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1 Background and IntroductionA lattice rule is a multidimensional quadrature rule for integrating over an s-dimensionalhypercube. In this section we provide a brief description of some of the theory followed byan outline of the contents of the rest of the paper. Without loss of generality we shall takethe hypercube of integration to be [0; 1)s.An s-dimensional lattice � is an in�nite array of points. These satisfy; (a) p;q 2 �implies p � q 2 �; and (b) there exists no limit point; that is, there exists a positive �(�)such that jp� qj � �(�) unless p = q. A generator matrix A of � is a t� s matrix, whoserows ar are elements of � having the property that the lattice comprises all points p of theform p = tXr=1�rar = �A; (1:1)where �i are integer and � = (�1; �2; : : : ; �t).Of special note is the unit lattice �0, which is generated by the s � s unit matrix I .An integration lattice � is a lattice that contains �0 as a sublattice. A lattice rule Q(�)has an abscissa set comprising all the points of the integration lattice � which lie in [0; 1)s.Corresponding to an s-dimensional lattice � is its reciprocal lattice �?. When the generatormatrix of A is nonsingular, this may be de�ned as the lattice having a generator matrixB = (AT )�1. The generator matrix of an integration matrix is nonsingular. It is relativelystraightforward to show that the condition for � to be an integration lattice is that B, thegenerator matrix of �?, be an integer matrix, i.e., every element of B be an integer. When� is an integration lattice, N = j detAj�1 = j detBj (1:2)is an integer and coincides with the number of lattice points in the hypercube [0; 1)s. TheseN points form the abscissa set of the lattice rule Q(�) based on the lattice �. This ruleapplies an equal weight 1=N to each abscissa. Moreover, every nonzero element of anintegration lattice generator matrix A is a rational whose denominator is a factor of N .A generator matrix of a lattice � is not unique. Di�erent generator matrices of thesame lattice may be related using unimodular matrices. A unimodular matrix V is a squareinteger matrix of determinant �1. The inverse of a unimodular matrix is also unimodular,2



and elementary integer row (column) operations on a general matrix may be accomplishedby pre- (post-) multiplication by a unimodular matrix. In particular, when A is a generatormatrix of �, so is V A, where V is any unimodular matrix, and all other generator matricesof � are of this form. (But the lattice generated by AV is generally unrelated to �.)The approach to the theory of lattice rules based on lattice generator matrices is de-scribed in more detail in Lyness 1989. There the connection between the reciprocal latticeand the accuracy of the rule is described. This has led to results about the number ofdistinct lattice rules and the structure of embedded lattice rules, and has provided much ofthe underlying theory needed for a complete search for good (cost-e�ective) lattice rules.However, the original approach to this theory (see e.g. Sloan 1985 and Sloan and Lyness1989) is quite di�erent, and uses a notation which appears to be entirely independent. Thisis a development of a standard form for the number theoretic ruleQf = 1N NXj=1 �f �jzN � z 2 �0: (1:3)Here �f(x) is a unit periodic continuation of f(x) that coincides with f(x) in the hypercube[0; 1)s. We note that �f(x) = f(fxg); (1:4)where fxg has its conventional meaning as the vector whose components are the fractionalparts of those of x. Speci�cally,fxg 2 [0; 1)s; fxg � x 2 �0: (1:5)Number theoretic rules have been the subject of continuous and thorough investigation sincetheir introduction in Korobov 1959. A recent survey of this work appears in Niederreiter1988.The number theoretic rule is itself a lattice rule. The key to understanding form (1.3)is to note the use of �f in place of f . It appears that this has the e�ect of taking a set of Npoints arranged at equal intervals along a line in Rs, and translating each point individuallyso as to end up with a set of points which are distributed on an s-dimensional integrationlattice � and comprise all the points on � which lie in [0; 1)s. One motivation for this paperis to illuminate the connection between this lattice � and any of its generator matrices A.3



In the rest of this paper, t is a positive integer, D is a diagonal t � t matrix whoseelements di are positive integers and Z is a t� s integer matrix whose rows are the vectorszi. What we term a t-cycle D-Z form of an s-dimensional lattice rule is an expression ofthe form Qf = 1d1d2 : : :dt d1Xj1=1 d2Xj2=1 : : : dtXjt=1 �f �j1z1d1 + j2z2d2 + : : :+ jtztdt � ; (1:6)It is shown in theorem 2.1 of Sloan and Lyness 1989 that, so long as t � 1 and D is notsingular, this form represents a lattice rule. This may is done by showing that all points lieon a lattice, that all points are in [0; 1)s, and that each point is assigned equal weight. The�rst two items are trivial. The third is straightforward, but leads us to one of the problemsassociated with this form. It may well happen that the same point occurs more than oncein the summation. However, if this happens, then every point is repeated the same numberof times. The form is termed k-repetitive, or simply repetitive, when each point is repeatedk > 1 times, in which case �(Q) , the number of abscissas required by the rule, is given byd1d2 : : : dt=k which is of course an integer. Unfortunately, the proof given in that paper isnot constructive. No immediate way of determining k from the elements of D and Z wasthen available.The same rule may be expressed in a D-Z form in many di�erent ways. The rule Q isde�ned to be of rank r = r(Q) if it can be expressed in an r-cycle D-Z form, but not inan (r � 1)-cycle D-Z form. An r-cycle form of Q is termed a minimal form. It is possibleto express a rule of rank r in a non-repetitive minimal form in such a way that di+1jdii = 1; 2; : : : ; r� 1. When this is the case, the zi are linearly independent, and the elementsdi are known as invariants. These are unique; that is, every lattice rule Q has a uniquerank and unique set of invariants.This nomenclature is taken from Group Theory. The abscissa set of a Lattice rule formsan Abelian group under addition modulo 1. The t-cycle D-Z form (1.6) corresponds to anexpression of this group as a direct sum of cyclic groups, in accordance with the famoustheorem of Kronecker 1877. This is known as the decomposition theorem. See also Hartleyand Hawkes 1970, pp 153 et.seq. Many of the results of Sloan and Lyness are obtained asapplications of the group theory based on this theorem.Any minimal D-Z form of Q in which the nonzero elements of D are the invariants is4



known as a canonical form. The vectors zi are not unique, but are linearly independent.In Section 4 we employ a trivial modi�cation of this de�nition of a canonical form. It isclear from de�nition (1.6) that when any dj = 1, the corresponding sum (over one element)may be omitted, whatever the corresponding vector zj may be. In the sequel, on occasion,there will arise naturally what we term an s-cycle canonical form, where the rank of therule is r � s. Such a canonical form has dj = 1, j 2 [r + 1; s]; we may obtain a standardr-cycle canonical form by removing the �nal s � r rows of D and Z and the �nal s � rcolumns of D.In this section, we have described very briey the two principal approaches to latticerule theory. These are through the lattice generator matrix A and through the t-cycle D-Zform respectively. This description is mainly to provide a proper background and a coherentlist of de�nitions.In Section 2 we outline the theory as it exists for relating one approach to the other.This is not a long section, as this problem has not been treated seriously before. Sections3 and 4 contain new results, based on the Smith normal form of a matrix having rationalelements. In Section 3, we show how to obtain a canonical form directly from B, a generatormatrix of the reciprocal lattice. In Section 4 we describe a shorter calculation to obtaina canonical form from a possibly repetitive form that bypasses the explicit calculation ofeither B or A.2 Some Relations between the Two ApproachesIn the preceding section, we described two distinct ways of specifying a lattice rule. Onerequires a single generator matrix A. The other a pair of matrices, D and Z. Sections 3 and4 are concerned with developing an elegant connection between these di�erent speci�cationsof the same rule, and between di�erent D-Z speci�cations of the same rule. This section isdevoted to the somewhat pedestrian methods currently available.We note �rst that the lattice � formed by Qf in (1.6) includes all t points zi=di i =1; 2; : : : ; t together with all points generated by them. These t points by themselves maynot happen to generate an integration lattice. However, the expression (1.6) uses �f in placeof f . This implies that the fractional part of any of these t points also lies on the lattice �.5



The e�ect of this is that the lattice has to contain the points of �0, and so in total includesall points of the form p = tXi=1 jizi=di + sXi=1 kiei; (2:1)and any point expressible in this form is a member of �. (Here, as is conventional, ei is thei-th unit s-vector.) In other words, the lattice � is generated by the rows of the (t+ s)� smatrix A� = 0B@ D�1ZI 1CA : (2:2)However, as mentioned above, the same lattice is generated by any matrix obtainable fromA� by using elementary integer row operations. These have the same e�ect as premultiplyingA� by a unimodular (t+ s)� (t+ s) matrix V . Thus � is generated by the rows of any s� smatrix A satisfying 0B@ A0 1CA = V 0B@ D�1ZI 1CA : (2:3)A natural approach is to put A� in upper triangular form, but any construction that resultsin t zero rows is su�cient.Occasionally, one can pick out s rows from (2.2) by inspection. The following lemmamay justify such a result.Lemma 2.4. Let Q(�) be given by an s-cycle D-Z representation, and set ~A = D�1Z;then if �( ~A) is an integration lattice, it is the integration lattice of Q.Proof. �( ~A) is generated by the rows of ~A. Thus it includes all points of the formp = sXi=1 jizi=di j 2 �0: (2:4)Since ~A is an integration lattice, it includes all points ei i = 1; 2; : : : ; s. Thus, speci�cation(2.4) coincides with speci�cation (2.1) of the lattice �. 2For example, if Z is known to be unimodular, the following theorem allows us to writedown a generator matrix directly.Theorem 2.5. Let Q(�) be given in an s-cycle D-Z representation with Z unimodular.Then this representation is nonrepetitive, and A = D�1Z is a generator matrix of �.6



Proof. Clearly, B = (AT )�1 = DZT�1;being the product of two integer matrices, is an integer matrix. Thus, A generates an inte-gration lattice and, in view of the previous lemma, is the generator matrix of �. Moreover,since j detZj = 1, we �nd d1d2 : : : ds = detD = j detAj�1 = N;where N is the number of distinct abscissas used by Q(�). Thus, the D-Z form is notrepetitive. 2The reverse process, that of obtaining an s-cycle D-Z form of Q(�) from a given gener-ator matrix A of the integration lattice � is also straightforward. Let ar be a row of A anddr be the smallest integer (or any integer) for which zr = drar 2 �0. Then an s-cycle D-Zspeci�cation is given by the s� s matrix Z whose rows are zr and D = diagfd1; d2; : : : ; dsg.(Unfortunately, this simple approach gives, in general, a highly repetitive D-Z form.)We believe that Theorem 2.5 is new and in simple examples may be helpful in recognisinga non-repetitive form. But what is particularly noticable in the results of this section isthe absence of any general procedure for avoiding or recognising a repetitive form, or forproducing a canonical form. A new way of carrying out these tasks, which leads directly toa canonical form, is given in the next section.3 Reduction of B to D-Z FormWe noted earlier that the same lattice may have many di�erent generator matrices. Theseare related by elementary integer row operations. That is, B0 = V B and B generate thesame lattice when V is any unimodular matrix. Successive row operations may be usedto put B into upper triangular lattice form (utlf), in which all elements are nonnegative,and the largest element in any column lies on the diagonal. This is essentially the Hermitenormal form. It has been exploited in previous papers to count the number of lattice rules,to obtain information about sublattices and superlattices, and to form the basis of a searchprogram for good lattice rules (see, e.g., Lyness, Sorevik, and Keast 1991).7



As mentioned earlier, integer column operations applied to B (or postmultiplication byunimodular matrices) result in a matrix that represents a di�erent lattice. Nevertheless, ifone allows column operations as well as row operations, one may put B into diagonal form.There are generally several ways of doing this though, of course, any such form has the samedeterminant (or product of nonzero diagonal elements). This procedure is signi�cantly moreinvolved than the procedure for the Hermite normal form but is reasonably straightforward.Since elementary operations may be used to interchange rows and columns, it is apparentthat we may rearrange the order of these diagonal elements. However, there are, in addition,generally di�erent possibilities for the set of diagonal elements. For example, the matrixgiven by B = 0BBBB@ 7 14 2135 73 1177 20 66 1CCCCA (3:1)can be reduced to diagonal form in many ways by using unimodular matrices. Two waysare as follows:0BBBB@ 1 0 0�5 1 09 �2 1 1CCCCA0BBBB@ 7 14 2135 73 1177 20 66 1CCCCA0BBBB@ 1 �2 50 1 �40 0 1 1CCCCA = 0BBBB@ 7 0 00 3 00 0 21 1CCCCA ; (3:2)and: 0BBBB@ 11 �2 0�38 7 09 �2 1 1CCCCA0BBBB@ 7 14 2135 73 1177 20 66 1CCCCA0BBBB@ �1 �8 51 7 �40 0 1 1CCCCA = 0BBBB@ 1 0 00 21 00 0 21 1CCCCA ; (3:3)where the pre- and post-multiplying matrices are unimodular.Apart from sign changes and from reordering the diagonal elements, these are, in fact,the only possibilities for diagonalizing this particular matrix B by unimodular transfor-mations. This may be shown from theory developed in the nineteenth century. The Smith8



normal form of B, denoted by snf(B), is a diagonalization of B using integer elementary rowand column operations in which the nonzero diagonal entries satisfy dj;j=di;i = integer forall j � i. If the restriction that the diagonal entries be in non-decreasing order is removed,then the diagonal form is not unique. However, any ordering can be achieved by pre- andpost-multiplication by permutation matrices, which are unimodular.Theorem 3.4. (Smith, 1861) Given a t�s matrix ~A whose elements are rational numbers,there exist unimodular matrices V and U of sizes t� t and s� s, respectively, such that� = snf( ~A) = V ~AU (3:4)is a t � s diagonal matrix having �t non-zero elements which are rationals satisfying�i+1;i+1=�i;i = integer i = 1; 2; : : : ; �t� 1; (3:5)The matrix � is unique and is known as the Smith normal form of ~A. (But the matrices Vand U are not unique.)A convenient, accessible modern reference to this theory, which contains a brief proof ofthis theorem, is Schrijver 1986, pp. 40 et seq. A deeper treatment, set in the appropriatenumber theory context, appears in Newman 1972. Algorithms to obtain the Hermite normalform and the Smith normal form have been published; see, for example, Bradley 1971 andKannan and Bachem 1979; in addition, Maple 1991 contains a procedure for �nding D forinteger matrices, (but not U or V ).The key theorem of this paper, which is a simple application of the theorem de�ningthe Smith normal form, follows.Theorem 3.5 Let Q(�) be an s-dimensional lattice rule, and let B be a generator matrixof the reciprocal lattice �?. Then an s-cycle canonical form of Q(�) is given by Z and D,where D = snf(B) = VBU and Z = UT ; (3:6)U and V being unimodular.Proof. Note that since B is an integer matrix, the elements of D are integers. Let usconsider the lattice rule Q(�0) whose D-Z form comprises these particular matrices D and9



Z. Since Z is unimodular, we may invoke Theorem 2.6 to establish thatD�1Z is a generatormatrix of �0. This being so, since V T is unimodular A = V TD�1Z is also a generator matrixof �0 and so, by elementary manipulation B is a generator matrix of �0?. Since the latticegenerated by B is unique and its reciprocal is unique, �0 coincides with � in the theorem.To establish the theorem, we note that, in view of Theorem 3.4, the elements of D have thedivisibility property required for a canonical form. 2Corollary 3.7. Every lattice rule Q(�) has an s-cycle canonical form with Z a unimodularmatrix.Corollary 3.8. The invariants (and rank) of Q(�) coincide with the non unit elements(and their number) of the Smith normal form of B, the generator matrix of the reciprocallattice of �.Let us now return to the numerical example. The lattice rule Q(�), whose reciprocallattice is generated by B in (3.1), is of rank 2, has invariants n1 = n2 = 21 and may beexpressed in canonical D-Z form with z1 = (�8; 7; 0) and z2 = (5;�4; 1).Note that by means of permutation matrices (which are unimodular), we can rearrangethe order of the diagonal elements in the Smith normal form. And, if we abandon thedivisibility property, we can usually �nd other sets of diagonal elements. In example (3.1),only the two possibilities arise, because these two diagonal matrices are the only ones withdeterminant 441 that have the correct Smith normal form. The diagonal matrix diagf3,3,49gfor example, cannot be obtained from B since it has Smith normal form diagf1,3,147g. Thisfact is worth mentioning, because when D = VBU and D is diagonal but not necessarilyin Smith Normal form, the rule Q(�) is also de�ned by D and Z = UT . This is also ans-cycle nonrepetitive form but is not necessarily canonical.It is almost self evident that the Smith normal form of the reciprocal of any non-singularsquare matrixM is the reciprocal of the Smith normal form ofM . It follows that the Smithnormal form of the generator matrix A = (BT )�1 is the reciprocal of D in (3.6). One canwrite down immediately the correspondents of Theorem 3.5 and Corollary 3.8. These are:Theorem 3.9. Let A be a generator matrix of �, and let � = snf(A) = VAU, V and Ubeing unimodular, then an s-cycle canonical form of Q(�) is given by D = inv(�) and Z =U�1. 10



Naturally, the unimodular matrices V and U occurring here are the transposes of the inversesof those in equation (3.6).Corollary 3.10. The invariants (and rank) of Q(�) coincide with the inverses of the non-unit elements (and their number) of the Smith normal form of A, the generator matrix of�.Theorems 3.5 and 3.9 were discovered independently by Langtry 1992.In this section we have provided a general method for obtaining a D-Z form from thegenerator matrix A. Unlike the cumbersome method described in section 2, this methodprovides a canonical form, specifying the rank and invariants of the lattice rule. In factthese quantities are provided without recourse to their possible application in constructingthe summation in (1.6) for the D-Z form. They could have been de�ned through the Smithnormal form, and their application noted afterwards. We shall return to this point in ourconcluding remarks.4 Elimination of Repetition in D-Z FormApplication of the theory of the preceding section allows us to �nd a canonical D-Z formof Q(�) directly from any generator matrix A of � or B of its reciprocal lattice using onlythe Smith normal form decomposition. This leads naturally to a solution to the problem ofidentifying and reducing a repetitive D-Z form. One could, in principle, follow the thrustof Section 2 and form ~A = D�1Z, �nd A an upper triangular matrix by triangularizing0B@ ~AI 1CA, and use the Smith normal form to construct D = VBU . Each of these processesinvolves integer row and column operations, each set having a di�erent immediate objective.In the rest of this section we show how these two sets of operations may be condensed intoone set. To this end we describe a process which leads from a t � s matrix ~A = D�1Z toDc and Zc which specify an s-cycle canonical form of Q with Zc unimodular.Following Theorem 3.4, we set � = snf( ~A) = V ~AU: (4:1)11



We recall that � is a t � s diagonal matrix whose only nonzero elements are rationalssatisfying �i+1;i+1=�i;i = integer i = 1; 2; : : : ; �t� 1; (4:2)where �t � min(s; t) is the number of non-zero elements of �.Lemma 4.3. Let the nonzero diagonal elements of � in (4.1), expressed in their lowest terms,be �i;i = mi=ni i = 1; 2; : : : ; �t: (4:3)Then ni+1jni i = 1; 2; : : : ; �t� 1: (4:4)Proof. The proof is elementary. From (4.2) we havemi+1ni+1 nimi = integer:Since ni+1 has no factor in common with mi+1, it follows that ni+1 divides ni. 2To proceed, we introduce s equations, each of which is an identity, and rewrite (4.1) inthe form 0B@ V 00 U�1 1CA0B@ ~AI 1CAU = 0B@ �I 1CA : (4:5)Here, as previously, I and U are s � s matrices and � is a t � s diagonal matrix. The �tnonzero diagonal elements of � satisfy (4.3) and (4.4) above, with (mi,ni) = 1. We notethat the (t+s)� (t+s) matrix on the left is unimodular. The thrust of the next lemma willbe to provide a reduction in which the rational elements �i;i are replaced by integer inverseelements 1=ni.Lemma 4.6. For all m,n such that (m;n) = 1, there exists a 2 � 2 unimodular matrix Vsuch that V 0B@ m=n1 1CA = 0B@ 1=n0 1CA : (4:6)12



Proof. Since (m;n) = 1, there exist integers �; � such that �m + �n = 1. It is trivial toverify that V = 0B@ � ��n m 1CA (4:7)satis�es (4.6) and has unit determinant. 2Corollary 4.7. Let � be the (t+ s)� s matrix on the right hand side of (4.3), its elementssatisfying (4.4). Then there exists a (t+s)�(t+s) unimodular matrix V (w) such that V (w)�di�ers from � only in the (w,w) element, which is replaced by 1=nw and in the (w+t,w)element, which is replaced by zero.Proof. V (w) di�ers from the unit matrix I only in that the four elements required to carryout row operations on rows w and t + w are replaced by the four in Lemma 4.6, with mwand nw replacing m and n. 2Theorem 4.8. Given a t � s rational-valued matrix ~A, there exists an s � s unimodularmatrix U and a (t+ s)� (t + s) unimodular matrix ~V having the property that~V 0B@ ~AI 1CA = 0B@ ~�J 1CAU�1; (4:8)where ~� is a diagonal t � s matrix whose nonzero elements satisfy~�ii = 1=ni i = 1; 2; : : : ; �t � twith integer ni, where ni+1jni i = 1; 2; : : : ; �t� 1; (4:9)and each row of J either is 0 or is eu with u > �t.Proof. As mentioned before, (4.1) is equivalent to (4.3). We may premultiply suc-cessively by V (1); V (2); : : : ; V (�t), these being de�ned in Corollary 4.7. The e�ect on theleft-hand side of (4.3) is to replace 0B@ V 00 U�1 1CA by~V = V (�t)V (�t�1) : : : V (2)V (1)0B@ V 00 U�1 1CA ; (4:10)13



which is obviously a (t+s)� (t+s) unimodular matrix. The e�ect on the right-hand side isto successively replace the only nonzero element in the w-th row by 1=nw and the (w+ t)-throw by zero leaving a matrix of the form given by the left member of the right-hand side of(4.7). This establishes the theorem. 2Our major result follows simply from Theorem 4.8.Theorem 4.11. Let Q(�) be given in a t-cycle D-Z form, and let ~A = D�1Z. Let theSmith normal form of ~A be � = V ~AU and the nonzero elements of � be �i;i = mi=ni,i = 1; 2; : : : ; �t in their lowest terms. Then an s-cycle canonical form of Q(�) is given byDc = diagfn1; n2; : : : ; n�t; 1; : : : ; 1g, and Zc = U�1. (4.11)Proof. As discussed in Section 2, the lattice � is generated by the rows of 0B@ ~AI 1CA. Sincethis is invariant under premultiplication by a unimodular matrix, this lattice is generatedby the rows of the (t+ s)� s matrix on the left-hand side of (4.8), which coincides with the(t + s) � s matrix on the right of (4.8). The �t zero rows of J clearly play no part in thislattice generation and may be removed. The other s� �t rows may be reordered in a naturalway. We may identify D�1c and Zc with the matrices remaining on the right-hand side of(4.8). 2In the expression for Dc in (4.11), there are s� �t unit elements displayed. Besides these,some of the integers denoted by ni may also be unity. The rank r is of course the number ofnon-unit diagonal elements in Dc and may be less than �t which itself by de�nition cannotexceed min(s,t).With this theorem at hand, we summarize the possible synthesis of an s-dimensionallattice rule Q(�) given in a t-cycle D-Z form.(a) Construct the t � s matrix ~A = D�1Z.(b) Construct the Smith Normal Form � = V ~AU of ~A. This is a diagonal t � s matrix(c) Put the elements of � in its lowest terms, that is, �i;i = mini with (mi; ni) = 1. Then acanonical form of Q(�) is given byDc = diagfn1; n2; : : : ; n�t; 1; : : : ; 1g, and Zc = U�1.14



If one simply requires the invariants (perhaps to determine the rank), one does not needto calculate U . However, in the Smith normal form reduction, the calculation of U (or ofU�1 or both) can be e�ected in situ.(d) If one requires a generator matrix of � or of �?, one calculates A = D�1c U�1, orB = DcUT .5 Numerical ExamplesOur �rst example is to determine a canonical D-Z form of the three-dimensional integrationlattice de�ned by �ve lattice points:zj = � 13j � 1 ; 13j ; 13j + 1� j = 1; 2; 3; 4; 5: (5:1)We shall determine in passing whether the lattice generated by these �ve points is anintegration lattice; that is, are the unit vectors ei already included? Our matrix ~A in (a)above is~A = D�1Z = 0BBBBBBBBBBB@ 1=2 1=3 1=41=5 1=6 1=71=8 1=9 1=101=11 1=12 1=131=14 1=15 1=16 1CCCCCCCCCCCA = 1720720 0BBBBBBBBBBB@ 360360 240240 180180144144 120120 10296090090 80080 7207265520 60060 5544051480 48048 45045 1CCCCCCCCCCCA : (5:2)We now construct the Smith normal form� = V ~AU = diagf1=720720; 1=280; 3=20g; (5:3)and the inverse of the matrix U used in the reductionZc = U�1 = 0BBBB@ 385164 148148 99�33120301 �12739230 �851311831180 4550687 3041 1CCCCA : (5:4)The invariants are given by the denominators in �. That is,Dc = diagf720720; 280; 20g: (5:5)15



Dc and Zc give a canonical form in D;Z notation.The elements zi=ni in this canonical form are given by the rows of A = D�1c Zc. Theseelements are the rows of Zc above divided by the corresponding elements of Dc above.This matrix A contains elements greater in magnitude than unity. Since the latticegenerated by A contains all elements of �0, we may add or subtract any integer fromany element of A. (In this case, this procedure corresponds to premultiplication by someunimodular matrix M .) We obtain in this way a matrix all of whose elements lie in [0; 1),namely, A0c = 0BBBB@ 823=1540 37=180 1=728059=280 3=4 167=2800 7=20 1=20 1CCCCA : (5:6)Note that the lattice generated by the �ve rows of ~A is not an integration lattice. Weknow this because the diagonal elements of �, in their lowest terms, are not all inverseintegers. Ignoring the numerator 3 in the element �33 = 3=20 has the e�ect of increasingthe lattice density by this factor.As a second example, we give a rule in Sloan-Lyness form, which does not obviouslyappear repetitive, but which can easily be shown to be so, by using the above construction.Let Qf = 181 9Xj1=1 9Xj2=1 �f �j1(0; 8; 4)9 + j2(6; 5; 7)9 � : (5:7)We wish to �nd out whether this is repetitive and, if so, to put it in nonrepetitive form.We set ~A = D�1Z = 0B@ 1=9 00 1=9 1CA0B@ 0 8 46 5 7 1CAand �nd � = snf( ~A) = V ~AU = 0B@ 1=9 0 00 4=3 0 1CAwith U�1 = 0BBBB@ �6 11 1�2 3 01 �1 0 1CCCCA :16



The fact that the product of the denominators in � di�ers from the corresponding productin D�1 indicates that (5.7) is repetitive. To obtain a nonrepetitive form is straightforward.We proceed as before to construct ~� from � by removing the nonunit numerator. The rowsof U�1 are then taken as the elements zr ; we �nd after some trivial reduction thatQf = 127 9Xj1=1 3Xj2=1 �f �j1(3; 2; 1)9 + j2(1; 0; 0)3 � ;which is a nonrepetitive form of Q.6 Concluding RemarksFrom a technical point of view, the results in this paper merely show how to carry outvarious standard tasks relating to the manipulation of lattice rules. The tool is a standardtechnique to obtain the Smith Normal Form of an integer matrix. Using this normal form,we can readily �nd a Sloan-Lyness canonical form of Q(�) from a generator matrix of�. And we can determine whether a given form of Q(�) is repetitive by reducing it to acanonical form.However, we believe that this paper has wider implications. The Smith Normal Form ofan integer matrix is in fact the link between two apparently almost independent approachesto the theory of lattice rules. This is because the Smith normal form is a standard tool inthe proof of the Kronecker decomposition theorem. The referee has pointed out that thereis a sense in which this paper is in e�ect traversing a part of the proof of the decompositiontheorem. In our opinion the principal virtue of the theorems in this paper is that they unitethese two parts of the same theory to their mutual bene�t.ReferencesG. H. Bradley, 1971. Algorithms for Hermite and Smith normal matrices and linear dio-phantine equations, Math. Comput. 25 (1971) 897{907.B. Hartley and T.O. Hawkes, 1970. Rings, modules and linear algebra, Chapman and Hall(1970). 17
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