
On the Calculation of Jacobian Matrices bythe Markowitz Rule for Vertex Elimination�Andreas Griewankyand Shawn ReesezOctober 1991
Abstract. The evaluation of derivative vectors can be performed with optimal computa-tional complexity by the forward or reverse mode of automatic di�erentiation. This ap-proach may be applied to evaluate �rst and higher derivatives of any vector function that isde�ned as the composition of easily di�erentiated elementary functions, typically in the formof a computer program. The more general task of e�ciently evaluating Jacobians or otherderivative matrices leads to a combinatorial optimization problem, which is conjectured tobe NP-hard. Here, we examine this vertex elimination problem and solve it approximately,using a greedy heuristic. Numerical experiments show the resulting Markowitz scheme forJacobian evaluation to be more e�cient than column by column or row by row evaluationusing the forward or the reverse mode, respectively.1 Basic Setting and Assumptions. Most nonlinear vector functions of practicalinterest are evaluated by computer programs in a high-level computer language such asFortran or C. Conceptually, the execution of any such evaluation program can be viewed asa sequence of scalar assignmentsvj = �j(vi)i2Pj 2 R : (1)Here the index set Pj � f1; 2; : : : ; j � 1g (2)contains the predecessors ,or parents, of j. In principle, the elementary functions �j maydepend on all currently known variable values vj 2 R with i < j. In practice, most�j represent either binary arithmetic operations or univariate transcendental functions,�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439zMathematical Sciences Department, Rensselaer Polytechnic Institute, Troy, NY 121811

Jacobians by Markowitz Elimination 2in which case Pj contains only one or two indices, respectively. Currently, our softwareimplementation breaks down the evaluation program into such unary and binary elementaryfunctions, but we shall develop the theory without this restriction. For the sake of simplicitywe shall assume that all �j are scalar valued, even though the inclusion of vector-valuedelementary functions (e.g., BLAS) might be advantageous in terms of storage and computingtime. Without loss of generality, we may assume that the variables vj are numbered suchthat they can be combined into three vectors:x � (v1; v2; ::: :::; vn�1; vn) (independent)z � (vn+1; ::: :::; vn+p) (intermediate)y � (vn+p+1; ::: :::; vn+p+m) (dependent)It is assumed that, given the n components of the variable vector x, the p components ofthe intermediate vector z, and the m components of the dependent vector y are de�ned bythe sequence of scalar functions (1) for i = n+1; : : :n+p+m. For notational completenessone may de�ne the �rst n elementary functions �j with j � n as the identities vj = xj .This requires in particular that the components of x are mutually independent, and we shallsimilarly assume that the components of y do not occur as arguments in any elementaryfunction. To comply with these restrictions, one may have to add identity assignments atthe beginning and end of the evaluation program. For a substantial nonlinear problem, wemay assume that p, the number of intermediate variables, is signi�cantly larger than thesum n +m. Using induction on j, we may now impose the following key assumption.Assumption 1 For some �xed x 2 Rn and j = n+ 1; n+ 2; : : : ; n+ p+m the elementaryfunctions �j are well de�ned and have jointly continuous partial derivativescji(vi)i2Pj � @@vi�j for i 2 Pj (3)on some neighborhood Nj � Rnj with nj � jPj j (4)of their respective arguments (vi)i2Pj.This condition will be met during the evaluation of a Fortran or C program, unlessthe argument of a logarithm, square root, reciprocal, or inverse trigonometric function liesoutside the respective domain. Except for powers with fractional exponents, all arithmeticoperations and standard system functions are in fact analytic in the interior of their domains.In our complexity considerations, we shall make the following assumption for some suitableunit of computational cost:Assumption 2 All elementary functions �j and their gradients r�j = (cji)i2Pj are eval-uated such that 1 � Costf gj + =
j � r�j(vi)i2Pj gCostf �j(vi)i2Pj g � 3 ; (5)where gj is an arbitrary nj -vector and
j an arbitrary scalar.In other words, we assume that incrementing a given vector by a multiple of the gra-dient r�j at a given point is no more than three times as expensive as evaluating theunderlying elementary function �j at the same argument. This complexity assumption isreasonable on a single-processor machine, even if memory accesses are taken into account.For most arithmetic operations and elementary functions, the complexity bound is ratherconservative; but for the multiplication operation, it is sharp (assuming that an addition isexactly half as expensive as a multiplication). On a multiprocessor, the accumulation of a

Jacobians by Markowitz Elimination 3dot product �j requires at least log2 nj cycles; but the corresponding gradient incrementa-tion is simply a SAXPY, which can be computed in O(1) time. More important, several vjthat do not depend directly or indirectly on each other can be evaluated concurrently onseveral processors. As we shall see later, the computational task of accumulating Jacobianso�ers even greater prospects for parallelism. Nevertheless, our main goal in this paper is tominimize the total number of arithmetic operations during the accumulation of Jacobians.Obviously, equation (1) and Assumption 1 imply by the chain rule that on some neigh-borhoods of the given point x, the composite functiony = f(x) f : Rn 7! Rm (6)is well de�ned and once continuously di�erentiable. It is also clear that the entries of theJacobian matrix J(x) � rxf(x) 2 Rm�n (7)must be computable from the elementary partials cji de�ned in Assumption 1. However,the standard version of the chain rule is not directly applicable, and|as we shall see|thereare many ways in which the Jacobian can be accumulated (i.e., calculated from the cji).Now suppose x is a di�erentiable function of some parameter. Denote di�erentiationwith respect to this scalar by the superscript prime. Then it follows immediately from thechain rule that (1) implies for all i > nv0j = Xi2Pj cji � v0i 2 R : (8)When the initial tangent vector x0 is dense, the execution of this recurrence involves themultiplication of each elementary partial cji by exactly one value v0i and the incrementationof the product to the corresponding v0j . Thus it follows from Assumption 2 that the cost ofone such forward sweep is bounded by13Costf y0 = J(x) x0 g � Costff(x)g � n+p+mXj=n+1 Costf�jg : (9)Here, the identity on the right is in fact an additional assumption that makes obvious senseon a single-processor machine. This complexity estimate is not very exciting, because thedirectional derivative J(x)x0 can be approximated by the divided di�erence [f(x + "x0) �f(x)]=" for little more than twice the e�ort of evaluating f(x). However, it should be notedthat the numerical result of a forward sweep is free of truncation error and would thereforebe exact in in�nite-precision arithmetic.The vector y0 obtained in the presence of round-o� corresponds to the exact result fora nonlinear system whose elementary partials cij have been perturbed to~cij = cij � (1 + "ij)ni with j"ij j � " ;where " is the relative machine precision. Since the derivative values are usually obtainedwith a relative evaluation error of the same order, we can conclude that the calculationof �rst-directional derivatives is correct up to working accuracy. Similar estimates holdfor the other accumulation procedures discussed in this paper. This assertion appearsto contradict the usual notion that di�erentiation is an intrinsically ill-conditioned process.Our more positive result is derived from the assumption that most functions are provided asa composition of (almost) exactly di�erentiable building blocks, whereas the ill-conditioningassertion applies if the function is speci�ed merely by an oracle that produces values witha certain absolute accuracy.

Jacobians by Markowitz Elimination 42 Sparse Forward and Reverse Accumulation of Jacobians. As an immediateconsequence of (9), we see that the full Jacobian J(x) can be calculated by n forward sweepswith x0 ranging over all Cartesian basis vectors. The total e�ort for this simplemindedprocedure is bounded by 3n times the cost of evaluating f(x) once, an upper bound muchworse than that for a straightforward di�erence approximation. An obvious source of wasteis that for sparse x0 some or many of the values vj are constant, so that the correspondingassignment (8) could be skipped because the right-hand side vanishes identically. Whilesuch selective skipping is not easily implemented, one can simultaneously update all nonzeropartials, namely, a sparse representation of the gradientsrxvj � (@vj=@xi)i=1:::n 2 Rn (10)by the recurrence rxvj + = cji � rxvi fori 2 Pj : (11)Here the gradients rxvi = rxi for i � n must be de�ned as Cartesian basis vectors,and all other rxvi must be initialized to zero vectors. Excluding the possibility of exactcancellations and assuming that all intermediates vi with i � n + p actually do occur asarguments of some elementary function, one �nds that the maximal number of nonzeros inany one of the gradients r�j equalsn̂ � max # of nonzeros in any row of J � n .Under these reasonable assumptions we can thus conclude that in the sparse forward modeCostfJ(x)g=Costff(x)g � 3 n̂ : (12)This upper bound is still conservative, but much more competitive with sophisticated di�er-encing schemes, for example, the graph coloring approach developed by Coleman and Mor�e[Cole83a]. In fact, their grouping of columns into �n � n̂ mutually independent sets can alsobe exploited in the forward mode, with each vector rvi being compressed to �n components.Correspondingly, one can group the rows of the Jacobian into �m � m̂ structurally orthogo-nal sets, and then apply the reverse mode with each adjoint vector �vi being compressed to �mnonzero components. In either case, the number of
oating-point operations will be largerthan for the corresponding dynamically sparse implementation, but there is no overheadfor �nding the next nonzero component. The relative e�ciency of these alternative imple-mentations depends strongly on the computing environment and the particular problem athand.Even if the Jacobian is not sparse, the sparse forward mode may work well, providedthe evaluation is organized such that the intermediate gradients r�j �ll in only towards thevery end. This e�ect has been documented by [Dixo91a] on the Helmholtz energy function.Thus, the sparse mode can be competitive with the following reverse mode, which yieldsgradients at a �xed cost relative to that of evaluating the underlying function but mayrequire signi�cantly more storage.Using the successor setsSi � fi < j � n+m+ p j i 2 Pjg ; (13)we may associate with (8) the adjoint recurrencev̂i = Xj2Si cji � v̂j 2 R ; (14)where the scalar quantities v̂i represent the sensitivitiesv̂i � @@vi ŷTf(x) : (15)

Jacobians by Markowitz Elimination 5Here the adjoint weights ŷj = v̂n+p+j for j � n may be chosen arbitrarily but are heldconstant with respect to the di�erentiation. We shall show in the next section that theseadjoint quantities do, in fact, satisfy the recurrence (14).By executing the recurrence (14) backwards (i.e., for i = n+p+m;n+p+m�1; : : : ; n+1),one obtains the corresponding adjoint ŷ 2 Rm from the given vector x̂T = ŷTJ(x) 2 Rn.Since every elementary partial occurs again exactly once, we have similarly to 9Costf x̂ � ŷTJ(x) g � 3 Costff(x)g : (16)By letting ŷ range over all Cartesian basis vectors in the range Rm of f , one obtains theJacobian in m reverse sweeps of the form (14). Clearly this reverse mode promises to bemore e�cient than the forward mode if there are many more independent than dependentvariables. In particular, one obtains the still somewhat surprising result that single gradientvectors can be computed for a �xed multiple of the cost of evaluating the underlying scalarfunction. Here we are interested mainly in the case where m like n is of signi�cant size, inwhich case a 3m-fold cost penalty for evaluating the Jacobian is probably unacceptable. Asin the forward mode, we may also calculate the sensitivities of all dependent variables withrespect to each intermediate variable simultaneously, that is, calculate the vectors�vj � (@yk=@vj)k=1:::m 2 Rm (17)in one reverse sweep. The generally sparse vectors �vj satisfy exactly the same recurrence(14) as the scalar adjoints v̂j , which may be evaluated in the slightly more convenient form�vj + = ckj � �vk for allj 2 Pk : (18)Here, it is assumed that all �vj with j � n + p have been initialized to zero, and the�vn+p+i = �yi are by de�nition constantly equal to Cartesian basis vectors.Excluding again exact cancellations and assuming that all vi with i > n depend directlyor indirectly on some independent variable, one �nds that the maximal number of nonzerosin any one of the vectors �vj equalsm̂ � max # of nonzeros in any column of J � m .Under these reasonable assumptions, we can conclude that in the reverse modeCostfJ(x)g=Costff(x)g � 3 m̂ : (19)Hence, one may expect that the reverse mode is more e�cient for evaluating a particularJacobian if the maximal number of nonzeros in any column is smaller than that in any row,and vice versa. As we shall see in Section 4, this rule of thumb appears to be more reliablethan a criterion based on the dimensions n and m alone.A potential drawback of sparse implementations is the need for indirect addressing,which may represent a serious obstacle to vectorization and parallelization. To avoid thise�ect, one may instead employ Coleman andMor�e's technique [Cole83a] of grouping columnsinto �n � n̂ mutually independent sets and then apply the forward mode with each vectorrvi being compressed to �n components. Correspondingly, one can group the rows of theJacobian into �m � m̂ structurally orthogonal sets and then apply the reverse mode witheach adjoint vector �vi being compressed to �m � m̂ nonzero components. In either case,the number of
oating-point operations will be larger than for the corresponding dynam-ically sparse implementation, but there is much less overhead. The relative e�ciency ofthese alternative implementations depends strongly on the computing environment and theparticular problem at hand. On problems with a few long columns or rows (in terms ofnonzeros), the coloring approach is likely to be less e�cient.

Jacobians by Markowitz Elimination 6While the mixed modes to be discussed in the next section are likely to achieve a loweroperations count, the sparse forward and to a lesser extent the reverse mode tend to be moreeconomical in terms of storage requirement. If the assignments (1) and (18) are executedfor j = n+1; n+2; : : : ; n+ p+m and j = n+ p+m;n+ p+m� 1; : : : ; n+1, respectively,then the elementary partials cji occur in exactly the same order forwards and backwards.Moreover, this order is the one in which they are naturally generated during the originalevaluation of the elementary functions (1) for i = n + 1; n+ 1; : : : ; n+ p + m. Hence, thevalues and indices of the elementary partials cji can be stored into a sequential data set,which can be paged to and from disk without substantial runtime penalties. Even if thistape is small enough to reside in core, the sequential access pattern is likely to reduce thenumber of cache misses.The amount of randomly accessed memory needed for the forward or reverse propa-gation of scalar derivatives can be limited to a small multiple of the storage requirementof the original evaluation program. This separation between a moderately increased, ran-domly accessed memory and the potentially very large sequential tape has for examplebeen implemented in the C++ package ADOL-C [Grie90a]. The RAM requirements of thedynamically sparse forward and reverse mode are at most n̂ � n and m̂ � m larger thanthat of the corresponding scalar sweeps. This increase in memory from the scalar to thesparse vector mode mirrors exactly the corresponding growth in arithmetic operations. Themixed modes discussed in the next session are likely to require substantially more in corestorage than the forward or reverse mode. This is certainly true for our �rst experimentalimplementation.3 Jacobian Accumulation as Elimination of Intermediate Vertices. As dis-cussed by Iri [Irim91a], the relation between the variables vj can be visualized by a com-putational graph with the integer vertices 0 < j � n + p +m. We shall use the attributesof corresponding variables vj and vertices j interchangeably. In particular, we shall refer toindependent, intermediate, and dependent vertices or nodes. An arc connects i to j exactlywhen i belongs to Pj, which means that the variable vj directly depends on vi. Hence theindex sets Pj and Si de�ned in the preceding section contain exactly the predecessors andsuccessors of the vertex j, respectively.With each arc we can associate the elementary partial cji. These arc-values representmultipliers rather than capacities, which are usually associated with arcs in
ow networks.Since we are interested only in �rst derivatives at a particular point, the nature of theelementary functions �j is no longer of interest once the values cji of their partials havebeen obtained. In other words, we may consider the graph as representing the linearizationof the composite function y = f(x) at the current argument. The linearized relation (8)may be interpreted as a Kirchho�-like law that must hold at all intermediate and dependentvertices, while it reduces to the initialization v0i = x0i at the independent vertices.The linear dependency graph de�ned above is acyclic, because the evaluation of thecomposite vector function f(x) according to (1) could not be well de�ned if a pair of inter-mediate quantities vj and vi were mutually dependent on each other. The independent anddependent vertices are minimal and maximal with respect to the partial ordering inducedby the acyclic graph on its vertices. There may be other minimal and maximal vertices,which represent constant initializations and computational dead ends, respectively.As we have noted in the preceding section, the elementary partials cji (and hence thegraph) can be viewed as a representation of the Jacobian J(x) at the given point x. Ifthe graph does not contain any intermediate vertices, it is bipartite, and its arcs representexactly the nonzero entries of the Jacobian matrix J . Hence, we may try to calculatethe Jacobian matrix associated with a general linear dependency graph by successivelyeliminating all its intermediate vertices without altering the input-output characteristic

Jacobians by Markowitz Elimination 7between x0 and y0. This idea was apparently �rst published in [Yosh87a].Suppose we wish to eliminate one particular intermediate vertex j from the graph. This����vjckj clj ����vl����vk ����vi clicji ����vickjcji cli + cljcji����vk ����vl---- JJJJJJJJJJ]

�6������*HHHHHHY

�Figure 1: Elimination of intermediate vertex j from dependency graphis equivalent to eliminating the value v0j from the algebraic recurrence (8). For all k 2 Sj,we may substitute v0k = ckj � v0j + Xj 6=i2Pk cki � v0i= Xi2Pj ckj � cji � v0i + Xj 6=i2Pk cki � v0i (20)= Xi2 ~Pk ~cki � v0i; (21)where ~Pk � Pj [Pk � fjg, and~cki = cki + ckj � cji (22)for all index pairs k 2 Sj ; i 2 Pj. Here we use the convention that cki = 0 if i 62 Pi, inwhich case ~cki = ckj � cji is the value of a new arc (i.e., we have �ll-in). Similarly to thepredecessor sets, one has to update the successor sets according to ~Si � Sj [Pi � fjgfor all i in the predecessor set 2 Pj of the vertex j being eliminated. Graphically, onesimply has to connect all predecessors of j to all its successors and then eliminate j as wellas all its incoming and outgoing arcs. After j has been eliminated, we may strip the tildesfrom the updated quantities and repeat the process until all nonzero arcs directly connectindependent to dependent vertices. Thus the successive elimination of all intermediatevertices in a completely arbitrary order must result in the same bipartite graph representingthe unique Jacobian. To avoid the tildes, one may write the elimination update in theincremental form cki + = ckj � cji :During the elimination process, each arc i ! k may attain a sequence of values cki,which depend on the ordering. Of particular interest are the initial and the �nal values. Thenonzero initial arc values are simply elementary partial derivatives. The �nal value of anarc is attained just before its origin or destination is eliminated, unless it directly connectsan independent to a dependent vertex. In the latter case, the �nal arc value represents anontrivial entry of the Jacobian. If at any stage of the elimination process an arc is the

Jacobians by Markowitz Elimination 8only directed path connecting two particular vertices l and k, then the value ckl is �nal andcan be expressed in terms of initial arc values asckl � XJ :l!kYi cji ji+1 ; (23)where the paths J are of the formJ � fl; j1; j2; : : : ; ji; : : : ; kg : (24)This relation was apparently �rst established by Miller and Wrathall [Mill80a] and is also de-rived in [Irim91a]. Clearly, a separate evaluation of each Jacobian entry by the determinant-like explicit formula (23) would be extremely expensive, as common expressions are ignoredand there may be an exponential number of paths.If for some k > n, all arcs cki with 1 � n are actually computed, then their �nal valuesrepresent the gradient of the intermediate variable vk with respect to the independentvariables x. This situation arises exactly when all direct and indirect predecessors of kare eliminated before k. Similarly, if for some i � n + p all arcs cki with k > n + p arecomputed, then they represent the sensitivities of all dependent variables with respect tothe intermediate variable vi. To understand that the sparse forward and reverse modesdiscussed in the preceding section are special cases of the general elimination procedureconsidered here, we note that both factors ckj and cji in the update formula (3) represent�nal arc values as the vertex j is just being eliminated. Now, if the the intermediate verticesare eliminated in their original order j = n + 1; : : : ; n + p, then all left factors ckj are alsoinitial and all right factors cji represent gradient components. Consequently, the updateformula is in fact equivalent to the sparse equation (11). Similarly, if the intermediates areeliminated in the reverse order j = n+p; n+p�1; : : : ; n+1, then (3) reduces to the adjointrelation (18). Thus we conclude that the elimination procedure proposed in this section canin every respect be at least as e�cient as the classical forward and reverse modes.4 The Markowitz Heuristic. With j � j denoting cardinality for sets, we �nd thatthe elimination of the intermediate vertex j involvesmark(j) � jPjj � jSjj (25)multiplications, each one followed by an addition or the setting up of a new arc. Theelimination of j e�ects the Markowitz counts mark(i) and mark(k) of all predecessors andsuccessors of j. For any particular vertex, mark(j) may increase or decrease as neighborsof j disappear, until j itself is eliminated. The total work for eliminating all intermediatesin a particular ordering is equal to the sumCostfJ(x)g = Xn<j�n+pmark(j) ; (26)where mark(j) is the �nal Markowitz count at the time when j is being eliminated. Thus itwould seem natural to look for an elimination ordering that minimizes this sum of Markowitzcounts. Unfortunately, it appears that the exact solution of this combinatorial optimizationproblem is NP-hard. This conjecture is based on the close relationship to the Gaussianelimination problem considered in [Rose78a].As is typical in combinatorial optimization, we may have to settle for a heuristic al-gorithm that is comparatively cheap to implement and that yields, in many cases, nearlyoptimal results. Here, the obvious greedy strategy is to eliminate a vertex whose Markowitzcount is minimal at the current stage. Especially in the beginning, there tend to be many

Jacobians by Markowitz Elimination 9ties with comparatively low Markowitz counts. We use as a primary tie-breaker strategythe maximization of the sum jPjj + jSjj, which gives the number of arcs that disappearas a result of the elimination of j. In the calculations reported here, the remaining tieswere resolved at random. We have chosen test problems of signi�cant size, which showthat unidirectional modes can be quite ine�cient in comparison to the other and that theMarkowitz strategy appears to be consistently superior.The �rst problem Bratu1 is a discretization of the elliptic PDE�u + �eu=(1+�u) = 0on a cylindrical geometry. Assuming rotational symmetry of solutions and using a piecewiselinear discretization on a 60�30 grid, one obtains a system of n = 1800 equations in as manyunknowns. The computational graph for the nonlinear part of this system contains 49,004vertices and 58,428 arcs, which means that only about 20% of the elementary operationswere binaries. The second test problem Bratu2 is the same as the �rst, except that thetwo parameters � and � are now considered as variables, so that the originally sparseand symmetric Jacobian is appended by two dense columns. The computational graphfor this underdetermined system contains 56,008 vertices and 81,638 arcs. Finally, wereport calculations on the driven Cavity problem, a �nite-di�erence discretization of theincompressible Navier-Stokes equation in a rectangle with constant
uid
ow across oneside. This nonlinear system has n = 961 independent variables, and its graph contains86,939 vertices with 145,422 arcs. The calculations were carried out on a Sun 3 with theautomatic di�erentiation package ADOL-C. Neither the properties of this package nor thecomputing environment matters, because we report in the following table only the totalcounts (26), which represent the number of multiplications needed for the accumulation ofthe Jacobian from the graph.Table 1: Operation Counts for Jacobian ComputationsProblem Arcs Forward Reverse MarkowitzBratu1 58,428 43,763 55,006 43,763Bratu2 81,678 112,047 231,250 83,319Cavity 145,422 670,716 189,437 177,645Possibly the most surprising observation is that the unfreezing of the two parameters� and � leads to a dramatic deterioration in the performance of the reverse mode. Clearly,the simple rule of thumb that the reverse mode is preferable to the forward mode if m < n,and vice versa, does not work in this case. However, the slightly more sophisticated ideaof comparing the maximal number of nonzeros m̂ and n̂ de�ned in Section 2 points in theright direction. Because of the introduction of dense columns into the Jacobian, the integern̂ and hence the bound on the complexity of the reverse mode jumps from a small numberto n, whereas m̂, which bounds the complexity of the forward mode, is incremented onlyby two.In each of these examples, the accumulation of the Jacobian by the Markowitz schemeand also by the better one of the unidirectional methods requires only about as manymultiplications as there are arcs in the computational graph. Since the number of arcs isa good measure of the complexity of the underlying vector function, the Jacobian can beobtained for essentially the same number of
oating-point operations. This highly desirablecomplexity ratio probably does not apply to functions whose Jacobian is dense. On a parallelmachine, however, one can simultaneously eliminate sets of vertices that are independent,that is, not directly connected by an arc. In other words, the accumulation problem for the

Jacobians by Markowitz Elimination 10Jacobian typically has much more (and certainly never less) concurrency than the underlyingnonlinear evaluation problem.By measuring complexity purely in terms of
oating-point operations for the actualelimination process, we have neglected several other signi�cant costs. First, there is theoverhead of determining an appropriate elimination ordering according to the Markowitzrule or some other heuristic. As in the case of sparse linear system solving [Du�86a], thisoverhead cost is highly dependent on the implementation and can be substantially reducedby suitably relaxing the pure selection criterion. Fortunately, in contrast to the Gaussianelimination case, numerical stability is not a problem, since accumulating the Jacobianrequires only multiplications and additions. Therefore, once a suitable elimination orderinghas been determined, it can be mechanically applied at a sequence of points which mightbe generated by an iterative scheme or discrete time integration.5 Conclusion and Discussion. The task of computing the Jacobian of a vectorfunction de�ned by a computer program is reduced to the problem of successively eliminat-ing intermediate vertices in a linearized computational graph. This accumulation procedurecan be viewed mathematically as a generalization of the chain rule. For general vector func-tions, the accumulation of their Jacobians with minimal operation count is conjectured to bean NP-hard combinatorial optimization problem. The standard forward and reverse modesof automatic di�erentiation are limiting cases of the more general elimination procedure.These algorithms can be implemented in a dynamically sparse or statically compressed form.The selection of an elimination ordering by a greedy strategy based on the Markowitz countis found to yield signi�cantly lower operations counts on two discretizations of partial di�er-ential equations. Probably the Markowitz approach requires signi�cantly more core spacethan the reverse mode, which in turn is likely to require much more sequentially accesseddisk space than the forward mode.We hope that the strengths of the various accumulation methods can be combined in ahybrid scheme that performs Markowitz based eliminations in a core window that sweepsback and forth across the computational graph. Eventually, such an approach could bemodi�ed to compute Newton steps directly without forming the Jacobian, as suggested in[Muro87b] and [Grie90a]. In cases like our test problem Bratu1 where the vector func-tion f is the gradient of a scalar function, its evaluation can be programmed such thatthe corresponding computational graph is symmetric, as described by Dixon. [Dixo91a].Then it would seem natural to maintain this symmetry during the elimination process foraccumulating the Hessian or for directly calculating the Newton step.

Jacobians by Markowitz Elimination 11References[Cole83a] T. F. Coleman and J. J. Mor�e (1983) Estimation of sparse Jacobian matricesand graph coloring problems SIAM Journal on Numerical Analysis, Vol. 16, pp.368{375.[Dixo91a] L. W. C. Dixon The use of automatic i�erentiation to calculate Hessian matricesand Newton steps[Du�86a] I. S. Du�, A. M. Erisman, and J. K. Reid (1986) Direct methods for sparsematrices Oxford Science Publications, Clarendon Press, Oxford.[Grie89a] A. Griewank (1989) On automatic di�erentiation, in Mathematical Program-ming: Recent Developments and Applications, ed. M. Iri and K. Tanabe, KluwerAcademic Publishers, pp. 83{108.[Grie90c] A. Griewank (1990) Direct Calculation of Newton Steps without AccumulatingJacobians in Large-Scale Numerical Optimization, T. F. Coleman and YuyingLi, eds., SIAM, pp. 115{137.[Grie90a] A. Griewank, D. Juedes, and J. Srinivasan (1990) ADOL-C, a package for theautomatic di�erentiation of algorithms written in C/C++, Preprint MCS-180-1190, Argonne National Laboratory, Argonne, Illinois.[Grie91c] A. Griewank (1991) Automatic Evaluation of First- and Higher-Derivative Vec-tors, Proceedings of the Conference at W�urzburg, Aug. 1990, Bifurcation andChaos: Analysis, Algorithms, Applications, R. Seydel, F. W. Schneider,T.K�upper, and H. Troger, eds., Basel, Birkh�auser, pp. 124{137.[Irim91a] M. Iri (1991)Automatic di�erentiation and rounding error estimation - overviewand history This volume pp.[Mill80a] W. Miller and C. Wrathall (1980) Software for Roundo� Analysis of MatrixAlgorithms, Academic Press, New York.[Muro87b] K. Murota (1987) Menger-decomposition of a graph and its application to thestructural analysis of a large-scale system of equations. Discrete Applied Math-ematics, Vol. 17 , pp. 107{134.[Rose78a] D. J. Rose and R. E. Tarjan (1978) Algorithmic aspects of vertex eliminationon directed graphs. SIAM J. A. M., Vol. 34, pp. 177{197.[Yosh87a] T. Yoshida (1987). Derivation of a Computational Process for Partial Deriva-tives of Functions Using Transformations of a Graph. Transactions of IPSJ, Vol.11, pp. 1112{1120.

