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Abstract� The numericalmethods employed in the solution of many scienti�c computing problems require the computation
of derivatives of a function f �Rn

�Rm� Both the accuracy and the computational requirements of the derivative computation
are usually of critical importance for the robustness and speed of the numerical solution� ADIFOR �Automatic Di�erentiation
In FORtran� is a source transformation tool that accepts Fortran �� code for the computation of a function and writes
portable Fortran �� code for the computation of the derivatives� In contrast to previous approaches� ADIFOR views automatic
di�erentiation as a source transformation problem� ADIFOR employs the data analysis capabilities of the ParaScope Parallel
ProgrammingEnvironment� which enable us to handle arbitraryFortran �� codes and to exploit the computational context in the
computation of derivatives� Experimental results show that ADIFOR can handle real	life codes and that ADIFOR	generated
codes are competitive with divided	di�erence approximations of derivatives� In addition� studies suggest that the source	
transformation approach to automatic di�erentation may improve the time to compute derivatives by orders of magnitude�

Key words� Large	scale problems� derivative� gradient� Jacobian� automatic di�erentiation� optimization� sti� ordinary
di�erential equations� chain rule� parallel� ParaScope Parallel Programming Environment� source transformation and optimiza	
tion�

� Introduction

The methods employed for the solution of many scienti�c computing problems require the evaluation of
derivatives of some function	 Probably best known are gradient methods for optimization 
���� Newton
s
method for the solution of nonlinear systems 
��� ���� and the numerical solution of sti� ordinary di�erential
equations 
�� ���	 Other examples can be found in 
���	 In the context of optimization� for example� given a
function

f � Rn � R�

one can �nd a minimizer x� of f using variable metric methods that involve the iteration

for i � �� �� 				 do
Solve Bisi � �rf�xi�
xi�� � xi � �isi

end for

for suitable step multipliers �i � �	 Here

rf�x� �

�
B�

�
�x�

f�x�
			

�
�xn

f�x�

�
CA ���

is the gradient of f at a particular point x�� and Bi is a positive de�nite matrix that may change from
iteration to iteration	
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In the context of �nding the root of a nonlinear function

f � Rn � Rn� f �

�
B�

f�
			
fn

�
CA �

Newton
s method requires the computation of the Jacobian matrix

f ��x� �

�
B�

�
�x�

f��x� � � � �
�xn

f��x�
			

			
�

�x�
fn�x� � � � �

�xn
fn�x�

�
CA � ���

Then� we execute the following iteration�

for i � �� �� 				 do
Solve f ��xi�si � �f�xi�
xi�� � xi � si

end for

Another important application is the numerical solution of initial value problems in sti� ordinary di�er�
ential equations	 Methods such as implicit Runge�Kutta 
�� and backward di�erentiation formula �BDF� 
���
methods require a Jacobian which is either provided by the user or approximated by divided di�erences	
Consider a system of ODEs

y� � f�t� y�� y�t�� � y�� ���

System ��� is called sti� if its Jacobian J � �f
�y

�in a neighborhood of the solution� has eigenvalues �i
with Re��i� �� � in addition to eigenvalues of moderate size	 Equations of this type arise frequently in
chemical reaction models� for example	 They can be of arbitrarily large dimension� because they also arise as
discretizations of partial di�erential equations� where J is large and sparse	 If explicit methods �multistep�
Runge�Kutta� Taylor� or extrapolation� are applied� the step size must be very small in order to retain
desirable stability properties of the method	 That is why authors as early as the ����
s 
��� and again in the
late ����
s 
��� were led to consider implicit methods in which the approximate solution yi�� at t � ti�� is
given by the solution to some nonlinear system

��yi��� � ��

which is solved by a Newton�type iteration requiring the Jacobian ��
�y

	 The exact form of � di�ers from one
implicit method to another� but for many methods�

��yi��� � yi�� � �hf�ti��� yi��� � terms not involving yi���

so the user is asked to supply the Jacobian J � �f

�y
	

These methods are examples of a large class of methods for numerical computation� where the compu�
tation of derivatives is a crucial ingredient in the numerical solution process	 The function f is not usually
represented in closed form� but in the form of a computer program	

For purposes of illustration� we assume that f � x � Rn �� y � R and that we wish to compute the
derivatives of y with respect to x	 We call x the independent variable and y the dependent variable� While
the terms �dependent�� �independent�� and �variable� are used in many di�erent contexts� this terminology
corresponds to the mathematical use of derivatives	 There are four approaches to computing derivatives
�these issues are discussed in more detail in 
�����

By Hand� Hand coding is increasingly di�cult and error�prone� especially as the problem complexity in�
creases	

Divided Di�erences� The derivative of f with respect to the ith component of x at a particular point x�
is approximated by either one�sided di�erences

� f�x�

� xi

���
x�x�

�
f�x� � h � ei�� f�x��

h

�



or central di�erences
� f�x�

� xi

���
x�x�

�
f�x� � h � ei� � f�x� � h � ei�

�h
�

Here ei is the ith Cartesian basis vector	 Computing derivatives by divided di�erences has the advan�
tage that we need only the function as a �black box�	 The main drawback of divided di�erences is that
their accuracy is hard to assess	 A small step size h is needed for properly approximating derivatives�
yet may lead to numerical cancellation and the loss of many digits of accuracy	 In addition� di�erent
scales of the xi
s may require di�erent step sizes for the various independent variables	

Symbolic Di�erentiation� This functionality is provided by symbolic manipulation packages such as
Maple� Reduce� Macsyma� or Mathematica	 Given a string describing the de�nition of a function�
symbolic manipulation packages provide exact derivatives� expressing the derivatives all in terms of
the intermediate variables	 For example� if

f�x� � x��� � x��� � x��� � x��� � x����

we obtain

� f

� x�
� x��� � x��� � x��� � x���

� f

� x�
� x��� � x��� � x��� � x���

� f

� x�
� x��� � x��� � x��� � x���

� f

� x�
� x��� � x��� � x��� � x���

� f

� x	
� x��� � x��� � x��� � x����

This is correct� yet it does not represent a very e�cient way to compute the derivatives� since there
are a lot of common subexpressions in the di�erent derivative expressions	 Symbolic di�erentiation is
a powerful technique� but it may not derive good computational recipes� and it may run into resource
limitations when the function description is complicated	 Functions involving branches or loops cannot
be readily handled by symbolic di�erentiation	

Automatic Di�erentiation� Automatic di�erentiation techniques rely on the fact that every function� no
matter how complicated� is executed on a computer as a �potentially very long� sequence of elementary
operations such as additions� multiplications� and elementary functions such as sin and cos	 By applying
the chain rule

�

�t
f�g�t��

���
t�t�

�

�
�

�s
f�s�

���
s�g
t��

��
�

�t
g�t�
���
t�t�

�
���

over and over again to the composition of those elementary operations� one can compute derivative
information of f exactly and in a completely mechanical fashion	 ADIFOR transforms Fortran ��
programs using this approach	 For example� if we have a program for computing f �

Q	
i�� x�i�

subroutine prod��x�f�

real x���� f

f � x��� � x��� � x�	� � x�
� � x���

return

end

ADIFOR produces a program whose computational section is shown in Figure �	
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r�� � x��� � x���

r�� � r�� � x�	�

r�	 � r�� � x�
�

r�
 � x��� � x�
�

r�� � r�
 � x�	�

r��bar � r�� � x���

r��bar � r�� � x���

r�	bar � r�
 � r��

r�
bar � x��� � r��

do g�i� � �� g�p�

g�f�g�i�� � r��bar � g�x�g�i�� �� � r��bar � g�x�g�i�� ��

� r�	bar � g�x�g�i�� 	� � r�
bar � g�x�g�i�� 
�

� r�	 � g�x�g�i�� ��

end do

f � r�	 � x���

Figure �	 ADIFOR�generated code

The � sign is used to emphasize ADIFOR�generated variables	 To improve readability� we deleted
continuation line characters	 If the variable x is initialized to the desired value x�� g�p� to �� and the

array g�x to the �	 � identity matrix� then on exit the vector g�f contains � f
x�
� x

jx�x� 	 No redundant
subexpressions are computed here� since the overall product is computed in a binary�tree like fashion�
and the proper pieces of the product are reused in the derivative computation	 The rationale underlying
this code will be given in Section �	

Symbolic di�erentiation uses the rules of calculus in a more or less mechanical way� although some
e�ciency can be recouped by back�end optimization techniques 
��� ���	 In contrast� automatic di�erentiation
is intimately related to the program for the computation of the function to be di�erentiated	 By applying
the chain�rule step by step to the elementary operations executed in the course of computing the �function��
automatic di�erentiation computes exact derivatives �up to machine precision� of course� and avoids the
potential pitfalls of divided di�erences	 The techniques of automatic di�erentiation are directly applicable
to functions with branches and loops	

ADIFOR is a tool to provide automatic di�erentiation for programs written in Fortran ��	 Given a
Fortran subroutine �or collection of subroutines� for a function f � ADIFOR produces Fortran �� subroutines
for the computation of the derivatives of this function	 ADIFOR di�ers from other approaches to automatic
di�erentiation �see 
��� for a survey� by being based on a source translator paradigm and by having been
designed from the outset with large�scale codes in mind	 ADIFOR provides several advantages�

Portability� ADIFOR produces vanilla Fortran �� code	 ADIFOR�generated derivative code does not
require any run�time support and can easily be ported between di�erent computing environments	

Generality� ADIFOR supports almost all of Fortran ��� including arbitrary calling sequences� nested sub�
routines� common blocks� and equivalences	 Fortran �� functions and statement functions will be
supported in the next version of ADIFOR	 We do not anticipate support for i�o� alternate returns for
subroutines� or entry statements	

E�ciency� ADIFOR�generated derivative code is competitive with codes that compute the derivatives by
divided di�erences	 In most applications we have run� the ADIFOR�generated code is faster than the
divided�di�erence code	

Preservation of Software Development E�ort� The code produced by ADIFOR respects the data �ow
structure of the original program	 That is� if the user invested the e�ort to develop code that vectorizes
and parallelizes well� then the ADIFOR�generated derivative code also vectorizes and parallelizes well	
In fact� the derivative code o�ers more scope for vectorization and parallelization	
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Extensability� ADIFOR employs a consistent subroutine�naming scheme that allows the user to supply
his own derivative routines	 In this fashion� the user can exploit domain�speci�c knowledge� exploit
vendor�supplied libraries� and reduce computational bottlenecks	

Ease of Use� ADIFOR requires the user to supply the Fortran source code for the subroutine representing
the function to be di�erentiated and for all lower�level subroutines	 The user then selects the vari�
ables �in either parameter lists or common blocks� that correspond to the independent and dependent
variables	 ADIFOR then determines which other variables throughout the program require derivative
information	

Intuitive Interface� An X�windows interface for ADIFOR �called �xadifor�� makes it easy for the user to
set up the ASCII script �le that ADIFOR reads	 This functional division makes it easy both to set
up the problem and to rerun ADIFOR if changes in the code for the target function require a new
translation	

Using ADIFOR� one then need not worry about the accurate and e�cient computation of derivatives�
even for complicated �functions�	 As a result� the computational scientist can concentrate on the more
important issues of algorithm design or system modeling	

In the next section� we shall give a brief introduction to automatic di�erentiation	 Section � describes how
ADIFOR provides this functionality in the context of a source transformation environment� and gives the ra�
tionale for choosing such an approach	 Section � gives a brief introduction into the use of ADIFOR�generated
derivative codes� including the exploitation of sparsity structure in the derivative matrices	 In Section ��
we present some experimental results which show that the run�time required for ADIFOR�generated exact
derivative codes compares very favorably with divided�di�erence derivative approximations	 Lastly� we out�
line ongoing work and present evidence that the source�transformation approach to automatic di�erentiation
may reduce the time to compute derivatives by orders of magnitudes	

� Automatic Di�erentiation

We illustrate automatic di�erentiation with an example	 Assume that we have the sample program shown
in Figure � for the computation of a function f � R� � R�	 Here� the vector x contains the independent
variables� and the vector y contains the dependent variables	 The function described by this program is
de�ned except at x��� � � and is di�erentiable except at x��� � �	

if x��� 
 � then

a � x����x���

else

a � x����x���

end if

do i � �� �

a � a�x�i�

end do

y��� � a�x���

y��� � sin�x����

Figure �	 Sample program for a function f � x �� y

By associating a derivative object rt with every variable t� we can transform this program into one
for computing derivatives	 Assume that rt contains the derivatives of t with respect to the independent
variables x�

rt �

�
� t

� x
��
� t

� x
��

�
�

We can propagate those derivatives by using elementary di�erentiation arithmetic based on the chain rule
�see 
��� for more details�	 For example� the statement

a � x��� � x���
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implies
ra � rx��� � rx����

The chain rule� applied to the statement
y��� � a�x����

implies that

ry��� �
� y���

� a
� ra �

� y���

� x���
� rx��� � ����x��� � ra � ��a��x��� � x����� � rx����

Care has to be taken when the same variable appears on both the left� and the right�hand sides of an
assignment statement	 For example� the statement

a � a � x�i�

implies
ra � x�i� � ra� a � rx�i��

However� simply combining these two statements leads to the wrong results� since the value of a referred to
in the right�hand side of the ra assignment is the value of a before the assignment a � a�x�i� has been
executed	 We avoid this di�culty in the ADIFOR�generated code by using a temporary variable as shown
in Figure �	

Elementary functions are easy to deal with	 For example� the statement

y��� � sin�x����

implies

ry��� �
� y���

� x���
� rx��� � cos�x���� � rx����

Straightforward application of the chain rule in this fashion then leads to the pseudo�code shown in
Figure � for computing the derivatives of y��� and y���	

if x��� � ��� then

a � x����x���

ra � rx��� � rx���

else

a � x����x���

ra � x��� � rx��� � x��� � rx���

end if

do i � �� �

temp � a

a � a � x�i�

ra � x�i� � ra � temp � rx�i�

end do

y��� � a�x���

ry��� � ����x��� � ra � a��x����x���� � rx���

y��� � sin�x����

ry��� � cos�x���� � rx���

Figure �	 Sample program of Figure � augmented with derivative code

This mode of automatic di�erentiation� where we maintain the derivatives with respect to the independent
variables� is called the forward mode of automatic di�erentiation	

The situation gets more complicated when the source statement is not just a binary operation	 For
example� consider the statement

w � �y��z � z � z��

where y and z depend on the independent variables	 We have already computed ry and rz and now wish
to compute rw	 By breaking up this compound statement into unary and binary statements as shown in
Figure ��
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t� � � y

t� � z � z

t	 � t� � z

w � t� � t	

Figure �	 Expansion of w � 	 y 
 �z � z � z� in unary and binary operations

we could simply apply the mechanism that was used in Figure � and associate a derivative computation with
each binary or unary statement �the resulting pseudo�code is shown in the left half of Figure ��	

There is another way� though	 The chain rule tells us that

rw �
� w

� y
� ry�

� w

� z
� rz�

Hence� if we know the �local� derivatives �� w
� y

� � w
� z

� of w with respect to z and y� we can easily compute rw�
the derivatives of w with respect to x	

The �local� derivatives �� w
� y

� � w
� z

� can be computed e�ciently by using the reverse mode of automatic
di�erentiation	 Here we maintain the derivative of the �nal result with respect to an intermediate quantity�
These quantities are usually called adjoints� They measure the sensitivity of the �nal result with respect to
some intermediate quantity	 This approach is closely related to the adjoint sensitivity analysis for di�erential
equations that has been used at least since the late sixties� especially in nuclear engineering 
��� ���� in weather
forecasting 
���� and even in neural networks 
���	

In the reverse mode� let tbar denote the adjoint object corresponding to t	 The goal is for tbar to
contain the derivative � w

� t
	 We know that wbar � � w

� w � ���	 We can compute ybar and zbar by applying
the following simple rule to the statements executed in computing w� but in reverse order�

if s � f�t�� then tbar �� sbar � �df � dt�

if s � f�t�u�� then tbar �� sbar � �df �dt�

ubar �� sbar � �df �du�

Using this simple recipe �see 
��� ����� we generate the code shown in Figure � for computing w and its
gradient	

�� Compute function values ��

t� � � y

t� � z � z

t	 � t� � z

w � t� � t	

�� Initialize adjoint quantities ��

wbar � ���� t	bar � ���� t�bar � ����

t�bar � ���� zbar � ���� ybar � ����

�� Adjoints for w � t� � t	 ��

t�bar � t�bar � wbar � �� � t	�

t	bar � t	bar � wbar � �� t� � t	�

�� Adjoints for t	 � t� � z ��

t�bar � t�bar � t	bar � z

zbar � zbar � t	bar � t�

�� Adjoints for t� � z � z ��

zbar � zbar � t�bar � z

zbar � zbar � t�bar � z

�� Adjoints for t� � � y ��

ybar � � t�bar

r w � ybar � r y � zbar � r z

w � t


Figure �	 Reverse mode computation of rw

In Figure �� we juxtapose the derivative computations for w � 	y
�z�z�z� based on the pure forward
mode and those based on the reverse mode for computing rw	 For the reverse mode� we performed some
simple optimizations such as eliminating multiplications by � and additions to �	
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Forward Mode�

t� � � y

r t� � � r y

t� � z � z

r t� � r z � z � z � r z

t	 � t� � z

r t	 � r t� � z � t� � r z

w � t� � t	

r w � �r t� � r t	 � w� � t�

Reverse Mode�

t� � � y

t� � z � z

t	 � t� � z

w � t� � t	

t�bar � �� � t	�

t	bar � �� t� � t	�

t�bar � t	bar � z

zbar � t	bar � t�

zbar � zbar � t�bar � z

zbar � zbar � t�bar � z

ybar � � t�bar

r w � ybar � r y � zbar � r z

Figure �	 Forward versus reverse mode in computing derivatives of w � 	y
�z�z�z�

The forward mode code in Figure � requires that space be allocated for three auxiliary gradient objects�
and the code contains four gradient computation loops	 In contrast� the reverse mode code requires only
�ve scalar auxiliary derivative objects and has only one gradient loop	 In either case� the storage required
by automatic di�erentiation is at most the amount of storage required by the original function evaluation
times the length of the gradient objects computed	

Figures � and � illustrate a very simple example of using the reverse mode	 The reverse mode requires
fewer operations if the number of independent variables is larger than the number of dependent variables	
This is exactly the case for computing a gradient� which can be viewed as a Jacobian matrix with only one
row	 This issue is discussed in more detail in 
��� ��� ���	

Despite the advantages of the reverse mode with regard to complexity� the implementation of the re�
verse mode for the general case is quite complicated	 It requires the ability to access in reverse order the
instructions performed for the computation of f and the values of their operands and results	 Current tools
�see 
���� achieve this by storing a record of every computation performed	 Then an interpreter performs
a backward pass on this �tape	� The resulting overhead often annihilates the complexity advantage of the
reverse mode in an actual implementation �see 
��� ����	

ADIFOR uses a hybrid approach	 It is generally based on the forward mode� but uses the reverse mode to
compute the gradients of assignment statements� since for this restricted case the reverse mode can easily be
implemented by a source�to�source translation	 We also note that even though we showed the computation
only of �rst derivatives� the automatic di�erentiation approach can easily be generalized to the computation
of univariate Taylor series or multivariate higher�order derivatives 
��� ��� ���	

The derivatives computed by automatic di�erentiation are highly accurate� unlike those computed by
divided di�erences	 Griewank and Reese 
��� showed that the derivative objects computed in the presence of
round�o� corresponds to the exact result of a nonlinear system whose partial derivatives have been perturbed
by factors of at most �� � 	i�j��� where j	i�jj 
 	� the relative machine precision	

� ADIFOR Design Philosophy

The examples in the preceding section have shown that the principles underlying automatic di�erentiation
are not complicated� We just associate extra computations �which are entirely speci�ed on a statement�by�
statement basis� with the statements executed in the original code	 As a result� a variety of implementations
of automatic di�erentiation have been developed over the years �see 
��� for a survey�	

Most of these implementations implement automatic di�erentiation by means of operator overloading�
which is a language feature in C��� Ada� Pascal�XSC� and Fortran �� 
���	 Operator overloading provides
the possibility of associating side�e�ects with arithmetic operations	 For example� with an addition ��� we
now could associate the addition of the derivative vectors that is required in the forward mode	 Operator
overloading also allows for a simple implementation of the reverse mode� since as a by�product of the
computation of f we can store a record of every computation performed and then have an interpreter
perform a backward pass on this �tape	� The only drawback is that for straightforward implementations�
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the length of the tape is proportional to the number of arithmetic operations performed 
��� ��	 Recently�
Griewank 
��� suggested an approach to overcome this limitation through clever checkpointing	

Nonetheless� for all their simplicity and elegance� operator overloading approaches present two funda�
mental drawbacks�

Loss of context� Since all computation is performed as a by�product of an elementary operation� it is very
di�cult� if not impossible� to perform optimizations that transcend one elementary operation �such as
the constant�folding techniques that simpli�ed the reverse mode shown in Figure � into that shown in
Figure ��	 The resulting disadvantages� especially those associated with the exploitation of parallelism�
are discussed in 
��	

Loss of E�ciency� The overwhelming majority of codes for which computational scientists want deriva�
tives are written in Fortran� which does not support operator overloading	 While we can emulate oper�
ator overloading by associating a subroutine call with each elementary operation� this approach slows
computation considerably� and usually also imposes some restrictions on the syntactic structure of the
code that can be processed	 Examples of this approach are DAPRE 
��� ���� GRESS�ADGEN 
��� ����
and JAKEF 
���	 Experiments with some of those systems are described in 
���	

The lack of e�ciency of previously existing tools has prevented automatic di�erentiation from becoming
a standard tool for mainstream high�performance computing� even though there are numerous applications
where the need for accurate �rst� and higher�order derivatives essentially mandated the use of automatic dif�
ferentiation techniques and prompted the development of custom�tailored automatic di�erentiation systems
�see 
����	 For the majority of applications� however� automatic di�erentiation techniques were substantially
slower than divided�di�erence approximations� discouraging potential users	

The issues of ease of use and portability have received scant attention in software for automatic di�erenti�
ation as well	 In many applications� the �function� of which we wish to compute derivatives is a collection of
subroutines� and all that really should be expected of the user is to specify which of the variables correspond
to the independent and dependent variables	 In addition� the automatic di�erentiation code should be easily
transportable between di�erent machines	

ADIFOR takes those requirements into account	 Its user interface is simple� and the ADIFOR�generated
code is e�cient and portable	 Unlike previous approaches� ADIFOR can deliver this functionality because it
views automatic di�erentiation from the outset as a source transformation problem	 The goal is to automate
and optimize the source translation process that was shown in very simple examples of the preceding section	
By taking a source translator view� we can bring the many man�years of e�ort of the compiler community
to bear on this problem	

ADIFOR is based on the ParaScope programming environment 
��� which combines dependence analysis
with interprocedural analysis to support the semi�automatic parallelization of Fortran programs	 While
our primary goal is not the parallelization of Fortran programs� the ParaScope environment provides us
with a Fortran parser� data abstractions for representing Fortran programs� and tools for constructing and
manipulating those representations	 In particular� ParaScope tools gather

� data �ow facts for scalars and arrays�

� dependence graphs for array elements�

� control �ow graphs� and

� constant and symbolic facts	

The data dependence analysis capabilities are critical for determining which variables need to have
derivative objects associated with them� a process we call variable nomination� Only those variables z whose
values depend on an independent variable x and in�uence a dependent variable y need to have derivative
information associated with them	 Such a variable is called active� Variables that do not require derivative
information are called passive� Interprocedurally� variable nomination proceeds in a series of passes over
the program call graph by using an �interaction matrix� for each subroutine	 Such a matrix represents a
bipartite graph	 Input parameters or variables in common blocks are connected with output parameters
or variables in common blocks whose values they in�uence	 This dependency analysis is also crucial in
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determining the sets of active�passive variable binding contexts in which each subroutine may be invoked	
For example� consider the following code for computing y � ��� � x � x�

subroutine threexx�x�y�

call prod�	���x�t�

call prod�t�x�y�

end

subroutine prod�x�y�z�

z � x � y

end

In the �rst call to prod� only the second and third of prod
s parameters are active� whereas in the second
call� all variables are active	 ADIFOR recognizes this situation and performs procedure cloning to generate
di�erent augmented versions of prod for these di�erent contexts	 The decision to do cloning based on
active�passive variable context will eventually be based on an assessment of the savings made possible
by introducing the cloned procedures� in accordance with the goal�directed interprocedural transformation
approach being adopted within ParaScope 
��	

Another advantage of a compiler�based approach is that we have the mechanism in place for simplifying
the derivative code that has been generated by application of the simple statement�by�statement rules	 For
example� consider the reverse mode code shown in Figure �	 By applying constant folding and eliminating
variables that are used only once� we eliminate multiplications by �	� and additions to �� and we reduce the
number of variables that must be allocated	

In summary� ADIFOR proceeds as follows�

�	 The user speci�es the subroutine that corresponds to the �function� for which he wishes derivatives�
as well as the variable names that correspond to dependent and independent variables	 These names
can be subroutine parameters or variables in common blocks	 In addition to the source code for the
function subroutine� the user must submit the source code for all subroutines that are directly or
indirectly called from this subroutine	

�	 ADIFOR parses the code� builds the call graph� collects intra� and interprocedural dependency infor�
mation� and determines active variables	

�	 Derivative objects are allocated in a straightforward fashion� Derivative objects for parameters are
again parameters derivative objects for variables in common blocks and local variables are again
allocated in common blocks and as local variables� respectively	

�	 The original source code is augmented with derivative statements ! the reverse mode is used for
assignment statements� the forward mode overall	 Subroutine calls are rewritten to propagate derivative
information� and procedure cloning is performed as needed	

�	 The augmented code is optimized� eliminating unnecessary arithmetic operations and temporary vari�
ables	

The resulting code generated by ADIFOR can be called by users
 programs in a �exible manner to be
used in conjunction with standard software tools for optimization� solving nonlinear equations� or for sti�
ordinary di�erential equations	 A discussion of calling the ADIFOR�generated code from users
 programs is
included in 
��	

� The Functionality of ADIFOR�Generated Derivative Codes

The functionality provided by ADIFOR is best understood through an example	 Our example is adapted
from problem C� in the STDTST set of test problems for sti� ODE solvers 
���	 The routine FCN� shown
in Figure � that computes the right�hand side of a system of ordinary di�erential equations y� � f�x� y�
by calling a subordinate routine FCN	 In the numerical solution of the ordinary di�erential equation� the
Jacobian � f

� y
is required	

��



SUBROUTINE FCN��M�X�Y�YP�

INTEGER N

DOUBLE PRECISION X� Y�M�� YP�M�

INTEGER ID� IWT

DOUBLE PRECISION W����

COMMON �STCOM��W� IWT� N� ID

CALL FCN�X�Y�YP�

RETURN

END

SUBROUTINE FCN�X�Y�YP�

C ROUTINE TO EVALUATE THE DERIVATIVE F�X�Y� CORRESPONDING TO THE

C DIFFERENTIAL EQUATION�

C DY�DX 	 F�X�Y� 


C THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP���
 THE

C DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W���

C IF THIS OPTION HAS BEEN SELECTED �IF SO IT IS SIGNALLED

C BY THE FLAG IWT�


DOUBLE PRECISION X� Y����� YP����

INTEGER ID� IWT� N

DOUBLE PRECISION W����

COMMON �STCOM��W� IWT� N� ID

DOUBLE PRECISION SUM� CPARM���� YTEMP����

INTEGER I� IID

DATA CPARM�

D�
� 

D�� 

D
� �
D
�

IF �IWT
LT
�� GO TO ��

DO �� I 	 
� N

YTEMP�I� 	 Y�I�

Y�I� 	 Y�I��W�I�

�� CONTINUE

�� IID 	 MOD�ID�
��

C ADAPTED FROM PROBLEM C�

YP�
� 	 �Y�
� � �
D�

SUM 	 Y�
��Y�
�

DO �� I 	 �� N

YP�I� 	 �
�
�D��I�Y�I� � CPARM�IID�
������I��SUM

SUM 	 SUM � Y�I��Y�I�

�� CONTINUE

IF �IWT
LT
�� GO TO ���

DO ��� I 	 
� N

YP�I� 	 YP�I��W�I�

Y�I� 	 YTEMP�I�

��� CONTINUE

��� CONTINUE

RETURN

END

Figure �	 Original code for problem C�

Nominating Y as independent variables� and YP as dependent ones� ADIFOR produces the code shown
in Figures � and �	 We use the dollar sign � to indicate ADIFOR�generated names	 In practice� ADIFOR
generates variable names which do not con�ict with any names appearing in the original program	

subroutine g�fcn����g�p�� m� x� y� g�y� ldg�y� yp� g�yp� ldg�yp�

C

C ADIFOR� runtime gradient index

integer g�p�

C ADIFOR� translation time gradient index

integer g�pmax�

��



parameter �g�pmax� � ���

C ADIFOR� gradient iteration index

integer g�i�

C

integer ldg�y

integer ldg�yp

integer n

double precision x� y�m�� yp�m�

integer id� iwt

double precision w����

common �stcom�� w� iwt� n� id

C

C ADIFOR� gradient declarations

double precision g�y�ldg�y� m�� g�yp�ldg�yp� m�

if �g�p� �gt� g�pmax�� then

print �� �Parameter g�p� is greater than g�pmax��

stop

endif

call g�fcn���g�p�� x� y� g�y� ldg�y� yp� g�yp� ldg�yp�

return

end

Figure �	 ADIFOR�generated code for problem C� �part ��

subroutine g�fcn���g�p�� x� y� g�y� ldg�y� yp� g�yp� ldg�yp�

C

C ADIFOR� runtime gradient index

integer g�p�

C ADIFOR� translation time gradient index

integer g�pmax�

parameter �g�pmax� 	 ���

C ADIFOR� gradient iteration index

integer g�i�

C

integer ldg�y

integer ldg�yp

C ROUTINE TO EVALUATE THE DERIVATIVE F�X�Y� CORRESPONDING TO THE

C DIFFERENTIAL EQUATION�

C DY�DX 	 F�X�Y� 


C THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP���
 THE

C DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W���

C IF THIS OPTION HAS BEEN SELECTED �IF SO IT IS SIGNALLED

C BY THE FLAG IWT�


double precision x� y����� yp����

integer id� iwt� n

double precision w����

common �stcom�� w� iwt� n� id

double precision sum� cparm���� ytemp����

integer i� iid

data cparm �

d�
� 

d�� 

d
� �
d
�

C

C ADIFOR� gradient declarations

double precision g�y�ldg�y� ���� g�yp�ldg�yp� ���

double precision g�sum�g�pmax��� g�ytemp�g�pmax�� ���

if �g�p� 
gt
 g�pmax�� then

print �� �Parameter g�p� is greater than g�pmax
�

stop

endif

if �iwt 
lt
 �� then

goto ��

endif

do ������ i 	 
� n
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C ytemp�i� 	 y�i�

do g�i� 	 
� g�p�

g�ytemp�g�i�� i� 	 g�y�g�i�� i�

enddo

ytemp�i� 	 y�i�

C y�i� 	 y�i� � w�i�

do g�i� 	 
� g�p�

g�y�g�i�� i� 	 w�i� � g�y�g�i�� i�

enddo

y�i� 	 y�i� � w�i�

�� continue

����� continue

�� iid 	 mod�id� 
��

C ADAPTED FROM PROBLEM C�

C yp�
� 	 �y�
� � �
d�

do g�i� 	 
� g�p�

g�yp�g�i�� 
� 	 �g�y�g�i�� 
�

enddo

yp�
� 	 �y�
� � �
d�

C sum 	 y�
� � y�
�

do g�i� 	 
� g�p�

g�sum�g�i�� 	 y�
� � g�y�g�i�� 
� � y�
� � g�y�g�i�� 
�

enddo

sum 	 y�
� � y�
�

do ������ i 	 �� n

C yp�i� 	 �
�
�d� � i � y�i� � cparm�iid � 
� � �� �� i� � sum

do g�i� 	 
� g�p�

g�yp�g�i�� i� 	 cparm�iid � 
� � �� �� i� � g�sum�g�i�� � �


��
�d� � i � g�y�g�i�� i�

enddo

yp�i� 	 �
�
�d� � i � y�i� � cparm�iid � 
� � �� �� i� � sum

C sum 	 sum � y�i� � y�i�

do g�i� 	 
� g�p�

g�sum�g�i�� 	 g�sum�g�i�� � y�i� � g�y�g�i�� i� � y�i� � g�y

��g�i�� i�

enddo

sum 	 sum � y�i� � y�i�

�� continue

����� continue

if �iwt 
lt
 �� then

goto ���

endif

do ������ i 	 
� n

C yp�i� 	 yp�i� � w�i�

do g�i� 	 
� g�p�

g�yp�g�i�� i� 	 �
 � w�i�� � g�yp�g�i�� i�

enddo

yp�i� 	 yp�i� � w�i�

C y�i� 	 ytemp�i�

do g�i� 	 
� g�p�

g�y�g�i�� i� 	 g�ytemp�g�i�� i�

enddo

y�i� 	 ytemp�i�

��� continue

����� continue

��� continue

return

end

Figure �	 ADIFOR�generated code for problem C� �part ��

We see that the derivative codes have a gradient object associated with every dependent variable	 Our
convention is to associate a gradient g��var� of leading dimension ldg��var� with variable �var�	 The
calling sequence of g�foo�n is derived from that of foo by inserting an argument g�p� denoting the length of
the gradient vectors as the �rst argument� and then copying the calling sequence of foo� inserting g�
var�

and ldg�
var� after every active variable 
var�	 Passive variables or those not of REAL or DOUBLE
PRECISION type are left untouched	
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Subroutine g�fcn��� relates to the Jacobian

Jyp �

�
BB�

�yp�
�y�

� � � �yp�
�ym

			
			

�ypm
�y�

� � � �ypm
�ym

�
CCA

as follows� Given input values for g�p�� m� x� y� g�y� ldg�y� and ldg�yp� the routine g�fcn��� com�
putes yp and g�yp� where

g�yp���g�p����m� � �Jyp�g�y���g�p����m�
T ��T

The superscript T denotes matrix transposition	 While the implicit transposition may seem awkward at �rst�
this is the only way to handle assumed�size arrays �like real a���� in subroutine calls	 It is the responsibility
of the user to allocate g�yp and g�y with leading dimensions ldg�yp and ldg�y that are at least g�p�	

For example� to compute the Jacobian of yp with respect to y� we initialize g�y to be an m 	 m identity
matrix and set p to m	 After the call to g�fcn���� g�yp contains the transpose of the Jacobian of yp with
respect to y	 If we wish to compute only a matrix�vector product �as is often the case when iterative schemes
are applied to solve equation systems with the Jacobian as the coe�cient matrix�� we set p � � and g�y to
the vector by which the Jacobian is to be multiplied	

From the forementioned discussion� ADIFOR�generated code is well suited for computing dense Jacobian
matrices	 We will now show that it can also exploit the sparsity structure of Jacobian matrices	 Remember
that the forward mode of automatic di�erentiation upon which ADIFOR is mainly based requires roughly
g�p� operations for every assignment statement in the original function	 Thus� if we compute a Jacobian J
with n columns by setting g�p� � n� its computation will require roughly n times as many operations as the
original function evaluation� independent of whether J is dense or sparse	 However� it is well known 
��� ���
that the number of function evaluations that are required to compute an approximation to the Jacobian by
divided di�erences can be much less than n if J is sparse	 The same idea can be applied to greatly reduce
the running time of ADIFOR�generated derivative code as well	

As an example� consider the swirling �ow problem� which comes from Parter 
��� and is part of the
MINPACK�� test problem collection 
��	 The problem is a coupled system of boundary value problems
describing the steady �ow of a viscous� incompressible� axisymmetric �uid between two rotating� in�nite
coaxial disks	 The number of variables in the resulting optimization problem depends on the discretization	
For example� for n � �� the Jacobian of F has the structure shown in Figure ��	
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Figure ��� Structure of the swirling �ow Jacobian� n � ��

By using a graph coloring algorithm designed to identify structurally orthogonal columns �we used the
one described in 
����� we can determine that this Jacobian can be grouped into �� sets of structurally

��



orthogonal columns� independent of the size of the problem	 As a result� we initialize a ��	 �� matrix g�xT

to the structure shown in Figure ��	 Here every circle denotes the value �	�	 The structure of the resulting
compressed Jacobian g�FvalT is shown in Figure �� as well	 Here every circle denotes a nonzero entry	 Now�
instead of g�p� � ��� a size of g�p� � �� is su�cient� a sizeable reduction in cost	 The proper and e�cient
initialization of ADIFOR�generated derivative codes is described in detail in 
��	
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Figure ��� Left� Structure of g�xT Right� Structure of g�FvalT

One issue that deserves some attention is that of error handling	 Exceptional conditions arise because
of branches in the code or because subexpressions may be de�ned but not be di�erentiable �

p
�x� at x � ��

for example�	 ADIFOR knows when Fortran intrinsics are nondi�erentiable� and traps to an error handler
if we wish to compute derivatives at a point where the derivatives do not exist	 The current error�handling
mechanism of ADIFOR is described in 
��	

� Experimental Results

In this section� we report on the execution time of ADIFOR�generated derivative codes in comparison with
divided�di�erence approximations of �rst derivatives	 While the ADIFOR system runs on a SPARC platform�
the ADIFOR�generated derivative codes are portable and can run on any computer that has a Fortran���
compiler	

The problems named �camera�� �micro�� �heart�� �polymer�� �psycho�� and �sand� were given to us by
Janet Rogers� National Institute of Standards and Technology in Boulder� Colorado	 The code submitted to
ADIFOR computes elementary Jacobian matrices which are then assembled to a large sparse Jacobian matrix
used in an orthogonal�distance regression �t 
��	 The code named �shock� was given to us by Greg Shubin�
Boeing Computer Services� Seattle� Washington	 This code implements the steady shock tracking method
for the axisymmetric blunt body problem 
���	 The Jacobian has a banded structure	 The compressed
Jacobian has �� columns� compared to ��� for the �normal� Jacobian	 The code named �adiabatic� is from
Larry Biegler� Chemical Engineering� Carnegie�Mellon University and implements adiabatic �ow� a common
module in chemical engineering 
���	 Lastly� the code named �reactor� was given to us by Hussein Khalil�
Reactor Analysis and Safety Division� Argonne National Laboratory	 While the other codes were used in an
optimization setting� the derivatives of the �reactor� code are used for sensitivity analysis to ensure that the
model is robust with respect to certain key parameters	

Tables � and � summarize the performance of ADIFOR�generated derivative codes with respect to divided
di�erences	 These tests were run on a SPARCstation �� a SPARC ������ or an IBM RS��������	 We used
di�erent machines because the codes were submitted from di�erent computing environments	 The numbers

��



Table �� Performance of ADIFOR�generated derivative codes compared to divided�di�erence approximations
on orthogonal�distance regression examples for ������ Jacobian evaluations

Code Div Di� ADIFOR ADIFOR
Problem Jacobian Size Run time Run time Improve�
Name Size �lines� �seconds� �seconds� ment Machine
Camera �	 �� �� �	�� �	�� �	�" RS��������
Camera �	 �� �� �	�� ��	�� ���" SPARC �����
Micro �	 �� ��� �	�� �	�� ��" RS��������
Micro �	 �� ��� ��	� ��	�� ��" SPARC �����
Polymer �	 � �� �	�� �	�� ��" RS��������
Polymer �	 � �� �	�� �	�� ��" SPARC �����
Psycho �	 � �� �	�� �	�� ��" RS��������
Psycho �	 � �� �	�� �	�� ��" SPARC �����
Sand �	 � �� �	�� �	�� ��" RS��������
Sand �	 � �� �	�� �	�� ��" SPARC �����

Table �� Performance of ADIFOR�generated derivative codes compared to divided�di�erence approximations
for a single Jacobian evaluation

Code Div Di� ADIFOR ADIFOR
Problem Jacobian Size Run time Run time Improve�
Name Size �lines� �seconds� �seconds� ment Machine
Reactor �	 �� ���� ��	�� ��	�� ��" SPARC �����
Reactor �	 �� ���� ��	�� �	�� ��" RS��������
Adiabatic �	 � ���� �	�� �	�� ��" SPARC �
Heart �	 � ���� �����	� �����	�� ���" SPARC �
Shock ���	 ��� ���� �	��� �	��� ��" RS��������
Shock ���	 ��� ���� �	�� �	�� ��" SPARC �

reported in Table � are for ������ evaluations of the Jacobian� while those in Table � are for a single evaluation
of the Jacobian	

The column of the tables labeled �ADIFOR Improvement� indicates the percentage improvement of the
running time of the ADIFOR�generated derivative code over an approximation of the divided�di�erence
running times	 For the �shock� code� we had a derivative code based on sparse divided di�erences supplied
to us	 In the other cases� we estimated the time for divided di�erences by multiplying the time for one
function evaluation by the number of independent variables	 This approach is conservative� yet fairly typical
in an optimization setting� where the function value already has been computed for other purposes	 An
improvement greater than �" indicates that the ADIFOR�generated derivatives ran faster than divided
di�erences	

The percentage improvement for the �camera� problem indicates a stronger�than�expected dependence of
running times of ADIFOR�generated code on the choice of compiler and architecture	 In fact� the ��" degra�
dation in performance on the �camera� problem is a result of the SPARC compiler
s missing an opportunity
to move loop�invariant cos and sin invocations outside of loops� as occurs in the following ADIFOR�generated
code�
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C cteta � cos�par�
��

d�� � par�
�

do ����� g�i� � �� g�p�

g�cteta�g�i�� � �sin�d��� � g�par�g�i�� 
�

����� continue

cteta � cos�d���

If we edit the ADIFOR�generated code by hand to extract the invariant expression� we get a similar perfor�
mance on the SPARC	 Moving loop�invariant code outside of loops is one of the performance improvements
that we will implement in later versions	

We see that already in its current version� ADIFOR performs well in competition with divided di�erence
approximations	 It is up to a factor of three faster� and never worse by more than a factor of �	��	 This
improvement was obtained without the user having to make any modi�cations to the code	 We also see
that ADIFOR can handle problems where symbolic techniques would be almost certain to fail� such as the
�shock� or �reactor� codes	 The ADIFOR�generated derivative codes had up to four times as many lines of
code as the code that was submitted to ADIFOR	

The performance of ADIFOR�generated derivatives can even be better than that of hand�coded deriva�
tives	 For example� for the swirling �ow problem mentioned in the preceding section� we obtain the perfor�
mance shown Figure ��	
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Figure ��� Swirling �ow Jacobian

Figure �� shows the performance of the hand�derived derivative code supplied as part of the MINPACK�
� test set collection 
���� and that the ADIFOR�generated code� properly initialized to exploit the sparsity
structure of the Jacobian	 On an RS��������� the ADIFOR�generated code signi�cantly outperforms the
hand�coded derivatives	 On one processor of the CRAY Y�MP���� the two approaches perform comparably	
The values of the derivatives computed by the ADIFOR�generated code agree to full machine precision with
the values from the hand�coded derivatives	 The accuracy of the �nite di�erence approximations� on the
other hand� depends on the user
s careful choice of a step size	

We conclude that ADIFOR�generated derivatives are a more than suitable substitute for hand�coded
or divided�di�erence derivatives	 Virtually no time investment is required by the user to generate the
codes	 In most of our example codes� ADIFOR�generated codes outperform divided�di�erence derivative
approximations	 In addition� the fact that ADIFOR computes highly accurate derivatives may signi�cantly
increase the robustness of optimization codes or ODE solvers� where good derivative values are critical for
the convergence of the numerical scheme	

��



� Future Work

We are planning many improvements for ADIFOR	 The most important are

� second� and higher�order derivatives�

� automatic detection of sparsity�

� increased use of the reverse mode for better performance� and

� integration with Fortran parallel programming environments such as Fortran�D 
���	

Second�order derivatives are a natural extension� and this functionality is required for many applica�
tions in numerical optimization	 In addition� for sensitivity analysis applications� second derivatives reveal
correlations between various parameters	 While we currently can just process the ADIFOR�generated code
for �rst derivatives� much can be gained by computing both �rst� and second�order derivatives at the same
time 
��� ���	

The automatic detection of sparsity is a functionality that is unique to automatic di�erentiation	 Here
we exploit the fact that in automatic di�erentiation� the computation of derivatives is intimately related to
the computation of the function itself	 The key observation is that all our gradient computations have the
form

vector �
X
i

scalari � vectori�

By merging the structure of the vectors on the right�hand side� we can obtain the structure of the vector on
the left�hand side	 In addition� the proper use of sparse vector data structures will ensure that we perform
computations only with the non�zero components of the various derivative vectors	

We can improve the speed of ADIFOR�generated derivative code through increased use of the reverse
mode	 The reverse modes requires us to reverse the computation from a trace of at least part of the
computation which we later interpret	 If we can accomplish the code reversal at compile time� we can truly
exploit the reverse mode� since we do not incur the overhead that is associated with run�time tracing	

ADIFOR currently does a compile�time reversal of composite right�hand sides of assignment statements�
but there are other syntactic structures such as parallel loops for which this could be performed at compile
time	 In a parallel loop� there are no dependencies between di�erent iterations	 Thus� in order to generate
code for the reverse mode� it is su�cient to reverse the computation inside the loop body	 This can easily
be done if the loop body is a basic block	 The potential of this technique is impressive	 Hand�compiling
reverse mode code for the loop bodies of the torsion problem� another problem in the MINPACK�� test set
collection� we obtained the performance shown in Figure ��	 This �gure shows the ratio of gradient�function
evaluation on a Solbourne �E���� for the current ADIFOR version� and for a hand�modi�ed ADIFOR code
that uses the reverse mode for the bodies of parallel loops	 If nint is the number of grid points in each
dimension� then the gradients are of size nint � nint	

Approximation of the gradient by divided di�erences costs nint � nint function evaluations	 Hence� we
see that

� the current ADIFOR is faster than divided di�erence approximations by a factor of �� on a problem
of size ���� and

� using the reverse mode for loop bodies� we can compute the gradient in about six to seven times the
cost of a function evaluation� independent of the size of the problem	

Taken together� these points mean that for the problem of size ����� we can improve the speed of derivative
computation by over two orders of magnitude compared to divided�di�erence computations	 We stop at a
problem of size ���� only because at that size� we ran out of memory	

These examples for which we have �compiled� ADIFOR�generated code by hand show again the promise
of viewing automatic di�erentiation as a syntax transformation process	 By taking advantage of the context
�parallel loops� in this case� of a piece of code� we can choose whatever automatic di�erentiation technique is
most applicable� and generate the most e�cient code for the computation of derivatives	 In many applications
where the computation of derivatives currently requires the dominant portion of the running time� the use
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of ADIFOR�generated derivatives will then lead to dramatic improvements� without having to change the
algorithm that uses the derivative information� or the coding of the �function� for which derivatives are
required	
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