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We combine Enright's defect control idea with techniques for computingan enclosure for the range of a function. We outline the algorithm for usingguaranteed enclosures of the defect to control the step-size selection for thenumerical solution of ODEs. A more detailed description of the algorithmwith numerical examples is in preparation [Corl91b]. Here, we concentrateon understanding what the \answer" we compute actually means. Specif-ically, we are concerned not with the accuracy of the solution computed,but rather with the validity of the model of the physical problem. The con-ventional view of modeling as the formulation and solution of the speci�edproblem is depicted in Figure 1. The defect control approach is illustrated inFigure 2. It asks whether the nearby problem, for which the exact solutionis known, is a su�ciently accurate model of the physical problem.

Figure 1. Modeling based on a speci�ed problem
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Figure 2. Modeling based a nearby problem2 DefectTo de�ne the defect for a system of ODEs _x = f(x; t), we need a continuousrepresentation of our computed solution x̂. Since other applications alsorequire a continuous representation of the solution, many current codes forthe numerical solution of ODEs already provide one. We de�ne the defectas �(t) := dx̂dt � f(x̂; t): (2)Clearly, our computed solution x̂ is an exact solution to the related problemdxdt = f(x; t) + �(t)= f(x; t) + "v(t);where " � jj�(t)jj and jjv(t)jj � 1. Later we shall use " to mean the inputtolerance speci�ed by the user.For some problems, it is more appropriate to consider the relative defectde�ned by dxdt = f(x; t)(1 + �(t)): (3)3



In either case, the defect �(t) is simply some function of t, and we havea formula for that function. To illustrate, we consider a simple logisticequation dxdt = x� x2; x(0) = 1=2:Let x̂(t) := 12 + t4 � t396 be an approximate solution on 0 � t � h. Theapproximate solution can be generated by a number of methods. Here, weintroduced a deliberate error into a 4-term Taylor series. From Equation (2)(using Maple [Char88]),�(t) := dx̂dt � f(x̂; t)= 14 � t232 � x̂+ x̂2= 132t2 �1� 16 t2 + 1288 t4� :The defect �(t) is a polynomial in t. There is no remaining evidence of theODE. The function x̂(t) is the true solution of the equationdxdt = f(x; t) + 132 t2 � 1192t4 + 19216t6: (4)If we prefer to use the relative defect for the logistic equation, we getinstead (using Mathematica [Wolf88])�(t) := dx̂dtf(x̂; t) � 1= t2(t2 + 48t� 228)t4 � 48t3 + 576t2 � 2304 :With either the absolute or the relative de�nition of �, we see in Figure 3that j�(t)j is small if h is small.The key question to be asked is, Is Equation (4) a su�ciently goodmodel of the underlying scienti�c problem being studied? We provide insightinto the answer by computing guaranteed bounds for �(t). We can do thiscomputation because the problem of bounding the range of a function is avery well studied problem in interval analysis (see [Moor79] or [Ratc84]).The step-size control strategy comes from determining a step h for whichwe can guarantee that jj�(t)jj � " for all t 2 [0; h], where jj � jj is some
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appropriate norm (usually L1).
Figure 3. Absolute and relative defects for the logistic equationThe defect can often be interpreted physically, o�ering insight into themodeled problem. If �(t) is small relative to the terms that were neglectedin the derivation of the equations, or if it is small relative to uncertainty inparametric values, then one would expect that the equation that we haveexactly solved is just as good a model as the speci�ed problem. In this case,x̂(t) is just as good for practical purposes as the solution to the speci�edproblem would have been (see Figure 2). Further, the modeler can choosethe step size appropriately to control the size of �(t) and to guarantee thatno error larger than those already made in the modeling process will beintroduced by the solution process.Adding a small, time-dependent forcing term �(t) to the logistic equa-tion is reasonable in many physical contexts modeled by the logistic equa-tion. For example, if the logistic equation is being used to model populationgrowth of some species, then small, time-dependent perturbations of thatpopulation are realistic. The perturbations might be due to such factors asaccidental deaths or to momentary 
uctuations in the birth rate caused bysmall changes in the food supply. To simplify the solution process, one usu-ally ignores such 
uctuations. In contrast in the defect-controlled method,it is the di�erence between the small physical perturbations and the smallnumerical perturbation that is ignored.The idea of considering the defect is related to Wilkinson's idea of back-ward error analysis for linear systems [Wilk63]. It is in sharp contrast to theusual approach in interval mathematics of considering the accuracy of the5



solution computed for the speci�ed problem. More details of the history ofthe study of the defect in the context of di�erential equations can be foundin [Corl91a].As noted by Enright [Enri89b], a major practical advantage of the defect-controlled approach is a separation of the concepts of any numerical instabil-ity resulting from the approximation method used and any ill-conditioningof the problem itself. If the problem is well conditioned and the defect issmall, then x̂ commits a small global error. However, the global error foran ill-conditioned problem is guaranteed to be large, even for small defects.Clearly, the model is very sensitive to the modeling errors made in derivingthe speci�ed problem, and a small global error usually is not a reasonablegoal. Nevertheless, a small defect is achievable and gives much insight intothe physical problem being modeled.Chaotic systems give rise to unstable initial value problems, by de�-nition. On the other hand, achievement of a small global error over longtime integration is computationally intractable (see [Adam90], for example).Achievement of a small defect is both possible and useful for such systems[Corl91a]. The defect-controlled approach sidesteps the bothersome questionof computational chaos.3 Defect-Controlled AlgorithmAn outline of the defect-controlled algorithm is given in Listing 1. A morecomplete description of the algorithm is given in [Corl91b].Input: t0, tfinal, x0, " = max jj�(t)jjOutput: Nodes t0, t1, : : :, tn = tfinal,Continuous x̂ which solves dxdt = f(x; t) + �(t),Guarantee that jj�(t)jj � " for all t 2 [t0; tfinal].h := Initial trial step;t := t0;loop for each step k = 0; : : :Compute x̂(t), a continuous approximate solution on tk � t � tk + h;De�ne the defect �(t) := dx̂dt � f(x̂; t);� := Enclosure of jj�(t)jj; { { Only interval part.if � > " thenreduce h and repeatelse if � << " thenincrease h and repeatelse accept step;t := t+ h;end if; 6



end loop; Listing 1. Defect-controlled algorithmThe outline of this algorithm is essentially like the outline of any modernODE solver. The defect control functions as a part of the step-size selectionstrategy. In our implementation, interval computations are restricted tocomputing an enclosure of jj�(t)jj. We use interval Taylor operators imple-mented in Ada [Corl91c]. These operators achieve tight bounds on the rangeof the defect and its derivatives by using natural interval extensions, mono-tonicity, concavity, mean value forms, centered forms, and Taylor forms.In the logistic equation example presented earlier, we use interval Taylorarithmetic to (in e�ect) evaluate the assignment statementsT := Taylor (0); -- Taylor series for t at 0 = (0, 1, 0, ...)XHAT := (1/2) + T * ((1/4) + T * (0 + T * (-1/96)));-- Horner formDEFECT := (1/4) + T * (0 + T * (-32)) - XHAT + XHAT * XHAT;As part of the computation of a tight enclosure for jj�(t)jj, we evaluate�(t) at each end, at the midpoint, and on the entire interval of the integrationstep. This approach allows us to compute both inner and outer enclosuresto help verify the tightness of the enclosures (see Figure 4). Our operatorsallow integration steps 103 greater than naive interval arithmetic evaluationof jj�(t)jj.

Figure 4. Inner and outer enclosures of the defect7



4 ConditioningIf we compare our algorithm to other defect-controlled algorithms (see En-right [Enri89a, Enri89b]), we see that our approach provides a guaranteedbound on the range of the defect, while conventional approaches estimatethe range by evaluating it at the �nal point (�(t + h)), at an intermediatepoint (�(t + �h) with 0 < � < 1), or at a sample of intermediate points(�(t + �ih) with 0 < �i < 1). By providing a guaranteed bound, we canbe assured that the problem we have solved is indeed close enough to thespeci�ed problem to be of interest.If we compare our algorithm to Lohner's interval method for solvingODEs [Lohn87], we see that our approach encloses the defect, whereasLohner encloses the solution. With our approach, x̂ is the exact solutionto a problem whose distance from the speci�ed problem is guaranteed tobe small. Lohner [Lohn87] computes an interval that is guaranteed to en-close the exact solution to the speci�ed problem. These are complementaryapproaches; each has its own domain of applicability.Our guaranteed control of the defect and Lohner's guaranteed enclosureof the solution are connected by the condition number of the di�erentialequation. The concept of the condition number of a di�erential equation isthe same as the better-known concept of a condition number of a system oflinear equations. The condition number is a number C for which one canmake statements of the formjj Error in the answer jj � C � jj Error in the problem jj:Suppose that x̂(t) is the exact solution to Equation (3) and that x(t) isthe exact solution to Equation (1). Then we havex(t) = x̂(t)� "x1(t) + O("2);where x1 satis�es the �rst variational equationdx1dt = Jf (x̂(t))x1(t) + v(t); (5)which has the solutionx1(t) = 	(t)x1(0) + Z t0 	(t) �	�1(�)v(�) d�;where 	(t) is a fundamental solution matrix of the homogeneous version ofEquation (5). Let x1(0) = 0 for simplicity. De�ne the condition number ofthe di�erential equation to beC := Z t0 jj	(t) �	�1(�)jj d�:8



This condition number depends on t, while the condition number de�ned in[Asch88] is the maximum of our condition number taken over the relevantdomain of t. With our de�nition (recall that " = jj�(t)jj),jjx� x̂jj � C � jj�jj; in the limit as "! 0:We can replace the above with a bound valid for all values of " by startinginstead with the Alexeev-Gr�obner nonlinear variation of constants formula[Nors81].Various di�culties hamper using the condition number to compute globalerror bounds:1. It is hard to compute or bound C exactly.2. Sometimes the quantity Cjj�jj is overly pessimistic.3. Sometimes the global error jjx� x̂jj is not of real interest.4. Sometimes jjx� x̂jj is too large.In contrast, using the condition number has several advantages:1. It is not hard to estimate C.2. An estimate of C is useful in the modeling context.3. Even if we are philosophically satis�ed with the more easily computedbound on jj�jj, estimates for jjx� x̂jj are useful.5 ConclusionsFor stable problems (perhaps containing interval coe�cients), solution en-closures may work better than a defect-controlled approach. Similarly forHamiltonian systems, �xed time-step, symplectic methods appear to be su-perior [Sanz91].For a wide range of problems, however, the �(t) term introduced bynumerical methods can be viewed as one more in a sequence of reasonablesimpli�cations made in the quest for an exact solution. In particular, defect-controlled methods appear to be appropriate for chaotic problems, for theyavoid the di�culty of exponential growth of the error, and they yield usefulresults at a reasonable cost.References[Adam90] E. Adams, Periodic solutions: Enclosure, veri�cation, and appli-cations, in Computer Arithmetic and Self-Validating Numerical Meth-ods, C. Ullrich, ed., Notes and Reports in Mathematics in Science andEngineering, Vol. 7, Academic Press, Boston, 1990, pp. 199{246.9
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