on the factori-
sation of N. When N can be factorised, N = Ny Ng, this method can significantly
outperform our standard program described in [LySe91]. When N is prime, this
method reduces to a somewhat inefficent version of the standard program.

The method is based on the relationship between generator matrices of A and
its various superlattices. This is treated in detail in [LySeKe91]. Only the part of
the theory required for this algorithm is given here.

In what follows B (or R) is a generator matrix of the lattice Ag (or Ag) of order
Np (or Npg); unless otherwise stated, we are interested in evaluating p(N) with
N = Ng = Ny Np and, in general, when Apg is a sublattice of Ap.

Theorem 2 Ap is a sublattice of Ag if and only if L = BR™' is an integer matriz.

This fundamental and simple theorem is of course quite independent of which of the
many choices for generator matrices B and R are used for Ag and Ap, respectively.

Theorem 3 Let R;; j = 1,2,...,v,(Ng) be generator matrices of the vs(Ng) distinct
lattices of order Np. Let L;; @ = 1,2, ..., vs(NL) be a complete set of distinet s X s
matrices of order Ny, in utlf. Then the set of vs(Np)vs(Ngr) s X s matrices

Bij=LiR;; 1 <:<w,(Ng),1 <j<w,(Ng) (7)
includes at least one generator matriz of every lattice Ag of order Ng = Ny Ng.

This theorem is proved in [LySeKe91]. Note that the generator matrices of Ag
need not be in wutlf, but we shall usually use that set. The matrices L; have no
relevant interpretation in terms of lattices. When both L; and R; are in wtlf, then

B;; is upper triangular, but not necessarily in utlf. That is, it need not satisfy the
third item of Definition 1 above.

Note also that, when (Np, Ng) = 1, the set B;; includes exactly one generator
matrix corresponding to each of the v (Ng) distinct lattices of order Np. Other-
wise there is duplication of a somewhat unpredictable nature, discussed in detail in

[LySeKe91].

2 The Factorization Algorithm

In this section we describe the underlying mechanism of the new algorithm. Then
we compare the cost, (Co1 + Cp1) below, of a pedestrian implementation with the
cost gy of a correspondingly pedestrian implementation of the standard algorithm
of [LySg91]. More realistic cost comparisons will be presented later in this paper;
and, of course, in practice efficient implementations of both algorithms are used.
Depending on the factors of V, one algorithm may on occasion be far more efficient
than the other.

Our new algorithm is based on the following premise. Since Ap is a sublattice
of Ar, every point y of Ap is also a lattice point of Ag. If we have available a list of
points of Agr, then in order to find lattice points of Ag we need search only among
the lattice points of Ag. If our list of lattice points of Ag includes a sufficiently large
region, this search will find a critical point y of Ap, that is, one for which p(y) (see
(2) above) is least, and so provide the value of p(Ap).

As a stand-alone procedure to find p(Apg) for a single lattice, this approach would
be grossly inefficient. But as part of an overall search for p(Np) it is very effective.
This is because we may apply it to each B;;, R; pair. Work is required to make a
list of lattice points of R;. However, once available, this same list is used by each
of vs(Ny) different lattices of order Ng. It appears from estimates given below, and
from the timing results of our implementation, that a significant overall saving of
effort may ensue.

Schematically this new search comprises an outer loop over lattices Ar of order
Npg and, for each lattice Ag, an inner loop over all v;(Ny) lattices having generator
matrices B;; = L;R, where L; includes all integer matrices in utlf of order Ny,.
For each lattice A treated in the outer loop, a set of lattice points x of Ap is
constructed; this list, arranged in order of increasing p(x), includes all those points
for which p(x) < p.(Np); here p,(Ng) is an upper bound on p(Npg). Algorithm
3 described in [LyS¢91] may be used here, and the length of this list is expected
to be roughly 2°Ng/Nr = 2°Ny. Once this list is available, the inner loop can be
executed. Every lattice Ap treated in this inner loop is a sublattice of Agr. Thus
every point in the lattice Ag is also in Ag. To find p(Ag), we check each point of
AR to see whether it is in Ap. Since this list is in order of increasing p(x), the first
one encountered has p(x) = p(Ag).

To understand why one might expect this approach to be less costly than the
standard approach, we first compare cost analyses of equivalently simplified imple-
mentations of both. In each, we suppose that we use the same naive lattice search
of Section 2.2 of [LyS¢g91]. This simply produces all lattices of the required order
without regard to symmetric copy duplication. (See Section 3 below.) In each we
suppose that we use the same pedestrian algorithm 1 of [LyS¢91]. This simply checks
each indicated grid point in turn to see if it lies on the lattice under consideration.
A crude cost analysis of this pair of simplified implementations follows.

(1) The Standard Algorithm. In this one examines a total of v(Np) lattices. One
checks the unit lattice, point by point, and finds p(A) after an average of Np at-
tempts. The total number of these attempts is then approximately Npvs(Np) and
the overall cost is

CSI = chS(NB)NBv (8)
where m. is the average cost of a check, that is, an attempt to see whether x € A.

(2) The Factorization Algorithm. This treats first the vs(Ng) lattices Agr. For each
lattice, one has to check 2° Ng points in order to provide a list of 2° Ny, points. This
“up front” cost, the cost of the outer loop only, is

001 = mcl/s(NR)QSNB, (9)

which is generally much smaller than (8) above. After this, for each lattice Ag, one
checks this list of 2° Ny, points in order to locate the first one to lie in Ag. (If Ng
were unity so we were looking at each point, we would expect to check Ng points; as
it is, these points are less dense, and we expect to check only Ng/Nr = Ny, points.)
This is the major element of the cost and is

C[l = mcl/s(NR)l/s(NL)NL. (10)

This also is generally much smaller than (8). When (Np, Ng) = 1, it is smaller by
a factor of N;,/Ng = 1/Ng.

All other aspects of the calculations being taken to be equivalent in cost, we find

Co1+Chn _ (2° L) vs(NL)vs(NR)
CSI Vs Z/S(NB) ‘

(Nz) = Nr
Note that when (Np, Ng) = 1 the cost ratio in (11) is simply the expression in
curved parentheses. This is usually much smaller than 1. For example, with s = 4
and N = 360 = N, Ng = 8 - 45 the ratio is 16/1395 + 1/45 ~ 1/30.
We have to emphasise once more that these estimates are based on a crude model
of the true state of affairs. However, estimates of this sort cannot be ignored. It will
appear that the more sophisticated estimates of Section 4 confirm the overall picture.

(11)

And this is confirmed once more in practice by examination of actual running times.

