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A COLLECTION OF PROBLEMS FOR WHICH GAUSSIAN
ELIMINATION WITH PARTIAL PIVOTING IS UNSTABLE"~

STEPHEN J. WRIGHT'

Abstract. A significant collection of two-point boundary value problems is shown to give rise
to linear systems of algebraic equations on which Gaussian elimination with row partial pivoting is
unstable when standard solution techniques are used.
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1. Introduction. It is well known that when Gaussian elimination with row
partial pivoting is applied to a k x k real matrix, a growth factor of up to 28! may
be observed in the upper triangular factor. A matrix which achieves this upper bound,
due to Wilkinson [9, p.212]; has passed into the folklore of numerical linear algebra.
However, matrices that exhibit growth factors which are exponential in their dimen-
sion have apparently not previously been observed in connection with any “practical
applications.” In the next section, we discuss two-point boundary value problems for
which standard solution techniques give rise to matrices with this undesirable prop-
erty. An extreme case is derived in Section 3. Some random trials, reported in Section
4 suggest that the collection of such problems may represent a significant fraction of
the set of two-point boundary value problems with coupled end conditions.

2. Examples Arising from Two-Point Boundary Value Problems. Con-
sider the general two-point boundary value problem

(D) v =M@Oy+q(t),  Bayla)+ By(b) =5, y(i) €R,

and the particular problem defined by
1 1
(2) n=2, M(t)E[ 61 1], a=0,5=060, B, =By, =1.
6

(The values of ¢(¢) and 3 are not relevant to our present discussion.) The problem
defined by the data (2) is well conditioned; that is, its solution y is insensitive to
perturbations in the data M(t), ¢(t), Ba, Bp, and § which define it. To show this,
we can construct the analytic solution as follows: First, define Y (¢) € R**" as a
fundamental solution of the homogeneous ordinary differential equation ¥ = M(t)y.
Defining

Q= B,Y(a)+ ByY(b)
and

Y(@)Q 'B.Y ()Y (t) t<=z
Gla,t) = { _gf()x)Q—le}(/()b Y—l()t) t>z,
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we can write

3) y(w) = Y (2)Q1 5+ / G, )q(t) dt

(see, for example [1]). Well-conditioning is usually quantified in terms of norms of the

two operators in (3). For the constant-coefficient problem (2) (with M =
have, choosing Y (0) = I, that

Y(t):eMt’ QII—|—660M,
A —
(4) K1 = sUpagep [V (2)Q 7 oo & 1,
A
Ko = (b—a) sup,gy o cp [|G(2, 1)|oo % (b~ a),

and so our claim of well-conditioning is verified.

M(t)) we

A standard algorithm for problems of the form (1) is multiple shooting [6]. In its
simplest form, this algorithm proceeds by partitioning [a, b] into N subintervals, that

is, defining a mesh a =t <1y < - - <ityy1 =0bby
t;i = a+ ih, 1=1,--- N+1, h=(b—a)/N.

On each subinterval [t;,t;41], the following initial value problems are solved:

(5) Y= MY, Vi) =1,
(6) Ypi = M(Oypi +4(8), ypi(t:) = 0.
Defining s; as the value of the true solution y at ¢;, we note that

y(t) = Yi(t)si + ypi(t), t € [t tiy1], i=1,...,N.

Since, clearly, y(t) must be continuous across the mesh points, we have

(7) Yi(tiv1)si + Ypi(tiv1) = siya, i=1,...,N.
Moreover, from the boundary conditions,
(8) Bgsi + BbSN_|_1 =73

The equations (7),(8) yield a system of linear equations whose solution is sq,
The coefficient matrix has the general form

Ba Bb
—Yi(t2) I 0
(9) A= —Yo(ts) I :
. . 0
—Yn(ns) [

C SN

For the data (2) we have in particular that Y;(¢;11) = eM” and so (9) becomes

I I
—eMh 1 0

(10) A= —eMh
0
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The conditioning of the “shooting matrix” A can be related to the conditioning of
the original problem (1) by a theorem of Osborne and Mattheij, which appears as
Theorem 4.11 in Lentini, Osborne, and Russell [3]:

THEOREM 2.1. Suppose that ||[Ba|Bs]l|lec < 1 and that N is chosen large enough
that

1Yitig)lloo < K/, i=1,---,N.
Then
condas(4) = [[Al|eo | A7 oo < (K" +1)(w1 + w2/ (b= a)),

where k1 and Ko are as defined in (4).
For (10), this bound translates to

conde (A4) < ([l |oo + 1)(1+ N)

for h sufficiently small. (For (2) with N = 200, the bound is about 459.) Suppose
that h is chosen small enough that all elements of eM” are less than 1 in magnitude.
This is certainly possible for (2), since

1—h/6 h
Mh _ 2\
(11) "t =1+ Mh+O()~ h 1—h/6 |
If Gaussian elimination with row partial pivoting is applied to the matrix A, no
pivoting occurs, and the following factorization is obtained:

I I

I
_th s 7 th
- M 7 2M A
(12)A = —e I ,
: N I M(éO—h)
_eMbo | e

U

where LU = (I + €59 with L and U lower and upper triangular, respectively.
Clearly, exponential element growth has taken place in the last column of /. When
N =200 (h = 0.3), the largest element in the U factor is approximately 2.59 x 10%%.

Poor performance of Gaussian elimination is not limited to matrices derived from
the multiple shooting algorithm (5)—(8). Similar behavior also occurs when “back-
wards shooting” (from the right-hand endpoint of each subinterval) is used and when
a midpoint-rule finite difference discretization is applied to (1),(2).

As expected, a complete pivoting strategy produces a stable factorization. For
the matrix A, the largest element in the computed U factor is just 1.284, and both L
and U factors are sparse (density 1.41% for L, 1.18% for U), though the fill-in pattern
is somewhat irregular.

The behavior exhibited in (12) will occur whenever the coefficient matrix M has
negative diagonal elements since then, provided h is sufficiently small, eM” will have
all its elements less than one in magnitude and no pivoting will occur. Terms of order
eM(1=4) will therefore appear in the U factor, and these will be large if any of the
eigenvalues of M have positive real parts.

Mattheij [5] has observed that stability of the partial pivoting strategy is closely
related to the following feature of the pivoting pattern: if the matrix A is regarded as
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a collection of N + 1 “row blocks,” each containing n rows, then the number of rows
that are pivoted between row block i and row blocki+1 (i=1,---,N—1) should equal
the number of eigenvalues of M whose real parts are positive. An assumption that
the pivoting pattern has this property occurs is crucial to the analysis of Wright [11].
Although this property appears to hold for most of the standard two-point boundary
test problems in the literature, the matrices M just discussed lead to shooting matrices
for which it 1s not satisfied.

The trouble i1s not confined to matrices M with negative diagonal entries for which
no pivoting occurs during the factorization of the shooting matrix. The coefficient
matrix

M:[—lo —19]’

19 30

has two positive eigenvalues, at approximately 3.755 and 16.245. Suppose we take the
remaining data as in (2), construct the shooting matrix as in (5)-(8), and apply row
partial pivoting. Blowup is again observed for sufficiently small &; when the shooting
matrix is factorized, only one row is pivoted between each successive pair of block
rows.

Neither is the blowup behavior restricted to constant-coefficient problems (i.e.,
those for which M = M () is constant on [a, b]). Examples similar to those in this note,
but with non-constant coefficients or nonlinear dynamics, can easily be constructed
by modifying the examples above. Such examples are actually more “relevant” since,
in practice, they are often solved by multiple shooting and finite difference algo-
rithms and therefore run the risk of exhibiting the instability just described, whereas
constant-coefficient problems are usually solved by other means.

In order to produce the unstable behavior, it is necessary for the problem to have
coupled end conditions. If instead the boundary conditions have the separated form

Byz(a) = Ba, Biz(b) = By, By €R***" By € R, Na + 1y = 1,

the matrix (9) is a permutation of a banded matrix that has a bandwidth of 2n. Since
element growth in row partial pivoting is at worst exponential in the bandwidth, the
type of growth depicted above cannot occur.

Alternative stable and efficient means for producing factorizations of the matrices
(9) are available. Wright [10] has described a structured QR factorization scheme for
these matrices and proved its stability. (A later modification of this scheme, based on
Givens rotations rather than Householder transformations, is stable while being not
much less efficient than the LU algorithm discussed above.) If speed is an important
consideration, the LU factorization can be attempted in the first instance and backup
strategies (such as QR factorization of A or LU factorization of AT) can be called
on only if instability is detected. LU factorization of AT will work for the problems
discussed above, though it can fail on other problems — for example, the problem

1
n=2, M(t)z[_? 1], a=0,b=60, B,=1,  By=2I

Whether there exist problems for which LU factorization of both A and A” is unstable
s an open question.

Liu and Russell [4] have apparently observed the effects of lack of stability of LU
factorization on a practical problem. They use a continuation code for parametrized
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ODE:s to solve the Kuramoto-Sivashinsky equation and try various factorization tech-
niques to perform the core operation of solving the linear equations that arise repeat-
edly during the computation. (The coefficient matrices of these linear systems have
are actually bordered versions of the shooting matrices above.) They find that the
continuation algorithm is less robust when an LU algorithm with partial pivoting is
used to perform the factorization than when a QR algorithm is used.

3. Fraction of Maximum Possible Growth. When n = 1, it is not possible
to construct an example that leads to exponential blowup. A worst case appears to
be the scalar problem

v =q(t), yla)+y®d)=75  ylt)ER

which, when algorithm (5)—(8) is applied, produces a matrix for which element growth
of order N occurs in the U factor.

For n = 2, we can investigate how closely the upper bound on element growth for
matrices of size (N + 1)n, namely, 2(N+1n—1 ig approached when the matrix has the
form (9). Consider a constant coefficient problem defined by the data

—a 1

(13) n=2 M:A[ ] a=0, b=L, B,=B,=1,

1 -«

where « € (0,1). The matrix M has eigenvalues A(—«a £ 1). By choosing N and
setting h = L/N, we obtain a coefficient matrix similar to A in (10). To ensure that
no pivoting occurs during the factorization, we must choose N large enough that no
elements of eM” exceed 1. Explicit calculation of the matrix exponential shows that
this requirement is equivalent to

e—o&\h[e)\h _|_e—>\h] S 9

bl

Ah

or, if we define X = e,

p(X) = X? —2XM* 41 <0,

Since, for a € (0,1), p(0)

equation

(l
—
=
Ve
—
p—
(l

0, p'(1) < 0, and limx_ 4o p(X) = 400, the

p(X) =0

has a solution X («) that is strictly greater than 1. Since h = L/N > 0, this is the
solution of interest to us.

If we assume that no pivoting occurs during the Gaussian elimination, it follows
from (12) that the largest element in the U factor is approximately equal to the largest
element in M. A little calculation shows that this is approximately

1
E — §6>\L(1_Q).

Given the upper bound on the growth for matrices of dimension 2(L/h + 1), namely,

Emax — 22(L/h+1)—1
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we have
e ot s
log, Emax 20£4+1)-1
N L/\h(l—a)
~ In2 2
1
= 21n2(1—a)lnX(oz).

Simple analysis of p(X) shows that X(a) — +oco and (1 — a)In X () — In2 as
a — 17, Therefore

1
li =-.
Jim ote) =5
In fact, we can show that p(«) is monotonic increasing on the interval (0, 1), with
limg,_ g+ p(a) = 0.

We conclude that for multiple-shooting coefficient matrices arising from (13), the

observed growth factor during Gaussian elimination may be as large as approximately
ARES

4. Discussion. In [7], Trefethen writes with reference to real k x k matrices:
“Perhaps large growth rates like 281 correspond to unstable ‘modes’ that are them-
selves somehow unstable, in the sense that computations tend to drift away from them
towards stabler configurations.” The “drifting away” is precisely what fa«ls to happen
for the matrices described above. Rather, the unstable modes are propagated and
reinforced because of the presence of a recurrence in which the relationship between
any two successive terms is the same. The highly specialized structure of the matrices
(9) and (10) accounts for the difference between our experience with randomly gen-
erated examples (reported below) and the experience of Trefethen and Schreiber [8],
who worked with randomly generated dense matrices and observed an average growth
rate of k%/3 for real k x k matrices when partial pivoting was used.

Higham and Higham [2] present a number of dense matrices that arise naturally
in applications for which the growth factors are between n/2 and n when both partial
and complete pivoting are used. They point out that large growth factors do not
necessarily imply large backward errors in the computed solution. However, for the
problems described above, we would expect both the forward and backward errors
in the computed solution to be large. Consider again the example (1),(2). Because
(1 + 59M) is singular in double precision arithmetic, the computed U factor has a
zero element in its bottom right-hand corner. Suppose we choose ¢(¢) and g in (1)
such that the true solution has y(t) = s; = (1,1) for all ¢ and i, and suppose that
we avoid the singularity in U by setting Syy1 = syy1, where the hat denotes a
computed quantity. If we back-substitute for the remaining $;, we obtain a relative
error of 2.88 x 10° in the computed solution of (7),(8). The backward error, which is
defined as

[le — Azl
[1Al# 12l

where Z is the computed solution of the system Az = ¢, is found to be 0.0286. All
computations here were performed in double precision.
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TaBLE 1
Number of “blowups” during each of five trials, each trial consisting
of 100 randomly generated problems

p€ (10, 00) / pu € (10%,10%]
Trial 0l n=2 n=4 n=2~06
A 1 0/0 0/0 0/0
B 10 2/2 2/4 4/2
C 100 3/3 4/5 6/1
D 1 0/0 0/0 0/0
E 2(Ba=By=1)| 2/2 5/5 10/6

An interesting open question is: Among all constant coefficient problems of the
form (1), is the set of triplets (M, B,, By) that give rise to matrices on which Gaussian
elimination fails truly a “nontrivial” subset of

{(Ma BaaBb) | Ma BaaBb E Rﬂxn’ ||[Ba|Bb]||OO S 1}7

Computational experiments with randomly generated constant-coefficient problems
shed a little light on this question. We generated n x n matrices M (n = 2,4,6) by
choosing each matrix element from a uniform distribution on [—10,10]. In the first
four sets of trials, the elements of B, and Bj were chosen likewise and then scaled
so that [|[Ba|Bs]l|lec = 7. We chose ¥ = 1, 10, 100, and 0.1 in trials A, B, C, and D,
respectively. In trial E; we set B, = By = I. In each trial, 100 randomly generated
problems were solved by using (5)—(8) with 1024 subintervals, with @ = 0 and b = 10.
For each trial we define the following quantity p that measures the “blowup” in the
U factor:

I e max(U) / [|[Ba|Bbs]||oo

where max (U) is the magnitude of the largest element in the upper-triangular factor.
Fach entry in Table 1 has two components. The first is the number of problems (out
of 100) for which g exceeded 10*® and the second is the number of problems for which
p € (103,101, When g > 1019 the resulting loss of precision is usually large enough
to destroy the accuracy of the computed solution.

Three features of Table 1 are worth noting. First, the likelihood of blowup seems
to increase as n increases. This is not a surprise — as n grows we would expect a
mismatch between the number of positive eigenvalues and the number of rows that
are pivoted between successive blocks (see Section 2) to become more likely. Second,
the choice B, = I (which can be obtained by a simple transformation whenever the
Bg in (1) is nonsingular) seems to be particularly inappropriate, though it is the
“natural” choice in many circumstances. The reason for this should be clear from the
discussion near the end of Section 2. Third, a wise strategy appears to be to scale
B, By, and 8 by a moderately small constant. From Theorem 2.1 and the definitions
of () and 1, we see that this may cause some slight deterioration in the conditioning
of the matrix (9), but trials A and D indicate that exponential blowup is much less
likely to occur. A “too small” choice of v may lead to Assumption 1 in [11] being
violated during factorization of the first few row blocks, but after this initial phase,
the pivoting pattern exhibits the “stable” pivoting feature described in Section 2.
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