
A COLLECTION OF PROBLEMS FOR WHICH GAUSSIANELIMINATION WITH PARTIAL PIVOTING IS UNSTABLE�STEPHEN J. WRIGHTySIAM J. SCI. STATIST. COMPUT. c 1992 Society for Industrial and Applied MathematicsVol. 0, No. 0, pp. 000{000, Month 1992 012Abstract. A signi�cant collection of two-point boundary value problems is shown to give riseto linear systems of algebraic equations on which Gaussian elimination with row partial pivoting isunstable when standard solution techniques are used.Key words. two-point boundary value problems, Gaussian elimination, partial pivotingAMS(MOS) subject classi�cations. 65F05, 65L10, 65L201. Introduction. It is well known that when Gaussian elimination with rowpartial pivoting is applied to a k � k real matrix, a growth factor of up to 2k�1 maybe observed in the upper triangular factor. A matrix which achieves this upper bound,due to Wilkinson [9, p.212], has passed into the folklore of numerical linear algebra.However, matrices that exhibit growth factors which are exponential in their dimen-sion have apparently not previously been observed in connection with any \practicalapplications." In the next section, we discuss two-point boundary value problems forwhich standard solution techniques give rise to matrices with this undesirable prop-erty. An extreme case is derived in Section 3. Some random trials, reported in Section4, suggest that the collection of such problems may represent a signi�cant fraction ofthe set of two-point boundary value problems with coupled end conditions.2. Examples Arising from Two-Point Boundary Value Problems. Con-sider the general two-point boundary value problemy0 = M (t)y + q(t); Bay(a) +Bby(b) = �; y(t) 2 Rl n;(1)and the particular problem de�ned byn = 2; M (t) � � �16 11 �16 � ; a = 0; b = 60; Ba = Bb = I:(2)(The values of q(t) and � are not relevant to our present discussion.) The problemde�ned by the data (2) is well conditioned; that is, its solution y is insensitive toperturbations in the data M (t), q(t), Ba, Bb, and � which de�ne it. To show this,we can construct the analytic solution as follows: First, de�ne Y (t) 2 Rl n�n as afundamental solution of the homogeneous ordinary di�erential equation y0 = M (t)y.De�ning Q = BaY (a) + BbY (b)and G(x; t) = � Y (x)Q�1BaY (a)Y �1(t) t � x�Y (x)Q�1BbY (b)Y �1(t) t > x;� This research was supported by the Applied Mathematical Sciences subprogram of the O�ce ofEnergy Research, U. S. Department of Energy, under ContractW-31-109-Eng-38, and by a RaybouldFellowship from the University of Queensland, Australia.y Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.1



2 STEPHEN J. WRIGHTwe can write y(x) = Y (x)Q�1� + Z ba G(x; t)q(t) dt(3)(see, for example [1]). Well-conditioning is usually quanti�ed in terms of norms of thetwo operators in (3). For the constant-coe�cient problem (2) (with M � M (t)) wehave, choosing Y (0) = I, thatY (t) = eMt; Q = I + e60M ;�1 4= supa�x�b kY (x)Q�1k1 � 1;(4) �2 4= (b� a) supa�t;x�b kG(x; t)k1 � (b� a);and so our claim of well-conditioning is veri�ed.A standard algorithm for problems of the form (1) is multiple shooting [6]. In itssimplest form, this algorithm proceeds by partitioning [a; b] into N subintervals, thatis, de�ning a mesh a = t1 < t2 < � � � < tN+1 = b byti = a+ ih; i = 1; � � � ; N + 1; h = (b� a)=N:On each subinterval [ti; ti+1], the following initial value problems are solved:Y 0i = M (t)Yi; Yi(ti) = I;(5) y0pi = M (t)ypi + q(t); ypi(ti) = 0:(6)De�ning si as the value of the true solution y at ti, we note thaty(t) = Yi(t)si + ypi(t); t 2 [ti; ti+1]; i = 1; : : : ; N:Since, clearly, y(t) must be continuous across the mesh points, we haveYi(ti+1)si + ypi(ti+1) = si+1; i = 1; : : : ; N:(7)Moreover, from the boundary conditions,Bas1 +BbsN+1 = �:(8)The equations (7),(8) yield a system of linear equations whose solution is s1; � � � ; sN+1.The coe�cient matrix has the general formA = 26666664 Ba Bb�Y1(t2) I 0�Y2(t3) I .... . . . . . 0�YN (tN+1) I 37777775 :(9)For the data (2) we have in particular that Yi(ti+1) = eMh, and so (9) becomes�A = 26666664 I I�eMh I 0�eMh I .... . . . . . 0�eMh I 37777775 :(10)



INSTABILITY OF GAUSSIAN ELIMINATION 3The conditioning of the \shooting matrix" A can be related to the conditioning ofthe original problem (1) by a theorem of Osborne and Mattheij, which appears asTheorem 4.11 in Lentini, Osborne, and Russell [3]:Theorem 2.1. Suppose that k[BajBb]k1 � 1 and that N is chosen large enoughthat kYi(ti+1)k1 � K0; i = 1; � � � ; N:Then cond1(A) = kAk1kA�1k1 � (K0 + 1)(�1 + �2N=(b� a));where �1 and �2 are as de�ned in (4).For (10), this bound translates tocond1( �A) � (keMhk1 + 1)(1 +N )for h su�ciently small. (For (2) with N = 200, the bound is about 459.) Supposethat h is chosen small enough that all elements of eMh are less than 1 in magnitude.This is certainly possible for (2), sinceeMh = I +Mh+O(h2) � � 1� h=6 hh 1� h=6 � :(11)If Gaussian elimination with row partial pivoting is applied to the matrix �A, nopivoting occurs, and the following factorization is obtained:�A = 2666664 I�eMh I�eMh I. . . . . .�eMh L̂ 3777775266666664 I II eMhI e2Mh. . . ...I eM(60�h)Û 377777775 ;(12)where L̂Û = (I + e60M) with L̂ and Û lower and upper triangular, respectively.Clearly, exponential element growth has taken place in the last column of U . WhenN = 200 (h = 0:3), the largest element in the U factor is approximately 2:59� 1021.Poor performance of Gaussian elimination is not limited to matrices derived fromthe multiple shooting algorithm (5){(8). Similar behavior also occurs when \back-wards shooting" (from the right-hand endpoint of each subinterval) is used and whena midpoint-rule �nite di�erence discretization is applied to (1),(2).As expected, a complete pivoting strategy produces a stable factorization. Forthe matrix �A, the largest element in the computed U factor is just 1:284, and both Land U factors are sparse (density 1:41% for L, 1:18% for U ), though the �ll-in patternis somewhat irregular.The behavior exhibited in (12) will occur whenever the coe�cient matrix M hasnegative diagonal elements since then, provided h is su�ciently small, eMh will haveall its elements less than one in magnitude and no pivoting will occur. Terms of ordereM(b�a) will therefore appear in the U factor, and these will be large if any of theeigenvalues of M have positive real parts.Mattheij [5] has observed that stability of the partial pivoting strategy is closelyrelated to the following feature of the pivoting pattern: if the matrix A is regarded as



4 STEPHEN J. WRIGHTa collection of N + 1 \row blocks," each containing n rows, then the number of rowsthat are pivoted between row block i and row block i+1 (i = 1; � � � ; N�1) should equalthe number of eigenvalues of M whose real parts are positive. An assumption thatthe pivoting pattern has this property occurs is crucial to the analysis of Wright [11].Although this property appears to hold for most of the standard two-point boundarytest problems in the literature, the matricesM just discussed lead to shooting matricesfor which it is not satis�ed.The trouble is not con�ned to matricesM with negative diagonal entries for whichno pivoting occurs during the factorization of the shooting matrix. The coe�cientmatrix M = � �10 �1919 30 � ;has two positive eigenvalues, at approximately 3:755 and 16:245. Suppose we take theremaining data as in (2), construct the shooting matrix as in (5){(8), and apply rowpartial pivoting. Blowup is again observed for su�ciently small h; when the shootingmatrix is factorized, only one row is pivoted between each successive pair of blockrows.Neither is the blowup behavior restricted to constant-coe�cient problems (i.e.,those for whichM = M (t) is constant on [a; b]). Examples similar to those in this note,but with non-constant coe�cients or nonlinear dynamics, can easily be constructedby modifying the examples above. Such examples are actually more \relevant" since,in practice, they are often solved by multiple shooting and �nite di�erence algo-rithms and therefore run the risk of exhibiting the instability just described, whereasconstant-coe�cient problems are usually solved by other means.In order to produce the unstable behavior, it is necessary for the problem to havecoupled end conditions. If instead the boundary conditions have the separated form�B0x(a) = �a; �B1x(b) = �b; �B0 2 Rl na�n; �B1 2 Rl nb�n; na + nb = n;the matrix (9) is a permutation of a banded matrix that has a bandwidth of 2n. Sinceelement growth in row partial pivoting is at worst exponential in the bandwidth, thetype of growth depicted above cannot occur.Alternative stable and e�cient means for producing factorizations of the matrices(9) are available. Wright [10] has described a structured QR factorization scheme forthese matrices and proved its stability. (A later modi�cation of this scheme, based onGivens rotations rather than Householder transformations, is stable while being notmuch less e�cient than the LU algorithm discussed above.) If speed is an importantconsideration, the LU factorization can be attempted in the �rst instance and backupstrategies (such as QR factorization of A or LU factorization of AT ) can be calledon only if instability is detected. LU factorization of AT will work for the problemsdiscussed above, though it can fail on other problems | for example, the problemn = 2; M (t) � � 16 �1�1 16 � ; a = 0; b = 60; Ba = I; Bb = 2I:Whether there exist problems for which LU factorization of both A and AT is unstableis an open question.Liu and Russell [4] have apparently observed the e�ects of lack of stability of LUfactorization on a practical problem. They use a continuation code for parametrized



INSTABILITY OF GAUSSIAN ELIMINATION 5ODEs to solve the Kuramoto-Sivashinsky equation and try various factorization tech-niques to perform the core operation of solving the linear equations that arise repeat-edly during the computation. (The coe�cient matrices of these linear systems haveare actually bordered versions of the shooting matrices above.) They �nd that thecontinuation algorithm is less robust when an LU algorithm with partial pivoting isused to perform the factorization than when a QR algorithm is used.3. Fraction of Maximum Possible Growth. When n = 1, it is not possibleto construct an example that leads to exponential blowup. A worst case appears tobe the scalar problemy0 = q(t); y(a) + y(b) = �; y(t) 2 Rl ;which, when algorithm (5){(8) is applied, produces a matrix for which element growthof order N occurs in the U factor.For n = 2, we can investigate how closely the upper bound on element growth formatrices of size (N + 1)n, namely, 2(N+1)n�1, is approached when the matrix has theform (9). Consider a constant coe�cient problem de�ned by the datan = 2; M = � � �� 11 �� � ; a = 0; b = L; Ba = Bb = I;(13)where � 2 (0; 1). The matrix M has eigenvalues �(�� � 1). By choosing N andsetting h = L=N , we obtain a coe�cient matrix similar to �A in (10). To ensure thatno pivoting occurs during the factorization, we must choose N large enough that noelements of eMh exceed 1. Explicit calculation of the matrix exponential shows thatthis requirement is equivalent toe���h[e�h + e��h] � 2;or, if we de�ne X = e�h, p(X) = X2 � 2X1+� + 1 � 0:Since, for � 2 (0; 1), p(0) = 1, p(1) = 0, p0(1) < 0, and limX!+1 p(X) = +1, theequation p(X) = 0has a solution X(�) that is strictly greater than 1. Since h = L=N > 0, this is thesolution of interest to us.If we assume that no pivoting occurs during the Gaussian elimination, it followsfrom (12) that the largest element in the U factor is approximately equal to the largestelement in eML. A little calculation shows that this is approximatelyE = 12e�L(1��):Given the upper bound on the growth for matrices of dimension 2(L=h+ 1), namely,Emax = 22(L=h+1)�1;



6 STEPHEN J. WRIGHTwe have �(�) 4= log2Elog2Emax = �L(1��)ln 2 � 12(Lh + 1)� 1� 1ln 2 �h(1� �)2= 12 ln 2(1� �) lnX(�):Simple analysis of p(X) shows that X(�) ! +1 and (1 � �) lnX(�) ! ln 2 as�! 1�. Therefore lim�!1� �(�) = 12 :In fact, we can show that �(�) is monotonic increasing on the interval (0; 1), withlim�!0+ �(�) = 0.We conclude that for multiple-shooting coe�cient matrices arising from (13), theobserved growth factor during Gaussian elimination may be as large as approximately2N+1.4. Discussion. In [7], Trefethen writes with reference to real k � k matrices:\Perhaps large growth rates like 2k�1 correspond to unstable `modes' that are them-selves somehow unstable, in the sense that computations tend to drift away from themtowards stabler con�gurations." The \drifting away" is precisely what fails to happenfor the matrices described above. Rather, the unstable modes are propagated andreinforced because of the presence of a recurrence in which the relationship betweenany two successive terms is the same. The highly specialized structure of the matrices(9) and (10) accounts for the di�erence between our experience with randomly gen-erated examples (reported below) and the experience of Trefethen and Schreiber [8],who worked with randomly generated dense matrices and observed an average growthrate of k2=3 for real k � k matrices when partial pivoting was used.Higham and Higham [2] present a number of dense matrices that arise naturallyin applications for which the growth factors are between n=2 and n when both partialand complete pivoting are used. They point out that large growth factors do notnecessarily imply large backward errors in the computed solution. However, for theproblems described above, we would expect both the forward and backward errorsin the computed solution to be large. Consider again the example (1),(2). Because(1 + e60M) is singular in double precision arithmetic, the computed U factor has azero element in its bottom right-hand corner. Suppose we choose q(t) and � in (1)such that the true solution has y(t) = si = (1; 1)T for all t and i, and suppose thatwe avoid the singularity in U by setting ŝN+1 = sN+1, where the hat denotes acomputed quantity. If we back-substitute for the remaining ŝi, we obtain a relativeerror of 2:88� 105 in the computed solution of (7),(8). The backward error, which isde�ned as kc�Ax̂k2kAkFkx̂k2where x̂ is the computed solution of the system Ax = c, is found to be 0:0286. Allcomputations here were performed in double precision.



INSTABILITY OF GAUSSIAN ELIMINATION 7Table 1Number of \blowups" during each of �ve trials, each trial consistingof 100 randomly generated problems� 2 (1010;1) / � 2 (103; 1010]Trial  n = 2 n = 4 n = 6A 1 0/0 0/0 0/0B 10 2/2 2/4 4/2C 100 3/3 4/5 6/1D .1 0/0 0/0 0/0E 2 (Ba = Bb = I) 2/2 5/5 10/6An interesting open question is: Among all constant coe�cient problems of theform (1), is the set of triplets (M;Ba; Bb) that give rise to matrices on which Gaussianelimination fails truly a \nontrivial" subset off(M;Ba; Bb) jM;Ba; Bb 2 Rl n�n; k[BajBb]k1 � 1g?Computational experiments with randomly generated constant-coe�cient problemsshed a little light on this question. We generated n � n matrices M (n = 2; 4; 6) bychoosing each matrix element from a uniform distribution on [�10; 10]. In the �rstfour sets of trials, the elements of Ba and Bb were chosen likewise and then scaledso that k[BajBb]k1 = . We chose  = 1, 10, 100, and 0:1 in trials A, B, C, and D,respectively. In trial E, we set Ba = Bb = I. In each trial, 100 randomly generatedproblems were solved by using (5){(8) with 1024 subintervals, with a = 0 and b = 10.For each trial we de�ne the following quantity � that measures the \blowup" in theU factor: � 4= max(U ) = k[BajBb]k1where max (U ) is the magnitude of the largest element in the upper-triangular factor.Each entry in Table 1 has two components. The �rst is the number of problems (outof 100) for which � exceeded 1010 and the second is the number of problems for which� 2 (103; 1010]. When � > 1010, the resulting loss of precision is usually large enoughto destroy the accuracy of the computed solution.Three features of Table 1 are worth noting. First, the likelihood of blowup seemsto increase as n increases. This is not a surprise | as n grows we would expect amismatch between the number of positive eigenvalues and the number of rows thatare pivoted between successive blocks (see Section 2) to become more likely. Second,the choice Ba = I (which can be obtained by a simple transformation whenever theBa in (1) is nonsingular) seems to be particularly inappropriate, though it is the\natural" choice in many circumstances. The reason for this should be clear from thediscussion near the end of Section 2. Third, a wise strategy appears to be to scaleBa, Bb, and � by a moderately small constant. From Theorem 2.1 and the de�nitionsof Q and �1, we see that this may cause some slight deterioration in the conditioningof the matrix (9), but trials A and D indicate that exponential blowup is much lesslikely to occur. A \too small" choice of  may lead to Assumption 1 in [11] beingviolated during factorization of the �rst few row blocks, but after this initial phase,the pivoting pattern exhibits the \stable" pivoting feature described in Section 2.Acknowledgements. The comments of Bob Russell, Nick Higham and anony-mous referees are gratefully acknowledged.
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