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exploited. In this introduction, we shall provide a very brief theoretical backgroundto lattices, together with some of the properties deemed desirable in a cost-e�ectivelattice rule. We also describe in simple terms the general nature of our standardsearch algorithm [LyS�91]. This enables us, in Section 2 to highlight the underly-ing idea of the new algorithm in a simpli�ed setting, and to provide an elementarycost analysis. In Section 3 we show that the symmetry of the �gure of merit (see(2) below) can be exploited in the new algorithm in the same way as in the previ-ous one. Section 4 written for the practitioner, deals with some of the less elegantaspects of using these algorithms. It will appear that both algorithms are usefulin complementary contexts. In Section 5, we provide a table of four dimensionallattices found mainly using these techniques. All but three of these 23 lattices arenew, and are improvements on presently known lattices of the corresponding order.Without loss in generality, we shall follow convention and treat integration over theunit hypercube [0; 1)s.An s-dimensional lattice is an array of points in Rs. It is conveniently describedby its generator matrix A. This is a nonsingular s � s matrix, and the elements ofthe lattice are integer linear combinations of the rows of A. The generator matrixof a given lattice is not unique. In fact, premultiplication of A by any unimodularmatrix leaves the lattice unchanged.A particular lattice, known as the unit lattice �0, comprises all points all of whosecomponents are integers. An integration lattice is one which contains the unit latticeas a subset. The abscissa set of a lattice rule, Q, includes all points of an integrationlattice (denoted here by �Q) which lie in [0; 1)s. The number of these points isN =j detA j�1 (1)which is an integer. The rule applies the same weight 1=N to each of these abscissae.The product trapezoidal rule is itself a lattice rule. A lattice rule of order Nuses a subset of the N s points which would be required by the product N-paneltrapezoidal rule. Other well known lattice rules include the number theoretic rules(Good Lattice Points) introduced by Korobov [Kor59]. There is a large literaturedevoted to these rules. Niederreiter [Nie78] provides an excellent summary of thepresent state of the theory. The theory of lattice rules is a development of the theoryof number theoretic rules [Slo85] [Nie88] and many of the de�nitions and propertiesare analogous. It appears that the discretisation error made by a lattice rule isclosely related to a lattice �, the reciprocal lattice of �Q whose generator matrix isB = (AT )�1.It is important not to confuse the integration lattice �Q whose elements areabscissae of the lattice rule with its reciprocal lattice �. The former, whose generatormatrix has been denoted by A, contains the unit lattice �0 as a sublattice. Itsreciprocal lattice � is a sublattice of the unit lattice �0 having as generator matrixan integer valued matrix B = (AT )�1.In point of fact the elements of the reciprocal lattice other than the origin rep-resent those elements of the multidimensional fourier expansion of f(x) which are2



not integrated exactly and so contribute to the fourier expansion of the quadratureerror. This circumstance can be used to justify a standard measure of the accuracyof a lattice rule. This is the �gure of merit or Zaremba rho index, �(�), of thereciprocal lattice �, [Zar66], de�ned as�(�) = minr2�; r6=0 �(r) = minr2�; r6=0 sYi=1max(1; j ri j); (2)where r = (r1; r2; :::; rs). Clearly the value of �(�) depends on the `nearest' elementof � which corresponds to the `lowest' order term in the fourier expantion which isnot integrated exactly. Thus the �gure of merit, �(�) is a measure of the accuracyof the quadrature rule, when applied to a naturally periodic function.Associated with each lattice � is its order N . This is the inverse point density of� and is also the number of abscissas employed by the associated quadrature rule.We denote the set of s-dimensional integer lattices of order N by Ls(N). Of interestare the optimal lattices of order N . These have �gures of merit�(N) = max�2Ls(N)�(�): (3)In general, to �nd these, a computer aided search is required. One of the di�cultiesencountered immediately is that, �s(N), the number of lattices in Ls(N), is large.This is a multiplicative number theoretic function de�ned by�s(pt) = (ps+t�1 � 1)=(pt � 1); p prime (4)and satisfying �s(MN) � �s(M)�s(N); (5)equality occurring if and only if (M;N) = 1 (i.e.,M and N are mutually prime). Itis shown in [LyS�89] that there exists �(s) such that(N s � 1)=(N � 1) � �s(N) < �(s)N s�1 log logN 8N; s > 1 (6)and valid values for �(s) include �(3) = 2:93 and �(4) = 3:53. �s(N) may be verylarge. For example, �4(400) = 239; 834; 166 and �4(401) = 64; 642; 404. In [LyS�91]we have described at length a search for optimal lattices.This search is based on representing each lattice by a generator matrix in uppertriangular lattice form (utlf). This is essentially the Hermite normal form and isunique to the lattice.De�nition 1 An s� s integer matrix B is in upper triangular lattice form (utlf) ifand only if bii � 1 i = 1; 2; :::; sbij = 0 1 � j < i � s0 � bij < bii otherwise .3



There is a one-to-one correspondence between the �s(N) distinct lattices of Ls(N)and the matrices B in utlf having det(B) = N . We shall refer to a search whichactually treats each of these lattices individually as a naive lattice search. An im-plementation of such a simple search is described in Section 2.2 of [LyS�91]. In factvirtually all papers of practical import on this topic are devoted to accelerating thesearch for an optimum lattice in one way or another. One way to reduce the scopeof the search is to take advantage of the symmetry of the function �(�). Latticesobtained from one another by permuting the coordinate system have the same �gureof merit. (See also Section 3 below.) A major part of [LyS�91] is devoted to showinghow this is exploited in our search program. It also describes a method by whichthe program can in some cases recognise a priori that the �gure of merit, �(�) of alattice just about to be treated is less than a currently available lower bound �L(N)and hence can be disregarded. In the present paper, we shall show that when N canbe factorised, further economies may be available.1.2 SublatticesIn Section 2 we shall outline an algorithm for determining �(N) based on the factori-sation of N . When N can be factorised, N = NLNR, this method can signi�cantlyoutperform our standard program described in [LyS�91]. When N is prime, thismethod reduces to a somewhat ine�cent version of the standard program.The method is based on the relationship between generator matrices of � andits various superlattices. This is treated in detail in [LyS�Ke91]. Only the part ofthe theory required for this algorithm is given here.In what follows B (or R) is a generator matrix of the lattice �B (or �R) of orderNB (or NR); unless otherwise stated, we are interested in evaluating �(N) withN = NB = NLNR and, in general, when �B is a sublattice of �R.Theorem 2 �B is a sublattice of �R if and only if L = BR�1 is an integer matrix.This fundamental and simple theorem is of course quite independent of which of themany choices for generator matrices B and R are used for �B and �R, respectively.Theorem 3 Let Rj ; j = 1; 2; :::; �s(NR) be generator matrices of the �s(NR) distinctlattices of order NR. Let Li; i = 1; 2; :::; �s(NL) be a complete set of distinct s � smatrices of order NL in utlf . Then the set of �s(NL)�s(NR) s� s matricesBi;j = LiRj; 1 � i � �s(NL) ; 1 � j � �s(NR) (7)includes at least one generator matrix of every lattice �B of order NB = NLNR.This theorem is proved in [LyS�Ke91]. Note that the generator matrices of �Rneed not be in utlf, but we shall usually use that set. The matrices Li have norelevant interpretation in terms of lattices. When both Li and Rj are in utlf, then4



Bij is upper triangular, but not necessarily in utlf. That is, it need not satisfy thethird item of De�nition 1 above.Note also that, when (NL; NR) = 1, the set Bij includes exactly one generatormatrix corresponding to each of the �s(NB) distinct lattices of order NB. Other-wise there is duplication of a somewhat unpredictable nature, discussed in detail in[LyS�Ke91].2 The Factorization AlgorithmIn this section we describe the underlying mechanism of the new algorithm. Thenwe compare the cost, (CO1 + CI1) below, of a pedestrian implementation with thecost CS1 of a correspondingly pedestrian implementation of the standard algorithmof [LyS�91]. More realistic cost comparisons will be presented later in this paper;and, of course, in practice e�cient implementations of both algorithms are used.Depending on the factors of N , one algorithm may on occasion be far more e�cientthan the other.Our new algorithm is based on the following premise. Since �B is a sublatticeof �R, every point y of �B is also a lattice point of �R. If we have available a list ofpoints of �R, then in order to �nd lattice points of �B we need search only amongthe lattice points of �R. If our list of lattice points of �R includes a su�ciently largeregion, this search will �nd a critical point y of �B, that is, one for which �(y) (see(2) above) is least, and so provide the value of �(�B).As a stand-alone procedure to �nd �(�B) for a single lattice, this approach wouldbe grossly ine�cient. But as part of an overall search for �(NB) it is very e�ective.This is because we may apply it to each Bij; Rj pair. Work is required to make alist of lattice points of Rj. However, once available, this same list is used by eachof �s(NL) di�erent lattices of order NB. It appears from estimates given below, andfrom the timing results of our implementation, that a signi�cant overall saving ofe�ort may ensue.Schematically this new search comprises an outer loop over lattices �R of orderNR and, for each lattice �R, an inner loop over all �s(NL) lattices having generatormatrices Bi;j = LiR, where Li includes all integer matrices in utlf of order NL.For each lattice �R treated in the outer loop, a set of lattice points x of �R isconstructed; this list, arranged in order of increasing �(x), includes all those pointsfor which �(x) < �u(NB); here �u(NB) is an upper bound on �(NB). Algorithm3 described in [LyS�91] may be used here, and the length of this list is expectedto be roughly 2sNB=NR = 2sNL. Once this list is available, the inner loop can beexecuted. Every lattice �B treated in this inner loop is a sublattice of �R. Thusevery point in the lattice �B is also in �R. To �nd �(�B), we check each point of�R to see whether it is in �B. Since this list is in order of increasing �(x), the �rstone encountered has �(x) = �(�B). 5



To understand why one might expect this approach to be less costly than thestandard approach, we �rst compare cost analyses of equivalently simpli�ed imple-mentations of both. In each, we suppose that we use the same naive lattice searchof Section 2.2 of [LyS�91]. This simply produces all lattices of the required orderwithout regard to symmetric copy duplication. (See Section 3 below.) In each wesuppose that we use the same pedestrian algorithm 1 of [LyS�91]. This simply checkseach indicated grid point in turn to see if it lies on the lattice under consideration.A crude cost analysis of this pair of simpli�ed implementations follows.(1) The Standard Algorithm. In this one examines a total of �s(NB) lattices. Onechecks the unit lattice, point by point, and �nds �(�) after an average of NB at-tempts. The total number of these attempts is then approximately NB�s(NB) andthe overall cost is CS1 = mc�s(NB)NB; (8)where mc is the average cost of a check, that is, an attempt to see whether x 2 �.(2) The Factorization Algorithm. This treats �rst the �s(NR) lattices �R. For eachlattice, one has to check 2sNB points in order to provide a list of 2sNL points. This\up front" cost, the cost of the outer loop only, isCO1 = mc�s(NR)2sNB; (9)which is generally much smaller than (8) above. After this, for each lattice �B, onechecks this list of 2sNL points in order to locate the �rst one to lie in �B. (If NRwere unity so we were looking at each point, we would expect to check NB points; asit is, these points are less dense, and we expect to check only NB=NR = NL points.)This is the major element of the cost and isCI1 = mc�s(NR)�s(NL)NL: (10)This also is generally much smaller than (8). When (NL; NR) = 1, it is smaller bya factor of NL=NB = 1=NR.All other aspects of the calculations being taken to be equivalent in cost, we �ndCO1 + CI1CS1 =  2s�s(NL) + 1NR! �s(NL)�s(NR)�s(NB) : (11)Note that when (NL; NR) = 1 the cost ratio in (11) is simply the expression incurved parentheses. This is usually much smaller than 1. For example, with s = 4and N = 360 = NLNR = 8 � 45 the ratio is 16=1395 + 1=45 � 1=30.We have to emphasise once more that these estimates are based on a crude modelof the true state of a�airs. However, estimates of this sort cannot be ignored. It willappear that the more sophisticated estimates of Section 4 con�rm the overall picture.And this is con�rmed once more in practice by examination of actual running times.6


