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1 Introduction

The Luenberger observer problem (see [12]) for the control system

= Az + Bu
y=Cx

(1)
arises frequently in control theory. Its solution leads to a Sylvester-type matrix equation
AX — XH =CV. (2)

In contrast with the usual Sylvester equation, here only A and C' are given, while X, H, and V
are to be chosen to satisfy certain requirements. We call (2) the Sylvester observer equation. The
requirements for choosing H and V are as follows:

e H must be stable; that is, all the eigenvalues of H should have negative real
parts.

e The spectrum of H must be disjoint from that of A (to ensure that X is the
unique solution of (2)).

e V must be such that (H*, V') be controllable; that is, the matrix

Vi OHWE L (HY)'TVE

has rank n.

Since we are free to choose H as long as it satisfies the above criteria, we can choose it as a block
upper-Hessenberg matrix with a suitable preassigned spectrum. It can then be shown quite easily
that, for this particular structure of H, and

V=(0, 0,..., 0, I),

partitioned conformally, (H*, V) is controllable. This choice of V then reduces Equation (2) to the
form

AX—-XH=(0, 0, ...,0, C), (4)

where A is a given n X n matrix, C'i1s an n x r matrix, H is a chosen n X n block upper Hessenberg
matrix with a preassigned spectrum, and X is an n x n matrix to be constructed. Because we
can always choose V' in this fashion, we simplified the notation in (2) by using C' as shorthand for
C(:y;n—r+1:n). It should be clear from context whether the whole matrix or only its last r
columns are meant.

If W is an invertible matrix, Equation (2) is equivalent to

(WAW™H(WX) —(WX)H = (WC)V, (5)

and so one can reduce the complexity of the problem by applying a suitably chosen similarity
transformation to A. For example, if we were to apply the well-known Hessenberg-Schur method



developed by Golub, Nash, and Van Loan [10] for the usual Sylvester equation, to the Sylvester
observer equation (4), A would be reduced to Hessenberg form and H to real Schur form (RSF).
The RSF of a matrix is a quasi-triangular matrix in which the diagonal entries are either 1 x 1 or
2 x 2 matrices (see [11]). Because the matrix H can be chosen for the Sylvester observer equation,
one can choose it in RSF with a desired set of eigenvalues on the diagonal and then easily solve for
the columns of X. This approach, though numerically effective, does not offer as good a potential
for parallelism as the proposed method. A more detailed discussion of this method, from the point
of view of solving the Sylvester observer equation, is given in §5.

Another possible approach is the method suggested by Van Dooren [9]. It uses an observer-
Hessenberg form for the pair (A, C) in which both A and C are put in certain condensed forms.
This approach also requires knowledge of the eigenvalues of the matrix A and is recursive. Like the
Hessenberg-Schur method, it computes the columns of X sequentially and does not offer much scope
for the exploitation of parallelism.

Yet another approach, based on Arnoldi’s method, has recently been proposed by Datta and
Saad [3] for the case where C is a vector. It constructs an orthonormal solution to equation (4).
The method is suitable for large and sparse problems but does not offer much scope for parallelism.

In this paper, we present a simple yet efficient method for solving (4) which is well suited for
parallel and high-performance computers. The method is a block generalization of Datta’s method [2]
for the case when r = 1. In the case where C'is n X 7, r > 1, our method entails solving a total of n
independent system of equations to compute the first » columns of X, and then obtaining the other
columns of X, r at a time, essentially through matrix-matrix multiplications. Like the Hessenberg-
Schur method, our approach assumes that A is a Hessenberg matrix, and we will not concern
ourselves with the reduction of A to Hessenberg form, or the backtransformation of the solution.
That is, unless otherwise noted, we assume in the sequel that A in (4) is a lower Hessenberg matrix.
We also note that in our approach, H will be chosen to be a block lower bidiagonal matrix.

We also point out that parallel algorithms for control problems are virtually nonexistent, with
only a few algorithms being proposed in recent years (for references to these algorithms, see the
recent survey papers of Datta [4] and [5]). The need for expanded research in this area has been
clearly outlined in a recent panel report [13].

The outline of the paper is as follows. In the next section we present the algorithm and prove its
correctness. In §3 we describe how this algorithm can be implemented efficiently. We show that by
initially reducing A to lower Hessenberg form, and by employing an orthogonal reduction to solve
the equation systems, we can fully exploit parallelism in the solution of the independent equation
systems, while requiring little additional workspace. In §4 we report on results obtained on a CRAY
90 shared-memory multiprocessor. In §5 we show how to modify the Hessenberg-Schur method for
solving the Sylvester observer equation. Results of its parallel implementation are also presented as
a means of comparison with the proposed method. Lastly, we summarize our results and outline
directions of further research.



2 The Algorithm

In this section we present our algorithm for solving the Sylvester observer equation and prove its
correctness. To repeat, we are trying to solve

AX — XH = (0,0), (6)

where A and C' are given n X n and n x r matrices, respectively; X is the sought-after n x n solution
matrix; and H is an n X n matrix that we can choose as long as it satisfies the requirements of (3).
In our algorithm we choose

A k-1 App

Let
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be the eigenvalues assigned to the diagonal blocks Aj1,..., Agg of the block bidiagonal matrix H
with off-diagonal blocks A; ;_1. All of the blocks are of size r x r, where r is the number of outputs
or the number of columns of C'; and k is the number of blocks such that rk = n. The subdiagonals
A; ;1 containing the scaling factors of the ¢th block X; will be computed as a by-product of our
solution algorithm such that (6) holds. We partition X conformally such that X = (X1,..., X}),
where X; = (x(li), Cel x&i)), and let C' = (c1,...,¢). In Figure 1 we give our algorithm to solve (6).
We now prove the correctness of the algorithm.

Theorem 1 The algorithm in Figure 1 computes the solution of the Sylvester observer equation (6).

Proof:  First, we notice from the block Hessenberg structure of H in Equation (6) that the blocks
X; of the actual solution X are obtained from the blocks X; of the computed solution X by the
relation

Nip1 = XA, = AXs — Xihggi= 1, k= 1,

where A;1q; of H contain the 2-norm of the columns of the computed solution Xi+1, that is,

Aij1,i = diag(||i°(1i+1)||2, el ||i‘£«i+1)||2). Then the first two block columns of Equation (6) are related
by the relation

Xy = XoAgy = AX; — X1 Ay (8)

So if l‘;z) denotes the jth column of X5, then

2" = 1127 I} = (A= A Da” )

J J



Compute X, the first block of X:
Fori=1,...,rdo
For j=1,...,k do
Solve (A — A;;I)y; = ¢; for y;
-1

o= ([T, 00 -0

Enddo
1 k
e = D=1 95Y;
Enddo

Compute Xs, ..., Xi, the remaining blocks of X :
Fori=1,2,...,k—1do
Xip1 = AX; — XiAy
Aipr = ding([Jay 2. 1271
Xip1 = Xipi Al
End Do

Figure 1: Algorithm for the solution of the Sylvester observer equation

or

82 = i (A=A yD)ast, (10)
[ESIP

The remaining blocks X35, ..., Xy then satisfy :

Xit1 = Xspihig1, = AXs — XiAg i =2, .. k= 1. (11)

If we denote i‘;i) to be the jth column of the ith block X;, Equation (11) together with the diagonality
of A;; implies
(A—=Xi_1 ;1) (A= Ao ;1) (A =Xy 1)

2 = [l o) = = e A (A= A Dal (12)
[ e E (€ | 1257112

Thus, Xs,..., X} are completely determined by X;.
Then, comparing the last block columns in (6), we obtain

AXy — XpAp = C, (13)

or

(A=Al =¢j=1,...r (14)



Substituting (12) into (14), we obtain

(A= ;1) (A= ;1) (A= Ay0) 1 .
ND) ) (h—1) ) () (A /\1,]»1)955, '=ei=1.m (15)
[Eal [ [EalP
or
(A=A DA = Xemr D). (A=A D) = ajesj=1,...,7, (16)
where '
o = L, (|[27]2). (17)
Thus, if we solve the polynomial system
2D = pj(A)_lozjcj, where pj(2) = (2 — A )(@ — Ap—1j) .. (2 — Aqy), for j=1,... r (18)
j
we solve the equation (6). a

As Equation (18) of the above proof indicates, the obvious bottleneck in a practical implemen-
tation of the algorithm is the solution of the polynomial system p; (A)xg»l) = ¢j:
(A=A (A= XpmiyD) (A= AyDet = ¢ j=1,...,r (19)
The obvious way of solving this system is to successively solve the linear systems
(A=XjDyici =y, i=kk—1,...,1
(1)

with yi = ¢; and y1 = ;" the final solution. For a very small &, this might not pose any problem. In
general, however, it is not satisfactory as it clearly is too expensive. Direct methods for factorization
are excluded because A 1s assumed to be very large. A more effective way, proposed in Datta and

Saad [3], is as follows. If we define

the desired solution # can be written as

-1
x:Z(A—I/\jZ'I) Ci.
= )
In other words, all we need is to solve k independent linear systems

(A—/\]'Z'I)yjzci, j:l,...,k‘, (20)

and then we obtain z as the linear combination

k
ji=1



where
-1

k
aj = | [Twi = An)

1=
1#]

[

In our experience, this approach for solving the matrix polynomial does not result in any stabil-
ity problems for the solution of the Sylvester observer equation for different values of the output
parameter. This experience is in line with the results in [3].

We note here that the algorithm in Figure 1 will break down if any of the eigenvalues of A
and H are close — Step 1 or Equation (20) will be singular. By using an appropriate test matrix
generator, however, we can guarantee that their spectra do not intersect. In general, we have
observed experimentally that the spectra of H and A do not intersect for random matrices, although
there 1s a small probability that they might.

3 Efficient Implementation on a Shared-Memory Multipro-
cessor

In this section we develop an efficient parallel algorithm for the Sylvester observer equation on a
shared-memory multiprocessor.

The overall performance of the algorithm hinges critically on efficiently exploiting the apparent
parallelism in the computation of X;, where we have to solve n equation systems (4 — A;; Iy; = ¢;.
Omitting indices for simplicity, we can either use Gaussian elimination or an orthogonal decompo-
sition:

Gaussian Elimination: We decompose (A — AI)P = LR, where L is lower triangular, R upper
triangular, and P a permutation, then solve the triangular systems Lw = ¢ and Rz = w, and
lastly undo the permutation by computing y = Pz.

Orthogonal Decomposition: Here we have two choices:

QR Factorization: Decompose (4 — AI) = QR, and solve Ry = Q7 c.
LQ Factorization: Decompose (A — M) = L@, solve Lz = ¢, and compute y = Q7 2.

Again, L and R are lower and upper triangular, respectively, and @) is orthogonal. Note that,
in contrast to the Gaussian elimination approach, no pivoting is required.

Because we are not interested in the factorization of (4 — A;;I) per se, but only in the solution of
the equation systems (A — A;;I)y; = ¢;, we can perform a forward solve involving a lower triangular
matrix L at the same time that we compute L during the factorization. By the same token, we can
apply the orthogonal matrix @ to ¢ on the fly if we use the QR factorization.

The drawback is that in both Gaussian elimination and the QR factorization we have to store the
upper triangular matrix R, because we cannot start a backsolve involving R before its last element
has been computed. Because A is assumed to be dense, both Gaussian elimination and the QR



factorization produce a dense upper triangular factor R, which requires a storage of O(n?/2) words
per equation system.

On the other hand, if ¢} does require little storage, an LQ factorization is well suited. This is
the case when A is lower Hessenberg, because then ) can be computed by a sequence of n Givens
rotations, requiring O(n) storage and only O(4n?) flops overall. Assuming, as we have done so
far, that A is of lower Hessenberg form, the Sylvester observer equation algorithm in Figure 1 then
requires

1. the computation of X; by solving a series of systems of equations with lower Hessenberg
coefficient matrices, through an LQ factorization; and

2. the computation of X, ..., Xj through a recurrence relation involving matrix-matrix products
of a lower Hessenberg and a dense matrix.

As will be seen, the choice of lower Hessenberg form for A allows us to fully exploit parallelism while
keeping extra working storage to a minimum.

3.1 Computing the First Block of the Solution

To compute the first block X; of X, we have to solve n independent systems of linear equations
with a lower Hessenberg coefficient matrix. Each of the r columns ¢; of C' is the right-hand side for
k equation systems.

We have observed experimentally that the conditioning of the problem or the accuracy of our
results is not altered appreciably by varying the value of k relative to n, and we assume the ratio
k = n/r to be a small constant. This is motivated by the need for obtaining an efficient loop
parallelism strategy, as discussed below.

The LQ solver for solving (A — AI)y = ¢ is shown in Figure 2. Here we assume that the vector
y holds ¢ on entry and that it contains the solution x on exit. The vector e; is the ith canonical
unit vector. Let P =[1 —n,2 — 1,--- ,n — n — 1] be a left cyclical shift. Then (A — AP = [L,1],
where L is lower triangular and ¢ a column vector.

The use of an LQ factorization for a lower Hessenberg coefficient matrix allows us to compute the
orthogonal factor ), reducing [L, 1] to a lower triangular form as a sequence of n Givens rotations:

Q=G Gn,

where (; involves columns ¢ and n. By solving the triangular system Lz = ¢ on the fly, we need
to store only two columns of L at any given time. Thus, if we solve p such systems in parallel, we
require storage for

n(n+1)/2 + 4pn
(for the lower Hessenberg A) (work space for equation solvers )

words. The other alternatives considered before (Gaussian elimination, QR factorization) require
O(pn?)) storage instead. Our LQ solver requires roughly 4n? flops to solve an n x n equation system:
3n? flops for the computation of L and @, and n? flops for the forward solve Lz = ¢. The original
solution y is then obtained from y «— PQTy. The algorithm is shown in Figure 2.



Workspace: w1, ws, s and ¢, all n-vectors.
wi and ws hold the current columns of L
s and ¢ store the (sin(¢;), cos(¢;)) pairs.
We also assume that A — AP, P being the left cyclic shift.
(1) Initialization: wy; = A(:,n) — Xey, wa = A(:, 1) — ey
(2) Compute L and forward solve Ly = ¢ on the fly:
fori=1ton—-1

Generate (¢(i), s(i)) such that ( _6(2.) iEg ) ( Z;Ez

)
. ).
(wi(i:n),wa(i:n)) — (wi(?: n),wa(i: n)) ( —65;2) SEES )
y(1) — y(i)/wa(i)
yli+1:n)—yli+1:n)—y(Hw(i+1:n)
ifi <n—1 then
wa(i+1:n) —A(i+1:n,i4+1) — Aey
endif
endfor
y(n) — y(n)/wi(n)
(3) Apply Q7 to y:
for i =n —1 downto 1

b )=( o ) (i)

y— Py
endfor

Figure 2: LQ solver for (A — Al)y = ¢. On entry, the vector y contains the right-hand
side ¢; on exit, it contains the solution of the equation.



Figure 3: Partially completed LQ factorization

The partial drawback of this algorithm is that it employs vector-vector operations, which in
general do not perform well on high-performance processors because they require many memory
accesses per floating-point operation. (For a discussion of this issue, see, for example, [1,7,8].) If we
allow more workspace per processor, we can partially overcome this drawback and arrive at a variant
that computes the forward solve Lz = ¢ with matrix-vector operations. In particular, if we allow
for b columns of workspace for L, we do not have to update the right-hand side y until & columns
of L have been updated, while eliminating the first b entries of the last column of A, as shown in
Figure 3. After obtaining a strictly lower triangular block, as discussed above, we can now compute
the first b entries of y with a triangular solve (BLAS2 routine STRSV),

y(1:b) — Tt y(1 0 b),
and update the remaining entries of y with a matrix-vector multiplication (BLAS2 routine SGEMYV),
yb+1:n)—yb+1:n)—Ts y(1l:0b).

Therefore, instead of computing y one column at a time, the computation is carried out b columns at
a time. Thus, in the overall algorithm, roughly 25% of the work is now done by using matrix-vector
instead of vector-vector kernels.

3.2 Computing the Remaining Blocks of X

The computational performance of the third step depends on the performance of the matrix-matrix
product AX;. To achieve optimal performance, we should compute this matrix-matrix product in
parallel, employing matrix-matrix multiplication as much as possible, while exploiting the lower
Hessenberg structure of A. To this end, we partition A in block rows A4; of width b (not necessarily
the same b that is used for the equation solve) and compute AX; in a block rowwise fashion.
That is, we independently compute the first b rows of AX; by forming A;X;, the second b rows
by forming A»X;, and so on. In general, 4; will be an b x (j * b + 1) matrix, with a trailing
zero upper triangle. A sample partition of A into four block rows is shown in Figure 4. Since in
general b < n, the computations involving zeros will account for only a small portion of the overall
computations performed. In particular, for b = 1 we employ a matrix-vector multiplication kernel,
and no operations with zeros are performed.

10



Figure 4: Lower Hessenberg matrix partitioned into four block rows

4 Numerical Results

We tested our parallel Sylvester observer equation algorithm on a CRAY C90/16256, a sixteen-
processor vector machine with 256 Mwords of shared memory. The CRAY (C90 has two sets of vector
units per processor, each producing two results per clock-cycle, resulting in a peak performance of

16 Gflops.

As our test problem we generated matrices of dimensions
n = 512,1024, 1536, 1920.

To generate lower Hessenberg matrices with the desired spectrum, we used the LAPACK test matrix
generator SLATME [6] to generate a dense nonsymmetric matrix with the desired spectrum, used the
LAPACK routine SGEHRD to reduce this matrix to upper Hessenberg form, and then transposed
the resulting matrix. In all cases, k, the number of blocks is 4, so r = n/4. We checked the accuracy
of our results by computing C = AXy — XpApp which, acccording to (13) should equal C'. In all
cases, C and C agreed to 12 digits. This test is not only cheaper than the usual residual check, but
the last block contains the accumulation of all the recurrences and thus is a good indicator of the
accuracy of the algorithm.

The BLAS on the CRAY C90 were assembler implementations provided by Cray Research,
which exploit multiple CPUs in a fashion that is transparent to the user (unless they are called
within a parallel loop, as is the case when we compute the first block of X). Our code obtained the
performance and parallel efficiency shown in Figures b and 6, respectively.

The plots labeled “First Block of X7, and “Remaining Blocks of X” correspond to the two main
steps of the Sylvester observer equation algorithm. Figure 7 shows execution rate and efficiency of
the two steps combined. In these figures, the solid, dashed, dotted, and dash-dotted lines correspond
to runs with 1, 4, 8, and 16 processors, respectively. Efficiency is defined as T?;p x 100, where T,
is the wall clock time for executing any algorithm on p processors. For all of the segments (i.e.,
systems solutions and matrix products) we get the best results, in general, for blocksize b = 1.

Figure b shows that the AX; recursion of the parallel Sylvester observer equation algorithm
performs very well. This result is not surprising, because it relies on the highly optimized assembler
implementations of the BLAS.
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Figure 5: Performance of the main kernels of the parallel Sylvester observer equation
algorithm on a CRAY C90 (- 1 proc., - - 4 procs., .... 8 procs., -. 16 procs.)

On the other hand, the computation of the first block of X runs much more slowly, at slightly
more than half the speed of the other transformations. This is because our on-the-fly LQ solver
relies only on BLAS 1 operations for all of its work and the number of systems being solved. The
fact that we blocked the computation of y did not result in any improvement on this machine —
at most, 8% principally on smaller problems. As a matter of fact, the performance advantage of
the blocked version diminished for larger problems because of an increased number of copies in and
out of buffers. We also noted that, due to the high internal bandwidth of the C90, the unblocked
matrix-matrix multiply does much better than the blocked version, usually performing around 25%
faster. However, as the computation of X, and the computations of X5, ..., X} account respectively
for roughly 80% and 20% of the floating-point operations to be performed, the performance of the
overall program very much reflects the performance of the L.Q solver. There is little we can do about
this situation, since any other solver would require O(pn?) workspace, which is clearly undesirable.

On the other hand, by exploiting the parallelism inherent in the computation of X | our algorithm
scales very well with the number of processors; as the plots in Figures 6 and 7 demonstrate. Not
surprisingly, the parallel solution of the equation systems scales the best: because there are many
parallel jobs, all with the same computational requirements, the parallel loop is almost perfectly
load-balanced. This step is responsible for about half of all floating-point operations, resulting in
the high overall parallel efficiency of our code.
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Figure 6: Efficiency of the main kernels of the parallel Sylvester observer equation algo-
rithm on a CRAY C90 (- - 4 procs., .... 8 procs., -. 16 procs.)
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Figure 7: Performance (left) and efficiency (right) of parallel Sylvester observer equation
algorithm on a CRAY C90 (- 1 proc., - - 4 procs., .... 8 procs., -. 16 procs.)

5 Comparison of the Proposed Algorithm with Hessenberg
Schur Method

In this section we make a performance comparison of our proposed parallel algorithm with that
of the Hessenberg-Schur method [10] adapted for the solution of the Sylvester observer equation
AX — XH = (0,C). The Hessenberg-Schur method solves the usual Sylvester equation AX — X H =
C, where the matrices A, H, and C' are given and X needs to be found. We first show how the
Hessenberg-Schur method can be adapted for the solution of the Sylvester observer equation (2).

In the Sylvester observer equation, the matrix H can be chosen arbitrarily as long as it has
a preassigned spectrum and its spectrum is different from that of A. Again, we choose H block
bidiagonal with r x r blocks as in (7). Then the Hessenberg-Schur method adapted to the Sylvester
observer equation can be described as given by the algorithm in Figure 8.

Like assumed in our algorithm, A is also first reduced to Hessenberg form. The difference between
the two algorithms lies in the computation of the individual blocks of the solution matrix X. In our
new algorithm, the first block X; is computed by solving n systems of linear equations in parallel,
and the remaining blocks are then computed recursively using higher-level BLAS operations, while
in the Hessenberg-Schur algorithm, all the blocks of the solution matrix X are computed by solving
n linear systems, r at a time. In the Hessenberg Schur approach, it makes sense to parallelize
the inner loop, because, as before, r is much larger than k. So we spawn r parallel jobs & times,
incurring a greater overhead than in the proposed algorithm, where we spawn n parallel jobs once.

14



Compute Xj, the last block of X:
Fori=1,...,rdo
Solve (A — /\kiI)i‘;k) =g¢
Enddo
Mg = diag((|e]]a, - [|217]]2)
Xp = XpAphoy

Solve for X;_q,..., X1, the remaining blocks of X :
For j=k—1,...,1do
Fori=1,...,r do

Solve (A — Am)&ﬁ” — l,gj+1)

Enddo
Ajjor = ding(la? . oo 7 2)
X; = XjAj,j—l

Enddo

Figure 8: Hessenberg-Schur method for solution of the Sylvester observer equation

Also, there are almost no opportunities for using higher-level BLAS operations in the Hessenberg-
Schur algorithm, except in the first step, common to both algorithms, for reducing the matrix to
Hessenberg form.

This is borne out by experimental results on the C90. A comparison of Figure 7 with Figure 9
shows that the Hessenberg-Schur algorithm does not perform as well as the new proposed algorithm.
For example, for n = 1536 and p = 16, we obtain around 6 GFlops with the new algorithm and
around 5 Gflops with the Hessenberg-Schur approach—an improvement of around 20%. Due to
memory limitations (the Hessenberg-Schur method seems to require more space to execute), we
could not run the case n = 1920.

6 Conclusions

In this paper we presented a new parallel algorithm for solving the Sylvester observer equation.
The algorithm is simple and relies on standard linear algebra building blocks. The main compu-
tational steps are a reduction to Hessenberg form, the solution of a series of independent equation
systems, and a recurrence relation based on matrix-matrix multiplies. These attributes, together
with the parallelism in the algorithm, are key requirements for an efficient implementation on a
shared-memory multiprocessor. By reducing the coefficient matrix to lower Hessenberg form, we
can implement our algorithm with little additional workspace, thereby ensuring that we can solve
big problems and that our algorithm scales well with the number of processors. Experimental results
on a CRAY C-90 show that the algorithm is indeed well suited for a shared-memory multiprocessor.
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Figure 9: Performance of Hessenberg-Schur algorithm on a CRAY C90; (- 1 proc., - - 4
procs., .... 8 procs., -. 16 procs.)

Also, a comparison 1s made with the well known Hessenberg-Schur algorithm.

At the moment we are working on a version of this algorithm that is suitable for a distributed-
memory multiprocessor. As in our current implementation, the key i1ssue will be an efficient im-
plementation of the parallel equation solves and the limitation of workspace. Research into sparse
implementations is also in progress.
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