On the Calculation of Jacobian Matrices by
the Markowitz Rule for Vertex Elimination*

Andreas Griewankfand Shawn Reeset

October 1991

Abstract. The evaluation of derivative vectors can be performed with optimal computa-
tional complexity by the forward or reverse mode of automatic differentiation. This ap-
proach may be applied to evaluate first and higher derivatives of any vector function that is
defined as the composition of easily differentiated elementary functions, typically in the form
of a computer program. The more general task of efficiently evaluating Jacobians or other
derivative matrices leads to a combinatorial optimization problem, which is conjectured to
be NP-hard. Here, we examine this vertex elimination problem and solve it approximately,
using a greedy heuristic. Numerical experiments show the resulting Markowitz scheme for
Jacobian evaluation to be more efficient than column by column or row by row evaluation
using the forward or the reverse mode, respectively.

1 Basic Setting and Assumptions. Most nonlinear vector functions of practical
interest are evaluated by computer programs in a high-level computer language such as
Fortran or C. Conceptually, the execution of any such evaluation program can be viewed as
a sequence of scalar assignments

v; = ¢j(vi)ier, €ER . (1)
Here the index set
P; C {1,2,...,5 -1} (2)

contains the predecessors ,or parents, of j. In principle, the elementary functions ¢; may
depend on all currently known variable values v; € R with ¢ < j. In practice, most
¢; represent either binary arithmetic operations or univariate transcendental functions,

*This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

"Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IT, 60439

{Mathematical Sciences Department, Rensselaer Polytechnic Institute, Troy, NY 12181

1

Jacobians by Markowitz Elimination 2

in which case P; contains only one or two indices, respectively. Currently, our software
implementation breaks down the evaluation program into such unary and binary elementary
functions, but we shall develop the theory without this restriction. For the sake of simplicity
we shall assume that all ¢; are scalar valued, even though the inclusion of vector-valued
elementary functions (e.g., BLAS) might be advantageous in terms of storage and computing
time. Without loss of generality, we may assume that the variables v; are numbered such
that they can be combined into three vectors:

r = (v1,V2,0ec e, Vpo1,0,) (independent)
2 = (Vg1 ey Upyp) (intermediate)
= (Undptis-es oo Unaptm) (dependent)

It is assumed that, given the n components of the variable vector z, the p components of
the intermediate vector z, and the m components of the dependent vector y are defined by
the sequence of scalar functions (1) fori = n+1,...n+p+m. For notational completeness
one may define the first n elementary functions ¢; with j < n as the identities v; = z;.
This requires in particular that the components of x are mutually independent, and we shall
similarly assume that the components of ¥ do not occur as arguments in any elementary
function. To comply with these restrictions, one may have to add identity assignments at
the beginning and end of the evaluation program. For a substantial nonlinear problem, we
may assume that p, the number of intermediate variables, is significantly larger than the
sum n 4+ m. Using induction on j, we may now impose the following key assumption.
Assumption 1 For some firtedx € R" and j =n+1,n+2,....,n+ p+ m the elementary
functions ¢; are well defined and have jointly continuous partial derivatives

J .
cjilvidiep, = Z-¢; lor i€P; (3)
on some neighborhood
N, ¢ RY with n; =[P (4)

of their respective arguments (v;)iep, -

This condition will be met during the evaluation of a Fortran or C program, unless
the argument of a logarithm, square root, reciprocal, or inverse trigonometric function lies
outside the respective domain. Except for powers with fractional exponents, all arithmetic
operations and standard system functions are in fact analytic in the interior of their domains.
In our complexity considerations, we shall make the following assumption for some suitable
unit of computational cost:

Assumption 2 All elementary functions ¢; and their gradients Vo; = (cj;)iep,; are eval-
uated such that

Cost{ g; + = ;- Vo;(vi)iep, }
- Cost{ ¢;(vi)iep, }

where g; is an arbitrary n;-vector and «; an arbitrary scalar.

In other words, we assume that incrementing a given vector by a multiple of the gra-
dient V¢; at a given point is no more than three times as expensive as evaluating the
underlying elementary function ¢; at the same argument. This complexity assumption is
reasonable on a single-processor machine, even if memory accesses are taken into account.
For most arithmetic operations and elementary functions, the complexity bound is rather
conservative; but for the multiplication operation, it is sharp (assuming that an addition is
exactly half as expensive as a multiplication). On a multiprocessor, the accumulation of a

<3, (5)

Jacobians by Markowitz Elimination 3

dot product ¢; requires at least log, n; cycles; but the corresponding gradient incrementa-
tion is simply a SAXPY, which can be computed in O(1) time. More important, several v;
that do not depend directly or indirectly on each other can be evaluated concurrently on
several processors. As we shall see later, the computational task of accumulating Jacobians
offers even greater prospects for parallelism. Nevertheless, our main goal in this paper is to
minimize the total number of arithmetic operations during the accumulation of Jacobians.

Obviously, equation (1) and Assumption 1 imply by the chain rule that on some neigh-
borhoods of the given point z, the composite function

y=[f(z) f:R"—R" (6)

is well defined and once continuously differentiable. It is also clear that the entries of the
Jacobian matrix

J(z)=V,f(z) e R (7)

must be computable from the elementary partials c;; defined in Assumption 1. However,
the standard version of the chain rule is not directly applicable, and—as we shall see—there
are many ways in which the Jacobian can be accumulated (i.e., calculated from the ¢j;).

Now suppose z is a differentiable function of some parameter. Denote differentiation
with respect to this scalar by the superscript prime. Then it follows immediately from the
chain rule that (1) implies for all i > n

vi = ZC]‘Z"?JZ/' € R . (8)
ieP,

When the initial tangent vector 2’ is dense, the execution of this recurrence involves the
multiplication of each elementary partial ¢;; by exactly one value v} and the incrementation
of the product to the corresponding v?. Thus it follows from Assumption 2 that the cost of
one such forward sweep is bounded by

n+p+m

%Cost{y’:J(w)w’} < Cost{f(z)} = > Cost{g;} . (9)

7=n+1

Here, the identity on the right is in fact an additional assumption that makes obvious sense
on a single-processor machine. This complexity estimate is not very exciting, because the
directional derivative J(z)z’ can be approximated by the divided difference [f(z 4 e2’) —
f(2)]/¢ for little more than twice the effort of evaluating f(z). However, it should be noted
that the numerical result of a forward sweep is free of truncation error and would therefore
be exact in infinite-precision arithmetic.

The vector 3’ obtained in the presence of round-off corresponds to the exact result for
a nonlinear system whose elementary partials ¢;; have been perturbed to

52']‘ = Cij-(l—l—éij)ni with |€¢]‘|§€ ,

where ¢ is the relative machine precision. Since the derivative values are usually obtained
with a relative evaluation error of the same order, we can conclude that the calculation
of first-directional derivatives is correct up to working accuracy. Similar estimates hold
for the other accumulation procedures discussed in this paper. This assertion appears
to contradict the usual notion that differentiation is an intrinsically ill-conditioned process.
Our more positive result is derived from the assumption that most functions are provided as
a composition of (almost) exactly differentiable building blocks, whereas the ill-conditioning
assertion applies if the function is specified merely by an oracle that produces values with
a certain absolute accuracy.

Jacobians by Markowitz Elimination 4

2 Sparse Forward and Reverse Accumulation of Jacobians. As an immediate
consequence of (9), we see that the full Jacobian J(z) can be calculated by n forward sweeps
with 2’ ranging over all Cartesian basis vectors. The total effort for this simpleminded
procedure is bounded by 3n times the cost of evaluating f(z) once, an upper bound much
worse than that for a straightforward difference approximation. An obvious source of waste
is that for sparse 2’ some or many of the values v; are constant, so that the corresponding
assignment (8) could be skipped because the right-hand side vanishes identically. While
such selective skipping is not easily implemented, one can simultaneously update all nonzero
partials, namely, a sparse representation of the gradients

Vggv]‘ = (8@j/8$¢)¢:1,,,n e R" (10)
by the recurrence

Vl,vj + = ¢ Vv, fori € 77]‘ . (11)
Here the gradients V,v; = Va; for « < n must be defined as Cartesian basis vectors,

and all other V,v; must be initialized to zero vectors. Excluding the possibility of exact
cancellations and assuming that all intermediates v; with ¢ < n + p actually do occur as
arguments of some elementary function, one finds that the maximal number of nonzeros in
any one of the gradients V¢; equals

7 = max # of nonzeros in any row of J < n
Under these reasonable assumptions we can thus conclude that in the sparse forward mode

Cost{J(z)}/Cost{f(x)} < 3a . (12)

This upper bound is still conservative, but much more competitive with sophisticated differ-
encing schemes, for example, the graph coloring approach developed by Coleman and Moré
[Cole83a). In fact, their grouping of columns into n > # mutually independent sets can also
be exploited in the forward mode, with each vector Vu; being compressed to n components.
Correspondingly, one can group the rows of the Jacobian into m > 7 structurally orthogo-
nal sets, and then apply the reverse mode with each adjoint vector v; being compressed to m
nonzero components. In either case, the number of floating-point operations will be larger
than for the corresponding dynamically sparse implementation, but there is no overhead
for finding the next nonzero component. The relative efficiency of these alternative imple-
mentations depends strongly on the computing environment and the particular problem at
hand.

Even if the Jacobian is not sparse, the sparse forward mode may work well, provided
the evaluation is organized such that the intermediate gradients V¢; fill in only towards the
very end. This effect has been documented by [Dixo91a] on the Helmholtz energy function.
Thus, the sparse mode can be competitive with the following reverse mode, which yields
gradients at a fixed cost relative to that of evaluating the underlying function but may
require significantly more storage.

Using the successor sets

S = {i<j<n+m+plieP;}, (13)
we may associate with (8) the adjoint recurrence
b = > cich; € R, (14)
JES;

where the scalar quantities ¥; represent the sensitivities

v = 8?}2ny($) . (15)

Jacobians by Markowitz Elimination 5

Here the adjoint weights §; = 0,4p+; for j < n may be chosen arbitrarily but are held
constant with respect to the differentiation. We shall show in the next section that these
adjoint quantities do, in fact, satisfy the recurrence (14).

By executing the recurrence (14) backwards (i.e., for i = n+p+m,n+p+m—1,...,n+1),
one obtains the corresponding adjoint § € R™ from the given vector 27 = 7 J(z) € R™.
Since every elementary partial occurs again exactly once, we have similarly to 9

Cost{z=¢TJ(x)} < 3Cost{f(x)} . (16)

By letting ¢ range over all Cartesian basis vectors in the range R™ of f, one obtains the
Jacobian in m reverse sweeps of the form (14). Clearly this reverse mode promises to be
more efficient than the forward mode if there are many more independent than dependent
variables. In particular, one obtains the still somewhat surprising result that single gradient
vectors can be computed for a fixed multiple of the cost of evaluating the underlying scalar
function. Here we are interested mainly in the case where m like n is of significant size, in
which case a 3m-fold cost penalty for evaluating the Jacobian is probably unacceptable. As
in the forward mode, we may also calculate the sensitivities of all dependent variables with
respect to each intermediate variable simultaneously, that is, calculate the vectors

v, = (Op/0vj)k=1... € R” (17)

in one reverse sweep. The generally sparse vectors v; satisfy exactly the same recurrence
(14) as the scalar adjoints #;, which may be evaluated in the slightly more convenient form

v + = Cpjc Uk for ally € P . (18)

Here, it is assumed that all v; with ;7 < n 4 p have been initialized to zero, and the
Uptpti = ¥i are by definition constantly equal to Cartesian basis vectors.

Excluding again exact cancellations and assuming that all »; with ¢ > n depend directly
or indirectly on some independent variable, one finds that the maximal number of nonzeros
in any one of the vectors v; equals

m = max # of nonzeros in any column of J < m.
Under these reasonable assumptions, we can conclude that in the reverse mode

Cost{J(z)}/Cost{f(x)} < 3m . (19)

Hence, one may expect that the reverse mode is more efficient for evaluating a particular
Jacobian if the maximal number of nonzeros in any column is smaller than that in any row,
and vice versa. As we shall see in Section 4, this rule of thumb appears to be more reliable
than a criterion based on the dimensions n and m alone.

A potential drawback of sparse implementations is the need for indirect addressing,
which may represent a serious obstacle to vectorization and parallelization. To avoid this
effect, one may instead employ Coleman and Moré’s technique [Cole83a] of grouping columns
into » > n mutually independent sets and then apply the forward mode with each vector
Vu; being compressed to n components. Correspondingly, one can group the rows of the
Jacobian into m > /m structurally orthogonal sets and then apply the reverse mode with
each adjoint vector v; being compressed to m > m nonzero components. In either case,
the number of floating-point operations will be larger than for the corresponding dynam-
ically sparse implementation, but there is much less overhead. The relative efficiency of
these alternative implementations depends strongly on the computing environment and the
particular problem at hand. On problems with a few long columns or rows (in terms of
nonzeros), the coloring approach is likely to be less efficient.

Jacobians by Markowitz Elimination 6

While the mixed modes to be discussed in the next section are likely to achieve a lower
operations count, the sparse forward and to a lesser extent the reverse mode tend to be more
economical in terms of storage requirement. If the assignments (1) and (18) are executed
forj=n+1,n+2,....,n4+p+mandj=n+p+m,n+p+m—1,...,n+ 1, respectively,
then the elementary partials c;; occur in exactly the same order forwards and backwards.
Moreover, this order is the one in which they are naturally generated during the original
evaluation of the elementary functions (1) fori =n+ 1,n+4 1,...,n4+ p+ m. Hence, the
values and indices of the elementary partials c¢;; can be stored into a sequential data set,
which can be paged to and from disk without substantial runtime penalties. Even if this
tape is small enough to reside in core, the sequential access pattern is likely to reduce the
number of cache misses.

The amount of randomly accessed memory needed for the forward or reverse propa-
gation of scalar derivatives can be limited to a small multiple of the storage requirement
of the original evaluation program. This separation between a moderately increased, ran-
domly accessed memory and the potentially very large sequential tape has for example
been implemented in the C++ package ADOL-C [Grie90a]. The RAM requirements of the
dynamically sparse forward and reverse mode are at most 7 < n and /m < m larger than
that of the corresponding scalar sweeps. This increase in memory from the scalar to the
sparse vector mode mirrors exactly the corresponding growth in arithmetic operations. The
mixed modes discussed in the next session are likely to require substantially more in core
storage than the forward or reverse mode. This is certainly true for our first experimental
implementation.

3 Jacobian Accumulation as Elimination of Intermediate Vertices. As dis-
cussed by Iri [Irim91al, the relation between the variables v; can be visualized by a com-
putational graph with the integer vertices 0 < 7 < n 4+ p + m. We shall use the attributes
of corresponding variables v; and vertices j interchangeably. In particular, we shall refer to
independent, intermediate, and dependent vertices or nodes. An arc connects ¢ to j exactly
when ¢ belongs to P;, which means that the variable v; directly depends on v;. Hence the
index sets P; and S; defined in the preceding section contain exactly the predecessors and
successors of the vertex j, respectively.

With each arc we can associate the elementary partial ¢;;. These arc-values represent
multipliers rather than capacities, which are usually associated with arcs in flow networks.
Since we are interested only in first derivatives at a particular point, the nature of the
elementary functions ¢; is no longer of interest once the values ¢;; of their partials have
been obtained. In other words, we may consider the graph as representing the linearization
of the composite function y = f(z) at the current argument. The linearized relation (8)
may be interpreted as a Kirchhoff-like law that must hold at all intermediate and dependent
vertices, while it reduces to the initialization v} = 2} at the independent vertices.

The linear dependency graph defined above is acyclic, because the evaluation of the
composite vector function f(z) according to (1) could not be well defined if a pair of inter-
mediate quantities v; and v; were mutually dependent on each other. The independent and
dependent vertices are minimal and maximal with respect to the partial ordering induced
by the acyclic graph on its vertices. There may be other minimal and maximal vertices,
which represent constant initializations and computational dead ends, respectively.

As we have noted in the preceding section, the elementary partials ¢;; (and hence the
graph) can be viewed as a representation of the Jacobian .J(z) at the given point z. If
the graph does not contain any intermediate vertices, it is bipartite, and its arcs represent
exactly the nonzero entries of the Jacobian matrix J. Hence, we may try to calculate
the Jacobian matrix associated with a general linear dependency graph by successively
eliminating all its intermediate vertices without altering the input-output characteristic

Jacobians by Markowitz Elimination 7

between z’ and y’. This idea was apparently first published in [Yosh87a].
Suppose we wish to eliminate one particular intermediate vertex j from the graph. This

@) (9

i + Cycy;

Figure 1: Elimination of intermediate vertex j from dependency graph

is equivalent to eliminating the value v’ from the algebraic recurrence (8). For all k € S;,
we may substitute

! ! !
Vp = Ckj U5 F Z Chi * U,

G£IEPL

= Z CLj* Cji ?JZ/' + Z Cki * ?JZ/' (20)

i€P; J#IEP
= Z Chi * V;,

i€Py

(21)
where P, = P;UP, — {j}, and
Cri = €k + Cpjrcj (22)

for all index pairs & € S;,2 € P;. Here we use the convention that ¢z, = 0if ¢ € P;, in
which case é;; = c¢g; - ¢;; is the value of a new arc (i.e., we have fill-in). Similarly to the
predecessor sets, one has to update the successor sets according to §; = S;UP; —{j}
for all ¢ in the predecessor set € P; of the vertex j being eliminated. Graphically, one
simply has to connect all predecessors of j to all its successors and then eliminate j as well
as all its incoming and outgoing arcs. After 7 has been eliminated, we may strip the tildes
from the updated quantities and repeat the process until all nonzero arcs directly connect
independent to dependent vertices. Thus the successive elimination of all intermediate
vertices in a completely arbitrary order must result in the same bipartite graph representing
the unique Jacobian. To avoid the tildes, one may write the elimination update in the
incremental form

Cki T = Crj-Cj

During the elimination process, each arc ¢ — k may attain a sequence of values ¢,
which depend on the ordering. Of particular interest are the initial and the final values. The
nonzero initial arc values are simply elementary partial derivatives. The final value of an
arc is attained just before its origin or destination is eliminated, unless it directly connects
an independent to a dependent vertex. In the latter case, the final arc value represents a
nontrivial entry of the Jacobian. If at any stage of the elimination process an arc is the

Jacobians by Markowitz Elimination 8

only directed path connecting two particular vertices [and k, then the value ¢y is final and
can be expressed in terms of initial arc values as

el = Z chi Jik1 o (23)

Til—k =

where the paths J are of the form

J = {lvjlvj%"'vjiv"'?k} . (24)

This relation was apparently first established by Miller and Wrathall [Mill80a] and is also de-
rived in [Irim91a). Clearly, a separate evaluation of each Jacobian entry by the determinant-
like explicit formula (23) would be extremely expensive, as common expressions are ignored
and there may be an exponential number of paths.

If for some k > n, all arcs ¢x; with 1 < n are actually computed, then their final values
represent the gradient of the intermediate variable v, with respect to the independent
variables . This situation arises exactly when all direct and indirect predecessors of k
are eliminated before k. Similarly, if for some ¢ < n + p all arcs ¢; with & > n 4+ p are
computed, then they represent the sensitivities of all dependent variables with respect to
the intermediate variable v;. To understand that the sparse forward and reverse modes
discussed in the preceding section are special cases of the general elimination procedure
considered here, we note that both factors c¢x; and ¢;; in the update formula (3) represent
final arc values as the vertex j is just being eliminated. Now, if the the intermediate vertices
are eliminated in their original order j = n +1,...,n + p, then all left factors c;; are also
initial and all right factors ¢;; represent gradient components. Consequently, the update
formula is in fact equivalent to the sparse equation (11). Similarly, if the intermediates are
eliminated in the reverse order j = n+p,n+p—1,...,n+1, then (3) reduces to the adjoint
relation (18). Thus we conclude that the elimination procedure proposed in this section can
in every respect be at least as efficient as the classical forward and reverse modes.

4 The Markowitz Heuristic. With |- | denoting cardinality for sets, we find that
the elimination of the intermediate vertex j involves

mark(j) = [Py -[Sl (25)

multiplications, each one followed by an addition or the setting up of a new arc. The
elimination of j effects the Markowitz counts mark(s) and mark(k) of all predecessors and
successors of j. For any particular vertex, mark(j) may increase or decrease as neighbors
of j disappear, until j itself is eliminated. The total work for eliminating all intermediates
in a particular ordering is equal to the sum

Cost{J(z)} = Z mark(j) (26)

n<j<n+p

where mark(j) is the final Markowitz count at the time when j is being eliminated. Thus it
would seem natural to look for an elimination ordering that minimizes this sum of Markowitz
counts. Unfortunately, it appears that the exact solution of this combinatorial optimization
problem is NP-hard. This conjecture is based on the close relationship to the Gaussian
elimination problem considered in [Rose78a].

As is typical in combinatorial optimization, we may have to settle for a heuristic al-
gorithm that is comparatively cheap to implement and that yields, in many cases, nearly
optimal results. Here, the obvious greedy strategy is to eliminate a vertex whose Markowitz
count is minimal at the current stage. Especially in the beginning, there tend to be many

Jacobians by Markowitz Elimination 9

ties with comparatively low Markowitz counts. We use as a primary tie-breaker strategy
the maximization of the sum |P;| 4 |S;|, which gives the number of arcs that disappear
as a result of the elimination of j. In the calculations reported here, the remaining ties
were resolved at random. We have chosen test problems of significant size, which show
that unidirectional modes can be quite inefficient in comparison to the other and that the
Markowitz strategy appears to be consistently superior.

The first problem Bratul is a discretization of the elliptic PDE

Au + Aet/UFm) — g

on a cylindrical geometry. Assuming rotational symmetry of solutions and using a piecewise
linear discretization on a 60 x 30 grid, one obtains a system of n = 1800 equations in as many
unknowns. The computational graph for the nonlinear part of this system contains 49,004
vertices and 58,428 arcs, which means that only about 20% of the elementary operations
were binaries. The second test problem Bratu2 is the same as the first, except that the
two parameters A and p are now considered as variables, so that the originally sparse
and symmetric Jacobian is appended by two dense columns. The computational graph
for this underdetermined system contains 56,008 vertices and 81,638 arcs. Finally, we
report calculations on the driven Cavity problem, a finite-difference discretization of the
incompressible Navier-Stokes equation in a rectangle with constant fluid flow across one
side. This nonlinear system has n = 961 independent variables, and its graph contains
86,939 vertices with 145,422 arcs. The calculations were carried out on a Sun 3 with the
automatic differentiation package ADOL-C. Neither the properties of this package nor the
computing environment matters, because we report in the following table only the total
counts (26), which represent the number of multiplications needed for the accumulation of
the Jacobian from the graph.

Table 1: Operation Counts for Jacobian Computations

Problem Arcs | Forward | Reverse | Markowitz
Bratul 58,428 43,763 | 55,006 43,763
Bratu?2 81,678 | 112,047 | 231,250 83,319
Cavity | 145,422 | 670,716 | 189,437 177,645

Possibly the most surprising observation is that the unfreezing of the two parameters
A and p leads to a dramatic deterioration in the performance of the reverse mode. Clearly,
the simple rule of thumb that the reverse mode is preferable to the forward mode if m < n,
and vice versa, does not work in this case. However, the slightly more sophisticated idea
of comparing the maximal number of nonzeros m and 7 defined in Section 2 points in the
right direction. Because of the introduction of dense columns into the Jacobian, the integer
7 and hence the bound on the complexity of the reverse mode jumps from a small number
to n, whereas 1, which bounds the complexity of the forward mode, is incremented only
by two.

In each of these examples, the accumulation of the Jacobian by the Markowitz scheme
and also by the better one of the unidirectional methods requires only about as many
multiplications as there are arcs in the computational graph. Since the number of arcs is
a good measure of the complexity of the underlying vector function, the Jacobian can be
obtained for essentially the same number of floating-point operations. This highly desirable
complexity ratio probably does not apply to functions whose Jacobian is dense. On a parallel
machine, however, one can simultaneously eliminate sets of vertices that are independent,
that is, not directly connected by an arc. In other words, the accumulation problem for the

Jacobians by Markowitz Elimination 10

Jacobian typically has much more (and certainly never less) concurrency than the underlying
nonlinear evaluation problem.

By measuring complexity purely in terms of floating-point operations for the actual
elimination process, we have neglected several other significant costs. First, there is the
overhead of determining an appropriate elimination ordering according to the Markowitz
rule or some other heuristic. As in the case of sparse linear system solving [Duff86a], this
overhead cost is highly dependent on the implementation and can be substantially reduced
by suitably relaxing the pure selection criterion. Fortunately, in contrast to the Gaussian
elimination case, numerical stability is not a problem, since accumulating the Jacobian
requires only multiplications and additions. Therefore, once a suitable elimination ordering
has been determined, it can be mechanically applied at a sequence of points which might
be generated by an iterative scheme or discrete time integration.

5 Conclusion and Discussion. The task of computing the Jacobian of a vector
function defined by a computer program is reduced to the problem of successively eliminat-
ing intermediate vertices in a linearized computational graph. This accumulation procedure
can be viewed mathematically as a generalization of the chain rule. For general vector func-
tions, the accumulation of their Jacobians with minimal operation count is conjectured to be
an NP-hard combinatorial optimization problem. The standard forward and reverse modes
of automatic differentiation are limiting cases of the more general elimination procedure.
These algorithms can be implemented in a dynamically sparse or statically compressed form.
The selection of an elimination ordering by a greedy strategy based on the Markowitz count
is found to yield significantly lower operations counts on two discretizations of partial differ-
ential equations. Probably the Markowitz approach requires significantly more core space
than the reverse mode, which in turn is likely to require much more sequentially accessed
disk space than the forward mode.

We hope that the strengths of the various accumulation methods can be combined in a
hybrid scheme that performs Markowitz based eliminations in a core window that sweeps
back and forth across the computational graph. Eventually, such an approach could be
modified to compute Newton steps directly without forming the Jacobian, as suggested in
[Muro87b] and [Grie90a]. In cases like our test problem Bratul where the vector func-
tion f is the gradient of a scalar function, its evaluation can be programmed such that
the corresponding computational graph is symmetric, as described by Dixon. [Dixo91a].
Then it would seem natural to maintain this symmetry during the elimination process for
accumulating the Hessian or for directly calculating the Newton step.

Jacobians by Markowitz Elimination 11

References

[Cole83a]

[Dixo91a]
[Duff86a]

[Grie89a]

[Grie90c]

[Grie90a]

[Grie9lc]

[Irim91a]

[Mill80a)

[Muro87b]

[Rose78a]

[Yosh87a)]

T. F. Coleman and J. J. Moré (1983) Estimation of sparse Jacobian matrices
and graph coloring problems SIAM Journal on Numerical Analysis, Vol. 16, pp.
368-375.

L. W. C. Dixon The use of automatic ifferentiation to calculate Hessian matrices
and Newton steps

I. S. Duff, A. M. Erisman, and J. K. Reid (1986) Direct methods for sparse
matrices Oxford Science Publications, Clarendon Press, Oxford.

A. Griewank (1989) On automatic differentiation, in Mathematical Program-
ming: Recent Developments and Applications, ed. M. Iri and K. Tanabe, Kluwer
Academic Publishers, pp. 83-108.

A. Griewank (1990) Direct Calculation of Newton Steps without Accumulating
Jacobians in Large-Scale Numerical Optimization, T. F. Coleman and Yuying
Li, eds., STAM, pp. 115-137.

A. Griewank, D. Juedes, and J. Srinivasan (1990) ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++, Preprint MCS-180-
1190, Argonne National Laboratory, Argonne, Illinois.

A. Griewank (1991) Automatic Fvaluation of First- and Higher-Derivative Vec-
tors, Proceedings of the Conference at Wiirzburg, Aug. 1990, Bifurcation and
Chaos: Analysis, Algorithms, Applications, R. Seydel, F. W. Schneider,T.
Kiipper, and H. Troger, eds., Basel, Birkh&user, pp. 124-137.

M. Iri (1991) Automatic differentiation and rounding error estimation - overview
and history This volume pp.

W. Miller and C. Wrathall (1980) Software for Roundoff Analysis of Matrix
Algorithms, Academic Press, New York.

K. Murota (1987) Menger-decomposition of a graph and its application to the
structural analysis of a large-scale system of equations. Discrete Applied Math-
ematics, Vol. 17 , pp. 107-134.

D. J. Rose and R. E. Tarjan (1978) Algorithmic aspects of vertex elimination
on directed graphs. STAM J. A. M., Vol. 34, pp. 177-197.

T. Yoshida (1987). Derivation of a Computational Process for Partial Deriva-
tives of Functions Using Transformations of a Graph. Transactions of IPSJ, Vol.
11, pp. 1112-1120.

