
A Parallel Algorithm for the Sylvester Observer EquationChristian H. Bischof�Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439Biswa Nath DattayDepartment of Mathematical SciencesNorthern Illinois UniversityDekalb, IL 60115Avijit PurkayasthazDepartment of MathematicsUniversity of Puerto Rico, Mayag�uezMayag�uez, PR-00681-5000Argonne Preprint ANL/MCS-P274-1191 (revised 05/94)Abstract. We present a new algorithm for solving the Sylvester observer equation arising in the context of theLuenberger observer. The algorithm embodies two main computational phases: the solution of several independentequation systems, and a series of matrix-matrix multiplications. The algorithm is, thus, well suited for parallel andhigh-performance computing. By reducing the coe�cient matrix A to lower Hessenberg form, one can implementthe algorithm e�ciently, with few oating-point operations and little workspace. The algorithm has been successfullyimplemented on a CRAY C-90. A comparison, both theoretical and experimental, has been made with the well-knownHessenberg-Schur algorithm which solves an arbitrary Sylvester equation. Our theoretical analysis and experimentalresults con�rm the superiority of the proposed algorithm, both in e�ciency and speed, over the Hessenberg-Schuralgorithm.Key words. Sylvester observer equation, parallel algorithm, orthogonal factorization, shared-memory parallelism,Hessenberg-Schur algorithm.�The work of this author was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38.yThe work of this author was partially supported by a grant from the NSF under contract DMS-9212629.zThe work of this author was partially supported by a grant from the NSF under contract RII-8905080.

1 IntroductionThe Luenberger observer problem (see [12]) for the control system_x = Ax+ Buy = Cx (1)arises frequently in control theory. Its solution leads to a Sylvester-type matrix equationAX �XH = CV: (2)In contrast with the usual Sylvester equation, here only A and C are given, while X; H; and Vare to be chosen to satisfy certain requirements. We call (2) the Sylvester observer equation. Therequirements for choosing H and V are as follows:� H must be stable; that is, all the eigenvalues of H should have negative realparts.� The spectrum of H must be disjoint from that of A (to ensure that X is theunique solution of (2)).� V must be such that (Ht; V t) be controllable; that is, the matrixh V t; HtV t; : : : ; (Ht)n�1V t ihas rank n. 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; (3)Since we are free to choose H as long as it satis�es the above criteria, we can choose it as a blockupper-Hessenberg matrix with a suitable preassigned spectrum. It can then be shown quite easilythat, for this particular structure of H, andV = � 0; 0; : : : ; 0; I � ;partitioned conformally, (Ht; V t) is controllable. This choice of V then reduces Equation (2) to theform AX �XH = � 0; 0; : : : ; 0; C � ; (4)where A is a given n� n matrix, C is an n� r matrix, H is a chosen n� n block upper Hessenbergmatrix with a preassigned spectrum, and X is an n � n matrix to be constructed. Because wecan always choose V in this fashion, we simpli�ed the notation in (2) by using C as shorthand forC(:; n � r + 1 : n). It should be clear from context whether the whole matrix or only its last rcolumns are meant.If W is an invertible matrix, Equation (2) is equivalent to(WAW�1)(WX) � (WX)H = (WC)V; (5)and so one can reduce the complexity of the problem by applying a suitably chosen similaritytransformation to A. For example, if we were to apply the well-known Hessenberg-Schur method2

developed by Golub, Nash, and Van Loan [10] for the usual Sylvester equation, to the Sylvesterobserver equation (4), A would be reduced to Hessenberg form and H to real Schur form (RSF).The RSF of a matrix is a quasi-triangular matrix in which the diagonal entries are either 1 � 1 or2� 2 matrices (see [11]). Because the matrix H can be chosen for the Sylvester observer equation,one can choose it in RSF with a desired set of eigenvalues on the diagonal and then easily solve forthe columns of X. This approach, though numerically e�ective, does not o�er as good a potentialfor parallelism as the proposed method. A more detailed discussion of this method, from the pointof view of solving the Sylvester observer equation, is given in x5.Another possible approach is the method suggested by Van Dooren [9]. It uses an observer-Hessenberg form for the pair (A;C) in which both A and C are put in certain condensed forms.This approach also requires knowledge of the eigenvalues of the matrix A and is recursive. Like theHessenberg-Schur method, it computes the columns of X sequentially and does not o�er much scopefor the exploitation of parallelism.Yet another approach, based on Arnoldi's method, has recently been proposed by Datta andSaad [3] for the case where C is a vector. It constructs an orthonormal solution to equation (4).The method is suitable for large and sparse problems but does not o�er much scope for parallelism.In this paper, we present a simple yet e�cient method for solving (4) which is well suited forparallel and high-performance computers. The method is a block generalization of Datta's method [2]for the case when r = 1. In the case where C is n� r, r > 1, our method entails solving a total of nindependent system of equations to compute the �rst r columns of X, and then obtaining the othercolumns of X; r at a time, essentially through matrix-matrix multiplications. Like the Hessenberg-Schur method, our approach assumes that A is a Hessenberg matrix, and we will not concernourselves with the reduction of A to Hessenberg form, or the backtransformation of the solution.That is, unless otherwise noted, we assume in the sequel that A in (4) is a lower Hessenberg matrix.We also note that in our approach, H will be chosen to be a block lower bidiagonal matrix.We also point out that parallel algorithms for control problems are virtually nonexistent, withonly a few algorithms being proposed in recent years (for references to these algorithms, see therecent survey papers of Datta [4] and [5]). The need for expanded research in this area has beenclearly outlined in a recent panel report [13].The outline of the paper is as follows. In the next section we present the algorithm and prove itscorrectness. In x3 we describe how this algorithm can be implemented e�ciently. We show that byinitially reducing A to lower Hessenberg form, and by employing an orthogonal reduction to solvethe equation systems, we can fully exploit parallelism in the solution of the independent equationsystems, while requiring little additional workspace. In x4 we report on results obtained on a CRAYC90 shared-memory multiprocessor. In x5 we show how to modify the Hessenberg-Schur method forsolving the Sylvester observer equation. Results of its parallel implementation are also presented asa means of comparison with the proposed method. Lastly, we summarize our results and outlinedirections of further research. 3

2 The AlgorithmIn this section we present our algorithm for solving the Sylvester observer equation and prove itscorrectness. To repeat, we are trying to solveAX �XH = (0; C); (6)where A and C are given n�n and n� r matrices, respectively; X is the sought-after n�n solutionmatrix; and H is an n� n matrix that we can choose as long as it satis�es the requirements of (3).In our algorithm we chooseH = 266666664 �11�21�k;k�1 �kk 377777775 : (7)Let (�11; �12; : : : ; �1r); : : : ; (�k1; �k2; : : : ; �kr)be the eigenvalues assigned to the diagonal blocks �11; : : : ;�kk of the block bidiagonal matrix Hwith o�-diagonal blocks �i;i�1. All of the blocks are of size r� r, where r is the number of outputsor the number of columns of C, and k is the number of blocks such that rk = n. The subdiagonals�i;i�1 containing the scaling factors of the ith block Xi will be computed as a by-product of oursolution algorithm such that (6) holds. We partition X conformally such that X = (X1; : : : ; Xk),where Xi = (x(i)1 ; : : : ; x(i)r), and let C = (c1; : : : ; cr). In Figure 1 we give our algorithm to solve (6).We now prove the correctness of the algorithm.Theorem 1 The algorithm in Figure 1 computes the solution of the Sylvester observer equation (6).Proof : First, we notice from the block Hessenberg structure of H in Equation (6) that the blocksXi of the actual solution X are obtained from the blocks X̂i of the computed solution X̂ by therelation Xi+1 = X̂i+1��1i+1;i = AXi �Xi�ii; i = 1; : : : ; k � 1;where �i+1;i of H contain the 2-norm of the columns of the computed solution X̂i+1, that is,�i+1;i = diag(kx̂(i+1)1 k2; : : : ; kx̂(i+1)r k2): Then the �rst two block columns of Equation (6) are relatedby the relation X̂2 = X2�21 = AX1 �X1�11: (8)So if x(2)j denotes the jth column of X2, thenx̂(2)j = kx̂(2)j k2x(2)j = (A� �1;jI)x(1)j (9)4

Compute X1, the �rst block of X:For i = 1; : : : ; r doFor j = 1; : : : ; k doSolve (A� �jiI)yj = ci for yj�j = �Qkl=1l6=j(�ji � �li)��1Enddox(1)i =Pkj=1�jyjEnddoCompute X2; : : : ; Xk, the remaining blocks of X :For i = 1; 2; : : : ; k� 1 doX̂i+1 = AXi �Xi�ii�i+1;i = diag(kx̂(i+1)1 k2; : : : ; kx̂(i+1)r k2)Xi+1 = X̂i+1��1i+1;iEnd DoFigure 1: Algorithm for the solution of the Sylvester observer equationor x(2)j = 1kx̂(2)j k2 (A � �1;jI)x(1)j : (10)The remaining blocks X̂3; : : : ; X̂k then satisfy :X̂i+1 = Xi+1�i+1;i = AXi �Xi�ii; i = 2; : : : ; k � 1: (11)If we denote x̂(i)j to be the jth column of the ith block X̂i, Equation (11) together with the diagonalityof �ii impliesx̂(i)j = kx̂(i)j k2x(i)j = (A � �i�1;jI)kx̂(i�1)j k2 (A� �i�2;jI)kx̂(i�2)j k2 : : : (A � �2jI)kx̂(2)j k2 (A � �1;jI)x(1)j : (12)Thus, X2; : : : ; Xk are completely determined by X1.Then, comparing the last block columns in (6), we obtainAXk �Xk�kk = C; (13)or (A � �kjI)x(k)j = cj ; j = 1; : : : ; r: (14)5

Substituting (12) into (14), we obtain(A� �k;jI)kx̂(k)j k2 (A � �k�1;jI)kx̂(k�1)j k2 : : : (A � �2jI)kx̂(2)j k2 (A � �1;jI)x(1)j = cj; j = 1; : : : ; r; (15)or (A� �k;jI)(A � �k�1;jI) : : : (A� �1;jI)x(1)j = �jcj ; j = 1; : : : ; r; (16)where �j = �ki=2(kx̂(i)j k2): (17)Thus, if we solve the polynomial systemx(1)j = pj(A)�1�jcj; where pj(x) = (x� �kj)(x � �k�1;j) : : : (x� �1j); for j = 1; : : : ; r; (18)we solve the equation (6). 2As Equation (18) of the above proof indicates, the obvious bottleneck in a practical implemen-tation of the algorithm is the solution of the polynomial system pj(A)x(1)j = cj:(A� �kjI)(A � �k�1;jI) : : : (A� �1jI)x(1)j = cj ; j = 1; : : : ; r: (19)The obvious way of solving this system is to successively solve the linear systems(A � �ijI)yi�1 = yi; i = k; k� 1; : : : ; 1with yk = cj and y1 = x(1)j the �nal solution. For a very small k, this might not pose any problem. Ingeneral, however, it is not satisfactory as it clearly is too expensive. Direct methods for factorizationare excluded because A is assumed to be very large. A more e�ective way, proposed in Datta andSaad [3], is as follows. If we de�ne f(t) = 1q(t) = 1Qkj=1(t� �ji) ;the desired solution x can be written asx = kXj=1 (A � �jiI)�1ciq0(�ji) :In other words, all we need is to solve k independent linear systems(A � �jiI)yj = ci; j = 1; : : : ; k ; (20)and then we obtain x as the linear combinationx = kXj=1�jyj ;6

where �j = 0BB@ kYl=1l6=j(�ji � �li)1CCA�1 :In our experience, this approach for solving the matrix polynomial does not result in any stabil-ity problems for the solution of the Sylvester observer equation for di�erent values of the outputparameter. This experience is in line with the results in [3].We note here that the algorithm in Figure 1 will break down if any of the eigenvalues of Aand H are close { Step 1 or Equation (20) will be singular. By using an appropriate test matrixgenerator, however, we can guarantee that their spectra do not intersect. In general, we haveobserved experimentally that the spectra ofH and A do not intersect for random matrices, althoughthere is a small probability that they might.3 E�cient Implementation on a Shared-Memory Multipro-cessorIn this section we develop an e�cient parallel algorithm for the Sylvester observer equation on ashared-memory multiprocessor.The overall performance of the algorithm hinges critically on e�ciently exploiting the apparentparallelism in the computation of X1, where we have to solve n equation systems (A��jiI)yj = ci.Omitting indices for simplicity, we can either use Gaussian elimination or an orthogonal decompo-sition:Gaussian Elimination: We decompose (A � �I)P = LR, where L is lower triangular, R uppertriangular, and P a permutation, then solve the triangular systems Lw = c and Rz = w, andlastly undo the permutation by computing y = Pz.Orthogonal Decomposition: Here we have two choices:QR Factorization: Decompose (A � �I) = QR; and solve Ry = QT c.LQ Factorization: Decompose (A � �I) = LQ, solve Lz = c, and compute y = QT z.Again, L and R are lower and upper triangular, respectively, and Q is orthogonal. Note that,in contrast to the Gaussian elimination approach, no pivoting is required.Because we are not interested in the factorization of (A��jiI) per se, but only in the solution ofthe equation systems (A��jiI)yj = ci, we can perform a forward solve involving a lower triangularmatrix L at the same time that we compute L during the factorization. By the same token, we canapply the orthogonal matrix Q to c on the y if we use the QR factorization.The drawback is that in both Gaussian elimination and the QR factorization we have to store theupper triangular matrix R, because we cannot start a backsolve involving R before its last elementhas been computed. Because A is assumed to be dense, both Gaussian elimination and the QR7

factorization produce a dense upper triangular factor R, which requires a storage of O(n2=2) wordsper equation system.On the other hand, if Q does require little storage, an LQ factorization is well suited. This isthe case when A is lower Hessenberg, because then Q can be computed by a sequence of n Givensrotations, requiring O(n) storage and only O(4n2) ops overall. Assuming, as we have done sofar, that A is of lower Hessenberg form, the Sylvester observer equation algorithm in Figure 1 thenrequires1. the computation of X1 by solving a series of systems of equations with lower Hessenbergcoe�cient matrices, through an LQ factorization; and2. the computation ofX2; : : : ; Xk through a recurrence relation involving matrix-matrix productsof a lower Hessenberg and a dense matrix.As will be seen, the choice of lower Hessenberg form for A allows us to fully exploit parallelism whilekeeping extra working storage to a minimum.3.1 Computing the First Block of the SolutionTo compute the �rst block X1 of X, we have to solve n independent systems of linear equationswith a lower Hessenberg coe�cient matrix. Each of the r columns ci of C is the right-hand side fork equation systems.We have observed experimentally that the conditioning of the problem or the accuracy of ourresults is not altered appreciably by varying the value of k relative to n, and we assume the ratiok = n=r to be a small constant. This is motivated by the need for obtaining an e�cient loopparallelism strategy, as discussed below.The LQ solver for solving (A � �I)y = c is shown in Figure 2. Here we assume that the vectory holds c on entry and that it contains the solution x on exit. The vector ei is the ith canonicalunit vector. Let P = [1! n; 2! 1; � � � ; n! n� 1] be a left cyclical shift. Then (A � �I)P = [L; t],where L is lower triangular and t a column vector.The use of an LQ factorization for a lower Hessenberg coe�cient matrix allows us to compute theorthogonal factor Q, reducing [L; t] to a lower triangular form as a sequence of n Givens rotations:Q = G1 � � �Gn;where Gi involves columns i and n. By solving the triangular system Lz = c on the y, we needto store only two columns of L at any given time. Thus, if we solve p such systems in parallel, werequire storage for n(n+ 1)=2 + 4pn(for the lower Hessenberg A) (work space for equation solvers)words. The other alternatives considered before (Gaussian elimination, QR factorization) requireO(pn2)) storage instead. Our LQ solver requires roughly 4n2 ops to solve an n�n equation system:3n2 ops for the computation of L and Q; and n2 ops for the forward solve Lz = c. The originalsolution y is then obtained from y PQTy. The algorithm is shown in Figure 2.8

Workspace: w1; w2; s and c, all n-vectors.w1 and w2 hold the current columns of Ls and c store the (sin(�i); cos(�i)) pairs.We also assume that A AP , P being the left cyclic shift.(1) Initialization: w1 = A(:; n)� �e1; w2 = A(:; 1)� �e2(2) Compute L and forward solve Ly = c on the y:for i = 1 to n� 1Generate (c(i); s(i)) such that � c(i) s(i)�s(i) c(i) �� w1(i)w2(i) � = � 0� �(w1(i : n); w2(i : n)) (w1(i : n); w2(i : n))� c(i) s(i)�s(i) c(i) �y(i) y(i)=w2(i)y(i + 1 : n) y(i + 1 : n)� y(i)w2(i+ 1 : n)if i < n� 1 thenw2(i+ 1 : n) A(i + 1 : n; i+ 1)� �e2endifendfory(n) y(n)=w1(n)(3) Apply QT to y:for i = n� 1 downto 1� y(i)y(n) � � c(i) s(i)�s(i) c(i) �T � y(i)y(n) �(4) Undo Permutation P :y PyendforFigure 2: LQ solver for (A � �I)y = c. On entry, the vector y contains the right-handside c; on exit, it contains the solution of the equation.9

T1T2b bFigure 3: Partially completed LQ factorizationThe partial drawback of this algorithm is that it employs vector-vector operations, which ingeneral do not perform well on high-performance processors because they require many memoryaccesses per oating-point operation. (For a discussion of this issue, see, for example, [1,7,8].) If weallow more workspace per processor, we can partially overcome this drawback and arrive at a variantthat computes the forward solve Lz = c with matrix-vector operations. In particular, if we allowfor b columns of workspace for L, we do not have to update the right-hand side y until b columnsof L have been updated, while eliminating the �rst b entries of the last column of A, as shown inFigure 3. After obtaining a strictly lower triangular block, as discussed above, we can now computethe �rst b entries of y with a triangular solve (BLAS2 routine STRSV),y(1 : b) T�11 y(1 : b);and update the remaining entries of y with a matrix-vector multiplication (BLAS2 routine SGEMV),y(b + 1 : n) y(b + 1 : n)� T2 y(1 : b):Therefore, instead of computing y one column at a time, the computation is carried out b columns ata time. Thus, in the overall algorithm, roughly 25% of the work is now done by using matrix-vectorinstead of vector-vector kernels.3.2 Computing the Remaining Blocks of XThe computational performance of the third step depends on the performance of the matrix-matrixproduct AXi. To achieve optimal performance, we should compute this matrix-matrix product inparallel, employing matrix-matrix multiplication as much as possible, while exploiting the lowerHessenberg structure of A. To this end, we partition A in block rows Aj of width b (not necessarilythe same b that is used for the equation solve) and compute AXi in a block rowwise fashion.That is, we independently compute the �rst b rows of AXi by forming A1Xi, the second b rowsby forming A2Xi, and so on. In general, Aj will be an b � (j � b + 1) matrix, with a trailingzero upper triangle. A sample partition of A into four block rows is shown in Figure 4. Since ingeneral b� n, the computations involving zeros will account for only a small portion of the overallcomputations performed. In particular, for b = 1 we employ a matrix-vector multiplication kernel,and no operations with zeros are performed. 10

0000A4A3A2A1Figure 4: Lower Hessenberg matrix partitioned into four block rows4 Numerical ResultsWe tested our parallel Sylvester observer equation algorithm on a CRAY C90/16256, a sixteen-processor vector machine with 256 Mwords of shared memory. The CRAY C90 has two sets of vectorunits per processor, each producing two results per clock-cycle, resulting in a peak performance of16 Gops.As our test problem we generated matrices of dimensionsn = 512; 1024; 1536; 1920:To generate lower Hessenberg matrices with the desired spectrum, we used the LAPACK test matrixgenerator SLATME [6] to generate a dense nonsymmetric matrix with the desired spectrum, used theLAPACK routine SGEHRD to reduce this matrix to upper Hessenberg form, and then transposedthe resulting matrix. In all cases, k, the number of blocks is 4; so r = n=4. We checked the accuracyof our results by computing Ĉ � AX̂k � X̂k�kk which, acccording to (13) should equal C. In allcases, Ĉ and C agreed to 12 digits. This test is not only cheaper than the usual residual check, butthe last block contains the accumulation of all the recurrences and thus is a good indicator of theaccuracy of the algorithm.The BLAS on the CRAY C90 were assembler implementations provided by Cray Research,which exploit multiple CPUs in a fashion that is transparent to the user (unless they are calledwithin a parallel loop, as is the case when we compute the �rst block of X). Our code obtained theperformance and parallel e�ciency shown in Figures 5 and 6, respectively.The plots labeled \First Block of X", and \Remaining Blocks of X" correspond to the two mainsteps of the Sylvester observer equation algorithm. Figure 7 shows execution rate and e�ciency ofthe two steps combined. In these �gures, the solid, dashed, dotted, and dash-dotted lines correspondto runs with 1, 4, 8, and 16 processors, respectively. E�ciency is de�ned as T1Tp�p � 100, where Tpis the wall clock time for executing any algorithm on p processors. For all of the segments (i.e.,systems solutions and matrix products) we get the best results, in general, for blocksize b = 1.Figure 5 shows that the AXi recursion of the parallel Sylvester observer equation algorithmperforms very well. This result is not surprising, because it relies on the highly optimized assemblerimplementations of the BLAS. 11

500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

problem size

M
flo

ps

First Block of X

500 1000 1500 2000
0

2000

4000

6000

8000

10000

problem size

M
flo

ps

Remaining Blocks of X

Figure 5: Performance of the main kernels of the parallel Sylvester observer equationalgorithm on a CRAY C90 ({ 1 proc., - - 4 procs., 8 procs., -. 16 procs.)On the other hand, the computation of the �rst block of X runs much more slowly, at slightlymore than half the speed of the other transformations. This is because our on-the-y LQ solverrelies only on BLAS 1 operations for all of its work and the number of systems being solved. Thefact that we blocked the computation of y did not result in any improvement on this machine |at most, 8% principally on smaller problems. As a matter of fact, the performance advantage ofthe blocked version diminished for larger problems because of an increased number of copies in andout of bu�ers. We also noted that, due to the high internal bandwidth of the C90, the unblockedmatrix-matrix multiply does much better than the blocked version, usually performing around 25%faster. However, as the computation ofX1, and the computations of X2; : : : ; Xk account respectivelyfor roughly 80% and 20% of the oating-point operations to be performed, the performance of theoverall program very much reects the performance of the LQ solver. There is little we can do aboutthis situation, since any other solver would require O(pn2) workspace, which is clearly undesirable.On the other hand, by exploiting the parallelism inherent in the computation ofX, our algorithmscales very well with the number of processors, as the plots in Figures 6 and 7 demonstrate. Notsurprisingly, the parallel solution of the equation systems scales the best: because there are manyparallel jobs, all with the same computational requirements, the parallel loop is almost perfectlyload-balanced. This step is responsible for about half of all oating-point operations, resulting inthe high overall parallel e�ciency of our code. 12

500 1000 1500 2000
82

84

86

88

90

92

94

96

98

100

problem size

E
ffi

ci
en

cy

First Block of X

500 1000 1500 2000
50

60

70

80

90

100

problem size

E
ffi

ci
en

cy

Remaining Blocks of X

Figure 6: E�ciency of the main kernels of the parallel Sylvester observer equation algo-rithm on a CRAY C90 (- - 4 procs., 8 procs., -. 16 procs.)
13

500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

7000

problem size

M
flo

ps

Whole Program

500 1000 1500 2000
80

85

90

95

100

problem size

E
ffi

ci
en

cy

Whole Program

Figure 7: Performance (left) and e�ciency (right) of parallel Sylvester observer equationalgorithm on a CRAY C90 ({ 1 proc., - - 4 procs., 8 procs., -. 16 procs.)5 Comparison of the Proposed Algorithm with HessenbergSchur MethodIn this section we make a performance comparison of our proposed parallel algorithm with thatof the Hessenberg-Schur method [10] adapted for the solution of the Sylvester observer equationAX �XH = (0; C). The Hessenberg-Schur method solves the usual Sylvester equation AX�XH =C, where the matrices A;H, and C are given and X needs to be found. We �rst show how theHessenberg-Schur method can be adapted for the solution of the Sylvester observer equation (2).In the Sylvester observer equation, the matrix H can be chosen arbitrarily as long as it hasa preassigned spectrum and its spectrum is di�erent from that of A. Again, we choose H blockbidiagonal with r� r blocks as in (7). Then the Hessenberg-Schur method adapted to the Sylvesterobserver equation can be described as given by the algorithm in Figure 8.Like assumed in our algorithm,A is also �rst reduced to Hessenberg form. The di�erence betweenthe two algorithms lies in the computation of the individual blocks of the solution matrix X. In ournew algorithm, the �rst block X1 is computed by solving n systems of linear equations in parallel,and the remaining blocks are then computed recursively using higher-level BLAS operations, whilein the Hessenberg-Schur algorithm, all the blocks of the solution matrix X are computed by solvingn linear systems, r at a time. In the Hessenberg Schur approach, it makes sense to parallelizethe inner loop, because, as before, r is much larger than k. So we spawn r parallel jobs k times,incurring a greater overhead than in the proposed algorithm, where we spawn n parallel jobs once.14

Compute Xk, the last block of X:For i = 1; : : : ; r doSolve (A� �kiI)x̂(k)j = ciEnddo�k;k�1 = diag(kx̂(k)1 k2; : : : ; kx̂(k)r k2)Xk = X̂k��1k;k�1Solve for Xk�1; : : : ; X1, the remaining blocks of X :For j = k � 1; : : : ; 1 doFor i = 1; : : : ; r doSolve (A� �jiI)x̂(j)i = x(j+1)iEnddo�j;j�1 = diag(kx̂(j)1 k2; : : : ; kx̂(j)r k2)Xj = X̂j��1j;j�1EnddoFigure 8: Hessenberg-Schur method for solution of the Sylvester observer equationAlso, there are almost no opportunities for using higher-level BLAS operations in the Hessenberg-Schur algorithm, except in the �rst step, common to both algorithms, for reducing the matrix toHessenberg form.This is borne out by experimental results on the C90. A comparison of Figure 7 with Figure 9shows that the Hessenberg-Schur algorithm does not perform as well as the new proposed algorithm.For example, for n = 1536 and p = 16, we obtain around 6 GFlops with the new algorithm andaround 5 Gops with the Hessenberg-Schur approach{an improvement of around 20%. Due tomemory limitations (the Hessenberg-Schur method seems to require more space to execute), wecould not run the case n = 1920.6 ConclusionsIn this paper we presented a new parallel algorithm for solving the Sylvester observer equation.The algorithm is simple and relies on standard linear algebra building blocks. The main compu-tational steps are a reduction to Hessenberg form, the solution of a series of independent equationsystems, and a recurrence relation based on matrix-matrix multiplies. These attributes, togetherwith the parallelism in the algorithm, are key requirements for an e�cient implementation on ashared-memory multiprocessor. By reducing the coe�cient matrix to lower Hessenberg form, wecan implement our algorithm with little additional workspace, thereby ensuring that we can solvebig problems and that our algorithm scales well with the number of processors. Experimental resultson a CRAY C-90 show that the algorithm is indeed well suited for a shared-memory multiprocessor.15

500 1000 1500
0

1000

2000

3000

4000

5000

problem size

M
flo

ps

Solution of n systems

Figure 9: Performance of Hessenberg-Schur algorithm on a CRAY C90; ({ 1 proc., - - 4procs., 8 procs., -. 16 procs.)Also, a comparison is made with the well known Hessenberg-Schur algorithm.At the moment we are working on a version of this algorithm that is suitable for a distributed-memory multiprocessor. As in our current implementation, the key issue will be an e�cient im-plementation of the parallel equation solves and the limitation of workspace. Research into sparseimplementations is also in progress.AcknowledgmentsWe are indebted to Bruce Kelly and Moe Jette of the National Energy Research SupercomputerCenter at Lawrence Livermore National Laboratory for their dedicated help with the benchmarkingof our code. We also thank Klaus Geers of the University of Karlsruhe and Phuong Vu of CrayResearch for performing some preliminary benchmark runs for us. We are also indebted to PhuongVu for suggesting some programming enhancements to us. Lastly, we thank an anonymous refereefor suggesting the left cyclic shift reordering in the LQ solver.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide. SIAM,Philadelphia, 1992. 16

[2] Biswa N. Datta. Parallel and large-scale matrix computations in control: Some ideas. LinearAlgebra and Its Applications, 121:243{264, 1989.[3] Biswa N. Datta and Youcef Saad. Arnoldi Methods for Large Sylvester-Like Observer MatrixEquations, and an Associated Algorithm for Partial Spectrum Assignment. Linear Algebra andIts Applications, 154{156:225{244, 1991.[4] Biswa N. Datta. Parallel Algorithms in Control Theory. Proceedings of IEEE Conference onDecision and Control, pp. 1700-1704, 1991.[5] Biswa N. Datta. High Performance in Linear Control. Proceedings of SIAM Conference onParallel Processing, pp. 274-281, 1993.[6] James Demmel and Alan McKenney. LAPACK working note 9: A test matrix generationsuite. Preprint MCS-P69-0389, Mathematics and Computer Science Division, Argonne NationalLaboratory, August 1989.[7] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithms fordense matrices on a vector pipeline machine. SIAM Review, 26:91{112, 1984.[8] Jack Dongarra and Sven Hammarling. Evolution of Numerical Software for Dense Linear Al-gebra. in Evolution of Numerical Software for Dense Linear Algebra, M. G. Cox and S. Ham-marline, Eds., pages 297{327. Oxford University Press, Oxford, UK, 1989.[9] Paul Van Dooren. Reduced order observers: A new algorithm and proof. Systems and ControlLetters, 4:243{251, 1984.[10] Gene Golub, Stephen Nash, and Charles Van Loan. A Hessenberg Schur method for the problemAX +XB = C. IEEE Transactions in Automatic Control, 24(6):209{213, 1979.[11] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins UniversityPress, Baltimore, 1983.[12] D. Luenberger. Observing the state of a linear system. IEEE Transaction on Military Electron-ics, MIL-8:74-80, 1964.[13] Report of the panel on \Future Directions in Control Theory: A Mathematical Perspective".SIAM, Philadelphia, 1988.
17

