
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
FAST SOLUTION OF NONLINEAR POISSON-TYPE EQUATIONSBrett M. Averick� and James M. Ortegay

Mathematics and Computer Science DivisionPreprint MCS-P262-0991August 1991
�Army High Performance Computing Research Center, University of Minnesota, 1100 Washington AvenueSouth, Minneapolis, MN 55415. The research of this author was supported in part by the Army ResearchO�ce under grant DAALO3-89-C-0038.yDepartment of Computer Science, University of Virginia, Charlottesville, VA 22903. The research ofthis author was supported in part by the National Aeronautics and Space Administration under grantsNAG-1-1112-FDP and NAG-1-1050.



Fast Solution of Nonlinear Poisson-type EquationsbyBrett M. Averick and James M. Ortega
ABSTRACTThis paper is concerned with the solution of nonlinear Poisson-type equations. A change ofvariable is made that e�ectively reduces the solution of such equations to solving a linearPoisson equation followed by a series of one-dimensional nonlinear equations. Comparisonwith other methods shows the new method to be competitive.



1 IntroductionIn [3], we considered methods for the numerical solution of nonlinear Poisson-type equationsof the form r � [K(u)ru] = f; (1:1)where K is a positive di�erentiable function. If (1.1) is discretized by �nite di�erencemethods, we obtain a discrete system of the formF (u) = A(u)u� b(u); (1:2)where the matrix A(u) is symmetric positive de�nite for all u. Newton's method appliedto (1.2) is F 0(uk)�k+1 = �F (uk); k = 0; 1; : : : ; (1:3)where the Jacobian matrix is of the formF 0(u) = A(u) + B(u): (1:4)The Jacobian matrix has the usual sparsity of Poisson problems, and we would like tosolve the Newton systems (1.3) by a conjugate gradient method. The matrix B(u) in (1.4)is not symmetric, however, which would require using methods such as GMRES [8] fornonsymmetric systems.An alternative approach considered in [3] is based on the fact that kB(u) k is smallcompared with kA(u) k in many cases. This motivated the use of the approximate Newtonmethod A(uk)�k+1 = �F (uk); k = 0; 1; : : : ; (1:5)in which the systems of (1.5) are solved by the Incomplete Cholesky Conjugate Gradient(ICCG) method.In the present paper, we consider an entirely di�erent approach based on the formulation[4] of (1.1) as r2�(u) = f: (1:6)If � is a function such that �0(u) = K(u); (1:7)then r2�(u) = r � (�0(u)ru) = r � (K(u)ru); (1:8)and (1.6) is equivalent to (1.1). Thus, we can obtain the solution of (1.1), in principle, bya two-stage process:I. Solve the Poisson equationr2w = f: (1:9)3



II. Solve the one-dimensional nonlinear equations�(uP ) = wP ; (1:10)where wP denotes the solution of (1.9) at a point P in the domain.In the actual algorithm we consider, the domain is �rst discretized so that (1.9) becomesa discrete Poisson equation, and wP is the solution of this discrete problem at grid pointP . Under the assumption that K(u) is positive, solutions of (1.10) will be unique. If weassume further that K(u) is bounded away from zero, then a solution of (1.10) will existfor any wP .Even on conventional machines this approach may have considerable merit since it al-lows the use of fast Poisson solvers whenever the domain is suitable. Results given in thenext section show that for a small two-dimensional problem run on a Sun-3/60, this newmethod is considerably faster than the best method considered in [3]. On parallel and vectorcomputers, the advantage is even greater since the solution of the nonlinear equations (1.10)has excellent parallelism (or vectorization) across the grid points. In the next section, wewill give numerical results for a fairly large (250,000+ unknowns) three-dimensional prob-lem considered in [3]. Comparison to the results in [3] on a CRAY 2 shows considerablesuperiority of the new method. The method does have limitations, however. These aregiven in Section 3, along with further discussion of parallelism and other properties.2 Numerical ResultsWe �rst consider results on a serial computer - a Sun-3/60 - for a two-dimensional problemof the form (1.1) on the unit square and with K(u) = 103 + 910u. We use the Dirichletboundary conditions u(x; y) = x2 + y2 and choose the forcing function f of (1.1) so thatx2 + y2 is the exact solution of (1.1). The boundary conditions for the Poisson equation(1.9) are given by w� = �(u�); (2:1)where w� and u� are values of w and u on the boundary �, respectively.We discretize the Poisson equation (1.9) by usual �ve-point �nite di�erences on anN�Nmesh of interior grid points. The discrete Poisson problem is then solved by a fast Poissonsolver (FPS). Since K is linear, � is quadratic, and the solutions of (1.10) are easily evaluated.However, for consistency with more general equations, we used a Newton iteration for theseone-dimensional equations. Timing results using double-precision arithmetic are given inTable 1 forN = 31 and N = 63. The second column gives times for the FPS. NL is the timefor solving the nonlinear equations (1.10). For comparison, Table 1 also lists times for thesame problem using the TANICCG method from [3]. This method solves the approximateNewton systems (1.5) by ICCG(0), using truncation in the sense of [5] to determine the4



Table 1: Times (seconds) for Two-Dimensional Problem on a Sun 3/60N FPS NL Total TANICCG Speedup31 4.2 1.7 5.9 79.8 13.663 23.5 7.2 30.7 669.3 21.8number of inner iterations; further details may be found in [3]. The last column of Table 1gives the ratios of the TANICCG times to those of the new method.We next consider a three-dimensional problem treated in [3] in whichK(u) = (100 + 27u) 32300 + 27u ; (2:2)so that �(u) = 209:6 tan�1(:135u+ :5) 12 + (3u+ 11:1) 12 (2u� 37): (2:3)The domain is the unit cube, and the forcing function f of (1.1) was chosen so that x2+y2+z2is the exact solution of the di�erential equation. Thus, the boundary values are also givenby x2 + y2 + z2, and then the boundary values for the Poisson equation (1.9) are obtainedfrom (2.1).Table 2 gives timings for single-precision arithmetic on a single processor of a CRAY 2for N = 31 (29,791 equations) and N = 63 (250,047 equations). As in Table 1, the secondcolumn is the time for the FPS, and NL is the time for solving the nonlinear equations (1.10).These one-dimensional nonlinear equations were solved by Newton's method, vectorizedacross all the grid points.In [3], we used for (1.5) the initial approximationu0i;j;k = xi + y2j + z2k ; (2:4)which is a linear interpolation of the boundary values in the x-direction. For the Newtoniterations for (1.10), we also used (2.4) as well as choosing u0i;j;k as the solution of the discretePoisson problem at the i; j; k grid point. Of these two ways to choose u0i;j;k, (2.4) was thebest and only these times are reported in Table 2. The next-to-last column gives times forthe best version of the TANICGG method in [3], and the last column again shows the ratiosof the TANICCG times to those of the new method. (The times for TANICCG given in [3]were obtained on a CRAY 2 at the NASA-Langley Research Center and do not agree withthose of Table 2, which were obtained on a CRAY 2 at the University of Minnesota ArmyHigh Performance Computing Research Center.) In [3] we used the convergence testkF (uk)k2 � kF (û)k2; (2:5)5



Table 2: Times (seconds) for Three-Dimensional Problem on a CRAY 2N FPS NL Total TANICCG Speedup31 .06 .05 .11 1.1 1063 .31 .35 .66 17.4 25where F is the function (1.2), uk is the iterate of (1.5), and û is the exact solution ofthe di�erential equation evaluated at the grid points. This test, although impractical inpractice, ensures that the convergence error is commensurate with the discretization error.A similar test was used for the Newton iterates u(k)P for (1.10):j �(u(k)P )� wP j � j �(ûP )� wP j : (2:6)Here, wP is the solution of the discrete Poisson problem, and ûp is the exact solution of thedi�erential equation. The test (2.6) was implemented as a vector compare across all the gridpoints. This may cause some additional work for equations that have already converged,but it has been our experience that this vectorization outweighs the extra computation.(No more than three Newton iterations were required for each equation.) Although (2.5)and (2.6) are di�erent tests, each suited to their particular methods, we also used (2.5) forthe vector of one-dimensional Newton iterates of the new method and found that the samenumber of iterations were required as using (2.6). The actual errors in the �nal iteratesproduced by the two methods di�er by about 15%.The times in Table 2 for the TANICCG method are signi�cantly worse than those ofthe new method, but some caveats are in order. The ICCG method in [3] was implementedby using the red/black ordering to obtain long vector lengths for the CRAY 2. It is known(see, e.g., [6] and, for a recent review, [7]) that this ordering may seriously degrade the rateof convergence of ICCG, and it is quite likely that better results would be obtained by usingthe diagonal ordering, as, for example, in [1]. Also, more sophisticated versions of ICCGor the use of other methods might give better results. However, on the basis of the timesin Table 2, it is reasonable to conjecture that no iterative method for solving the Newtonsystems (1.3), or some approximation of them such as (1.5), will be competitive with thenew method. Moreover, our fast Poisson solver was a triple Fourier analysis method thatused the vectorized one-dimensional fast sine transformations of VFFTPACK obtained fromnetlib. It is known that other fast Poisson solvers that use, for example, cyclic reduction,are faster so that this would give further advantage to the new method.6



Table 3: Solution of Poisson Equation by ICCG on a CRAY 2.N ICCG NL Total Previous Total31 .527 .046 .57 .1163 9.87 .38 10.25 .703 Further Discussion of the MethodAlthough the results in the preceding section indicate signi�cant potential for the newmethod, we must point out limitations. First, it is necessary to integrate K(u) to obtain�(u). Even for the relatively simple function (2.2), the corresponding � of (2.3) is rathercomplicated and was found only by using MACSYMA. For other K it may be impossibleor impractical to obtain the integral explicitly. Recall that � is needed in (2.1) to obtainthe boundary values of the Poisson equation and to solve the nonlinear equations (1.10).In both cases, � could be approximated by numerical integration, but this would introduceadditional error as well as computing time. Moreover, it seems impossible to apply thisapproach if K is also an explicit function of the spatial variables, K = K(u; x; y; z), or if Kis a vector, as in the equation (K1(u)ux)x + (K2(u)uy)y = f .One reason the times presented in the preceding section were so good is that a fastPoisson solver (FPS) could be used. If the domain is such that this is not possible, thensolution of the Poisson equation may be considerably more expensive. This is illustratedin Table 3 where the discrete Poisson equation of the three-dimensional problem of thepreceding section is solved by ICCG. The time for this is givin in the column labeled ICCG;NL is, as before, the time to solve the nonlinear equations (1.10). The last column in Table3 reproduces the times from Table 2 using the FPS. Note that even without the FPS, thenew method is still almost twice as fast as the TANICCG method.Clearly, the new method is potentially very good for parallel computation since thesolutions of the one-dimensional equations are completely independent. However, the loadbalancing could be degraded by an unequal number of Newton iterations on di�erent equa-tions. For example, if the initial approximation at grid point P1 is much better than that atgrid point P2, the Newton iteration at P2 could take longer to converge. On the other hand,on distributed memory machines, no communication is needed in the Newton iterationsexcept for the convergence test. Most important, if the domain is such that a fast Poissonsolver can be used, then a good FPS routine must be available for the particular parallelmachine.Finally, another possible bene�t of the new method is discretization error. The bestresults we have been able to obtain mathematically for the discretization (1.2) of (1.1)is that the local discretization error is 0(h), although experimental results indicate it is7



probably 0(h2). For the new method, however, the only discretization error occurs in thePoisson equation and is 0(h2).AcknowledgmentsWe are indebted to Professor Irena Lasiecka of the University of Virginia for reference [4]and to Barry F. Smith of Argonne National Laboratory for his assistance in using theVFFTPACK package.References[1] C. Ashcraft and R. Grimes, On vectorizing incomplete factorization and SSORpreconditioners, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 122{151.[2] B. Averick, Solution of Nonlinear Poisson-type Equations, Ph.D. Dissertation. Dept.Applied Math., University of Virginia, Charlottesville, VA., January 1991.[3] B. Averick and J. Ortega, Solution of nonlinear Poisson-type equations, AppliedNumerical Math, to appear.[4] M. Crandall, Semigroups of nonlinear transformations in banach spaces, in Contri-butions to Nonlinear Functional Analysis, E. Zarantonello, ed., Academic Press, 1971,pp. 157{179.[5] R. Dembo, S. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J.Numer. Anal., 19 (1982), pp. 400{408.[6] I. Duff and G. Meurant, The e�ect of ordering on preconditioned conjugate gradi-ents, BIT, 29 (1989), pp. 635{657.[7] J. Ortega, Orderings for conjugate gradient preconditionings, SIAM J. Optimization,to appear.[8] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm forsolving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856{869.
8


