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De�nition 2 The Zaremba index or �gure of merit, �(�), of an s-dimensional integerlattice is �(�) = minx2�;x6=0 �(x): (1:3)Note that all lattice points of an integer lattice have integer components. Thus �(x) and�(�) are positive integers. In Section 3 we shall generalize this de�nition to other pointsets.The Zaremba index, �(�), is a recognized measure of e�ciency of the multidimensionalquadrature rule based on �Q, the lattice reciprocal to �. This lattice rule employs all Npoints of �Q lying in [0; 1)s, N being the order of �. Thus, attention has been devotedto searching in Ls(N), the set of s-dimensional integer lattices of order N , with a view to�nding optimal lattices of this order, that is, lattices �0 for which �(�0) coincides with�s(N) = max�2Ls(N)�(�): (1:4)It is convenient to introduce a \measure of goodness" of a lattice using which onecan compare lattices having di�erent values of N . Our measure is based on the Zarembaconjecture that suggests that there exists a constant zs such that�s(N) � zs N(logN)s�2 ; s � 2: (1:5)For s = 2 the conjecture has been proved by Zaremba [Zar66]. Following Kedem andZaremba [KZ74], we assign to every lattice a value de�ned byz(�) = �(�)(logN)s�2N : (1:6)This is of course nothing more than a scaled version of �(�). However, this value is usefulwhen examining a list that contains lattices of di�erent orders N to recognize quicklythose lattices which have an outstanding value of �.This paper is not directly concerned with the conjectures on which such estimates arebased. We note, however, that there exists a bound on �s(N) of order O(N=(logN)s�1)[Zar74] and that both the conjecture and bound are in the context of number theoreticrules; that is they are restricted to lattice rules of rank 1.For an account of the general theory, of which this conjecture forms part, we refer thereader to recent papers by Niederreiter [Nie88],[Nie92], who has extended the theory tocover lattice rules of general rank. This developing theory is mainly devoted to existenceproofs and asymptotic bounds. The present paper, on the other hand, is devoted toproviding concrete examples of lattices whose reciprocal may be used to construct cost-e�ective lattice rules. These examples seem to con�rm the theory and are in compliancewith the truth of the conjecture.In our searches [LS91] and [LS92], each integer lattice � is represented by an s � sgenerator matrix B. All elements of � are integer weighted sums of the rows of B, and �is of order N =j detB j. The lattice �Q on which the corresponding lattice rule is basedhas a generator matrix A = (B�1)T . 2



2 Component Scaled LatticesTheorem 3 Given s nonzero real numbers k1; k2; :::; ks and a lattice �, there exists alattice �0 such thatp = (p1; p2; :::; ps) 2 �, p0 = (k1p1; k2p2; :::; ksps) 2 �0: (2:1)The proof is almost trivial, whatever de�nition of a lattice is invoked.De�nition 4 �0 in the theorem is termed a rectangularly scaled version of �, ob-tained by using an s-dimensional scaling factor (k1; k2; :::; ks) or a scaling matrixK = diag(k1; k2; :::; ks). NK =j det(K) j=j Qsi=1 ki j is called the order of this scaling.Rectangular scaling of a lattice has several trivial and obvious properties. In particular, aset of successive scaling operations is itself a scaling operation, and the scaling operationis commutative. If B is a generator matrix for �, then BK is one for �0. When � and �0are scaled versions of one another, so are their reciprocal lattices, �? and �?0; the scalingmatrices involved are inverses of one another.It appears that, when one con�nes oneself to the set of integer lattices, one mayconstruct distinct families of lattices, in which each member is a rectangularly scaledversion of every other member. Each family is speci�ed by a unique family root lattice �.De�nition 5 A family root lattice is one whose generator matrix, B, has columns eachof whose greatest common divisor is 1.Other members of the family are precisely those whose generator matrices are B0 =B diag(k1; k2; :::; ks) with ki integer. To determine to which family some integer lattice �0belongs one takes its generator matrix B0 and calculates the greatest common divisors,h1; h2; :::; hs of its columns. Then the matrix B = B0 diag(h�11 ; h�12 ; :::; h�1s ) is a generatormatrix of the family root lattice that generates the family to which �0 belongs.We are interested in the relation between �(�) and �(�0).We consider �rst the scaling of only one coordinate using a scaling factor (k1; 1; :::; 1)with k1 > 1. As mentioned before, corresponding to every point x = (x1; x2; :::; xs) of �is a point x0 = (x01; x02; :::; x0s). Applying De�nition 1, we �nd�(x0) = k1�(x) when x1 6= 0�(x0) = �(x) when x1 = 0:It follows from this and De�nition 2 that�(�) � �(�0) � k1�(�): (2:2)The possibility of successive scaling in each coordinate in turn and the commutativeproperty of the scaling operation, allows us to state the following theorem.3



Theorem 6 Let �0 be a rectangularly scaled version of � obtained by using a scalingfactor k = (k1; k2; :::; ks) with each ki � 1. ThenN 0 = k1k2:::ksN (2:3)and �(�) � �(�0) � k1k2:::ks�(�): (2:4)We note that, under the hypotheses of this theorem, �(�0)=N 0 cannot exceed �(�)=N .However, since z(�) = �(�)(logN)s�2N ; (2:5)we see that if, in fact, �(�0)=N 0 = �(�)=N , then the z-value of �0 is greater than thez-value of �; in this case, if � is a \good" lattice, then �0 is better. Because of this, thepresent authors decided to carry out scaling of lattices already known to be good lattices,to see whether we could discover some better lattices or \good" lattices of higher order.In its simplest terms, the idea developed in this paper is to take a set of lattices thatare known to be good, scale them in various ways and inspect the scaled lattices (whichare generally of higher order) to see whether any of them are good. In some cases, if weare lucky, we may �nd that the value of z(�0) is close to or even exceeds the upper limitof those already known. In this very fortunate case the new lattice is relatively as goodor even better than the original lattice and has a higher order.The underlying philosophy of this approach is that a calculation of this sort, whilenontrivial, is orders of magnitude shorter than for example a direct search to �nd �(N 0).If in a minor proportion of the calculations, say one in a thousand, we �nd a good lattice,the whole calculation can be termed a success.The organization of this search requires some care. One can �nd lattices with arbi-trarily high indices �(�) by making N su�ciently large. To see this simply consider thescaled versions of the unit lattice �0. The lattice �0 = k�0 (which can be obtained from�0 using k = (k; k; : : : ; k)) has �(�) = k and N(�) = ks.In providing guidelines for the scope of the search, the following theorem is helpful.Theorem 7 Under the hypothesis of the previous theorem,�(�0) � N(N 0=N)1=s: (2:6)Proof. All integer lattices of order N contain the sublattice N�0 (where �0 is theunit lattice). Thus �0 contains each of the points (k1N; 0; 0; : : : ; 0),(0; k2N; 0; : : : ; 0),: : :(0; 0; : : : ; ksN) and it follows that�(�0) � Nki i = 1; 2; : : : ; s: (2:7)Since all ki are positive integers, we may take the geometric mean of the s equations in(2.7) and using (2.3) obtain (2.6). 2 4



In order to make the search �nite, we choose a lower bound z (generally (2=3)zs ofSection 4) and limit the search to lattices �0 for which z(�0) > z. >From the theorem wesee that z(�0) � (N=N 0)1�1=s logs�2N 0 (2:8)and so is bounded by a quantity that approaches zero with large N 0. Thus, since N 0 isrestricted to integer multiples of N , the number of family members to be treated is �nite.In fact, elementary manipulation yields the following lemma.Lemma 8 z(�0) < z when N 0= logs�1N 0 > N=z (2:9)and z logN 0 > 1: (2:10)In practice (2.10) is satis�ed trivially and so we may restrict our search to values of N 0violating (2.9).3 Scaling an Individual LatticeIn Sections 4, 5, and 6 we shall describe and analyze results obtained by scaling lists oflattices, all of which are reasonably good lattices. In this section we present a more detailedtheory about rectangular scaling. The thrust of this section is to provide information,using which, �(�0) for a family of lattices may be readily calculated. Readers interestedprincipally in the results of our numerical experiments may omit this section in a �rstreading. Without loss in generality we shall assume as before that the lattice � is a familyroot lattice (see De�nition 5) and that �0 is a scaled version obtained using a scaling factork, all of whose components are positive integers.The behavior of �(�0) as a function of k is given by the function in (3.1) below.Theorem 9 Under the hypotheses of the preceding theorems, there exist 2s � 1 positiveintegers A;A1; : : : ; A23:::s, which depend only on � such that�(�0)N 0 = 1N min�A; A1k1 ; A2k2 ; A3k3 ; :::; A12k1k2 ; A13k1k3 ; :::; A23k2k3 ; :::� : (3:1)Note that these denominators comprise all distinct products of up to s� 1 distinct com-ponents of k. There is no term in (k1; k2; : : : ; ks)�1.Note also that (3.1), while containing many inequalities, actually de�nes a functionof k. The rest of this section is devoted to establishing Theorem 9 and to showing howto calculate a set of constants Ai;j;::: from a generator matrix B of �. It will appear thateach coe�cient Ai;j;::: can be conveniently de�ned in terms of functions of the form �(S),where S is a speci�ed set of points belonging to �0 and�(S) = minx2S;x6=0 �(x); (3:2)5



where �(x) as de�ned in Section 1 is the absolute value of the product of the nonzerocomponents of x. This notation is a natural generalization of that introduced in De�nition2. We now partition the elements of � into 2s distinct sets. We distinguish these usingan s-component binary index u = (u1; u2; : : : ; us), that is, one in which each componentis either 1 or 0.De�nition 10 Let � be an s-dimensional integer lattice and t an s-component binaryindex. Then�(t) = fxjx 2 � and xi = 0 when ti = 0 and xi 6= 0 when ti 6= 0g: (3:3)Note that �(t) is not a lattice (except technically for �(0;0;:::;0) which is the single point(0; 0; : : : ; 0)). These 2s distinct sets form a partition of �; that is,� = [ui = 0; 11 � i � s �(u): (3:4)This partition has been constructed with the following property in view.Lemma 11 When (x1; x2; : : : ; xs) 2 �(u),�(k1x1; k2x2; : : : ; ksxs) = k(u)�(x1; x2; : : : ; xs); (3:5)where k(u) = ku11 ku22 : : : kuss (3:6)is the product of those components ki of k for which ui = 1.Theorem 12 Under the hypotheses of Theorem 6,�(�0) = minui = 0; 11 � i � su 6= 0 (k(u)�(�(u))); (3:7)these quantities being de�ned in (3.6), (3.2), and (3.3).Proof. The theorem follows because�(�0) = minx 2 �x 6= 0 �(k1x1; k2x2; : : : ; ksxs)= minui = 0; 11 � i � su 6= 0 minx2�(u) �(k1x1; k2x2; : : : ; ksxs): (3.8)6



The �rst equality above follows from the de�nition of � and of the scaled lattice. Thesecond follows from the partition (3.4) above. When we apply successively Lemma 11 and(3.2), we �nd that the expression on the right in (3.8) reduces to the right-hand side of(3.7). 2Theorem 9 may be obtained from this theorem by simply dividing byN 0 = k1k2 : : : ksNand recognizing that, when u 6= 0, the set �(u) is not empty and �(�(u)) is a positiveinteger.One readily identi�es Ai;j::: = �(�(u)); (3:9)where u is the binary index that has zeros in positions corresponding to i; j : : :, thesubscripts of A, and units elsewhere.Since the point set �(u) contains the point (u1N;u2N; : : : ; usN), it follows that whenu 6= 0, 1 � �(�(u)) � Nu1+u2+:::+us (3:10)and (3.7) supports the 2s � 1 inequalities�(�0) � (k1N)u1(k2N)u2 : : : (ksN)us u 6= 0; ui = 0; 1 i = 1; 2; : : : ; s: (3:11)There is a somewhat unexpected reformulation of Theorem 12. We recall that thepoints of �(u) of De�nition 10 do not form a lattice. We may, however, form a lattice �(u)from the points of �(u) by adding all points of the form x � y, where x;y 2 �(u), anditerating. This turns out to be a (u1+ u2+ : : :+ us)-dimensional projection of �, de�nedby the following.De�nition 13 Let � be an s-dimensional lattice and t an s-component binary index.Then �(t) = fxjx 2 � and xi = 0 when ti = 0g: (3:12)It follows quite simply that partition (3.4) of � induces a similar partition of �(t), namely,�(t) = [0 � ui � ti1 � i � s �(u) (3:13)from which it follows that �(�(t)) = min0 � ui � ti1 � i � su 6= 0 �(�(u)): (3:14)7



Lemma 14 For a given s-dimensional lattice � and s-dimensional binary index t,min0 � ui � ti1 � i � su 6= 0 k(u)�(�(u)) = min0BBBBBBBBBBBBBBB@k(t)�(�(t)); min0 � ui � ti1 � i � su 6= tu 6= 0 k(u)�(�(u))1CCCCCCCCCCCCCCCA ; (3:15)where �(t);�(u) are de�ned in terms of � in De�nitions 13 and 10, and � is de�ned in(3.2).The reader will recognize that the two sides of Equation (3.15) di�er only in that asingle term has been changed.Proof. To establish the lemma, we take the right-hand side of (3.15) and replace thecofactor of k(t) by the expression given in (3.14). This procedure leaves us with anexpression involving two somewhat similar sets of terms. By inspection we see that,except for the principal term in which u = t there are a pair of terms corresponding toeach u, one of which has a factor k(t) and the other k(u). In all cases k(u) � k(t) andthe �rst term can be discarded. Doing this leaves the expression on the left-hand side of(3.15) and so establishes the lemma. 2Theorem 15 �(�0) = minui = 0; 11 � i � su 6= 0 (k(u)�(S(u)));where S stands for � or � and may be chosen variously in each of 2s � 1 terms.Proof. One may successively apply the lemma to the right-hand side of (3.7). Eachapplication alters one � to S. The lemma must be applied in a proper order. Anyordering in which all terms having �ti = d are treated before any having �ti > d withd = 1; 2; : : : ; s is suitable. 2Theorem 15 sets the stage for the calculation of �(�0) in the situation in which � isde�ned by a generator matrix B in utlf (Hermite Normal Form) and in which softwareis available to calculate �(�) for up to s-dimensional lattices from its B matrix. Theproblem is to identify a generator matrix of �(t).Let B be in utlf and the binary index vector t = (0; 0; : : : ; 0; 1; 1; : : : ; 1) be a stringof s � � zeros followed by a string of � ones with, of course, � = Psi=1 ti. In this caseit is almost self-evident that a generator matrix of �(t) is obtained by replacing the �rst8



s� � rows of B by zeros. Thus, �(�(t)) may be obtained by applying the software to the�-dimensional lattice whose generator is the � � � lower right-hand minor of B.When t = (t1; t2; : : : ; ts) is not of that form, we exploit the circumstance that � isinvariant under permutations of the coordinate system. Thus, let P be an s� s permu-tation matrix, and set t = P t, B = BP , and let � be the lattice whose generator matrixis B. Then �(�(t)) = �(�(t)). Thus, one �nds the permutation P which takes t into t0of form (0; 0; 0; 1; : : : ; 1), applies it to the columns of B to obtain B, and then puts B inutlf. This problem is now reduced to the one described in the preceding paragraph.In our numerical calculations, in pilot schemes we calculated each �(�0) individuallyusing our own software. However, applying the results of the previous two paragraphs ledto a much faster code. For each root lattice � we calculated 2s � 1 constants requiredin (3.1). This involved calculating only one s-dimensional �gure of merit A = �(�), theother constants Ai;j;::: being lower-dimensional �gures of merit. Then we relied on (3.1)to calculate z(�0) for all lattices �0 in which we were interested. These included at mostthose with N 0 violating (2.9).4 The Highlight ListsApplying the technique of Section 3, we have found apparently endless lists of lattices,hundreds of which are excellent or interesting by previously acceptable standards. In ordernot to overwhelm the reader, we are presenting our results in two parts. In this sectionwe present two \highlight" lists. These include three- and four-dimensional lattices withexceptionally high z-values and also lattices with moderate z-values but exceptionallyhigh values of N .In Section 5 we shall give in more detail some of the actual results and explain preciselyhow they were obtained; then in Section 6 we shall comment on some aspects of theseresults.To provide criteria for our lists, we have de�ned an s-dimensional benchmark latticeas follows:De�nition 16 The s-dimensional lattice �s of order 2s+1 whose generator matrix in utlfis B(�s) = 0BBBBBBB@ 2 0 ::: 0 20 2 ::: 0 2... ... ... ...0 0 ::: 2 20 0 ::: 0 4 1CCCCCCCA (4:1)is termed the s-dimensional benchmark lattice.Clearly, �(�s) = 4 and zs = z(�s) = 12  (s+ 1) log 22 !(s�2) : (4:2)9



The authors have introduced this benchmark simply because it is convenient in the contextof discussing our lists of lattice rules. No intrinsic mathematical property is implied orconjectured.The highlight lists include:1. all s-dimensional lattices � known to us having z(�) � zs, and2. All s-dimensional lattices � known to us satisfying both� z(�) > 2=3zs and� z(�) > z( ~�) for all ~� known to us whose order, ~N , exceeds N , the order of �.Tables 1{8 and A1 and A2 contain lists of lattices. Each line corresponds to a singlelattice �. The s(s+1)=2 entries which follow N and � are elements of an upper triangularmatrix B. This is the upper triangular lattice form or Hermite Normal form of anygenerator matrix of � (see the remarks at the end of Section 1). Then comes the rank ofthe corresponding lattice rule. (See [SL89] for a full discussion of rank.) In this column anentry 0 indicates rank 1 simple (see [LS92]), and an entry 1 indicates rank 1 not simple.In Tables 1 and 2, we identify the list from which this lattice was taken. These lists arespeci�ed in Section 5; the abbreviations are B = Blue, G = Green, SG = Scaled Green,and SB = Scaled Blue.The authors must emphasize that these are lists of lattices that happen to be knownto us at this time. In Section 6 we shall discuss the question of how many other latticesthere may be that belong on such a list but have not been encountered yet. Only forN < N (= 4000 for s = 3 and 600 for s = 4) are these lists complete.It is of interest to note the extremely disparate values of N involved. >From completelists of optimal lattices of order up to N , we obtain excellent lattices of order up to say5N , a few of these being better than any found previously. After this the list degrades inquality only slowly, containing lattices of good (but not top) quality up to order 50N .The tail of the list is unlikely to include any optimal lattices at all. However, for theseextraordinarily high orders, an example of a lattice of moderate quality is of some interest.Undoubtedly, the most outstanding lattices on these lists are(i) a three-dimensional lattice having N = 9760, � = 864, and z = 0:81319, and(ii) a four-dimensional lattice having N = 8992, � = 212, and z = 1:95413.The results of scaling the short list [BP85] of �ve-dimensional rank 1 simple latticeswere relatively unexciting. Possible reasons for this are mentioned in Section 5. We foundno lattices whose z-values exceeded z5, and only 25 whose z-values exceeded 2/3 z5. Wehave listed in Table 8 all the lattices known to us whose z-values exceed 2/3 z5.10



Table 1. A Highlight List of Three-Dimensional LatticesN � b11 b12 b13 b22 b23 b33 rank z source16 4 2 0 2 2 2 4 3 0.69315 G1672 160 2 0 90 2 130 418 3 0.71022 G2352 216 2 0 111 2 171 588 2 0.71293 G3069 270 1 1 464 3 168 1023 2 0.70637 G4704 390 2 0 228 3 148 784 2 0.70109 SG,SB4880 432 1 0 638 2 1002 2440 2 0.75183 SG,SB4900 400 1 0 452 2 748 2450 2 0.69363 SG8922 700 1 0 823 2 1362 4461 1 0.71367 SB9760 864 2 0 638 2 1002 2440 3 0.81319 SG,SB9800 800 2 0 452 2 748 2450 3 0.75022 SG17844 1356 1 0 2656 2 4062 8922 2 0.74392 SB19416 1404 1 0 1431 2 3540 9708 2 0.71399 SG20008 1440 2 0 1314 2 2048 5002 3 0.71279 SG45576 2968 2 0 1658 2 4192 11394 3 0.69857 SB48264 2864 2 0 1820 3 1184 8044 2 0.63995 SG67410 3822 2 0 2469 3 1548 11235 2 0.63040 SG67527 3762 3 0 1971 3 3072 7503 3 0.61952 SG68238 3678 2 0 3441 3 5328 11373 2 0.59994 SG90984 4680 2 0 5368 3 3680 15164 2 0.58734 SG109050 5310 2 0 7940 3 3080 18175 1 0.56482 SG130860 5808 2 0 9528 3 3696 21810 2 0.52292 SG153819 6678 3 0 2487 3 6288 17091 3 0.51852 SB160064 6688 4 0 2628 4 4096 10004 3 0.50070 SG179760 7424 3 0 3292 4 2064 14980 2 0.49970 SG227460 8880 3 0 6710 4 4600 18955 1 0.48155 SG
11



Table 2. A Highlight List of Four-Dimensional LatticesN � b11 b12 b13 b14 b22 b23 b24 b33 b34 b44 rank z32 4 2 0 0 2 2 0 2 2 2 4 4 1.50142 G928 32 2 0 0 34 2 0 44 2 52 116 4 1.61001 SG992 32 2 0 0 20 2 0 46 2 54 124 4 1.53568 SG1008 32 2 0 0 16 2 2 8 6 12 42 4 1.51832 SG1008 32 2 0 0 16 2 2 8 6 30 42 4 1.51832 SG1354 40 1 0 0 492 1 0 550 1 658 1354 0 1.53607 B1748 48 1 0 0 286 1 0 360 1 472 1748 0 1.53074 B2097 54 1 0 0 435 1 0 936 1 1035 2097 0 1.50633 B2112 55 1 0 0 100 1 0 162 1 830 2112 0 1.52617 B2215 60 1 0 0 257 1 0 448 1 558 2215 0 1.60730 B2248 60 1 0 0 106 1 0 178 2 442 1124 2 1.58980 SG2320 64 2 0 0 34 2 0 56 2 82 290 4 1.65661 SG2477 63 1 0 0 128 1 0 701 1 915 2477 0 1.55328 B2570 65 1 0 0 787 1 0 1138 1 1246 2570 0 1.55921 B2686 66 1 0 0 852 1 0 1142 1 1218 2686 0 1.53190 B2730 68 1 0 0 170 1 0 452 1 1328 2730 0 1.55928 B2836 72 1 0 0 418 1 0 1010 1 1290 2836 0 1.60464 B3298 84 1 0 0 535 1 0 701 1 937 3298 0 1.67153 B4496 106 1 0 0 106 2 0 178 2 442 1124 3 1.66790 SG,SB8992 212 2 0 0 106 2 0 178 2 442 1124 4 1.95413 SG,SB9908 180 1 0 0 256 1 0 1402 2 1830 4954 2 1.53803 SB20232 318 2 0 0 159 2 0 267 3 663 1686 2 1.54517 SG,SB52768 672 2 0 0 1070 2 0 1402 2 1874 6596 4 1.50574 SB267138 2268 3 0 0 1605 3 0 2103 3 2811 9894 4 1.32561 SB474912 3024 3 0 0 2140 3 0 3748 4 2804 13192 2 1.08787 SB5 Lists of Scaled LatticesIn the preceding section we presented two short lists that included the best lattices wehave found so far. These were extracted from results that we outline in detail in thissection. This is in order that subsequent workers can relate their investigation to ours forpurposes that may include con�rming or extending our work.All our work involves taking a list of lattices and treating each member of the list inthe way described in Section 3. We now describe the seven di�erent lists that were usedas input. The three blue lists (containing only rank 1 simple lattices) have been availablein the literature for several years. The two red lists have appeared in the literature onlyvery recently. The two green lists have not been published. Each list is in a formatcorresponding to that used in Table 1.1. Three Dimensions� Green list N 2 [16; 4000]; contains 6557 entries. These are all the lattices inthis range for which �(�) = �3(N). This list is unpublished.� Red list N 2 [16; 3916]; contains 68 entries. This is a subset of the green listabove, containing entries for N if and only if �3(N) > �(M) for all M < N .This list is published in [LS91]� Blue list N 2 [21; 6066]; contains 101 entries. This is a concatenation oflists published by Maisonneuve [Mai72] and Kedem and Zaremba [KZ74]. Itcontains only rank-1 simple lattices, assembled from this subclass, using thestandard red list convention described above.12



2. Four Dimensions� Green listAs above; N 2 [20; 600]; contains 16127 entries, but is not complete.It contains most lattices for which �(�) = �4(N). If there exist more than tenlattices � for a single value of N , some may be missing but at least ten areincluded. This list is unpublished.� Red list As above; N 2 [32; 562]; contains 23 entries. this list is published in[LS92].� Blue listAs above; N 2 [52; 3298]; contains 47 entries. This is a concatenationof lists published by Maisonneuve [Mai72] and Bourdeau and Pitre [BP85].3. Five Dimensions� Blue list N 2 [112; 772]; contains 9 entries. This list is published in [BP85].Seven of these are repeated in the �rst part of Table 8.Each of these seven lists were processed in the same way. This process produced fromthe input list, three more lists. These are speci�ed below in the case that the input list isthe three-dimensional green list.1. We form �rst a three-dimensional raw scaled green list. For this, we require z, acut-o� value speci�ed in (5.1) below. This list contains each lattice with z(�) � zobtained by scaling every member of the green list. This huge list includes duplicateentries, and for some values of N , entries with di�erent rho values.2. From this, by cutting out all duplicates entries and any entries for which there isanother lattice of the same order with a higher value of �, we produce a greenscaled green list. We have retained this list in our �les.3. Next we use the standard procedure to produce a red scaled green list. This, asusual, retains only lattices on the green scaled green list for which �(�) > �(~�) forall ~� on that list having ~N < N . This list is given in Table 5.The cut-o� values we used were z = (2=3)z3 ' 0:46z = (2=3)z4 ' 1:00 (5.1)z = (5=9)z5 ' 2:50in 3, 4, and 5 dimensions, respectively. Table 3 gives some information on the length andthe scope of the lists in this section. 13



Table 3. Length and Scope of Lists InvolvedKind of list Input lists Green scaled lists Red scaled listsDim. Type Length Nmin Nmax Length Nmin Nmax Length TableBlue 101 21 6066 177 4044 153819 29 43-d Green 6557 16 4000 4910 4002 227460 80 5Red 68 16 3916 42 4032 31328 17 A1Blue 46 52 3298 162 624 474912 47 64-d Green 16127 20 600 4750 602 365625 55 7Red 23 32 562 51 640 80928 25 A25-d1 Blue 7 112 772 117 112 15768 171See remarks at end of Section 4. We note that, when the input is a green or a red listof lattices with N 2 [Nmin; N ], there is no need to remain scaled lattices having N � Nbecause these lattices, or better ones having the same N 0 are available by de�nition on theinput list. This is not the case when the input is a blue list. The input blue list comprisesexcellent lattices, all of which are rank 1 simple. One may well �nd an interesting latticeof higher rank having N 0 � N but N 0 < N . Tables 4 and 6 (in which N = 6066 and 3298,respectively) contain a handful of such lattices. These are generally of technical interestonly. By including them we specify precisely the e�ect of scaling a blue list.Table 4. Red Scaled Blue List in Three DimensionsN � b11 b12 b13 b22 b23 b33 rank z4108 270 1 0 556 1 1408 4108 0 0.5468804142 312 1 0 966 1 1422 4142 0 0.6273804358 336 1 0 1398 1 1998 4358 0 0.6460804704 390 2 0 228 3 148 784 2 0.7010904880 432 1 0 638 2 1002 2440 2 0.7518305862 450 1 0 538 1 1902 5862 0 0.6660406066 460 1 0 600 1 1581 6066 0 0.6605407430 544 1 0 1039 2 1425 3715 1 0.6526007664 552 1 0 1194 2 1600 3832 2 0.6442107698 576 1 0 603 2 1701 3849 1 0.6695807734 588 1 0 600 1 2019 7734 0 0.6807108922 700 1 0 823 2 1362 4461 1 0.7136709760 864 2 0 638 2 1002 2440 3 0.81319014112 908 2 0 454 2 746 3528 3 0.61478015328 958 2 0 728 2 1778 3832 3 0.60234015396 1032 2 0 603 2 1701 3849 2 0.64630017436 1040 1 0 2094 2 1299 8718 1 0.5825301 0 1299 2 2094 8718 2 0.58253017844 1356 1 0 2656 2 4062 8922 2 0.74392022788 1484 1 0 1658 2 4192 11394 2 0.65343026766 1646 1 0 2656 3 4062 8922 2 0.62694031008 1680 2 0 2190 2 3664 7752 3 0.56033032940 2016 3 0 957 3 1503 3660 3 0.63665034872 2080 2 0 1299 2 2094 8718 2 0.62387045576 2968 2 0 1658 2 4192 11394 3 0.69857069282 3042 3 0 1206 3 3402 7698 3 0.48939069744 3120 2 0 1732 3 2792 11624 2 0.49891078080 3584 4 0 1276 4 2004 4880 3 0.517100102546 4452 2 0 2487 3 6288 17091 2 0.500920153819 6678 3 0 2487 3 6288 17091 3 0.51852014



Table 5. Red Scaled Green List in Three DimensionsN � b11 b12 b13 b22 b23 b33 rank z4002 280 1 0 958 1 1258 4002 0 0.5803304008 288 2 0 219 2 294 1002 2 0.5961204044 308 1 0 400 1 1054 4044 0 0.6325304050 312 1 3 178 9 410 450 1 0.6399104185 324 3 0 108 3 168 465 3 0.6456204358 336 1 0 1398 1 1998 4358 0 0.6460804528 344 2 0 218 2 316 1132 3 0.6395304580 348 1 0 348 1 2002 4580 0 0.6404904588 360 1 0 808 2 588 2294 2 0.6615604704 390 2 0 228 3 148 784 2 0.7010904880 432 1 0 638 2 1002 2440 2 0.7518305862 450 1 0 538 1 1902 5862 0 0.6660406066 460 1 0 600 1 1581 6066 0 0.6605406198 468 1 0 1203 2 1470 3099 1 0.6593401 0 864 2 234 3099 1 0.6593406322 480 1 0 800 1 2998 6322 0 0.6644806682 504 1 0 1808 1 2624 6682 0 0.6642906976 506 1 0 1644 1 3034 6976 0 0.6419507116 510 1 0 1606 1 2120 7116 0 0.6357207184 560 1 2 586 4 1544 1796 2 0.6921707544 572 2 0 336 2 582 1886 3 0.6769807698 576 1 0 603 2 1701 3849 1 0.6695807734 588 1 0 600 1 2019 7734 0 0.6807108391 598 1 0 1635 1 3849 8391 0 0.6438908628 630 1 0 792 1 3363 8628 0 0.6617508836 660 1 0 942 2 2126 4418 2 0.6787209297 702 1 0 864 3 234 3099 2 0.6899509760 864 2 0 638 2 1002 2440 3 0.81319012944 936 1 0 954 2 2360 6472 2 0.68467013524 940 1 0 2488 2 984 6762 2 0.66116014068 948 1 0 1880 2 800 7034 2 0.64366014260 980 1 0 996 2 2440 7130 2 0.65736014820 1032 1 0 1702 2 2650 7410 2 0.66876015420 1080 1 0 2002 2 3050 7710 2 0.67541016914 1120 1 0 2973 2 1755 8457 1 0.64469016926 1152 1 0 1712 3 644 5642 1 0.66268018372 1160 2 0 1713 2 2049 4593 2 0.61994018882 1224 2 0 669 3 1449 3147 2 0.63825019194 1260 1 0 1839 2 1161 9597 1 0.64742019416 1404 1 0 1431 2 3540 9708 2 0.71399015



N � b11 b12 b13 b22 b23 b33 rank z20008 1440 2 0 1314 2 2048 5002 3 0.71279021810 1470 1 0 4764 2 1848 10905 1 0.67334022980 1512 1 0 4266 2 771 11490 1 0.66075024132 1584 2 0 888 2 1365 6033 2 0.66238025888 1618 1 0 1908 2 4720 12944 2 0.63510027048 1764 2 0 984 2 2488 6762 3 0.66557029080 1936 1 0 6352 2 2464 14540 2 0.68424032176 1992 2 0 1184 2 1820 8044 3 0.64256032940 2016 3 0 957 3 1503 3660 3 0.63665033075 2034 3 0 678 3 1122 3675 3 0.63997034758 2052 2 0 1101 3 2688 5793 2 0.61730035868 2136 2 0 1167 2 4131 8967 2 0.62455036198 2148 2 0 1365 3 888 6033 2 0.62288038388 2232 2 0 1161 2 1839 9597 2 0.61373039348 2418 2 0 2220 2 2931 9837 2 0.65017042064 2448 2 0 2164 2 4876 10516 3 0.61962044940 2548 2 0 1548 2 2469 11235 2 0.6074102 0 2112 2 3249 11235 2 0.60741045492 2664 2 0 2760 2 4026 11373 2 0.62807048264 2864 2 0 1820 3 1184 8044 2 0.63995054525 2904 1 0 7940 3 3080 18175 1 0.58088057582 3006 2 0 1839 3 1161 9597 2 0.57220060656 3120 2 0 3680 2 5368 15164 3 0.56648060858 3180 2 0 3732 3 1476 10143 2 0.57563065430 3186 2 0 4044 3 1788 10905 2 0.53995067410 3822 2 0 2469 3 1548 11235 2 0.63040076776 4008 2 0 2452 3 1548 12796 2 0.58722087240 4248 2 0 6352 3 2464 14540 2 0.55395090495 4440 3 0 1480 3 2275 10055 2 0.55996090984 4680 2 0 5368 3 3680 15164 2 0.587340109050 5310 2 0 7940 3 3080 18175 1 0.564820120660 5370 3 0 2275 4 1480 10055 1 0.520740130860 5808 2 0 9528 3 3696 21810 2 0.522920144792 5976 3 0 2730 4 1776 12066 2 0.490450151640 6130 2 0 6710 4 4600 18955 2 0.482240160064 6688 4 0 2628 4 4096 10004 3 0.500700174480 7104 2 0 9528 4 3696 21810 3 0.491420179760 7424 3 0 3292 4 2064 14980 2 0.499700191940 7440 3 0 3065 4 1935 15995 1 0.471540227460 8880 3 0 6710 4 4600 18955 1 0.48155016



Table 6. Red Scaled Blue List in Four DimensionsN � b11 b12 b13 b14 b22 b23 b24 b33 b34 b44 rank z624 16 2 0 0 12 2 0 21 2 27 78 3 1.062152 0 0 9 2 0 15 2 36 78 3 1.06215708 18 1 0 0 27 2 0 60 2 78 177 2 1.09489718 22 1 0 0 158 1 0 210 1 234 718 0 1.32521732 24 1 0 0 248 1 0 294 1 324 732 0 1.42637932 26 1 0 0 116 1 0 288 1 314 932 0 1.304161124 30 1 0 0 106 1 0 178 1 442 1124 0 1.317061234 36 1 0 0 170 1 0 306 1 404 1234 0 1.478111354 40 1 0 0 492 1 0 550 1 658 1354 0 1.536071748 48 1 0 0 286 1 0 360 1 472 1748 0 1.530741990 50 1 0 0 256 1 0 584 1 684 1990 0 1.449692052 51 1 0 0 184 1 0 282 1 598 2052 0 1.445612097 54 1 0 0 435 1 0 936 1 1035 2097 0 1.506332112 55 1 0 0 100 1 0 162 1 830 2112 0 1.526172248 60 1 0 0 106 1 0 178 2 442 1124 2 1.589802686 66 1 0 0 852 1 0 1142 1 1218 2686 0 1.531902730 68 1 0 0 170 1 0 452 1 1328 2730 0 1.559282836 72 1 0 0 418 1 0 1010 1 1290 2836 0 1.604644496 106 1 0 0 106 2 0 178 2 442 1124 3 1.667905672 108 1 0 0 194 1 0 718 2 994 2836 2 1.422486744 120 1 0 0 159 2 0 267 2 663 1686 2 1.383088448 126 1 0 0 830 2 0 100 2 162 2112 3 1.219318508 144 1 0 0 627 1 0 1935 2 1515 4254 1 1.385848992 212 2 0 0 106 2 0 178 2 442 1124 4 1.9541316116 218 1 0 0 1278 2 0 1713 2 1827 4029 2 1.2694920232 318 2 0 0 159 2 0 267 3 663 1686 2 1.5451726384 336 1 0 0 614 2 0 1402 2 1874 6596 3 1.319891 0 0 1070 2 0 1402 2 1874 6596 3 1.3198932232 432 2 0 0 1278 2 0 1713 2 1827 4029 3 1.4442842976 436 2 0 0 1704 2 0 2284 2 2436 5372 4 1.1546743821 468 3 0 0 156 3 0 228 3 495 1623 4 1.2199645522 477 3 0 0 159 3 0 267 3 663 1686 4 1.2055048348 480 2 0 0 1035 2 0 1281 3 882 4029 2 1.155042 0 0 375 2 0 1257 3 585 4029 2 1.1550452768 672 2 0 0 614 2 0 1402 2 1874 6596 4 1.5057489046 756 1 0 0 1605 3 0 2103 3 2811 9894 3 1.102761 0 0 79 3 0 2103 3 2811 9894 3 1.10276108783 972 3 0 0 327 3 0 558 3 1386 4029 4 1.20172118728 1008 2 0 0 79 2 0 2103 3 2811 9894 2 1.159142 0 0 1605 2 0 2103 3 2811 9894 2 1.159142 0 0 1605 2 0 2811 3 2103 9894 2 1.15914145044 1080 3 0 0 1176 3 0 1380 3 1708 5372 3 1.05174178092 1512 2 0 0 1605 3 0 2103 3 2811 9894 3 1.240982 0 0 79 3 0 2103 3 2811 9894 3 1.24098257856 1728 3 0 0 744 4 0 436 4 1848 5372 3 1.04043267138 2268 3 0 0 79 3 0 2103 3 2811 9894 3 1.32561474912 3024 3 0 0 2140 3 0 3748 4 2804 13192 2 1.08787
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Table 7. Red Scaled Green List in Four DimensionsN � b11 b12 b13 b14 b22 b23 b24 b33 b34 b44 rank z676 22 1 0 0 50 1 0 158 2 34 338 2 1.381861 0 0 54 1 0 128 2 12 338 2 1.38186688 24 1 0 0 106 1 0 144 2 22 344 2 1.48920900 25 1 0 4 9 1 6 25 30 0 30 2 1.28535928 32 2 0 0 34 2 0 44 2 52 116 4 1.610011281 34 1 0 0 54 1 0 129 3 98 427 1 1.358931344 36 1 0 0 45 2 0 99 2 162 336 2 1.389891556 40 1 0 0 84 1 0 218 2 244 778 2 1.388711692 42 1 0 0 96 1 0 412 2 134 846 2 1.371691952 48 2 0 0 24 2 0 42 2 56 244 4 1.411602 0 0 24 2 0 40 2 92 244 4 1.411602200 50 1 0 2 28 2 2 94 10 20 110 3 1.346172248 60 1 0 0 106 1 0 178 2 442 1124 2 1.589802320 64 2 0 0 34 2 0 56 2 82 290 4 1.656613132 72 2 0 0 51 3 0 66 3 78 174 3 1.489504080 80 2 0 0 40 2 0 62 2 154 510 4 1.355302 0 0 40 2 0 62 2 134 510 4 1.355304496 106 1 0 0 106 2 0 178 2 442 1124 3 1.667906192 108 2 0 0 196 2 0 234 3 168 516 3 1.329606736 120 2 0 0 62 2 0 206 2 294 842 4 1.384357312 128 2 0 0 218 2 0 340 2 414 914 4 1.385767888 144 2 0 0 172 2 0 314 2 382 986 4 1.469878992 212 2 0 0 106 2 0 178 2 442 1124 4 1.9541314112 216 2 0 0 174 2 0 284 3 510 1176 3 1.3973518816 224 2 0 0 174 2 0 284 4 510 1176 4 1.1532619632 252 2 0 0 616 2 0 684 3 180 1636 3 1.2542420232 318 2 0 0 159 2 0 267 3 663 1686 2 1.5451726622 324 2 0 0 258 3 0 471 3 573 1479 3 1.2636031590 360 2 0 0 327 3 0 483 3 543 1755 3 1.2232737017 432 3 0 0 327 3 0 510 3 621 1371 4 1.2913539933 486 3 0 0 258 3 0 471 3 573 1479 4 1.3661647385 540 3 0 0 327 3 0 483 3 543 1755 4 1.3208965808 576 3 0 0 680 3 0 828 4 436 1828 2 1.077363 0 0 436 3 0 680 4 828 1828 2 1.0773670992 648 3 0 0 344 3 0 628 4 764 1972 2 1.138933 0 0 628 3 0 764 4 344 1972 2 1.1389381360 720 3 0 0 632 3 0 916 4 392 2260 2 1.1313387744 768 3 0 0 436 4 0 680 4 828 1828 3 1.1339594656 792 3 0 0 344 4 0 628 4 764 1972 3 1.09849108480 864 3 0 0 392 4 0 472 4 1056 2260 3 1.070673 0 0 392 4 0 632 4 916 2260 3 1.07067112320 960 3 0 0 436 4 0 644 4 724 2340 3 1.15586116992 1024 4 0 0 436 4 0 680 4 828 1828 4 1.19200126208 1056 4 0 0 344 4 0 628 4 764 1972 4 1.15434144640 1152 4 0 0 392 4 0 472 4 1056 2260 4 1.12446149760 1280 4 0 0 436 4 0 644 4 724 2340 4 1.21376219375 1500 3 0 0 545 5 0 805 5 905 2925 3 1.03422228500 1600 4 0 0 545 5 0 850 5 1035 2285 3 1.06614285625 2000 5 0 0 545 5 0 850 5 1035 2285 4 1.10505365625 2500 5 0 0 545 5 0 805 5 905 2925 4 1.12191
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Table 8. Five-dimensional Lattices having z(�) > 3:0Rank 1 simple lattices in this list having N 2 [112; 772] have been taken from [BP85].The others are scaled versions of these or of the benchmark lattice.N � b11 b12 b13 b14 b15 b22 b23 b24 b25 b33 b34 b35 b44 b45 b55 rank z64 4 2 0 0 0 2 2 0 0 2 2 0 2 2 2 4 5 4.4958396 4 2 0 0 0 3 2 0 0 3 2 0 3 2 3 6 4 3.96210128 4 2 0 0 0 4 2 0 0 4 2 0 4 2 4 8 5 3.569611 0 0 0 12 1 0 0 22 1 0 48 1 52 128 0 3.56961144 4 2 0 0 0 3 2 0 0 3 2 0 3 3 3 96 3 3.40971160 4 2 0 0 0 5 2 0 0 5 2 0 5 2 5 10 4 3.26808192 4 2 0 0 0 4 2 0 0 4 2 0 4 3 4 8 4 3.027582 0 0 0 6 2 0 0 6 2 0 6 2 6 12 5 3.027581 0 0 0 18 1 0 0 33 1 0 72 1 78 192 0 3.02758275 5 1 0 0 0 31 1 0 0 71 1 0 91 1 136 275 0 3.22179308 6 1 0 0 0 18 1 0 0 62 1 0 70 1 102 308 0 3.66511438 8 1 0 0 0 38 1 0 0 50 1 0 96 1 168 438 0 4.10962448 6 1 0 0 0 12 1 0 0 54 2 0 22 2 28 112 3 3.047101 0 0 0 22 1 0 0 54 2 0 12 2 28 112 3 3.04710512 8 1 0 0 0 22 1 0 0 48 2 0 12 2 52 128 3 3.79336657 8 1 0 0 0 57 1 0 0 75 1 0 144 1 252 657 0 3.32502666 9 1 0 0 0 15 1 0 0 42 1 0 175 1 269 666 0 3.713361 0 0 0 57 1 0 0 137 1 0 223 1 240 666 0 3.713361 0 0 0 57 1 0 0 221 1 0 240 1 307 666 0 3.71336768 8 1 0 0 0 22 1 0 0 48 2 0 12 3 52 128 2 3.054761 0 0 0 22 1 0 0 48 2 0 52 3 12 128 2 3.054761 0 0 0 33 1 0 0 72 2 0 18 2 78 192 3 3.05476772 10 1 0 0 0 154 1 0 0 170 1 0 230 1 256 772 0 3.80758924 9 1 0 0 0 93 1 0 0 105 1 0 153 2 27 462 0 3.101611158 10 1 0 0 0 231 1 0 0 255 1 0 345 1 384 1158 0 3.031661536 12 1 0 0 0 33 2 0 0 18 2 0 72 2 78 192 4 3.085561544 12 1 0 0 0 78 1 0 0 264 1 0 378 2 10 772 2 3.076102048 16 2 0 0 0 12 2 0 0 22 2 0 48 2 52 128 5 3.462941 0 0 0 44 2 0 0 24 2 0 96 2 104 256 4 3.462942560 16 1 0 0 0 55 2 0 0 30 2 0 120 2 130 320 4 3.020772664 18 1 0 0 0 442 1 0 0 480 1 0 614 2 114 1332 2 3.315663088 20 1 0 0 0 78 1 0 0 378 2 0 10 2 264 772 3 3.360134632 24 1 0 0 0 117 1 0 0 567 2 0 15 2 396 1158 2 3.115917008 32 2 0 0 0 16 2 0 0 70 2 0 144 2 186 438 5 3.170256 Comments about Lists6.1 Evaluation of Scaled ListsAn immediate question that comes to mind is to what extent any list obtained herecompares with the corresponding complete list. The authors believe that, at best, oneretains about 70% of a complete list, and that this percentage diminishes to zero as theorder N signi�cantly exceeds the order N of the input list. The rest of this subsection isdevoted to this question.We carried out some numerical experiments in an environment in which the answer, inthe form of a complete red list, is available. We applied our scaling technique to only partof our three-dimensional green list, the �rst part having N � N = 250. This produced�rst a long repetitive raw scaled green list and after massaging, as described in Section 5,a green scaled green list containing 450 lattices sharing 326 distinct values of N lying in19



[251,13376]. Since we have available a complete green list for N 2 [1; 4000], we were ableto observe the quality of this particular green scaled green list.Table 9. The Three-Dimensional Green Scaled Green List with N = 250N -values for whichScaled Distinct �L(N)=�3(N)Interval Lattices N -values =1 �(1; 0:9) � 0.9N 2 [251; 500] 209 1112 94 15 3N 2 [501; 1000] 120 100 56 32 12N 2 [1001; 2000] 75 69 19 27 23N 2 [2001; 4000] 31 30 4 2 24N > 4000 15 15 ? ? ?Total 450 326 173 76 62Table 9 gives a breakdown of the distribution of lattices in this list and their quality.Here �L(N) is the lower bound on �3(N) based only on the lattices in this list. Examina-tion of this table shows that for values of N near to N , we seem to be obtaining lattices forabout half the values of N . Of these, 80% are optimal, the rest being generally of reason-ably high quality. On the other hand, for values of N exceeding 8N in a range containing2000 values of N , we have found lattices for only 30 of these values, and only four of theseare optimal. Fourteen of these 450 lattices may also be found on the three-dimensionalred list which has 45 entries for N 2 [251; 4000].A second numerical experiment concerns a scaled three-dimensional red list. We com-pare a plot of �3(N) based on a scaled red list with a similar plot based on the completered list. We consider �ve such plots. For the complete red list we de�ne a piecewiseconstant function ~�(N) = max� 2 L3(M)M � N �(�) (6:1)The discontinuities of ~�(N) occur at values of N appearing on the red list. At such values,~�(N � 1) < ~�(N). One can de�ne the analogous function for a red scaled list based on aninput green list for N 2 [1; Ni], where Ni = 125:2i.We have constructed four functions ~�i(N) i = 1; 2; 3; 4. In general, ~�i(N) � ~�(N), butfor some values of N this is an equality. We list in Table 10 the percentage of values ofN in an interval (Nj ; Nj+1] j = 1; 2; 3; 4 for which ~�i(N) = �3(N).Naturally, when j < i, this is 100%, and when j >> i, this reduces to zero.20



Table 10. Information about Red Scaled Green Lists% of N satisfying (N1; N2] (N2; N3] (N3; N4] (N4; N5]~�1(N) = ~�(N) 51.6 62.4 46.6 0.0~�2(N) = ~�(N) 75.0 63.4 38.15~�3(N) = ~�(N) 95.2 74.4~�4(N) = ~�(N) 85.65Examination of the complete red lists in three and four dimensions which appearedin [LS92] and [LS91] respectively shows that a proportion that varies unsteadily between15% and 40% are root lattices, the majority of lattices on these lists being scaled lattices.If this state of a�airs were to prevail for higher values of N , then any red scaled list wouldomit between 15% and 40% of the optimal lattices since it cannot by de�nition includeroot lattices.Finally, we state one further reason that we believe these lists to be incomplete. Thisone is based on the actual lists, rather than on extrapolation. We have presented sepa-rately in Tables 5 and 4 a red scaled green list and the corresponding red scaled blue list.The �rst contains 80 entries and appears to be an excellent list in many ways, having asfar as one can see the same characteristics as the actual red list for N < 4000. However,there are some known rules missing. We know this because they appear on the clearlyinferior and shorter red scaled blue list. These two lists contain six entries in common.There are eight entries on the red scaled blue list that merit inclusion on the red scaledgreen list, but are not there. If included, they would in total displace eight entries alreadythere.One sees that a few missing entries do not alter the overall nature of the list verymuch. The missing entries are simply replaced by entries representing marginally inferiorlattices; the e�ect on the list as a whole is local. Also, it is not particularly the entrieswith the highest z-values that seem to be missing.6.2 Suitable Input for a Scaled ListWe have listed the three-dimensional red scaled red list (Table A1) and the red scaled greenlist (Table 5). Only two elements N = 4185 and N = 4704 occur on both. Thereafterthe red scaled red list deteriorates signi�cantly when compared with the red scaled greenlist. However, the input red list contains all the really good elements of the input greenlist. The heuristic conclusion in this case is that, for scaling purposes, one does not wantto start with optimal lattices having optimal N values. It appears that one will discovermore if one inputs a list of good but not excellent lattices.All our results appear to support to some extent this conclusion. We have found thered scaled blue list to be intermediate. The blue list being restricted to rank 1 simplelattices is not as good as the red list but seems to provide better scaled lattices. Anyconclusion based on our four-dimensional lists must take into account that the blue listincludes much higher values of N than the green list.21



Theoretical support for this state of a�airs can be found in Section 3. There it is notedthat, starting with a family root lattice, the e�ect of scaling is in general to improve thez-value at �rst but then there is a steady decay in z-value. It is consistent with thissituation that, for optimal values of N , the best lattices are not root lattices but arealready scaled versions|but not very highly scaled. As mentioned above, the majorityof the lattices on our red list are like this, and scaling them is unlikely to provide betterones.6.3 Comments on Red ListsIt has been traditional to report results of the type treated here using red lists (i.e., lists ofoptimal lattices). One reason is that it is feasible to publish such a list. A red list containsin one page an excellent selection from a green list of �fty pages. Another reason is linkedto the numerical quadrature application in which the cost is taken to be proportional toN the number of function values and the quality of the result to �. However, the presentauthors believe that, for the values of N now reached in three or four dimensions, thered list has become an anachronism. For many purposes a highlight list is adequate. Fordeeper investigation, the green list is probably needed. And, in applications, questionssuch as embedding of one rule in another and convenience in locating points using therelevant machine architecture may be much more signi�cant than a small margin in theplot of N versus �.While the red list contains an excellent selection, occasionally good lattices are ex-cluded because they are \in the shadow of" marginally better lattices. An example ofthis occurs in three dimensions with N = 9760 and N = 9800. The �rst has � = 864and the second � = 800, so the second does not occur on a red list. In fact, we knowonly three lattices with z(�) > 0:75; these are the two mentioned above and one withN = 4880. Thus, our red list has omitted what might be considered the third best latticeavailable. In investigations relating to the distribution of good lattices, one may prefer toknow about all good lattices, even if in applications some are not going to be used.6.4 The Tail of the ListWe mentioned towards the end of Section 2 that it is trivial to �nd in�nite sequences oflattices having monotonic increasing �(�0) and N 0. Thus, an incomplete red list can beextended inde�nitely. The lists we have presented have the additional requirement thatz(�) should exceed a speci�ed amount z. The reader should note that this by itself neednot render a list �nite. In fact, numerical and theoretical evidence suggests the opposite.Our list deteriorates and so is �nite simply because it can contain only a subset of lattices,namely, those which are scaled versions of root lattices having N � N . Inequalities (2.8)and (2.9) apply to the scaled versions of each of this �nite collection of root lattices, andso to the concatenation from which our lists are formed. It is important to realize thatthis deterioration is a property of our selection process and has nothing to do with theasymptotic behavior of a complete red list of optimal lattices.22



7 Concluding RemarksThe basic contribution of this paper is the introduction of a very simple theory of rect-angular scaling of lattices and a description of the behavior of �(�) under such scaling.This theory, described in Sections 2 and 3, remains to be fully exploited. In the rest ofthis paper we have used it only to provide lists of good lattices from existing lists. We aresure that many more applications of a more detailed and innovative nature may exist.The rest of this paper is concerned with carrying out this scaling process on lists oflattices. By any measure, this has been very successful, producing a cornucopia of newgood lattices. Indeed, so many and varied are the outputs of this process that organizationand selection of results for publication has become a problem in itself. This aspect of thework is described and discussed in Sections 5 and 6.We have uncovered many high-order lattice rules in dimensions 3, 4, and to some extent5. The best are listed in Tables 1, 2, and 8, respectively. These turn out as might beexpected in view of the current advanced theory (see, for example, Niederreiter [Nie92]).It is our hope that these concrete examples will provide a spur to the recognition andpractical application of lattice rules in actual scienti�c projects involving multidimensionalquadrature.
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Appendix: Red Scaled Red ListsThe two lists in this appendix are included to illustrate the discussion in Section 6.2.At �rst glance both lists appear reasonable. However, in fact, these lists as a whole aresigni�cantly inferior to those given in Tables 4 and 5, and 6 and 7, respectively, thoughthey do contain some very good lattices.Table A1 Red Scaled Red List in Three DimensionN � b11 b12 b13 b22 b23 b33 rank z4185 324 3 0 108 3 168 465 3 0.6456204704 390 2 0 228 3 148 784 2 0.7010905874 414 1 0 1044 2 303 2937 1 0.6116507056 444 3 0 148 3 228 784 2 0.5576207248 448 2 0 260 3 376 1208 2 0.5494007696 480 2 0 466 2 834 1924 3 0.5581208811 540 1 0 621 3 378 2937 2 0.5567208820 555 3 0 185 3 285 980 2 0.5716609408 588 3 0 228 4 148 784 2 0.57183011748 621 1 0 1392 3 404 3916 1 0.49537013212 648 2 0 1137 2 1428 3303 2 0.46539013376 672 4 0 180 4 260 836 3 0.47733015664 808 2 0 404 2 1392 3916 3 0.49825017622 909 2 0 621 3 378 2937 2 0.50432023352 1080 2 0 1304 2 2140 5838 3 0.46519023496 1212 2 0 1392 3 404 3916 2 0.51916031328 1440 2 0 828 4 504 3916 3 0.475840
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Table A2 Red Scaled Red List in Four DimensionsN � b11 b12 b13 b14 b22 b23 b24 b33 b34 b44 rank z640 16 2 0 2 6 4 0 8 4 16 20 4 1.04376864 24 1 0 0 42 2 0 69 3 54 144 2 1.269972 0 0 15 2 0 33 3 21 72 2 1.269971 0 0 42 2 0 69 3 12 144 2 1.269971124 30 1 0 0 106 1 0 178 1 442 1124 0 1.317061944 36 3 0 0 15 3 3 12 6 30 36 4 1.061903 0 0 15 3 0 21 3 33 72 4 1.061902164 40 1 0 0 152 1 0 330 2 104 1082 2 1.090172248 60 1 0 0 106 1 0 178 2 442 1124 2 1.589804328 72 1 0 0 104 2 0 152 2 330 1082 3 1.166251 0 0 104 2 0 242 2 400 1082 3 1.166254496 106 1 0 0 106 2 0 178 2 442 1124 3 1.667906744 120 1 0 0 159 2 0 267 2 663 1686 2 1.383088656 144 2 0 0 104 2 0 152 2 330 1082 4 1.367348992 212 2 0 0 106 2 0 178 2 442 1124 4 1.9541319476 216 2 0 0 156 2 0 228 3 495 1623 2 1.081932 0 0 156 2 0 495 3 228 1623 2 1.0819320232 318 2 0 0 159 2 0 267 3 663 1686 2 1.5451735968 356 2 0 0 212 2 0 356 4 884 2248 4 1.0892238952 360 2 0 0 208 3 0 304 3 660 2164 2 1.0325940464 424 2 0 0 212 3 0 356 3 884 2248 2 1.1791743821 468 3 0 0 156 3 0 228 3 495 1623 4 1.2199645522 477 3 0 0 159 3 0 267 3 663 1686 4 1.2055077904 624 3 0 0 208 3 0 304 4 660 2164 2 1.0161380928 636 3 0 0 212 3 0 356 4 884 2248 2 1.00373
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