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BSTRACT. In the practice of the Boundary Element Method, a basic task involves the quadrature
a

v
over a quadrilateral or triangle of an integrand function which has a singularity of known form at
ertex. A not uncommon situation is that this quadrature has already been studied in depth for the

-
t
standard triangle or the square, and all that is now necessary is to apply the known results in the con
ext of a different triangle or parallelogram, one that has been obtained from the standard region by an

affine transformation.
It can be surprising to someone who has not done it himself, how difficult this task can be.

n
a

This article provides an account of how easy it is to be misled in this area. Besides describing a
pparently cost effective approach which turns out to be a disaster, I discuss some of the advantages

w
and disadvantages of using rules based on extrapolation either as an alternative to, or in conjunction

ith Gaussian rules. This article is anecdotal in character.

I

1. Introduction

n books and research articles, the seeker after knowledge will find plenty of information
d

r
about how to integrate regular or ‘‘well behaved’’ integrand functions over various standar
egions. These will include in great detail, a standard square, such as H :[0,1) and possibly

in less detail, a standard triangle, usually an isosceles right-angled one

2

T : x ≥ 0; y ≥ 0; x +y < 1

a

2

nd, of course, higher-dimensional analogues of these.
l

w
If our knowledge seeker is interested in implementing a finite element program, he wil

ant more than this. He has to deal with large number of elements. Many will be similar to
-

d
one another. The majority will involve integrating regular integrand functions over nonstan
ard triangles and quadrilaterals. This is not particularly difficult. But there will be a small

m
but significant proportion which are more difficult, having one or another of the features

entioned below. He may have regions which only approximate to triangles or squares. He
e

g
may have, for example, a plane curvilinear triangle, such as a quadrant of a circle, or a mor
eneral curvilinear triangle such as the surface of an octant of a sphere. These boundaries

h
and surfaces may be specified either in a convenient form, or in some inconvenient possibly
ighly implicit form. His integrand function may have singularities. These are usually quite

,
h
simple singularities and the user is usually well aware of their nature and location. But
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

*
This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.

Department of Energy, under Contract W-31-109-Eng-38.



2

while the singularity may be simple in structure, integrating over it may be tedious. In any
t

f
single problem, it is most unlikely that a single element will have all these inconvenien
eatures, but one might.
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This article is about some of the problems encountered by such a user. My feeling is
-

i
that a user spends nearly all of the time which he devotes to numerical quadrature to attempt
ng to adapt the results given in textbooks for standard regions and regular integrands to his

s
f
problem. He finds, to his dismay, that this topic is not discussed in textbooks, and he turn
or help to his local quadrature expert. All too often he finds the quadrature expert, while

s
n
sympathetic and ready to help, to be of little use. This is because the quadrature expert ha
ot previously encountered this sort of problem in detail. His attempts to help may be ham-

s
pered by misconceptions. Sometimes he imagines that all these problems can be handled by
caling, and tries to prove this incorrect hypothesis. Other times he thinks that nothing can

-
c
be scaled which may also be wrong. Either misconception can lead to seemingly endless dis
ussion and unnecessarily inefficient programs.

My hope is that this article, which is written for the quadrature expert and which is anec-
dotal in nature, may be helpful in directing attention to some of the pitfalls in this area.

It is worth stating at the outset that in a one-dimensional context these problems are very
e

d
rare, and when one is encountered, there is usually a quick remedy that only works in on
imension. This problem is essentially multidimensional.

n
Q

In this article, we shall treat principally two quadrature methods. These are Gaussia
uadrature, and Linear Extrapolation Quadrature of which Romberg Integration is a special

i
case. We shall look at the effect of Affine Transformations of the coordinate system on these
ntegration procedures. We shall discuss briefly the Duffy transformation (of a triangle into a

2

square).

. Extrapolation Quadrature

It is well known that polynomials are basic to Gaussian Quadrature. A corresponding role in
a

p
the theory underlying Extrapolation Quadrature is played by Homogeneous functions. As
reliminary, we remind the reader of the definition and simple properties of these functions.

A function f (x ,y ) is said to be homogeneous (about the origin) of degree α if

f (λx ,λy ) = λ f (x ,y ) for all λ > 0 .α

α .We shall often denote such a function by f (x ,y )
A monomial x y is homogeneous of degree p +q , and many properties relating to the

p

p q

olynomial degree of functions of monomials have direct analogues in the context of homo-
)geneous degree. Thus, ( f ) and f f are of degree αβ and α+β, respectively, and f (M xα

β
α β α
s

α
s .when e M e ≠ 0 is also of degree α; ∂ f /∂x is of degree α−s

In more than one dimension, many more interesting functions are homogeneous. For
fexample, r = (x +y ) is homogeneous of degree 1, and θ = arctan y /x is homogeneous o2 2 1⁄2

.degree zero, as is any function Φ(θ)
Extrapolation Quadrature, abbreviated here to EQ, is a natural development of

r
h
Richardson’s deferred approach to the limit. It is a technique designed for integration ove
ypercubes or simplices. Romberg integration is a special and important one-dimensional

i
example of Extrapolation Quadrature. In this section, we shall restrict the discussion to
ntegration over the square [0,1) . However, all results below are valid for the triangle T 2

2

.also. See Lyness (1991) for a brief elaboration of this remark
In this paper we adopt the following convention for the polynomial degree of a quadra-

r
ture rule. A rule of degree d is one which integrates all polynomials of degree d exactly. A
ule of strict degree d is one of degree d but not of degree d +1.

e
t

In this paper we treat only degree zero quadrature rules. These are rules which integrat
he constant function correctly. We denote by Q any degree zero quadrature rule for [0,1) ;2



that is,

4
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(2.1)Qf = w f (x ,y ) with w = 1 ,Σ Σ jj j j

(m )and we define its m -copy Q f in the standard way as the approximation to the exact
integral, If , obtained by subdividing the square into m squares each of side 1/m and apply-2

e
e
ing a properly scaled version of Q to each. In our context it is usually advantageous to us
ither the mid-rectangle rule or the vertex trapezoidal rule for Q . The theory allows any rule

which integrates the constant function correctly.
In general, one would expect the rule Q f with a large value of m to be a better(m )

d
b
approximation to If than the rule with a small value of m . A measure of this effect woul
e provided by an asymptotic expansion of the error functional E f = Q f −I f in inverse(m ) (m )

n
Q
powers of m or other suitable expansion functions. We can justify the use of Extrapolatio

uadrature if such an expansion exists and its form is known. Whether or not there is one
available depends on the nature of f (x).

Briefly, these error functional expansions are built up from two basic asymptotic expan-

T

sions given in the following two theorems.

2.2. When f (x) together with its partial derivatives of order p or less are integr-
a

HEOREM
ble over H , and Q is a degree zero quadrature rule for H , then

(2.2)hhhhh + O (m ) ,
Bhhhh + . . . +
m

Bhhh +
m

B

m
Q f −I f =(m ) 1

2

2

p −1

p −1 −p

w s shere B = B (H ;Q ; f ) are independent of m .

.

T

This is a straightforward generalization of the classical Euler Maclaurin formula

2.3. When f (x) is homogeneous of degree α and has no singularity in H except
p

HEOREM
ossibly at the origin, and Q is a degree zero quadrature rule for H , then

(2.3)hhhhhhhhhmC ln

m

hhhhh +
A

Q f − If =
m

(m )

2+α

2+α

2+α

2+α

1

2

2

p −1

p −1 −p ,hhhhh + O (m )
Bhhhh + . . . +
m

Bhhh +
m

B

m

w

+

here the coefficients A , B , and C are independent of m , and C = 0 unless α is an

A

integer.
2+α

detailed proof of this is given in Lyness (1976i).
f

c
We may construct an expansion for any function which is a linear sum of any number o

omponent functions, so long as each component satisfies the hypotheses of one or the other
of these theorems. This is easy to do when

(2.4)f (x ,y ) = f (x ,y )g (x ,y ) ,α

where g is regular. Here we may expand g (x ,y ) in a Taylor expansion about the origin
r

t
retaining only monomial terms of degree p −1 or less and deferring the rest to the remainde
erm. This gives rise to an expression for f (x ,y ) of the form

(2.5) .f (x ,y )g (x ,y ) = g (0,0) f (x ,y ) + f (x ,y ) +...+ f (x ,y ) + g (x ,y )α α α+1 α+p −1 α+p

2
a
The final term g is not a homogeneous function but satisfies the hypothesis of Theorem 2.
bove. All the other terms in this expansion are homogeneous of the indicated degree and so

rsatisfy the hypotheses of Theorem 2.3 above. Thus, (2.5) may be used to establish erro



6

functional expansions valid for classes of familiar functions. For example, in Lyness (1976i)

T

the approach outlined above is used to show the following theorem.

2.7. Let F (x ,y ) be of the formHEOREM

(2.6)F (x ,y ) = r Φ(θ)h (r )g (x ,y ) ,α

where (r ,θ) are the polar coordinates of (x ,y ) and Φ,h , and g are analytic functions; and
let Q be a degree zero quadrature rule for H . Then

(2.7)
hhhh α ≠ integer
Bhhhhhhh +

s =1 m

A
Q F −IF −wig

t =0 m

(m )

2+α+t

2+α+t

s
Σ Σ s

Σ
s

s s s−wig

s =1 m

A + B + C ln mhhhhhhhhhhhhhhhhh α = integer .

e
o

Some logarithmic singularities can also be treated. The corresponding expansions ar
btained by differentiating already-available expansions with respect to some incidental

parameter, such as α. We may exploit the identity

(2.8)
hhh(r g (x ,y )) = r ln r g (x ,y )∂

α∂

α α

s e
a
to obtain an expansion like (2.7) but having additional terms log m /m and, when these ar
lready present, terms (ln m ) /m . For more detailed information about these and other

e

2 s

xpansions, the reader may refer to Lyness (1976ii). However, this is a continuing research
e

d
area; other expansions have been discovered since then and more may remain to b
iscovered. See Sidi (1983).

The user of Linear Extrapolation Quadrature need not concern himself about the deriva-

p
tion of the expansion. Once he has satisfied himself that it exists and knows its form, he can
roceed to apply extrapolation. This is done by constructing linear sums of values of Q f(m )

-
r
in such a way as to eliminate the early terms of the relevant expansion. The Neville algo
ithm can be used when the expansion is a simple one, like the one in Theorem 2.2 above.

But, in general, all that one has to do is to solve a set of linear equations.
We close this section by stating the corresponding results for Gaussian Quadrature. It is

T

convenient to present the following definition as a theorem.

2.9. When f (x ,y ) is a polynomial of degree d and Q is a degree d quadrature
r

HEOREM
ule, with respect to a specified region R and a specified weight function w (x ,y ), then

(2.9)Qf −I (R ) f = 0 ,

.where I (R ) f =

R

w (x ,y ) f (x ,y )dxdy∫

Note that, in Gaussian Quadrature, the singularity enters through a weight function, and in
y

b
general, no m -copy rule is treated. The user of Gaussian Quadrature improves his accurac
y using a sequence of different rules of successively higher degree. On the other hand, the

a
s
user of Extrapolation Quadrature achieves the same end using the same basic rule with
equence of successively higher mesh ratios m .

Again, the user need not concern himself about where the weights and abscissas came
from. If they are available, he simply has to use them in a straightforward rule evaluation
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3

program.

. Affine Transformation

As mentioned in the introduction, Quadrature rules and theory is conventionally discussed in
d

i
the literature in the context of standard regions. In this article, we are particularly intereste
n nonstandard regions of the same general character. To this end we employ the Affine

Transformation (represented by a nonsingular N ×N constant matrix A ). The mapping

(3.1)

t

x = A x′

akes any parallelogram (or triangle) R into another parallelogram (or triangle) R′ . To be
s

d
specific, when R is defined by inequalities involving the components of x, the region R′ i
efined by the same set of inequalities, but with each component of x replaced by the

o
corresponding component of A x. It is readily established that, given any triangle R′ having
ne vertex at the origin, there exists an Affine transformation A which takes the standard tri-

s
angle R into R′ . This remark is valid when R′ is any parallelogram and R the standard
quare. But one cannot obtain a general quadrilateral in this way. Besides transforming

D

regions, an Affine transformation transforms associated Quadrature rules.

3.2. The affine transform of the ruleEFINITION

j jQ Σf = w f (x )

with respect to A is

(3.3)Q′ f = W f (X ) ,Σ j j

jw j j j
−1here W = w / e det A e and X = A x .

The abscissas of the new rule are in precisely the same positions relative to the region R′ as
r

a
the abscissas of Q are relative to R . The weights have been scaled uniformly to account fo

possibly different area. It is readily verified that the Affine transform of a degree zero qua-

t
drature rule is also a degree zero quadrature rule. (See Theorem 3.8 below.) We now relate
he error functionals of these two rules.

Lemma 3.4. Let A be an affine transformation that takes R into R′ ; let Q′ f be the affine
transform of Qf , and let the respective error functionals be

(3.4)
Ef = Qf −

R

w (x) f (x)d x ,∫ N

(3.5)
E′ φ = Q′ φ−

R′

W (x)φ(x)d x ,∫ N

where W (x) = w (A x). Then, when

(3.6)

it follows that

φ(x)=f (A x) ,

(3.7)

P

Ef = e det A e E′ φ.

roof. This is a matter of elementary algebraic substitution.
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ote that R may be a general region but we only use it for triangles or squares. The
t

a
important part of this result is that it states that two numbers are equal. It is not a resul
bout form. That comes later.

This lemma can be used to establish results about Extrapolation Quadrature. But, as a

T

preliminary, we use it to confirm a well known result.

3.8. When Q is a rule of polynomial degree d for a region R with weight func-
t

HEOREM
ion w (x), then its Affine transform Q′ is a rule of the same polynomial degree for the region

P

R′ with weight function w (A x).

roof. Let φεΠ . It follows immediately from (3.6) that f εΠ . Since by hypothesis Q is of
p

d d
olynomial degree d , it follows that Ef given by (3.4) is zero; and then, from (3.7) that

E′ φ = 0. Consequently E′ φ = 0 for all φεΠ and this establishes the theorem.d

We may now use the same approach to derive the less trivial analogues about extrapolation.

aT 3.9. Theorem 2.2 above is valid precisely as written when H is replaced by R ,HEOREM
general parallelogram.

We restate Theorem 3.9 in a notation which allows us to derive it from Theorem 2.2.

.T 3.9′. Let R′ be a parallelogram and Q′ be a degree zero quadrature rule for R′HEOREM
Then when φ(x ), together with its partial derivatives of order p or less, are integrable over
R′ ,

(3.9)hhhhh + O (m ) ,
Bhhhh +...+
m

Bhhh +
m

B

m
Q′ φ−I (R′ )φ =(m ) 1

2

2

p −1

p −1 −p

w s shere B = B (R′ ;Q′ ;φ) are independent of m .

Proof. Let φ(x ) satisfy the hypothesis in the theorem. It follows immediately that f (x )

a
given by (3.6) satisfies the same hypothesis with respect to R . Thus Theorem 2.2 may be
pplied to f (x ) establishing that Ef has expansion (2.2). However, from (3.7) it follows that

,
w
the same expansion applies to E′ φ e det A e . This is precisely the statement in (3.9) above

ith

(3.10)B (R′ ;Q′ ;φ) = B (r ;Q ; f )/ e det A e ,s s

which establishes the theorem.

The key to the proofs of the last two theorems is that f (x ) and φ(x ) share some pro-

d
perty. In the first theorem, this property is that they are both polynomials of the same
egree. In the previous theorem, both have continuous partial derivatives of order p . How-

L

ever, in the present context the really important shared property is the following.

3.11. Let φ(x ) = f (Ax ) with det A ≠ 0. Then if one of f or φ is homogeneous of
d

EMMA
egree α, so is the other, and if one has no singularity except at the origin, the same is true

about the other.

The proof is trivial. This is displayed as a lemma simply because of its importance.

-T 3.12. Theorem 2.3 is valid precisely as written when H is replaced by R , a genHEOREM
eral parallelogram.
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The proof is logically similar to that of the previous theorem, the property shared by f
and φ being the one described in the lemma.

However, this approach to handling the parallelograms and triangles denoted by R′ is not
,

w
general. One may be interested in a singularity of the sort encountered in Theorem 2.7

hose principal component is r . When one applies Lemma 3.4 directly, one finds in just
t

a

he same way that the error functional asymptotic expansion (2.7) applies when F (x ,y ) has a
esingularity whose principal component is of the form (Ax + 2Hxy + By ) , this being th2 2 α/2

a h
t
particular homogeneous function into which r is transformed by the transformation whic
akes R into R′ . The geometrically inclined reader can visualize a plot of R containing the

ecircular contours of r . It is this whole picture which is transformed into a plot of R′ ; th−1

circular contours become elliptical. Nevertheless, we have the following theorem.

-T 3.13. Theorem 2.7 is valid, precisely as written when H is replaced by R , a genHEOREM
eral parallelogram.

Proof. We recall that Theorem 2.7 was derived from Theorems 2.2 and 2.3 by means of

T
expansion (2.5), which developed F (x ,y ) as a series of homogeneous functions, to which

heorem 2.3 was applied, together with a remainder term, to which Theorem 2.2 was

r
applied. We need only employ the same expansion, but apply Theorems 3.11 and 3.12 to the
espective terms instead. This gives the result in the theorem.

s
a

Theorem 3.9 is technically new and I believe Theorem 3.13 is new. The author ha
ttempted to establish these results before by transforming each term in the expansion

r
c
separately. In the simpler case, it is possible but very tedious to do this. In the singula
ase, the integral representations of the coefficients are too formidable. The proofs given

-
s
above avoid this by not providing direct formulas for the coefficients. This is no real hard
hip as, in the practice of Linear Extrapolation Quadrature, one needs only the form of the

error functional expansion and details about the coefficients are not required.
Theorems 3.9, 3.12, and 3.13 illustrate a major convenience of using Extrapolation Qua-

-
s
drature. This is that the effect of the singularity is taken care of by using the proper expan
ion. For the same singularity, this is the same for all triangles and for all parallelograms.

e
Once this expansion is known, one may go ahead and carry out extrapolation using a linear
quation solver. On the other hand, Theorem 3.8 confirms that in Gaussian Quadrature the

-
t
situation is quite different. The affine transform rule Q′ applies to a different weight func
ion w (Ax ) and not to w (x ). Unless these two weight functions happen to be closely related,

c
one will need a completely new set of Gaussian rules for each new triangle. In the familiar
ase in which w (x ) = 1, clearly w (Ax ) = w (x ) and one can use the affine transformed rule.

e
There are other special cases described in the next section. But, in general, one cannot
xpect a relationship, so, when there is a singularity, separate sets of rules are needed for

4

separate triangles.

. Gaussian Quadrature with Singularities

It is conventional wisdom that, whether singularities are present or not, the proper use of

Q
Gaussian Quadrature is generally more cost effective than the proper use of Extrapolation

uadrature by a factor of about two or even more in the number of function values needed to
-

t
attain a particular accuracy. So one’s natural inclination is to prefer to use Gaussian Quadra
ure. In the regular case, in which no nontrivial weight function is involved, it is straightfor-

R
ward to obtain weights and abscissas from standard texts such as Stroud (1971) or Davis and

abinowitz (1984). And, as mentioned above, an affine transformed rule can be used when
the region is an affine transform of a standard region.

The term ‘‘proper use’’ in the first sentence above is vital. This implies that in the
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ingular case, the appropriate weight function is identified, and Gaussian Quadrature is car-

c
ried out using the weights and abscissas corresponding to that weight function; or in the EQ
ase extrapolation is based on the correct error functional expansion. Improper use of these

f
c
techniques usually has the effect of utterly compromising the accuracy or reducing the rate o
onvergence to a snails pace. As usual, one would find that the accuracy increases with the

e
s
number of function values used, however unwisely the abscissas and weights are chosen. Th
ymptom of misuse here is not lack of convergence, but extremely slow convergence.

t
m

The identification of the appropriate weight function in the context of finite elemen
ethods is usually no problem whatever. However, finding lists of weights and abscissas is

f
w
a different matter. The common experience seems to be that one cannot locate lists o

eights and abscissas for Gaussian Quadrature rules having genuine two dimensional singular
weight functions.

To proceed, there are several possibilities. The two most attractive are the following.

m(a) Look for some analytic transformation that may reduce the present numerical proble
into another less intractable or more familiar numerical problem. The Duffy transfor-

(

mation described in Section 5 is an example.

b) If an error functional expansion is available, use Extrapolation Quadrature.

(

A looming disaster overhangs the following approach.

c) Try to get by using a different Gaussian rule, perhaps one pertaining to a nearby weight

d
function for which weights and abscissas are available. The lurking dangers here are
iscussed in detail in Section 6.

We pursue a somewhat obvious approach in the rest of this section, which we could also
d

t
characterize as being both self serving and altruistic. If these rules are not listed and we nee
hem, surely others will need them from time to time. What we ought do is to calculate them

,
t
ourselves, use them in our problem, and also publish them for others to use later. Naturally
his is a not insignificant task. To do this calculation one needs accurate numerical values of

l
r
the moments, one needs to design a quadrature rule structure, and, if one wants an optima
ule, one will almost certainly have to solve systems of nonlinear equations. If we take short

E
cuts to simplify the calculation, the resulting rules will be less cost effective, possibly leaving

Q a more attractive choice. Let us suppose that all these problems have been successfully
a

w
tackled, and we now have a Gaussian type quadrature rule for a standard triangle R and

eight function w (x ).
The trouble is that one can use this rule only for integration over this triangle R . If one

-
m
wants to integrate over a different triangle R′ , we have already noted that the affine transfor

ation that changes R into R′ also changes the weight function to w (Ax ). In general, if one
a

n
wants the same weight function w (x ), but for a different region R′ , one has to calculate

ew set of quadrature rules. The immediate answer to the suggestion that we publish this list

r
of rules is that this list is not general enough. A triangle with a fixed vertex at the origin
equires four parameters to specify it. Our list treats only a single choice of these parame-

s
ters. To be useful, the list should cover a relatively general problem and not one extremely
pecial case.

This is the general situation, but there are exceptions. In fact, so many familiar weight
l

a
functions are exceptional in some way, that the user has to be forgiven for imagining that al
re. The critical point is to note whether w (Ax ) and w (x ) are closely related. This depends

on w (x ) and A . Specifically, if for some k we have

w (x ) = kw (Ax ) ,
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then one can obtain one set of rules directly from the other set. One case in which this hap-
,

a
pens is when w (x ), reexpressed as a function of r and θ, turns out to be independent of θ
nd in addition the transformation A is a rotation about the origin. A second case occurs

.
I
when w (x ) is homogeneous (about the origin of degree α) and A is a uniform magnification
n either case, to obtain the second set one takes the affine transform of each rule of the first

k
set (which incorporates the factor det A into each weight) and then multiplies each weight by

.2+α

Examples of the first case include 1/r and ln r /r . Examples of the second case include
1/r and 1/(λx +µy ). Thus, if one has available a rule of polynomial degree d for w (x ) = r α

f 2or the standard triangle T , one may rotate the triangle and rotate each abscissa by the same
,

m
angle, keeping the weights constant; then one may magnify the triangle by a linear factor k

oving the abscissas accordingly, but also multiplying the weights by k . In this very2+α

.
H
favorable case one has reduced to two the number of parameters needed for the list of rules

owever, this particular example can be handled more elegantly using the Duffy transforma-

5

tion.

. The Duffy Transformation

If one has a ‘‘product’’ singularity which fits conveniently into the integration region, for
example

(5.1)x y g (x ,y )α β

2for the unit square [0,1) , then one can handle the problem using cartesian product formulas
.

T
involving one-dimensional weight functions, such as the Gauss Jacobi Quadrature Rules

his suggests that it may be useful to look for a transformation that takes an apparently
intransigent ‘‘singularity-region’’ pair into an easier one, like the one above.

A somewhat sophisticated example of this is the Duffy transformation technique for the
-

g
triangle. In 1982, apropos of nothing, Duffy published a paper about integrating over trian
les and tetrahedra. He suggested the following transformation.

(5.2)

x

dy f (x ,y ) =

0

1

dx

0

1

dt xf (x ,tx ) .

00

1

dx∫ ∫ ∫ ∫

For example, instead of integrating

(5.3)f (x ,y ) = (x +y ) g (x ,y )2 2 α/2

over the triangle

(5.4)˜
x < 1; y > 0; x −y > 0 ,T:

eone might prefer to integrat

(5.5)xf (x ,tx ) = x (1+t ) g (x ,tx )1+α 2 α/2

2.over the rectangle [0,1)
The vertex singularity has been smeared out to make a more conventional line singular-

-
l
ity. When α = −1, what was originally a weak singularity has disappeared, leaving an ana
ytic function, which can be handled using a product Gauss Legendre quadrature rule. For
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eneral noninteger α, a product of a Gauss Jacobi rule with a Gauss Legendre rule is
appropriate.

In fact, this transformation is much more powerful and more useful than was at first real-
ized, particularly as a tool for use in the Boundary Element Method.

Given a rectangle and a function that is singular at the origin, one can always divide it

l

into two triangles and apply the Duffy transformation to each. In some cases one may be

ucky. For example, suppose for T
˜

(5.6)f (x ,y ) = x y f (x ,y )g (x ,y ) ,λ µ
α

w αhere f (x ,y ) is homogeneous of degree α and g (x ,y ) is regular. Applying the transforma-
tion leads to the problem of integrating over a rectangle the function

(5.7)xf (x ,tx ) = x t f (1,t )g (x ,tx ) .1+λ+µ+α µ
α

α α e
h
If the only singularity of f (x ,y ) is at the origin, then f (1,t ) is regular and one can us
ere the cartesian product of a pair of Gauss Jacobi rules.

n
u

Duffy’s method for integrating over a square is to subdivide it into two triangles and the
se the transformation above to transform each into a square. In some cases it is useful to

iterate the whole procedure.
The same technique is available in any number of dimensions. In three dimensions one

b
first splits the cube into three square-based pyramids and separately transform each pyramid
ack into a cube using the three-dimensional Duffy transformation.

I

6. A Misuse of Gaussian Quadrature

n view of the difficulty in finding lists of Gaussian rules for singular weight functions, it is
-

u
very tempting to use weights and abscissas for a nearby weight function W (x ) instead, partic
larly when these are available and the ones for w (x ) are not. We suppose that Gaussian

;
b
rules are available for a triangle R with weight function w (x ), singular at a vertex x =0 of R
ut, unfortunately, we are evaluating an integral whose integrand has the singular behavior

b
described by w (x ) over R′ . The regions R and R′ , although close to each other, are related

y an affine transformation. There is a mismatch here. Since

(6.1)
R

w (x )g (x )dx = e det A e

R′

w (Ax )g (Ax )dx ,∫ ∫

we have Gaussian rules available for R with w (x ) or for R′ with w (Ax ) but not for R′ with
w (x ). The quantity we want to evaluate may be reexpressed as

(6.2)
hhhhhhh f (Ax )

M
J
O
dx .)w (x

)
R′

w (x ) f (x )dx =

R′

w (Ax )
I
J
L w (Ax∫ ∫

An initially promising but in fact deceptive approach is to use the available Gaussian rule on
s

r
the right-hand member of (6.2). f (Ax ) like f (x ) is regular, so whether it is worth using thi
ule depends on the smoothness of w (x )/w (Ax ). We pursue this example by taking

w (x ) = r . Then W (Ax ) has the form (Ax +2Hxy +By ) . The functionα 2 2 α/2
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(6.3)
2 2

α/2

22
O
J
J
M

hhhhhhhhhhhhhhyx +

y

i

w (x )/w (Ax ) =
I
J
J
L Ax +2Hxy +B

s somewhat deceptive. It can be expressed as a function of y /x and so is constant along
-

p
any radius vector. But these constants are different for different radius vectors. For exam
le, on the x -axis, w /W = A , while on the y -axis, w /W = B . Technically, this means

t

−α/2 −α/2

hat the function is not Ho
..
lder continuous at the origin. But one needs only minimal intuition

-
t
to see that such a function is simply not readily approximated by a polynomial or entire func
ion and so Gaussian Quadrature with this component in the integrand seems pointless.

,
h

If a user remains to be convinced that this misuse of Gaussian Quadrature is expensive
e should be invited to carry out minor numerical experiments. To do this he does not need

l
a
to attempt his problem for which presumably results are not available. At issue is how wel

Gaussian Rule integrates a function with this sort of behavior at the origin. A numerical
example is given in Section 8.

There are two further points to be made en passant. It might have happened that, in the
e

p
example above, the various limits of w /W as x approached the origin were identical. In th
articular example, this would happen if A were orthogonal. Such cases are precisely those

R
discussed toward the end of Section 4 in which one may, in any case, construct a Gaussian

ule for R′ from one for R .
The other point is that w /W is, in fact, a homogeneous function of degree zero. Unless

-
d
it is constant, such a function causes trouble in Gaussian Quadrature. But Extrapolation Qua
rature handles these with no trouble at all. (See Subsection 7.2 below.)

U

7. Further Remarks about Extrapolation Quadrature

p to this point in this article, I have taken the view that most users, given the choice, would
s

t
prefer Gaussian Quadrature to Extrapolation Quadrature. The first reason for believing this i
hat most users have never heard of EQ. However, the ones that know anything about it

t
know that Gaussian Quadrature is generally more cost effective. My belief is that this atti-
ude will change as more and more users find how easy it is to handle EQ. In this section

-
c
we look at some problems in which even the most intrepid Gaussian Integrator would con
ede that a role exists for EQ.

O

7.1. MIXED SINGULARITIES

ne can envisage all sorts of really complicated singular behavior of an integrand function at

f
a point. In this subsection we consider a singularity only one stage removed in difficulty
rom a standard singularity. Let us suppose that the integrand has a double singularity form,

such as

f (x ,y ) = r g (x ,y ) + r g (x ,y )

or

−1
1

−1/2
2

f (x ,y ) = r g (x ,y ) + r ln r g (x ,y )

or

−1
1

−1
2
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f −1
1 2(x ,y ) = r g (x ,y ) + g (x ,y ) ,

hwhere g and g are both regular. It is necessary to distinguish between the case in whic1 2

1 2function values of g and of g are both available and the case in which function values of f
-are available, f is known to be of this form, but function values of g and g are not avail1 2
e

t
able separately. In the former case, the problem is straightforward. One can simply evaluat
he two parts of the integral separately. Two applications of Gaussian Quadrature instead of

l
one may increase the cost sufficiently to make Extrapolation Quadrature competitive. In the
atter case one requires a double type Gaussian rule, that is, one that preserves the integrity of

t
two components of a singularity. There is presently no developed theory for constructing this
ype of quadrature rule, though some individual one-dimensional rules of this type are known.

f
However, in either case, EQ may be used simply based on the concatenation of the two error
unctional expansions. In the second and third example, this concatenation coincides with

7

one of the component expansions.

.2. HOMOGENEOUS SINGULARITIES

EQ handles some functions of low Ho
..
lder continuity quite well. Typical of these is Φ(θ), a

-
t
nontrivial homogeneous function of degree zero. For example, let A , B , C , and D be posi
ive. The function

Φ(θ) = (Ax +By )/(Cx +Dy )

is regular in [0,1] except at the origin, where one finds a singularity which occurs because
t

2

he limit as (x ,y ) approaches the origin depends on the angle of approach. In spite of the
-

e
fact that it is bounded wherever defined, it cannot be ignored for Gaussian Quadrature. How
ver, since it is homogeneous (of degree zero), EQ handles this integrand function with no

difficulty. A function of this type was mentioned in an example in Section 6.
Much more sophisticated singularities in which this sort of singularity is a component can

-
t
be handled in a simple manner using EQ, but are virtually out of reach of Gaussian Quadra
ure. Take, for example, the result given in Theorem 2.7 about the integrand function being

of the form

(7.1)F (x ,y ) = r Φ(θ)h (r )g (x ,y ) .α

α α
1 l

h
A Gaussian rule having weight r will handle r p (x ,y ). A double-type Gaussian rule wil

andle r p (x ,y ) + r p (x ,y ) which covers these functions in (7.1) when Φ(θ) is constant.
H

α
1

α+1
2

owever, when Φ(θ) is not specified individually, but is known to be non trivial, one is led

7

to the conclusion that Gaussian Quadrature cannot be applied and EQ is the obvious choice.

.3. ROLE IN CONSTRUCTING GAUSSIAN RULES

Towards the end of Section 4, we considered very briefly the possibility of constructing ones
l

v
own set of Gaussian Rules. We mentioned that to do this one requires accurate numerica
alues of the moments. If the weight function is one for which no convenient analytic form

e
d
for the moments is available, one may have to calculate these numerically for oneself. In on
imension, one thinks in terms of a sledgehammer approach to get the moments used to con-

struct the elegant rule.
In two or more dimensions, the sledgehammer approach can be unexpectedly expensive.

If EQ is available, it can be effectively used in this subsidiary role.
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T

8. A Numerical Example

he following example deals with approximations to

,hh I
Llog( 2 + 1) + 2 − 1

M
O

1

2
If =

0

1

0

1

cos θ dxdy =∫ ∫ √dd √dd

d
e
where cos θ = x /r and (r ,θ) are standard polar coordinates. In this contrived and stylize
xample of a Ho

..
lder discontinuous function, we use principally the product midpoint tra-

pezoidal rule Qf = f (1/2, 1/2) and its m -copy version.

The first task when using Extrapolation Quadrature is to be absolutely assured that one is
-

s
using the correct expansion. Since cos θ is a homogeneous function of degree zero, expan
ion (2.3) with α = 0 is appropriate. Only even powers are needed since the rule is sym-

f
o
metric. Nevertheless, Table 1 illustrates some expensive numerical tests one might make i
ne wanted to convince oneself — or someone else. The convention used here about expan-

-
t
sion exponents is that they represent negative exponents of m , they are in order of magni
ude, and if two (or more) are equal, corresponding log (or log power) terms occur in the

,
Q
expansion. Since the exact result is available, we have presented in these tables the error

f −I f . The reader will agree that at a cost of about 21,000 function values, Table 1
t

a
presents prima facie numerical evidence that the second sequence treated may be the mos
ppropriate.

TABLE 1

N

T

EXPENS IVE NUMERI CAL EXPERIMENT TO VERI FY THE CORRECT EXPANS IO

HE BAS I C PRODUCT TRAPEZOIDAL RULE RESULTS

1
m
me s h = 1 Rf = 0 . 7071 I f = 0 . 6478 Rf - I f = 0 . 5931D- 0

e s h = 2 Rf = 0 . 6698 I f = 0 . 6478 Rf - I f = 0 . 2199D- 01
2

m
me s h = 4 Rf = 0 . 6551 I f = 0 . 6478 Rf - I f = 0 . 7296D- 0

e s h = 8 Rf = 0 . 6501 I f = 0 . 6478 Rf - I f = 0 . 2275D- 02
3

m
me s h = 16 Rf = 0 . 6485 I f = 0 . 6478 Rf - I f = 0 . 6815D- 0

e s h = 32 Rf = 0 . 6480 I f = 0 . 6478 Rf - I f = 0 . 1986D- 03
4

m
me s h = 64 Rf = 0 . 6479 I f = 0 . 6478 Rf - I f = 0 . 5669D- 0

e s h =128 Rf = 0 . 6478 I f = 0 . 6478 Rf - I f = 0 . 1594D- 04

0

k

THE EXTRAPOLAT ION TABLE ; e xp a n s i on e xpon e n t s a r e ; 2 4 6 8 1

m ( k , 1 , 1 ) ( k , 2 , 1 ) ( k , 3 , 1 ) ( k , 4 , 1 ) ( k , 5 , 1 ) ( k , 6 , 1 )
-

0
1 1 0 . 059313 0 . 9546D- 02 0 . 1922D- 02 0 . 4584D- 03 0 . 1133D- 03 0 . 2823D
4

2 2 0 . 021988 0 . 2399D- 02 0 . 4813D- 03 0 . 1146D- 03 0 . 2831D- 04 0 . 7058D-
05
3 4 0 . 007296 0 . 6011D- 03 0 . 1203D- 03 0 . 2865D- 04 0 . 7079D- 05 0 . 1764D-

05
4 8 0 . 002275 0 . 1504D- 03 0 . 3008D- 04 0 . 7163D- 05 0 . 1770D- 05

0 . 0000D+00
5 16 0 . 000681 0 . 3760D- 04 0 . 7521D- 05 0 . 1791D- 05 0 . 0000D+00

0 . 0000D+00
6 32 0 . 000199 0 . 9401D- 05 0 . 1880D- 05 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
7 64 0 . 000057 0 . 2350D- 05 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00



0 . 0000D+00

16

8128 0 . 000016 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00
0 . 0000D+00

THE EXTRAPOLAT ION TABLE ; e xp a n s i on e xpon e n t s a r e ; 2 2 4 6 8

)
1
k m ( k , 1 , 1 ) ( k , 2 , 1 ) ( k , 3 , 1 ) ( k , 4 , 1 ) ( k , 5 , 1 ) ( k , 6 , 1

1 0 . 059313 0 . 5931D- 01 0 . 1621D- 04 0 . 9690D- 06 0 . 1579D- 07 - 0 . 5428D-
10
2 2 0 . 021988 - 0 . 7396D- 02 0 . 1922D- 05 0 . 3069D- 07 0 . 7634D- 11 0 . 5071D-

13
3 4 0 . 007296 - 0 . 7379D- 03 0 . 1489D- 06 0 . 4870D- 09 0 . 8034D- 13 0 . 8663D-

16
4 8 0 . 002275 - 0 . 1152D- 03 0 . 9761D- 08 0 . 7689D- 11 0 . 3996D- 15

0 . 0000D+00
5 16 0 . 000681 - 0 . 2093D- 04 0 . 6173D- 09 0 . 1205D- 12 0 . 0000D+00

0 . 0000D+00
6 32 0 . 000199 - 0 . 4111D- 05 0 . 3869D- 10 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
7 64 0 . 000057 - 0 . 8463D- 06 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
8128 0 . 000016 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00

THE EXTRAPOLAT ION TABLE ; e xp a n s i on e xpon e n t s a r e ; 2 2 4 4 6

)
1
k m ( k , 1 , 1 ) ( k , 2 , 1 ) ( k , 3 , 1 ) ( k , 4 , 1 ) ( k , 5 , 1 ) ( k , 6 , 1

1 0 . 059313 0 . 5931D- 01 0 . 1621D- 04 0 . 2354D- 05 - 0 . 3187D- 07 - 0 . 1045D-
08
2 2 0 . 021988 - 0 . 7396D- 02 0 . 1922D- 05 - 0 . 4420D- 06 - 0 . 1526D- 08 - 0 . 4233D-

12
3 4 0 . 007296 - 0 . 7379D- 03 0 . 1489D- 06 - 0 . 7322D- 08 - 0 . 2427D- 10 - 0 . 4930D-

14
4 8 0 . 002275 - 0 . 1152D- 03 0 . 9761D- 08 - 0 . 2792D- 09 - 0 . 3840D- 12

0 . 0000D+00
5 16 0 . 000681 - 0 . 2093D- 04 0 . 6173D- 09 - 0 . 1247D- 10 0 . 0000D+00

0 . 0000D+00
6 32 0 . 000199 - 0 . 4111D- 05 0 . 3869D- 10 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
7 64 0 . 000057 - 0 . 8463D- 06 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
8128 0 . 000016 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0.0000D+00
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In Table 2, three approaches which are realistic are illustrated. Extrapolation Quadrature
.

T
based on both an appropriate and an inappropriate error functional expansion are given

hese cost 204 function values. For the comparison, some product Gauss-Legendre approxi-

t
mations using up to 400 function values are given. These results speak for themselves as to
he effect of the proper use of Gaussian and Extrapolation Quadrature.

TABLE 2

S

m

THE BAS I C PRODUCT TRAPEZOIDAL RULE RESULT

e s h = 1 Rf = 0 . 7071 I f = 0 . 6478 Rf - I f = 0 . 5931D- 01
1

m
me s h = 2 Rf = 0 . 6698 I f = 0 . 6478 Rf - I f = 0 . 2199D- 0

e s h = 3 Rf = 0 . 6594 I f = 0 . 6478 Rf - I f = 0 . 1164D- 01
2

m
me s h = 4 Rf = 0 . 6551 I f = 0 . 6478 Rf - I f = 0 . 7296D- 0

e s h = 5 Rf = 0 . 6528 I f = 0 . 6478 Rf - I f = 0 . 5041D- 02
2

m
me s h = 6 Rf = 0 . 6515 I f = 0 . 6478 Rf - I f = 0 . 3711D- 0

e s h = 7 Rf = 0 . 6507 I f = 0 . 6478 Rf - I f = 0 . 2858D- 02
2me s h = 8 Rf = 0 . 6501 I f = 0 . 6478 Rf - I f = 0 . 2275D- 0

THE EXTRAPOLAT ION TABLE ; e xp a n s i on e xpon e n t s a r e ; 2 2 4 6 8

)
1
k m ( k , 1 , 1 ) ( k , 2 , 1 ) ( k , 3 , 1 ) ( k , 4 , 1 ) ( k , 5 , 1 ) ( k , 6 , 1

1 0 . 059313 0 . 5931D- 01 0 . 2242D- 04 0 . 3222D- 05 0 . 4052D- 06 - 0 . 2092D-
07
2 2 0 . 021988 - 0 . 1302D- 01 0 . 6228D- 05 0 . 6401D- 06 0 . 6766D- 09 0 . 1642D-

09
3 3 0 . 011642 - 0 . 3333D- 02 0 . 2285D- 05 0 . 1211D- 06 0 . 2305D- 09 0 . 7314D-

10
4 4 0 . 007296 - 0 . 1480D- 02 0 . 9798D- 06 0 . 3381D- 07 0 . 1052D- 09

0 . 0000D+00
5 5 0 . 005041 - 0 . 8186D- 03 0 . 4824D- 06 0 . 1196D- 07 0 . 0000D+00

0 . 0000D+00
6 6 0 . 003711 - 0 . 5126D- 03 0 . 2633D- 06 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
7 7 0 . 002858 - 0 . 3478D- 03 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
8 8 0 . 002275 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00

THE EXTRAPOLAT ION TABLE ; e xp a n s i on e xpon e n t s a r e ; 2 4 6 8 10

)
1
k m ( k , 1 , 1 ) ( k , 2 , 1 ) ( k , 3 , 1 ) ( k , 4 , 1 ) ( k , 5 , 1 ) ( k , 6 , 1

1 0 . 059313 0 . 9546D- 02 0 . 2592D- 02 0 . 1060D- 02 0 . 5335D- 03 0 . 3052D-
03
2 2 0 . 021988 0 . 3365D- 02 0 . 1156D- 02 0 . 5546D- 03 0 . 3115D- 03 0 . 1930D-

03
3 3 0 . 011642 0 . 1708D- 02 0 . 6508D- 03 0 . 3385D- 03 0 . 2027D- 03 0 . 1320D-

03
4 4 0 . 007296 0 . 1032D- 02 0 . 4166D- 03 0 . 2276D- 03 0 . 1420D- 03

0 . 0000D+00
5 5 0 . 005041 0 . 6899D- 03 0 . 2893D- 03 0 . 1634D- 03 0 . 0000D+00

0 . 0000D+00
6 6 0 . 003711 0 . 4937D- 03 0 . 2126D- 03 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
7 7 0 . 002858 0 . 3707D- 03 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00
8 8 0 . 002275 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00 0 . 0000D+00

0 . 0000D+00

PRODUCT GAUSS - LEGENDRE RESULTS
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2
n
npg = 4 Gf = 0 . 6489 I f = 0 . 6478 Gf - I f = 0 . 1130D- 0

pg = 8 Gf = 0 . 6479 I f = 0 . 6478 Gf - I f = 0 . 9276D- 04
4

n
npg =12 Gf = 0 . 6478 I f = 0 . 6478 Gf - I f = 0 . 2008D- 0

pg =16 Gf = 0 . 6478 I f = 0 . 6478 Gf - I f = 0 . 6646D- 05
5npg =20 Gf = 0 . 6478 I f = 0 . 6478 Gf - I f = 0 . 2796D- 0

In fact, example (8.1) is one which Duffy’s transformation renders trivial. Dividing the
square into two equal triangles, and then using Duffy’s transformation on both, leads to

If =

0

1

0

1

(1+t )

,hhhhhhhdx dt)x (1+t

d
∫

√dddd
∫

2

which is too straightforward to pursue numerically.

I
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