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The investigation summarized in this paper focused on searching for simple single ax-ioms for groups and for Abelian groups, each in terms of each of the six sets of opera-tions fproduct, inverseg, fdivisiong, fdouble division, identityg, fdouble division, inverseg,fdivision, identityg, and fdivision, inverseg. (There is no single axiom in terms offproduct, inverse, identityg [17, 13].) New single axioms were found for each of the twelvecorresponding theories. In seven of the theories, no single axioms were previously known tous; in three of the theories, the new single axioms are shorter than those previously knownto us; and in the remaining two cases, the new single axioms are the same size as the onespreviously known.Operations. Throughout the paper, we use � � � for product, ��1 for inverse, e for theidentity element, �=� for division � � ��1, and � k � for double division ��1 � ��1. Given asingle axiom in one set of operations, it may seem trivial to obtain a single axiom in otheroperations by applying a simple transformation. For example, given (x=(y=(z=(x=y)))) = z,which is a single axiom for Abelian groups, and making the obvious transformation, say�=� ! f(�; g(�)), one obtains a single axiom in the sense that it is de�nitionally equivalentto all other axiomatizations; however, f is not product, and g is not inverse.Mirror Images. The mirror image of an equality with respect to a binary operator isobtained by reversing the arguments of all occurrences of the operator. The mirror imageof a single axiom in terms of product and inverse or in terms of double division is also asingle axiom, and the mirror image of a single axiom in terms of (right) division is a singleaxiom in terms of left division ��1 � �.Axiom Type. We considered length, number of variable occurrences, and number ofdistinct variables as measures when searching for simple single axioms. It is known that ina single axiom, say � = �, for any variety of groups, either � or � must be a variable [13].Assuming � is the variable, we say that a single axiom � = � has type hL;N;Di, if L is thenumber of variable and operator occurrences in �, N is the number of variable occurrencesin �, and D is the number of distinct variables in �. (Kunen [6] classi�es axioms by justhN;Di.TheOtter [8] automated theorem-proving program was used extensively in two distinctways (Section 4) during the investigation: (1) as a symbolic calculator, to construct setsof candidate axioms, and (2) to search for proofs that given candidates are single axioms.Theorem-proving programs have been used in the past to verify known single axioms forgroups [3] and to search for and �nd new single axioms for nonequality theories of groups[10, 12]. Kunen's goal, in his recent study of single axioms for groups [6], was to �ndprecisely how small a single axiom for (ordinary) groups, in terms of product and inverse,can be. By giving non-group models of all candidates, he showed that no single axiom oftype hx; 5; 3i exists. When trying to show that there are no single axioms of type h18; 7; 3i,he found (with help from Otter) several of that type (e.g., (2.1) below).2 Previously Known Single AxiomsAs far as we know, the following are the simplest previously known single axioms for groupsand Abelian groups. The type and reference are given for each.Ordinary Groups:(x=((((x=x)=y)=z)=(((x=x)=x)=z))) = y h17; 9; 3i [1] (1.1)(((z � (x � y)�1)�1 � (z � y�1)) � (y�1 � y)�1) = x h18; 7; 3i [6] (2.1)2



(((x k (y k e)) k ((z k (u k (u k e))) k (x k e))) k y) = z h19; 7; 4i [14] (2.2)Abelian Groups:(x=(y=(z=(x=y)))) = z h9; 5; 3i [16] (2.3)((((x � y)�1 � (y � x))�1 � ((z � u)�1 � (z � ((v �w�1) � u�1)�1)))�1 � w) = v h28; 11; 5i[13] (2.4)The preceding equalities, except (2.4), can be shown to be single axioms by the methodspresented in Section 4.1. Kunen veri�ed (2.4) by using Otter with a nonstandard strategy[5]. Neumann claims in [14] that((x k ((y k z) k (y k (u�1 k z�1))�1)) k x)�1 = u (2.5)is a single axiom for ordinary groups, but a two-element model of (2.5), a k a = a, b k b = a,a k b = b, b k a = b, a�1 = b, b�1 = a, shows that it is not, because there is no element efor which e�1 = e. The counterexample was found by J. Slaney's program Finder [15].Prior to the investigation, we did not know of any single axioms for the remainingtheories. Tarski states in [17, p. 278] that single axioms exist for fdivision, identityg andfdivision, inverseg, but none is given there. Neumann states [14, p. 300] that it should be\quite feasible" to �nd single axioms for ordinary groups in terms of fdivision, identityg andin terms of fdivision, inverseg, and for Abelian groups in terms of fdouble division, identityg.Neumann also conjectured [13] that the simplest single axiom for ordinary groups interms of product and inverse has type h18; 7; 4i. However, Kunen's axiom (2.1) has typeh18; 7; 3i, and we present one of type h16; 7; 4i in the following section.3 New Single AxiomsTables 1 and 2 contain representatives of the single axioms that were found by the methodssummarized in Section 4. Proofs for axioms (3.1) and (3.7) are given in Section 5. Proofsfor the other single axioms listed in this section can be found in [9].Table 1: New Single Axioms for Ordinary GroupsOperators Axiom Type Ref.� and �1 (x � (y � (((z � z�1) � (u � y)�1) � x))�1) = u h16; 7; 4i (3.1)= (x=((((y=y)=y)=z)=(((y=y)=x)=z))) = y h17; 9; 3i (3.2)= and e ((e=(x=(y=(((x=x)=x)=z))))=z) = y h15; 7; 3i (3.3)= and �1 ((x=x)=(y=((z=(u=y))=u�1))) = z h14; 7; 4i (3.4)k and e ((x k (((x k y) k z) k (y k e))) k (e k e)) = z h15; 5; 3i (3.5)k and �1 (x�1 k ((x k (y k z))�1 k (u k (y k u)))�1) = z h16; 7; 4i (3.6)
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Table 2: New Single Axioms for Abelian GroupsOperators Axiom Type Ref.� and �1 (((x � y) � z) � (x � z)�1) = y h10; 5; 3i (3.7)= (x=((x=y)=(z=y))) = z h9; 5; 3i (3.8)= and e ((e=(((x=y)=z)=x))=z) = y h11; 5; 3i (3.9)= and �1 ((x=(y=(x=z))�1)=z) = y h10; 5; 3i (3.10)k and e ((x k ((z k (x k y)) k (e k y))) k (e k e)) = z h15; 5; 3i (3.11)k and �1 (x k (((x k y) k z�1)�1 k y)�1) = z h12; 5; 3i (3.12)The axioms in division alone, (3.2) and (3.8), are the same type as those previouslyknown. The remaining axioms in Tables 1 and 2 are either the �rst known to us or simplerthan those previously known to us.4 MethodologyOtter [8] is a computer program that searches for proofs of conjectures stated in �rst-order logic with equality. The user speci�es inference rules, search strategies, and the waythat derived formulas are to be processed. Inference rules are of two types: resolutionrules, which are based on a generalization of modus ponens, and paramodulation rules,which generalize equality substitution. Search strategies include restricting application ofthe inference rules and methods for selecting the next formula on which to focus. Processingof derived formulas includes methods for discarding them and methods for turning derivedequalities into simpli�cation rules to be applied to subsequently and/or previously derivedformulas.4.1 Trying to Prove That a Candidate Is a Single AxiomOtter can be directed to perform a search based on the Knuth-Bendix completion proce-dure for equational theories [4]. (Briey, the Knuth-Bendix procedure attempts to converta set of equalities into a terminating and conuent set of rewrite rules which is a decisionprocedure for the word problem for the theory. The procedure derives new equalities by arestricted form of paramodulation, using a user-supplied ordering on terms to orient newequalities into rewrite rules, and keeps everything fully simpli�ed with respect to the set ofrewrite rules. Success occurs if every derived equality can be oriented and the procedureterminates.) We used two well-known extensions to the procedure [7, 2]: (1) turning it intoa proof (refutation) search by including denials of known axiomatizations in the input, and(2) allowing nonorientable equalities to enter the search. The extended procedure is usefuleven in cases when it does not terminate.We typically started searches with a candidate and with denials of all single axiomsknown to us. In addition, we input denials of other properties such as associativity ofproduct and the existence of an identity. Otter was directed to output all proofs thatit found within a speci�ed time. Although the precise settings of the Otter parametersvaried for the di�erent theories we explored, we remark on the general Otter 2.2 [8, 11]strategies we used.(1) We set the kunth_bendix ag which automatically sets several paramodulation, de-modulation, and ordering parameters. 4



(2) We used the lexicographic recursive path ordering; the ordering on operators wastypically (�1 � �), (= � e), (= � �1), (k � e), and (�1 � k), with � and k havingleft-to-right status.(3) We set an initial maximum of 50 or 60 on the weight (symbol count) of inferredclauses, then reduced the limit to to 25 after 25 given clauses.(4) When more than one property was required to show that a candidate is a single axiom,we input the denials as unit clauses rather than as a multiliteral clause and markedsuccess with multiple proofs rather than with a single proof (the reasons are fairlytechnical). It is sound to do so in this case, because paramodulation and demodulationalone will not cause the unit denials to interact with one another.4.2 Constructing and Testing Sets of CandidatesAside from automated theorem proving, Otter can also serve as a symbolic calculator,for which the user \programs" his or her task with formulas and equalities that have aprocedural rather than a declarative interpretation. Examples of four types of task are(1) given a set of equalities, decide which are true in all groups, (2) given a string ofsymbols, generate all binary associations of the symbols, (3) given a set of equalities, insert(in a well-formed way) speci�ed terms into each, and (4) given a set of equalities, applyparamodulation with speci�ed equalities in a very constrained way. Otter was used inthis \programmed" mode to construct sets of prospective single axioms.The practical limit on the size of candidate sets was about 10,000 members, and mostcandidate sets we used had fewer than 5,000 members. (That way we could run a setovernight or over a long weekend and allow 20{30 seconds for each candidate.) Given a setof candidates, we ran a simple program that initiates a separate Otter search with eachcandidate. The search strategy and the list of denials (of known single axioms and otherkey properties) were �xed for the sequence of runs. The time limit for each search variedfrom 10 to 60 seconds, depending on the size of the set. Any proofs that were found werecollected in a �le.Groups in terms of product and inverse. Neumann's axiom (1.2) has type h18; 7; 4i.We built the set of identities of type hx; 7; 4i, for x = 14; 15; 16; 17 (corresponding to 1; 2; 3; 4occurrences of inverse). (At that time we were not aware of Neumann's theorem that allsingle axioms have an odd number of occurrences of inverse [13], which eliminates lengths15 and 17.) The set has 120,736 members. Looking to Neumann's single axioms [13] forguidance, we decided to consider candidates without inverse at the outermost level and withinverse applied to product in at least two places. No single axioms were found for length 17,but many were found for length 16. We later found others of the same type with inverse atthe outermost level. A total of 107 single axioms of type h16; 7; 4i, excluding mirror images,were found. We list here �ve representatives:(x � (y � (((z � z�1) � (u � y)�1) � x))�1) = u, (3.1)(((((x � y) � z)�1 � x) � y) � (u � u�1))�1 = z,(x � (y � (z � ((z�1 � (u � y)�1) � x)))�1) = u,(x � (y � ((y�1 � z) � (u � (x � z))�1)))�1 = u,(x � (y � ((z � z�1) � (u � (x � y))�1)))�1 = u.5



We then tried, without success, to �nd axioms of type h16; 7; 3i, by taking instances of the107 axioms. All other attempts at �nding simpler axioms failed. Kunen [6] later showedthat the only possibility for a simpler axiom is h16; 7; 3i.Abelian groups in terms of product and inverse. Neumann's axiom (2.4) has typeh28; 11; 5i. The �rst approach was to take axioms of type h16; 7; 4i for ordinary groups andcommute products in all possible ways. This led to many single axioms of type h16; 7; 4i.(Of the 26 = 64 commuted variants of just the �rst of the 107 axioms, 28 were found to besingle axioms for Abelian groups.) To search for simpler axioms, we extracted the identitiesof type hx; 5; 3i, for x = 10; 11; 12; 13; 14, from the 120,736-member set mentioned in thepreceding paragraph, and obtained all commuted variants of those. This approach led tothree single axioms, excluding mirror images, of type h10; 5; 3i:(((x � y) � z) � (x � z)�1) = y, (3.7)(x � ((y � z) � (x � z)�1)) = y,(x � (((x � y)�1 � z) � y)) = z.Note that simpler single axioms are impossible, because three variables [5, 6] and at leastone occurrence of inverse are required.Groups in terms of division. Higman and Neumann's axiom (1.1) has type h17; 9; 3i.We �rst considered identities of types h9; 5; 3i, h13; 7; 4i, and h17; 9; 5i and found 29 singleaxioms of type h17; 9; 5i. We then examined three-variable instances of the 29 axioms, andfound the following two new axioms of type h17; 9; 3i:(x=((((y=y)=y)=z)=(((y=y)=x)=z))) = y, (3.2)(((x=x)=(x=(y=(((x=x)=x)=z))))=z) = y.Abelian groups in terms of division. Two single axioms of type h9; 5; 3i, were previ-ously known to us: Tarski's (2.3), and Higman and Neumann's (x=((y=z)=(y=x))) = z [1].No simpler axiom is possible, because three variables are required. We examined identitiesof the same type and found the following four additional single axioms:(x=((x=y)=(z=y))) = z, (3.8)((x=(y=z))=(x=y)) = z,((x=((x=y)=z))=y) = z,((x=y)=((x=z)=y)) = z.Groups in terms of division and identity. No single axioms were previously knownto us. We �rst considered, without success, identities of type h15; 5; 3i (three occurrencesof identity). We then took the single axioms in division alone (type h17; 9; 3i); each hastwo occurrences of �=�, for variable �. Considering the six candidates of type h15; 7; 3iobtained from those by replacing one occurrence of �=�, with the identity, we found thefollowing four single axioms:((e=(x=(y=(((x=x)=x)=z))))=z) = y, (3.3)(((x=x)=(x=(y=((e=x)=z))))=z) = y,(x=(((e=y)=z)=(((x=x)=x)=z))) = y,(x=((((x=x)=y)=z)=((e=x)=z))) = y.We note that by replacing (x=x) with e in (3.3), a single axiom for groups is obtained, with(e=e) as the identity (shown by Otter), but e is not the identity (shown by Finder).6



Abelian groups in terms of division and identity. No single axioms were previouslyknown to us. We started with the four single axioms for ordinary groups in terms of divisionand identity, and applied limited paramodulation with the Abelian identities x=(x=y) = yand (x=y)=z = (x=z)=y to obtain a set of 48 candidates of various types. Several singleaxioms were found, the simplest being the following three of type h11; 5; 3i:((e=(((x=y)=z)=x))=z) = y, (3.9)((e=(x=y))=((y=z)=x)) = z,((e=x)=(((y=x)=z)=y)) = z.Groups in terms of division and inverse. No single axioms were previously knownto us. We took the 29+3 single axioms in division alone, and applied paramodulationfrom the de�nition of inverse, (y=y)=x = x�1, one time at each possible position, obtaining200 candidates of various type. The simplest single axioms discovered were �fteen of typeh14; 7; 4i. We list �ve representatives here:((x=x)=(y=((z=(u=y))=u�1))) = z, (3.4)((x=(y=(z=u)))�1=((u=z)=x)) = y,(((x=y)�1=((z=u)=x))=(u=z)) = y,((((x=y)=z)=(u=z))�1=(y=x)) = u,((((x=x)=y)=(z=(y=u)))�1=u) = z.Abelian groups in terms of division and inverse. No single axioms were previouslyknown to us. We �rst took the 15 single axioms from the preceding paragraph and appliedparamodulation with the Abelian identity x=(x=y) = y, obtaining 106 candidates. In thatset, fourteen single axioms were found, all of type h14; 7; 4i. We then turned to an exhaustivesearch of the h10; 5; 3i candidates. The following three single axioms of that type were found.((x=(y=(x=z))�1)=z) = y, (3.10)(x=((y=z)=(x=z))�1) = y,(((x=y�1)=z)=(x=z)) = y.Groups in terms of double division and identity. The only single axiom known tous was Neumann's (2.2) of type h19; 7; 4i. We tried all candidates of type h15; 5; 3i (threeoccurrences of identity) and discovered 208 single axioms. These axioms are noteworthybecause they are the simplest, in terms of variable occurrences and distinct variables, of allknown single axioms for ordinary groups. We list here �ve representatives:((x k (((x k y) k z) k (y k e))) k (e k e)) = z, (3.5)(x k (((e k ((x k e) k (y k z))) k y) k e)) = z,((e k x) k (e k (((x k y) k e) k (z k y)))) = z,((e k x) k (((y k z) k (e k e)) k (x k z))) = y,((e k (x k (y k e))) k ((y k (z k x)) k e)) = z.Abelian groups in terms of double division and identity. No single axioms werepreviously known to us. We took the single axiom (3.5) for ordinary groups, applied com-mutativity of k in all combinations, and deleted mirror images, obtaining 32 candidates.Eleven of those, also of type h15; 5; 3i, were found to be single axioms. We list here �verepresentatives: 7



((x k ((y k (x k z)) k (e k z))) k (e k e)) = y, (3.11)((x k ((y k (x k z)) k (z k e))) k (e k e)) = y,((x k ((y k (z k x)) k (z k e))) k (e k e)) = y,((x k (((y k x) k z) k (y k e))) k (e k e)) = z,((x k ((e k y) k (z k (y k x)))) k (e k e)) = z.This case, double division and identity, is noteworthy because it is the only case in whichthe currently known single axioms for Abelian groups are not simpler than the single axiomsfor ordinary groups.Groups in terms of double division and inverse. No single axioms were previouslyknown to us. We �rst considered, without success, all identities of type hx; 5; 3i, for x =12; 13; 14 (corresponding to three, four, and �ve occurrences of inverse). We then consideredidentities of type h16; 7; 4i, without occurrences of (� k ��1) or (��1 k �), for variable �,and discovered two single axioms:(x�1 k ((x k (y k z))�1 k (u k (y k u)))�1) = z, (3.6)((x k (y k z)�1) k (y�1 k (u k (x k u))�1)) = z.Abelian groups in terms of double division and inverse. No single axioms werepreviously known to us. We �rst took the �rst single axiom for ordinary groups and appliedcommutativity of k in all combinations. Six of the resulting 32 candidates (type h16; 7; 4i),were found to be single axioms. We then considered all identities of types h10; 5; 3i andh12; 5; 3i (one and three occurrences of inverse) and found the following eight single axiomsof type h12; 5; 3i:(x k (((x k y) k z�1)�1 k y)�1) = z, (3.12)(((x k y) k (x k z�1)�1)�1 k y) = z,((x k y) k (x k (z k y)�1)�1)�1 = z,((x k y) k (x k (z�1 k y)�1)�1) = z,((x k (y k (x k z))�1)�1 k z)�1 = y,((x k (y�1 k (x k z))�1)�1 k z) = y,(((x k y)�1 k z)�1 k (x k z))�1 = y,(((x k y�1)�1 k z)�1 k (x k z)) = y.5 Proofs for Product/Inverse Axioms (3.1) and (3.7)This section contains Otter's proofs that (3.1) and (3.7) are single axioms, in terms ofproduct and inverse, for groups and Abelian groups, respectively. Proofs found by our mostsuccessful Otter strategies usually are more complex than necessary, and the followingproofs are the result of several tricks to coerce Otter into �nding shorter proofs.The justi�cation m ! n indicates paramodulation from n into n (substitution of aninstance of the left side of m for an instance of a term in the left side of n), and : i; j; � � �indicates simpli�cation with i; j; � � �. The numbering of the equalities reects the sequenceof equalities retained by the program. 8



Theorem 1. The theory of groups can be de�ned by the single axiom(x � (y � (((z � z�1) � (u � y)�1) � x))�1) = u. (3.1)Proof. First, Eq. (3.1) holds in groups, a fact that can be checked by straightforwardcalculation. Next, consider the following derivation, starting with (3.1).5 (x � (y � (((z � z�1) � (u � y)�1) � x))�1) = u [(3.1)]7 (x � ((((y � y�1) � (z � u)�1) � (v � v�1)) � (z � x))�1) = u [5!5]9 (x � ((y � (z � z�1)) � (u � x))�1) = (((v � v�1) � (y � u)�1) � (w � w�1)) [5!7]10 (((y � y�1) � (((z � z�1) � (u � x)�1) � u)�1) � (v � v�1)) = x [7!9]12 (((x � x�1) � y�1�1) � (z � z�1)) = y [10!10]14 ((x � x�1) � (y � z)�1) = ((u � u�1) � (y � z)�1) [10!5]15 ((x � x�1) � y�1) = ((z � z�1) � y�1) [12!14:12]17 (u � u�1) = (v � v�1) [15!5:5]19 (x � x�1) = ((y � y�1) � (z � z�1)�1) [17!15]20 (((x � x�1) � ((y � y�1) � z)�1) � (u � u�1)) = z�1 [17!10]22 (x � (y�1 � ((z � z�1) � x))�1) = y [17!5]25 (x � ((u � u�1)�1�1 � (w � x))�1) = w�1 [19!7:20]32 ((x � x�1)�1 � (y�1 � (z � z�1))�1) = y [17!22]34 (x�1 � ((y � y�1)�1�1 � (z � z�1))�1) = x�1 [17!25]36 ((y � y�1) � (x � (z � z�1)�1�1)�1)�1 = x [5!25]44 (x � ((y � y�1)�1�1 � (z � z�1))�1) = x [36!34:36]48 ((x � x�1)�1�1 � (y � y�1)) = (z � z�1) [44!17]52 (x � (y � y�1)�1) = x [48!44]57 ((z � z�1)�1 � u)�1�1 = u [52!10:20]62 (x�1 � (y � y�1))�1 = x�1�1 [32!57]65 (y � ((z � z�1) � (x � y)�1))�1 = x�1�1 [5!57:52]76 (x � (y � y�1))�1 = x�1 [57!62:57]88 ((x � x�1)�1 � y�1�1) = y [65!32]92 ((u � u�1) � y�1)�1 = y [65!20:12,76]116 (y � (u � u�1)) = y [76!32:76,88]126 ((y � z) � z�1) = y [76!5:92]201 (x � y�1�1) = (x � y) [126!126]207 ((x � x�1) � z) = z [19!126:52,201]215 (x � (y � ((x � y)�1 � u))) = u [5!126:207,201]227 y�1�1 = y [126!36:207,52]229 (z � x)�1 = (x�1 � z�1) [126!25:227,207]239 (x � ((x�1 � u) � y)) = (u � y) [126!5:207,229,229,227,227]260 ((x � y) � z) = (x � (y � z)) [215!215:229,229,229,227,227,239]By 17, there exists a unique element e such that for all x, (x � x�1) = e; it follows from 116that e is a right identity; and 260 shows the associativity of product.9



Theorem 2. The theory of Abelian groups can be de�ned by the single axiom(((x � y) � z) � (x � z)�1) = y. (3.7)Proof. First, Eq. (3.7) holds in Abelian groups, a fact that can be checked by straight-forward calculation. Next, consider the following derivation, starting with (3.7).8 (((x � y) � z) � (x � z)�1) = y [(3.7)]10 ((x � y) � (((z � x) � u) � y)�1) = (z � u)�1 [8!8]12 (x � ((y � x) � (y � z)�1)�1) = z [8!8]16 ((x � (y � z)�1) � x�1) = (y � z)�1 [8!10]18 (y � (z � ((y � z) � x)�1))�1 = x [12!10]23 ((x � y) � (x � (y � z))�1)�1 = z [10!18]37 ((x � y) � x�1) = y [23!16:23]39 ((z � y) � (z � x)�1)�1 = (x � y�1) [12!16]41 (x � ((y � x) � z)�1) = (y � z)�1 [8!16]43 (x � (z � x�1)) = z [12:39]51 (x � (x � z)�1)�1 = z [18:41]53 (x � (y � x)�1) = y�1 [37!37]55 (y � z)�1 = (y�1 � z�1) [37!10:53]58 ((((x � y) � z) � x�1) � y�1) = z [37!8]60 (x � (y�1 � y�1�1)) = x [37!8:55]64 (x�1 � (x�1�1 � y�1�1)) = y [51:55,55,55]85 x�1�1 = x [43!64]92 (x�1 � (x � y)) = y [64:85,85]94 (x � (y�1 � y)) = x [60:85]101 (x � (x�1 � y)) = y [85!92]108 (x � y) = (y � x) [92!37:85]114 (x � (y � y�1)) = x [85!94]136 (x � x�1) = (y � y�1) [114!101]172 (((z � x) � y) � z�1) = (x � y) [58!43]184 ((x � y) � z) = ((z � x) � y) [92!172:85]244 ((x � y) � z) = (x � (y � z)) [184!108]By 136, there exists a unique element e such that for all x, (x � x�1) = e; it follows from114 that e is a right identity; and 108 and 244, respectively, show the commutativity andassociativity of product.6 ConclusionThe remaining question is whether there exist single axioms simpler than the ones listed inTables 1 and 2. Our focus has been on �nding short axioms rather than on �nding oneswith few variables. The two cases that currently use four variables are fdivision, inversegand fdouble division, inverseg for ordinary groups ((3.4) and (3.6) in Table 1). Are theresingle axioms for these cases with just three variables?With our type criteria, there is currently no simplest-known single axiom for groupsin terms of product and inverse; the ones given here have type h16; 7; 4i, and Kunen's [6]have type h18; 7; 3i. The only possibility for a simpler single axiom is h16; 7; 3i, because a10



single axiom must have an odd number � 3 of occurrences of inverse, at least seven variableoccurrences, and at least three variables [6].The goal of the work reported here was to �nd simple single axioms. We made occasionaluse of Finder [15] to search for small counterexamples when we had a promising candidatethat Otter could not prove to be a single axiom. However, further work in this area willmost likely bene�t from extensive model searches, for both simple models with a programlike Finder, and for more complex models as in Kunen's methods [6].References[1] G. Higman and B. H. Neumann. Groups as groupoids with one law. PublicationesMathematicae Debrecen, 2:215{227, 1952.[2] J. Hsiang and M. Rusinowitch. On word problems in equational theories. InT. Ottmann, editor, Proceedings of 14th ICALP, Lecture Notes in Computer Science,Vol. 267. Springer-Verlag, 1987.[3] D. Kapur and H. Zhang. Proving equivalence of di�erent axiomatizations of free groups.Journal of Automated Reasoning, 4(3):331{352, 1988.[4] D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,editor, Computational Problems in Abstract Algebras. Pergamon Press, 1970.[5] K. Kunen, Sept.{Oct. 1991. Correspondence by electronic mail.[6] K. Kunen. Single axioms for groups. Tech. Report 1076, Computer Sciences Dept.,University of Wisconsin-Madison, February 1992. To appear in J. Automated Reason-ing.[7] D. Lankford. Canonical inference. Tech. Report ATP-32, Dept. of Computer Sciences,University of Texas, Austin, TX, 1975.[8] W. McCune. Otter 2.0 Users Guide. Tech. Report ANL-90/9, Argonne NationalLaboratory, Argonne, IL, March 1990.[9] W. McCune. Proofs for group and Abelian group single axioms. Tech. MemoANL/MCS-TM-156, Mathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, IL, October 1991.[10] W. McCune. Single axioms for the left group and right group calculi. Preprint MCS-P219-0391, Mathematics and Computer Science Division, Argonne National Labora-tory, Argonne, IL, 1991. To appear in Notre Dame J. Formal Logic.[11] W. McCune. What's New in Otter 2.2. Tech. Memo ANL/MCS-TM-153, Mathemat-ics and Computer Science Division, Argonne National Laboratory, Argonne, IL, July1991.[12] W. McCune. Automated discovery of new axiomatizations of the left group and rightgroup calculi. Journal of Automated Reasoning, 9(1):1{24, 1992.[13] B. H. Neumann. Another single law for groups. Bull. Australian Math. Soc., 23:81{102,1981. 11
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