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Abstract

Two independent approaches to the theory of the lattice rule have been exploited
at length in the literature. One is based on the generator matrix A of the lattice
A whose elements provide the abscissas of ). The other, based on the t-cycle form
Q(A)f of Sloan and Lyness, leads to a canonical form for @. In this paper, a close
connection between these approaches is demonstrated. This connection stems from the
close relation between the Kronecker decomposition theorem for Abelian groups and the
Smith normal form of an integer matrix. It is shown that the invariants of the canonical
form of Q(A)f coincide with the elements of the Smith normal form of B = AT~1  the
reciprocal lattice generator matrix. This fact may be used to provide a straightforward
solution to the previously intransigent problem of identifying and removing a repetition

in the general ¢-cycle form.
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1 Background and Introduction

A lattice rule is a multidimensional quadrature rule for integrating over an s-dimensional
hypercube. In this section we provide a brief description of some of the theory followed by
an outline of the contents of the rest of the paper. Without loss of generality we shall take
the hypercube of integration to be [0,1).

An s-dimensional lattice A is an infinite array of points. These satisfy; (a) p,q € A
implies p — q € A; and (b) there exists no limit point; that is, there exists a positive e(A)
such that |p — q| > €(A) unless p = q. A generator matriz A of A is a t X s matrix, whose
rows a, are elements of A having the property that the lattice comprises all points p of the

form

t
p= Z Ara, = AA, (1.1)

r=1

where \; are integer and A = (Aq, Ag, ..., A¢).

Of special note is the unit lattice Ag, which is generated by the s X s unit matrix I.
An integration lattice A is a lattice that contains Ag as a sublattice. A lattice rule Q(A)
has an abscissa set comprising all the points of the integration lattice A which lie in [0, 1)°.
Corresponding to an s-dimensional lattice A is its reciprocal lattice A*. When the generator
matrix of A is nonsingular, this may be defined as the lattice having a generator matrix
B = (AT)~!. The generator matrix of an integration matrix is nonsingular. It is relatively
straightforward to show that the condition for A to be an integration lattice is that B, the
generator matrix of AL, be an integer matrix, i.e., every element of B be an integer. When

A is an integration lattice,

N = |det A" = | det B| (1.2)

is an integer and coincides with the number of lattice points in the hypercube [0, 1)*. These
N points form the abscissa set of the lattice rule Q(A) based on the lattice A. This rule
applies an equal weight 1/N to each abscissa. Moreover, every nonzero element of an
integration lattice generator matrix A is a rational whose denominator is a factor of V.

A generator matrix of a lattice A is not unique. Different generator matrices of the
same lattice may be related using unimodular matrices. A unimodular matriz V' is a square

integer matrix of determinant +1. The inverse of a unimodular matrix is also unimodular,



and elementary integer row (column) operations on a general matrix may be accomplished
by pre- (post-) multiplication by a unimodular matrix. In particular, when A is a generator
matrix of A, sois VA, where V is any unimodular matrix, and all other generator matrices
of A are of this form. (But the lattice generated by AV is generally unrelated to A.)

The approach to the theory of lattice rules based on lattice generator matrices is de-
scribed in more detail in Lyness 1989. There the connection between the reciprocal lattice
and the accuracy of the rule is described. This has led to results about the number of
distinct lattice rules and the structure of embedded lattice rules, and has provided much of
the underlying theory needed for a complete search for good (cost-effective) lattice rules.

However, the original approach to this theory (see e.g. Sloan 1985 and Sloan and Lyness
1989) is quite different, and uses a notation which appears to be entirely independent. This

is a development of a standard form for the number theoretic rule

Qf—igjf(j—z) zeA (13)
_NJZI N 0. .

Here f(x) is a unit periodic continuation of f(x) that coincides with f(x) in the hypercube

[0,1)*. We note that
J(x) = f({x}), (1.4)
where {x} has its conventional meaning as the vector whose components are the fractional

parts of those of x. Specifically,
{x} €[0,1)% {x}—x¢€ A, (1.5)

Number theoretic rules have been the subject of continuous and thorough investigation since
their introduction in Korobov 1959. A recent survey of this work appears in Niederreiter
1988.

The number theoretic rule is itself a lattice rule. The key to understanding form (1.3)
is to note the use of f in place of f. It appears that this has the effect of taking a set of N
points arranged at equal intervals along a line in R®, and translating each point individually
so as to end up with a set of points which are distributed on an s-dimensional integration
lattice A and comprise all the points on A which lie in [0,1)°. One motivation for this paper

is to illuminate the connection between this lattice A and any of its generator matrices A.



In the rest of this paper, t is a positive integer, D is a diagonal ¢ X ¢ matrix whose
elements d; are positive integers and Z is a ¢ X s integer matrix whose rows are the vectors
z;. What we term a t-cycle D-Z form of an s-dimensional lattice rule is an expression of

the form

dq do
Qf = d1d2 D ID IR Zf(‘@Jr‘er +‘7;—?) (1.6)

tji=1jo=1 Je=1

It is shown in theorem 2.1 of Sloan and Lyness 1989 that, so long as ¢t > 1 and D is not
singular, this form represents a lattice rule. This may is done by showing that all points lie
on a lattice, that all points are in [0,1)®, and that each point is assigned equal weight. The
first two items are trivial. The third is straightforward, but leads us to one of the problems
associated with this form. It may well happen that the same point occurs more than once
in the summation. However, if this happens, then every point is repeated the same number
of times. The form is termed k-repetitive, or simply repetitive, when each point is repeated
k > 1 times, in which case v(Q) , the number of abscissas required by the rule, is given by
dydy...d;/k which is of course an integer. Unfortunately, the proof given in that paper is
not constructive. No immediate way of determining & from the elements of D and Z was
then available.

The same rule may be expressed in a D-Z form in many different ways. The rule @ is
defined to be of rank r = r(Q) if it can be expressed in an r-cycle D-Z form, but not in
an (r — 1)-cycle D-Z form. An r-cycle form of @ is termed a minimal form. It is possible
to express a rule of rank 7 in a non-repetitive minimal form in such a way that d;4q|d;
t=1,2,...,7— 1. When this is the case, the z; are linearly independent, and the elements
d; are known as invariants. These are unique; that is, every lattice rule ¢ has a unique
rank and unique set of invariants.

This nomenclature is taken from Group Theory. The abscissa set of a Lattice rule forms
an Abelian group under addition modulo 1. The t-cycle D-Z form (1.6) corresponds to an
expression of this group as a direct sum of cyclic groups, in accordance with the famous
theorem of Kronecker 1877. This is known as the decomposition theorem. See also Hartley
and Hawkes 1970, pp 153 et.seq. Many of the results of Sloan and Lyness are obtained as
applications of the group theory based on this theorem.

Any minimal D-Z form of ¢) in which the nonzero elements of D are the invariants is



known as a canonical form. The vectors z; are not unique, but are linearly independent.

In Section 4 we employ a trivial modification of this definition of a canonical form. It is
clear from definition (1.6) that when any d; = 1, the corresponding sum (over one element )
may be omitted, whatever the corresponding vector z; may be. In the sequel, on occasion,
there will arise naturally what we term an s-cycle canonical form, where the rank of the
rule is 7 < 5. Such a canonical form has d; = 1, j € [r 4 1, s]; we may obtain a standard
r-cycle canonical form by removing the final s — r rows of D and Z and the final s — r
columns of D.

In this section, we have described very briefly the two principal approaches to lattice
rule theory. These are through the lattice generator matrix A and through the t-cycle D-Z
form respectively. This description is mainly to provide a proper background and a coherent
list of definitions.

In Section 2 we outline the theory as it exists for relating one approach to the other.
This is not a long section, as this problem has not been treated seriously before. Sections
3 and 4 contain new results, based on the Smith normal form of a matrix having rational
elements. In Section 3, we show how to obtain a canonical form directly from B, a generator
matrix of the reciprocal lattice. In Section 4 we describe a shorter calculation to obtain

a canonical form from a possibly repetitive form that bypasses the explicit calculation of

either B or A.

2 Some Relations between the Two Approaches

In the preceding section, we described two distinct ways of specifying a lattice rule. One
requires a single generator matrix A. The other a pair of matrices, D and Z. Sections 3 and
4 are concerned with developing an elegant connection between these different specifications
of the same rule, and between different D-Z specifications of the same rule. This section is
devoted to the somewhat pedestrian methods currently available.

We note first that the lattice A formed by @ f in (1.6) includes all ¢ points z;/d; i =
1,2,...,t together with all points generated by them. These ¢ points by themselves may
not happen to generate an integration lattice. However, the expression (1.6) uses f in place

of f. This implies that the fractional part of any of these t points also lies on the lattice A.



The effect of this is that the lattice has to contain the points of Ay, and so in total includes
all points of the form
t s

p=> Jjizi/di+ Y ke, (2.1)
and any point expressible in this form is a member of A. (Here, as is conventional, e; is the
i-th unit s-vector.) In other words, the lattice A is generated by the rows of the (¢ +s) x s
matrix

D'z

A = . (2.2)
I

However, as mentioned above, the same lattice is generated by any matrix obtainable from
A” by using elementary integer row operations. These have the same effect as premultiplying
A* by a unimodular (¢4 s) X (t+s) matrix V. Thus A is generated by the rows of any s X s

matrix A satisfying

=V . (2.3)

A natural approach is to put A* in upper triangular form, but any construction that results
in t zero rows is sufficient.
Occasionally, one can pick out s rows from (2.2) by inspection. The following lemma

may justify such a result.

Lemma 2.4. Let Q(A) be given by an s-cycle D-Z representation, and set A=D1Z:

then if A(A) s an integration lattice, it is the integration lattice of ().

Proof. A(A) is generated by the rows of A. Thus it includes all points of the form

p=> jizi/di  jE Ao (2.4)

=1
Since A is an integration lattice, it includes all points e; i = 1,2, ..., s. Thus, specification
(2.4) coincides with specification (2.1) of the lattice A. a

For example, if Z is known to be unimodular, the following theorem allows us to write

down a generator matrix directly.

Theorem 2.5. Let Q(A) be given in an s-cycle D-Z representation with Z unimodular.

Then this representation is nonrepetitive, and A = D™17 is a generator matriz of A.



Proof. Clearly,
B= (ATt =pzT1,

being the product of two integer matrices, is an integer matrix. Thus, A generates an inte-
gration lattice and, in view of the previous lemma, is the generator matrix of A. Moreover,

since |det Z| = 1, we find
didy...d;=det D = |det A|™' = N,

where N is the number of distinct abscissas used by Q(A). Thus, the D-Z form is not

repetitive. a

The reverse process, that of obtaining an s-cycle D-Z form of Q(A) from a given gener-
ator matrix A of the integration lattice A is also straightforward. Let a, be a row of A and
d, be the smallest integer (or any integer) for which z, = d.a, € Ag. Then an s-cycle D-Z
specification is given by the s x s matrix Z whose rows are z, and D = diag{dy,ds,...,ds}.
(Unfortunately, this simple approach gives, in general, a highly repetitive D-Z form.)

We believe that Theorem 2.5 is new and in simple examples may be helpful in recognising
a non-repetitive form. But what is particularly noticable in the results of this section is
the absence of any general procedure for avoiding or recognising a repetitive form, or for
producing a canonical form. A new way of carrying out these tasks, which leads directly to

a canonical form, is given in the next section.

3 Reduction of B to D-Z Form

We noted earlier that the same lattice may have many different generator matrices. These
are related by elementary integer row operations. That is, B = VB and B generate the
same lattice when V is any unimodular matrix. Successive row operations may be used
to put B into upper triangular lattice form (utlf), in which all elements are nonnegative,
and the largest element in any column lies on the diagonal. This is essentially the Hermite
normal form. It has been exploited in previous papers to count the number of lattice rules,
to obtain information about sublattices and superlattices, and to form the basis of a search

program for good lattice rules (see, e.g., Lyness, Sorevik, and Keast 1991).



As mentioned earlier, integer column operations applied to B (or postmultiplication by
unimodular matrices) result in a matrix that represents a different lattice. Nevertheless, if
one allows column operations as well as row operations, one may put B into diagonal form.
There are generally several ways of doing this though, of course, any such form has the same
determinant (or product of nonzero diagonal elements). This procedure is significantly more
involved than the procedure for the Hermite normal form but is reasonably straightforward.
Since elementary operations may be used to interchange rows and columns, it is apparent
that we may rearrange the order of these diagonal elements. However, there are, in addition,

generally different possibilities for the set of diagonal elements. For example, the matrix

given by
7 14 21
B=| 3 73 117 (3.1)
7 20 66

can be reduced to diagonal form in many ways by using unimodular matrices. Two ways

are as follows:

1 00 7 14 21 1 -2 5 70 0
5 10 35 73 117 0 1 -4 |=|0o3 o], (3.2)
9 —2 1 7 20 66 0 0 1 00 21
and:
11 -2 0 7 14 21 1 -8 5 1 0 0
38 70 35 73 117 1 7 =4 |=lo21t o], (33
9 —2 1 7 20 66 0 0 1 0 0 21

where the pre- and post-multiplying matrices are unimodular.

Apart from sign changes and from reordering the diagonal elements, these are, in fact,
the only possibilities for diagonalizing this particular matrix B by unimodular transfor-

mations. This may be shown from theory developed in the nineteenth century. The Smith



normal form of B, denoted by snf( B), is a diagonalization of B using integer elementary row
and column operations in which the nonzero diagonal entries satisfy d; ;/d; ; = integer for
all 7 > ¢. If the restriction that the diagonal entries be in non-decreasing order is removed,
then the diagonal form is not unique. However, any ordering can be achieved by pre- and
post-multiplication by permutation matrices, which are unimodular.

Theorem 3.4. (Smith, 1861) Given a t X s matriz A whose elements are rational numbers,

there exist unimodular matrices V. and U of sizes t X t and s X s, respectively, such that
§=snf(A)=VAU (3.4)
is a t X s diagonal matriz having t non-zero elements which are rationals satisfying
0ix1,i+1/0;; = integer 1=1,2,...,t—1, (3.5)

The matriz 6 is unique and is known as the Smith normal form of A. (But the matrices V

and U are not unique.)

A convenient, accessible modern reference to this theory, which contains a brief proof of
this theorem, is Schrijver 1986, pp. 40 et seq. A deeper treatment, set in the appropriate
number theory context, appears in Newman 1972. Algorithms to obtain the Hermite normal
form and the Smith normal form have been published; see, for example, Bradley 1971 and
Kannan and Bachem 1979; in addition, Maple 1991 contains a procedure for finding D for
integer matrices, (but not U or V).

The key theorem of this paper, which is a simple application of the theorem defining

the Smith normal form, follows.

Theorem 3.5 Let Q(A) be an s-dimensional lattice rule, and let B be a generator matriz
of the reciprocal lattice AL. Then an s-cycle canonical form of Q(A) is given by Z and D,

where

D=snf(B)=VBU and 7 = UT, (3.6)
U and V' being unimodular.

Proof. Note that since B is an integer matrix, the elements of D are integers. Let us

consider the lattice rule Q(A’) whose D-Z form comprises these particular matrices D and



Z. Since Z is unimodular, we may invoke Theorem 2.6 to establish that D~!Z is a generator
matrix of A’. This being so, since V7 is unimodular A = V' D~ Z is also a generator matrix
of A" and so, by elementary manipulation B is a generator matrix of A'L. Since the lattice
generated by B is unique and its reciprocal is unique, A’ coincides with A in the theorem.
To establish the theorem, we note that, in view of Theorem 3.4, the elements of D have the

divisibility property required for a canonical form. a

Corollary 3.7. Every lattice rule Q(A) has an s-cycle canonical form with 7 a unimodular

matriz.

Corollary 3.8. The invariants (and rank) of Q(A) coincide with the non unit elements
(and their number) of the Smith normal form of B, the generator matriz of the reciprocal
lattice of A.

Let us now return to the numerical example. The lattice rule Q(A), whose reciprocal
lattice is generated by B in (3.1), is of rank 2, has invariants n; = ny = 21 and may be
expressed in canonical D-Z form with z; = (=8,7,0) and z; = (5, -4, 1).

Note that by means of permutation matrices (which are unimodular), we can rearrange
the order of the diagonal elements in the Smith normal form. And, if we abandon the
divisibility property, we can usually find other sets of diagonal elements. In example (3.1),
only the two possibilities arise, because these two diagonal matrices are the only ones with
determinant 441 that have the correct Smith normal form. The diagonal matrix diag{3,3,49}
for example, cannot be obtained from B since it has Smith normal form diag{1,3,147}. This
fact is worth mentioning, because when D = V BU and D is diagonal but not necessarily
in Smith Normal form, the rule Q(A) is also defined by D and Z = UT. This is also an
s-cycle nonrepetitive form but is not necessarily canonical.

It is almost self evident that the Smith normal form of the reciprocal of any non-singular
square matrix M is the reciprocal of the Smith normal form of M. It follows that the Smith
normal form of the generator matrix A = (BT)~! is the reciprocal of D in (3.6). One can

write down immediately the correspondents of Theorem 3.5 and Corollary 3.8. These are:

Theorem 3.9. Let A be a generator matriz of A, and let 6 = snf(A) = VAU, V and U
being unimodular, then an s-cycle canonical form of Q(A) is given by D = inv(6) and 7 =
vt

10



Naturally, the unimodular matrices V and U occurring here are the transposes of the inverses

of those in equation (3.6).

Corollary 3.10. The invariants (and rank) of Q(A) coincide with the inverses of the non-
unit elements (and their number) of the Smith normal form of A, the generator matriz of
A.

Theorems 3.5 and 3.9 were discovered independently by Langtry 1992.

In this section we have provided a general method for obtaining a D-Z form from the
generator matrix A. Unlike the cumbersome method described in section 2, this method
provides a canonical form, specifying the rank and invariants of the lattice rule. In fact
these quantities are provided without recourse to their possible application in constructing
the summation in (1.6) for the D-Z form. They could have been defined through the Smith
normal form, and their application noted afterwards. We shall return to this point in our

concluding remarks.

4 Elimination of Repetition in D-Z Form

Application of the theory of the preceding section allows us to find a canonical D-Z form
of Q(A) directly from any generator matrix A of A or B of its reciprocal lattice using only
the Smith normal form decomposition. This leads naturally to a solution to the problem of
identifying and reducing a repetitive D-Z form. One could, in principle, follow the thrust

of Section 2 and form A = D~1Z, find A an upper triangular matrix by triangularizing

A
1

involves integer row and column operations, each set having a different immediate objective.

, and use the Smith normal form to construct D = V BU. Each of these processes

In the rest of this section we show how these two sets of operations may be condensed into
one set. To this end we describe a process which leads from a ¢ X s matrix A = D717 to

D. and Z. which specify an s-cycle canonical form of () with Z. unimodular.

Following Theorem 3.4, we set

o

§=snf(A)=VAU. (4.1)



We recall that ¢ is a ¢t x s diagonal matrix whose only nonzero elements are rationals
satisfying
6i+1,i+1/6i,i = integer 1=1,2,...,t—1, (4.2)

where ¢ < min(s,t) is the number of non-zero elements of é.

Lemma 4.3. Let the nonzero diagonal elements of ¢ in (4.1), expressed in their lowest terms,

be

(52'72'277%'/712' 1=1,2,...,t. (4.3)

Then
i1 |1y 1=1,2,...,1—1. (4.4)

Proof. The proof is elementary. From (4.2) we have

my4q1 Ny .
i LA Integer.
i1 My
Since n;41 has no factor in common with m;1q, it follows that n;y; divides n;. a

To proceed, we introduce s equations, each of which is an identity, and rewrite (4.1) in
the form
Voo A 8
U= . (4.5)
0 Ut 1 1
Here, as previously, I and U are s X s matrices and ¢ is a ¢ x s diagonal matrix. The ¢
nonzero diagonal elements of § satisfy (4.3) and (4.4) above, with (m;,n;) = 1. We note
that the (4 s) x (¢4 s) matrix on the left is unimodular. The thrust of the next lemma will

be to provide a reduction in which the rational elements ¢;; are replaced by integer inverse

elements 1/n;.

Lemma 4.6. For all m,n such that (m,n) = 1, there exists a 2 X 2 unimodular matriz V.

such that

m/n _ 1/n ‘ (4.6)
1 0

12



Proof. Since (m,n) = 1, there exist integers a, § such that am 4 gn = 1. It is trivial to
verify that
V= (4.7)
-n m

satisfies (4.6) and has unit determinant. 0

Corollary 4.7. Let A be the (t+ s) X s matriz on the right hand side of (4.3), its elements
satisfying (4.4). Then there exists a (t+5)x (t+s) unimodular matriz V") such that VA
differs from A only in the (w,w) element, which is replaced by 1/n,, and in the (w+t,w)

element, which is replaced by zero.

Proof. V() differs from the unit matrix I only in that the four elements required to carry
out row operations on rows w and t 4+ w are replaced by the four in Lemma 4.6, with m,,

and n,, replacing m and n. a

Theorem 4.8. Given at X s rational-valued matriz A, there exists an s X s unimodular

matriz U and a (t + s) x (t + s) unimodular matriz V having the property that

[ A § )
v = U, (4.8)
I J

where 6 is a diagonal t X s matriz whose nonzero elements satisfy

3“'21/712' 1=1,2,...,t <1

with integer n;, where

ni1|ni i=1,2,...,0—1, (4.9)

and each row of J either is 0 or is e, with u > t.
Proof. As mentioned before, (4.1) is equivalent to (4.3). We may premultiply suc-
cessively by VI v v these being defined in Corollary 4.7. The effect on the

Voo
left-hand side of (4.3) is to replace by
0o Ut
Povoyen yeym 50 ) (4.10)
0o Ut

13



which is obviously a (4 s) x (¢ + s) unimodular matrix. The effect on the right-hand side is
to successively replace the only nonzero element in the w-th row by 1/n,, and the (w+1¢)-th
row by zero leaving a matrix of the form given by the left member of the right-hand side of
(4.7). This establishes the theorem. ]

Our major result follows simply from Theorem 4.8.

Theorem 4.11. Let Q(A) be given in a t-cycle D-Z form, and let A = D='Z. Let the

Smith normal form of A be § = VAU and the nonzero elements of § be 6 = mi/n;,

i=1,2,...,t in their lowest terms. Then an s-cycle canonical form of Q(A) is given by
D. = diag{ny,nq,...,n5,1,...,1}, and Z. = U~". (4.11)
Proof. As discussed in Section 2, the lattice A is generated by the rows of . Since
1

this is invariant under premultiplication by a unimodular matrix, this lattice is generated
by the rows of the (¢4 s) X s matrix on the left-hand side of (4.8), which coincides with the
(t 4+ s) x s matrix on the right of (4.8). The ¢ zero rows of J clearly play no part in this
lattice generation and may be removed. The other s — ¢ rows may be reordered in a natural
way. We may identify D7! and Z. with the matrices remaining on the right-hand side of
(4.8). ]

In the expression for D. in (4.11), there are s —{ unit elements displayed. Besides these,
some of the integers denoted by n; may also be unity. The rank r is of course the number of
non-unit diagonal elements in D. and may be less than ¢ which itself by definition cannot

exceed min(s,t).

With this theorem at hand, we summarize the possible synthesis of an s-dimensional

lattice rule Q(A) given in a t-cycle D-Z form.
(a) Construct the ¢ x s matrix A = D™ Z.
(b) Construct the Smith Normal Form 6§ = VAU of A. This is a diagonal ¢ x s matrix

(c) Put the elements of ¢ in its lowest terms, that is, é;; = 7+ with (m;,n;) = 1. Then a

7

canonical form of Q(A) is given by

D. = diag{ny,nq,...,n5,1,...,1}, and Z. = U~".

14



If one simply requires the invariants (perhaps to determine the rank), one does not need
to calculate U. However, in the Smith normal form reduction, the calculation of U (or of

U1 or both) can be effected in situ.

(d) If one requires a generator matrix of A or of AL, one calculates A = D71U1, or
B=D.UT.
5 Numerical Examples

Our first example is to determine a canonical D-Z form of the three-dimensional integration

lattice defined by five lattice points:

1 1 1
;= — 1 =1,2,3,4,5. 5.1
Z] <3]_1,3]73]+1) J 9 Ly dy TEy ( )

We shall determine in passing whether the lattice generated by these five points is an

integration lattice; that is, are the unit vectors e; already included? Our matrix A in (a)

above is

/2 1/3 1/4 360360 240240 180180
/5 1/6 1/7 144144 120120 102960

N 1

A=D"'7 = = : 2
/8 1/9 1/10 0720 | 90090 80080 72072 (5.2)
1/11 1/12 1/13 65520 60060 55440
1/14 1/15 1/16 51480 48048 45045

We now construct the Smith normal form
6 = VAU = diag{1/720720,1/280,3/20}, (5.3)

and the inverse of the matrix U used in the reduction

385164 148148 99
Z.=U"1'=| —33120301 —12739230 —8513 |. (5.4)
11831180 4550687 3041

The nvariants are given by the denominators in 6. That is,
D, = diag{720720,280,20}. (5.5)

15



D, and Z. give a canonical form in D, Z notation.
The elements z;/n; in this canonical form are given by the rows of A = Dc_lZc. These
elements are the rows of Z. above divided by the corresponding elements of D, above.
This matrix A contains elements greater in magnitude than unity. Since the lattice
generated by A contains all elements of Ag, we may add or subtract any integer from
any element of A. (In this case, this procedure corresponds to premultiplication by some
unimodular matrix M.) We obtain in this way a matrix all of whose elements lie in [0, 1),

namely,
823/1540 37/180 1/7280

AL=1| 59/280  3/4 167/280 |- (5.6)
0 7/20  1/20

Note that the lattice generated by the five rows of A is not an integration lattice. We
know this because the diagonal elements of 4, in their lowest terms, are not all inverse
integers. Ignoring the numerator 3 in the element 6335 = 3/20 has the effect of increasing
the lattice density by this factor.

As a second example, we give a rule in Sloan-Lyness form, which does not obviously
appear repetitive, but which can easily be shown to be so, by using the above construction.

Let

LK & l0,8,4) | 5a(6,5.7)
Qf—glg;g;f< - ). (5.7)

We wish to find out whether this is repetitive and, if so, to put it in nonrepetitive form.

We set

. . 1/9 0 0 8 4
A=D""7 =
0 1/9 6 5 7
and find
. /9 0 0
6 =snf(A) = VAU =
0 4/3 0
with
-6 11 1
U= -2 30
1 -1 0
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The fact that the product of the denominators in é differs from the corresponding product
in D™! indicates that (5.7) is repetitive. To obtain a nonrepetitive form is straightforward.
We proceed as before to construct § from § by removing the nonunit numerator. The rows
of U~1 are then taken as the elements z,; we find after some trivial reduction that
or= L 29: > f<j1(3,2,1) N j2(1,0,0))
27 | 9 3 ’

J1=1j2=

which is a nonrepetitive form of Q.

6 Concluding Remarks

From a technical point of view, the results in this paper merely show how to carry out
various standard tasks relating to the manipulation of lattice rules. The tool is a standard
technique to obtain the Smith Normal Form of an integer matrix. Using this normal form,
we can readily find a Sloan-Lyness canonical form of Q(A) from a generator matrix of
A. And we can determine whether a given form of Q(A) is repetitive by reducing it to a
canonical form.

However, we believe that this paper has wider implications. The Smith Normal Form of
an integer matrix is in fact the link between two apparently almost independent approaches
to the theory of lattice rules. This is because the Smith normal form is a standard tool in
the proof of the Kronecker decomposition theorem. The referee has pointed out that there
is a sense in which this paper is in effect traversing a part of the proof of the decomposition
theorem. In our opinion the principal virtue of the theorems in this paper is that they unite

these two parts of the same theory to their mutual benefit.
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