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1. Introduction. The preconditioned conjugate gradient method [13] is one ofthe most successful iterative methods for solving large, sparse, symmetric, positive-de�nite linear systems. A preconditioner that has been shown to be very e�ective for awide variety of problems is the incomplete Cholesky factorization [18]. Recently, severalauthors [5, 7, 20, 22] have examined the e�ect of multicoloring based matrix orderingson the convergence properties of iterative methods. However, this work has consideredonly problems generated from regular grids, for which an optimal coloring is known apriori. These problems generate M-matrices [19] that are not representative of generalsystems of equations for which the straightforward incomplete Cholesky factorizationmay not exist.In this paper, we consider sparse linear systems that arise both from �nite elementmodels and standard grid problems. For many of the former problems, optimal mul-ticolorings are not known. In general, the determination of an optimal coloring is anNP-hard problem [8]. Thus, we have explored the use of graph coloring heuristics toobtain the desired orderings. Our experimental results show that the combination ofincomplete factorization and coloring heuristics results in a parallel preconditioner thatis applicable to the symmetric, positive-de�nite matrices arising in many applications.We also compare the e�ectiveness of the coloring heuristics to some standard orderings:minimum degree, reverse Cuthill-McKee, and nested dissection.The parallelism inherent in computing and applying the preconditioner is limitedby the solution of the triangular systems generated by the incomplete Cholesky factors[22]. It was noted by Schreiber and Tang [21] that if the nonzero structure of thetriangular factors is identical to that of the original matrix, the minimum numberof major parallel steps possible in the solution of the triangular system is given bythe chromatic number of the symmetric adjacency graph representing those nonzeros.Thus, given the nonzero structure of a matrix A, one can generate greater parallelismby computing a permutation matrix, P , based on a coloring of the symmetric graphG(A). The incomplete Cholesky factor ~L of the permuted matrix PAP T is computed,instead of the factor based on the original matrix A.In this permutation, vertices of the same color are grouped and ordered sequen-tially. As a consequence, during the triangular system solves, the unknowns corre-sponding to these vertices can be solved for in parallel, after the updates from previouscolor groups have been performed. The result of Schreiber and Tang states that theminimum number of inherently sequential computational steps required to solve eitherof the triangular systems, ~Ly = b or ~LTx = y, is given by the minimumpossible numberof colors, or chromatic number, of the graph.We note that this bound on the number of communication steps assumes that onlyvector operations are performed during the triangular systems solves. This assumptionis equivalent to restricting oneself to a �ne-grained parallel computational model, wherewe assign each unknown to a di�erent processor. When many unknowns are assigned toa single processor, it is possible to reduce the number of communication steps by solvingnon-diagonal submatrices of L on individual processors at each step. In this case, theminimum number of communication steps is given by a coloring of the quotient graphobtained from the partitioning of unknowns to processors. This approach can lead1



to load-balancing problems, however, and our main objective is the demonstration ofscalable performance. Thus, in our current implementation, we allow only the solutionof diagonal systems between communication steps.The combination of graph coloring and incomplete factorization gives a parallelalgorithm that is scalable as de�ned in [11]. In general, for graphs arising from physicalmodels, the maximum degree of any node is bounded independently from the numberof nodes. Because the number of colors is bounded by the maximum degree of a node,the number of parallel steps is also bounded independently from the problem size.The computation rate per processor should therefore be constant as the number ofprocessors increases, given a �xed problem size per processor.This matrix permutation is reminiscent of the reorderings done to minimize the �llin a direct factorization. However, in an incomplete factorization, �ll that correspondsto initial zeros of the matrix is ignored. Instead, the permutation is chosen to minimizethe number of communication steps inherent in the solution of the triangular systemsgenerated by the incomplete factorization.It is important to note that the scalability results presented in this paper applyto most classical iterative methods. The successive overrelaxation (SOR) method withconsistent ordering1 could be implemented in a scalable multi-level algorithm usinggraph coloring, as briey outlined in [17]. One could also use the symmetric suc-cessive overrelaxation method (SSOR) as a preconditioner for the conjugate gradientalgorithm, or as a stand-alone iterative method, and obtain the same communicationcomplexity. We have chosen to implement incomplete Cholesky as a preconditionerbecause we have observed that it provides a more e�ective preconditioner for the ap-plications with which we have been concerned.The organization of this paper is as follows. In Section 2 we briey present someimportant issues in computing graph colorings, and we review the coloring heuristicthat we have employed in our experiments. In Section 3 we present and discuss anexecution time model for the triangular matrix solutions used in the incomplete fac-torization algorithm. In Section 4 we introduce a suite of test problems and presentexperimental results. Finally, in Section 5 we summarize our research and suggest areasfor future investigation.2. Coloring Heuristics. Given the nonzero structure of an n � n symmetricmatrix A, one can associate the symmetric graph G(A) = (V;E) with the matrix,where the vertex set is given by V = f1; : : : ; ng and the edge set is given by E =f (i; j) j Aij 6= 0; and i 6= j g. We say that the function � : V ! f1; : : : ; sg is ans-coloring of G(A), if �(i) 6= �(j) for all edges (i; j) in E. The minimum possible valuefor s is known as the chromatic number of G(A), which we denote as �(G).The question of whether a general graph G(A) is s-colorable is NP-complete [8]. Itis known that unless P = NP , there does not exist a polynomial approximation schemefor solving the graph coloring problem [8]. In fact, the best polynomial time heuristicknown [14] can theoretically guarantee a coloring of only size c (n= log n)�(G), where1 With a consistently ordered matrix, it is straightforward to determine the optimal relaxationparameter [12]. 2



c is some constant.It is therefore rather surprising that a coloring heuristic could perform well inpractice. However, for the problems considered in this paper, we �nd that the heuristicsobtain colorings only slightly worse than a lower bound determined from the localstructure of the graphs considered. To obtain this lower bound, we employ the followingwell-known result which bounds the chromatic number by the size of any completesubgraph in G.Given a subset V 0 of the vertices V , the induced subgraph G0 = (V 0; E 0) of Gcontains the edges in the set E 0 = f (i; j) j (i; j) 2 E; and i; j 2 V 0g. A completesubgraph of size r, which we call an r-clique, is a subset V 0 of V , with jV 0 j = r, forwhich every possible edge exists in the induced subgraph. Since the r vertices in anr-clique must be assigned di�erent colors, we simply state the following well-knownlemma.Lemma 2.1. If G contains an r-clique, then �(G) � r.The matrices we have considered for our experiments arise from �nite elementmodels. We say that the �nite element model contains an r-element if there is anelement in the model that contains r directly interacting independent variables. Thus,in the graph representing the corresponding linear system, we obtain an r-clique asso-ciated with this r-element. By the above lemma, this clique reveals to a lower boundfor the chromatic number of the graph G(A). The advantage of this observation is thatit is usually straightforward to determine the maximum sized r-element in the �niteelement model.Corollary 2.2. If the �nite element model contains an r-element, �(G) � r.Frequently, each node in the �nite element model may have q unknowns associatedwith it. In the matrixA, unknowns associated with the same node in the �nite elementmodel are usually structurally identical. These q identical unknowns can be coloredthe same color if one is willing to solve block diagonal submatrices of L, rather thandiagonal submatrices [21]. If this approach is used and each node in the model hasq structurally identical unknowns, the minimum number of major parallel steps couldbe reduced to �(G)=q. In our demonstration of scalability, we have not chosen thisapproach.It is known that an optimal coloring can be obtained via a greedy heuristic if thevertices are visited in the correct order [1]. The basic structure of the greedy heuristicis the following.Greedy Heuristic. Compute a vertex ordering fv1; : : : ; vng for V . For i =1; : : : ; n, set �(vi) equal to the smallest available consistent color.The maximum degree of the graph determines an upper bound for the chromaticnumber [1]. Let �(G) = maxv2V deg(v), where deg(v) is the degree of vertex v inG. This upper bound is given by �(G) � �(G) + 1. Note that a greedy heuristicwill always satisfy this bound. Also, independent of the size of system, the graphsarising from the applications we consider have bounded degree. Thus, the coloringsdetermined by a greedy heuristic will also be bounded.The only aspect of the greedy heuristic that must be speci�ed is the methodfor obtaining the initial vertex ordering. Several strategies for obtaining this vertex3



ordering have been proposed in work by other authors. Two of the most e�ective ande�cient strategies proposed are orderings of the vertices by saturation degree and byincidence degree.The saturation degree ordering (SDO) heuristic was �rst proposed by Br�elaz [2]and is de�ned as follows. Suppose that vertices v1; : : : ; vi�1 have been chosen. Vertexvi, the next vertex chosen, is a vertex adjacent to the maximum number of di�erentcolors in the vertex set fv1; : : : ; vi�1g. The SDO heuristic can be implemented to runin time proportional to Pv2V deg2(v).A modi�cation of the SDO heuristic, the incidence degree ordering (IDO) heuristic,was suggested by Coleman and Mor�e in their work [4] on using coloring heuristics toobtain consistent partitions for use in Jacobian estimation. Again suppose that verticesv1; : : : ; vi�1 have been chosen. Vertex vi is chosen to be a vertex whose degree is amaximum in the induced subgraph of G with vertices fv1; : : : ; vi�1g. The IDO heuristichas the desirable property that it can be implemented to run in a time proportionalto Pv2V deg(v), or the number of nonzeros in the matrix. This heuristic was found byColeman and Mor�e [4] to obtain the best colorings, for a linear time heuristic, over awide variety of problems.The computational cost of these graph coloring heuristics is modest compared tothe time required to compute the incomplete factors and repeatedly solve the resultingtriangular systems. For the results presented in this paper, the IDO heuristic was usedto obtain the graph colorings used in the matrix reorderings. However, we note thatrecently a scalable, parallel coloring heuristic has been developed [16] that is able todetermine colorings comparable to these sequential heuristics. In a complete parallelimplementation, the use of a parallel heuristic is preferable; we have used the sequentialcoloring heuristic because our comparison is with other sequential ordering heuristics.3. Analytic Execution Time Model. In this section we present a model of thecomputational complexity of a parallel implementation of the solution of the triangularsystems involving the incomplete Cholesky factors. First we review the connectionbetween a coloring of the graph G, and the solution of a triangular system with thenonzero structure corresponding to this graph.Given an s-coloring � of G, we de�ne a directed graph D� = (V; F ) as follows. Foreach edge, (u; v) 2 E, construct the directed edge, <x; y>2 F , directed from x to y,where �(x) < �(y) and fx; yg = fu; vg. This construction is well de�ned because therecannot exist an edge (u; v) 2 E with �(u) = �(v), since � is a coloring of G.By this construction, the directed graph D� is acyclic. In the discussion thatfollows, we assume, for notational simplicity, that the component indices v;w of vectorsand matrices correspond to a topological ordering of this directed acyclic graph (DAG).The complexity of traversal of the DAG, D�, can be seen to be equivalent to thecomplexity of solution of the lower triangular system Ly = b, where L is the incompleteCholesky factor. In the standard forward elimination algorithm the traversal of theedge <w; v> in D corresponds to the computational stepbv  bv � Lvwyw :(3.1) 4



Likewise, each vertex v in the DAG corresponds to the computational stepyv  bv=Lvv :(3.2)For vertices w and v with �(w) = �(v), the computation of yw and yv, as givenin equation (3.2), can be done in parallel, given that the updates to bw and bv havebeen completed. Thus, the triangular system may be solved in parallel with �� majorcommunication steps. An outline of the parallel algorithm executed by each processorfor forward elimination is given in Figure 1. In this algorithm the function proc (v)returns the processor assigned the v-th component of y; a processor's own processornumber is me.For i = 1; : : : ; �� doFor each v 2 V with �(v) = i do~bv  0;For each <w; v>2 F with proc (w) = me do~bv  ~bv � Lvwyw;enddoIf proc (v) 6= me thenSend ~bv to proc (v);elsebv  ~bv;For each update ~bv doReceive update ~bv;bv  bv +~bv;enddoyv  ~bv=Lvv ;endifenddoenddoFig. 1. Parallel algorithm for the forward elimination of the lower triangular system Ly = bIn our implementation of this algorithm, all updates ~bv and ~bw with �(v) = �(w)to be sent from processor a to processor b are combined into one message. This combi-nation overcomes the high cost of starting a message. We also note that the communi-cation pattern for back substitution required to solve the system LTx = y is the exactreverse of what is given in Figure 1. Rather than receiving the updates ~bv, proc (v)sends xv to the same processors it received updates from in the forward eliminationphase. Thus, the communication complexities of the forward elimination and backsubstitution algorithms are equivalent.3.1. Bounds on the Communication Complexity. Given certain assump-tions, one can construct an analytic execution time model for the triangular matrix5



solutions required by the incomplete factorization algorithm. In this section we con-struct such a model for a message-passing parallel computer. We make the followingassumptions about the partitioning of the problem across the processors.1. Bounded connectivity { We assume that the problem is partitioned such thatprocessor i sends/receives at most an average of ci messages per level of theDAG.2. Load balancing { We assume that every processor has a roughly equal shareof the nodes of each level of the directed acyclic graph associated with thetriangular matrix solution.We also assume that the time required to send k bytes between two processors, t(k),obeys the linear relation t(k) = �+ �k ;(3.3)where � is the time for starting a message and � is the time per byte for sending amessage.Given these assumptions, we obtain a lower bound for the execution time, T , ofthe algorithm on p processors:T � pmaxi=1 (�xi + �ci�� + �vi) ;(3.4)where � is the time for a oating-point operation, xi is the number of oating-pointoperations on processor i, vi is the number of bytes sent by processor i, ci is the averagenumber of messages sent per level of the DAG, and �� is the height of the DAG. Anycontention for communication paths in the interconnection network is ignored in thismodel. The signi�cance of this omission depends on the topology of the interconnectionnetwork and the number and size of messages being sent.The �rst assumption can be satis�ed for most problems arising from physical mod-els if they are properly partitioned; the second assumption is crucial and depends onthe ordering of the nodes. In this paper we compare the orderings produced by theIDO heuristic with three other standard orderings: minimum degree (MDO), nesteddissection (NDO), and the reverse Cuthill-McKee ordering (RCM) [9]. If the problempartition on each processor is similar in structure, then the second assumption holdsfor the minimum degree ordering and the incidence degree ordering, because they arelocally generated orderings that impose no global structure on the matrix. For thenested dissection heuristic, the second assumption holds if the heuristic is able �ndgood separators.In contrast, the RCM ordering must violate one of these assumptions. If the ma-trix is partitioned to maximize locality, (i.e., connected nodes are either on the sameprocessor or on a nearby processor), then it is the nature of the RCM ordering thatthe nodes on each level of the DAG be on the same processor, giving an essentiallysequential algorithm. If the matrix is partitioned such that the nodes on each levelof the DAG are evenly distributed among the processors, the bounded connectivityassumption must be violated; processors must send messages to most other processors6



at every level of the DAG. Either condition is unacceptable, of course, when attempt-ing to construct a scalable algorithm. In Section 4, we compare the model given inequation (3.4) with experimental results obtained on the Intel iPSC/860.An examination of this model reveals that the height of the DAG will be the majorfactor in determining the e�ciency of any ordering. The ordering of the matrix hasa signi�cant e�ect on the height of the DAG; depending on the ordering, the heightcould be as large as n or as small as the chromatic number. On all currently availablemessage-passing computers, � is signi�cantly larger than � and � [6]. Thus, the messagevolume contribution to the model is of secondary importance because of the relativesizes of � and �, and because, as we show below in Theorem 3.1, the message volumecannot vary greatly between orderings.We consider the message volume when using the inner-product algorithm for theforward solve; messages are combined when possible. It is su�cient to consider thevolume of messages between two processors. Let V1 and V2 be the set of vertices onprocessors 1 and 2 that are connected to vertices on the other processor, and let N1 andN2 be the respective size of these sets. Let E12 be the set of edges that connect V1 andV2. Note that the graph, G12 = (V1; V2; E12), is undirected and bipartite. LetM(G12)be the size of a maximum matching for G12. Recall that a maximum matching is alargest pairing of distinct vertices f(u1; v1); : : : ; (uk; vk)g with ui 2 V1 and vi 2 V2 and(ui; vi) 2 E12. The following theorem gives a lower and upper bound to the messagevolume between any two processors.Theorem 3.1. The minimum message volume that could be sent during the for-ward elimination algorithm isM(G12). The maximum message volume is N1+N2�1.Proof: As discussed above, assume that vertices of G12 are ordered and labeled accord-ing to a coloring of the graph. Consider the directed acyclic graph D12 = (V1; V2; F12)constructed from this ordering, where F12 are the directed edges corresponding to E12.For each edge, < v;w >2 F12, v contributes to the inner product associated with win the forward elimination algorithm. An example of such a directed graph is given inFigure 2.If there exist directed edges < u;w > and < v;w > in F12, then we have twocontributions to the inner product associated with w. There is no need to send bothpartial sums; instead, the two partial sums can be added together on one processor,and only one partial sum sent to its neighbor. We can reect this combination in agraph construction where, for each edge <v;w> in F12, we remove all edges <u;w>with u < v. After all such edges are removed, we denote this modi�ed graph byD�12 = (V1; V2; F �12). Note that the number of edges in F �12 is equal to the number ofvertices in D12 that are terminals of directed edges (the vertex v is a terminal if thereexists an edge <u; v> in F12). The remaining edges in the graph D�12 represent all thepartial sums that must be communicated in the forward elimination algorithm, andtherefore the total message volume between the two processors. An example of a graphD12 and its reduced graph D�12 is given in Figure 2.Consider a maximum matching of the bipartite graph G12. In the directed graphD12 there are at leastM(G12) terminals of directed edges, because each matched edgewill be directed to a distinct vertex in D12. Since the number of edges in F �12 is equal7
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Fig. 2. An example of the graph D12 and its reduced graph D�12 representing the communicatedpartial sumsto the number of terminals in F12, we have that jF �12j � M(G12). To get an upperbound, we note that at most N1 + N2 � 1 vertices can be terminals of directed edgesin D12; thus, jF �12j � N1 +N2 � 1. 2We note that if one partitions the nodes of a standard �nite element into twoequal sets, the resulting graph partition will contain a perfect matching, since the cor-responding graph is a clique. Likewise, for problems arising from physical applications,one expectsM(G12) to be close to min (N1; N2) for the partitioned graph. Thus, thefollowing corollary explains why one would expect less than a factor of 2 di�erence inmessage volume between di�erent orderings.Corollary 3.2. If G12 has a perfect matching, then the message volume di�ersby at most 2 for any two orderings.Proof: If G12 has a perfect matching, we have that N1 = N2 =M(G12). By Theo-rem 3.1 we have that the upper and lower bounds for the message volume di�er by lessthan 2. Thus, the message volume for any two orderings cannot di�er by more thanthis amount. 2Theorem 3.3. The maximum number of messages that could be sent during theforward solve is N1 +N2 � 1. The minimum number of messages is one.Proof: Clearly, the number of messages sent cannot exceedN1+N2�1. To construct aworst case example, suppose G12 contained a simple path that included all the verticesin G12. We could then obtain a coloring � by numbering the vertices consecutively,8



in the order in which they were visited along this path. The height of the resultingDAG D12 is N1 + N2 and the number of terminals would be N1 + N2 � 1. Therefore,N1 +N2 � 1 messages must be sent.To show that the minimumnumber of messages is one, we could order the nodes inV1 before the nodes in V2. All the inner products associated with V1 can be computedwithout partial sums from V2. Then all partial sums contributed by nodes in V1 canbe sent in a single message to processor 2. 2The forward elimination algorithm presented in Figure 1 could also be written touse sparse \daxpy" operations in the inner loop, as opposed to sparse inner products.We note that the communication pattern required by the daxpy-based algorithm isthe same as that required by the inner product algorithm with the vertex orderingreversed. Thus, the results presented above would apply to the forward eliminationalgorithm if the algorithm were rewritten in this manner.4. Experimental Results. We divide the experimental results section into twoparts: (1) an evaluation of the performance of the coloring heuristic, and (2) an evalu-ation of the scalability of the combination of the IDO heuristic and incomplete factor-ization. The majority of the matrices in the test set arise from �nite element models.Although it is possible to take advantage of the underlying structure of many �niteelements problems, we wish to be more general and, therefore, only use informationpresent in the assembled matrices.A �nite elementmodel is constructed by piecing together many elements to approx-imate a structure. Each element typically contains k � 2 nodes, each node typicallyhaving 1 � d � 6 degrees of freedom (dof), resulting in kd unknowns per element.Adjacent elements share nodes, reducing the total number of unknowns. Also, thenumber of unknowns may be reduced by other factors, including the application ofconstraints on the structure.The subgraph containing these unknowns is usually completely connected and thuscomprises an r-element, with r = kd. Many di�erent element types, of course, can beincluded in a model. The coloring heuristics can be expected to perform well on thesematrices because of the local nature of the models and the bound of kd on the maximumclique size.For the sake of comparison, matrices arising from the �ve-point and nine-point�nite-di�erence discretizations on a 30 � 30 grid were included in the test suite. It iswell known that matrices arising from these stencils can be colored by using two andfour colors, respectively.In Table 1, the complete suite of test problems is described.2 The diagonal of eachmatrix was scaled to be the identity matrix. For every problem except the BUILDINGand PLATE problems, the right-hand side was the vector of ones, scaled to have a 2-norm of one. The initial guess for the conjugate gradient algorithm was the zero vector.Solutions were sought to a relative accuracy of 0.001, where the relative accuracy at2 Because of the application of constraints and the elimination of superuous degrees of freedom,the maximum clique size for several of the problems is less than the maximum number of degrees offreedom per node times the number of nodes per element.9



Table 1The suite of test problemsName Size DescriptionLAP5 900 5-pt �nite di�erence discretization on a 30x30 gridLAP9 900 9-pt �nite di�erence discretization on a 30x30 gridCUBE3 180 �nite element model of a cube with 3x3x3 8-nodeelements with 3 degrees of freedom per nodeCUBE5 636 �nite element model of a cube with 5x5x5 8-nodeelements with 3 degrees of freedom per nodeCUBE7 1524 �nite element model of a cube with 7x7x7 8-nodeelements with 3 degrees of freedom per nodeCYL11 510 �nite element model of a circular cylindrical shellwith 100 4-node elements with up to 6 dof per nodePLT4 327 �nite element model of a plate with 64 4-nodeelements with up to 6 dof per nodePLT9 1295 �nite element model of a plate with 64 9-nodeelements with up to 6 dof per nodePLANE 2141 �nite element model of a airplane with a mixture of2-D element typesBUILDING 6000/story �nite element model of a building using 3-D\brick" elements, the number of stories can varyPLATE 1500/section �nite element model of a plate using 3-D\brick" elements, the number of sections in theX and Y directions, but not the Z, can varystep k is de�ned as krkk2=kr0k2, where rk is the residual at step k. When the incompleteCholesky factorization failed, we use the shifted incomplete factorization method [18]and add 0:01 to the diagonal until the factorization succeeded.4.1. Coloring Heuristic Results. We tested the performance of the IDO heuris-tic on the �rst nine, smaller problems in Table 1. An examination of the results inFigure 3 shows that, for every problem, IDO found optimal or near-optimal colorings.A lower bound for the chromatic number was obtained by �nding a large clique. Thedetermination of the largest clique in a general graph is an NP-hard problem. We haveused a heuristic to �nd a large clique, which is reported as clique (G). Therefore, if thelower bound is not tight, there may exist a larger clique than this number.4.2. Scalability Results. We compared the matrix ordering derived from theIDO graph coloring heuristic to three orderings that are applicable to general undirectedgraphs. The reverse Cuthill-McKee (RCM) heuristic has been shown in numeroustests to be the best, or nearly the best, ordering for the convergence of the ICCG(0)algorithm [5]. The nested dissection heuristic has been shown to be e�ective whenreordering a matrix to both reduce �ll-in and increase the parallelism of a direct, sparsefactorization. While not as good as RCM in terms of convergence of ICCG(0), the10



∆ (G) + 1

PLT4PLT9CYL11CUBE7 PLANECUBE5CUBE3LAP9LAP5

52 2 4 5 9
16 18

44

82 82 82

25 27 29
24 24 24

20 21

69

1616

46

3535

125

clique(G)

IDO(G)

Fig. 3. A comparison of the colorings obtained by the IDO heuristic on problems from the testsuite compared with the upper and lower bounds on the chromatic number for these problems
11



nested dissection heuristic was often near optimal [5]. The minimum degree orderingis the most commonly used �ll reducing algorithm for direct sparse factorization; it isgenerally far from optimal in terms of convergence of ICCG(0) [5]. A good descriptionof these heuristics can be found in [9].The objective in this section is to show that a good coloring heuristic, in combina-tion with incomplete factorization, is a scalable algorithm whose parallel performanceis superior to that of standard orderings. Speci�cally, we show two results: (1) for theproblems considered, the parallel e�ciency and the total solution time for the multi-coloring incomplete factorization approach is superior to other orderings, even thoughthis ordering can have deleterious e�ects on convergence, and (2) the multicoloringalgorithm is scalable as de�ned in [11].To carry out our experiments, we selected the last two problems from Table 1,which could be scaled in size. Because of space considerations, we do not in every casepresent results for both problems, but generally the results are similar. The initialnumbering of the equations was such that nearby nodes in the �nite element modelswere generally close in number. Each processor was assigned a contiguous block of n=pcolumns, where n is the order of the matrix and p is the number of processors. Thispartitioning reduces the number and volume of messages that must be sent.The e�ect of orderings on the convergence ICCG must be taken into account[5]. For model grid problems, Elman and Agr�on [7] used a parameter study of atheoretical computational model to show that the cost of increased iterations needed formulticoloring was usually worth the bene�t of increased parallelism. In our experimentswe examine this bene�t on the Intel iPSC/860. In Figures 4 and 5 we give the numberof iterations for both problems using all four orderings. For the PLATE problem,which is geometrically similar to a model grid problem, the iteration counts for each ofthe orderings are close to what we expect from [5], with the exception of the iterationcount for nested dissection which is higher than might be expected. This increase couldresult from an inability of the nested dissection heuristic to determine a good orderingbecause of the three-dimensional nature of this problem.An examination of Figure 5 reveals that for the BUILDING problem, which isfar from a model grid problem, the iteration counts are not similar to those from[5]. This discrepancy can be attributed to two factors: (1) di�erent-sized shifts wereneeded for the orderings to obtain a positive de�nite preconditioner, and (2) unlikethe model grid problem, where the orderings can be explicitly and regularly applied,the orderings for general graphs are heuristics whose e�ect is not as structured as forthe model grid problems. This discrepancy has been observed in other \non-model"problems; however, in general we �nd that the RCM and nested dissection orderingsare superior to the coloring and minimum degree orderings in terms of convergence[15]. It is interesting to note that the number of iterations in each problem grows aspredicted in [3]: linearly with the relative re�nement. In the PLATE problem, whenthe problem size quadruples, the relative re�nement doubles in the X and Y directions,and the number of iterations doubles. In the BUILDING problem, when the problemsize doubles, the relative re�nement doubles in the Z direction, and the number ofiterations doubles. 12
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Fig. 4. The number of iterations for the PLATE problem
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Fig. 5. The number of iterations for the BUILDING problem13



2 4 8 16 32 64Number of Processors10100100010000TotalTime(sec
RCM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fig. 6. Total execution times for the BUILDING problemGiven that colorings generally have a negative e�ect on convergence, we must showthat their parallel e�ciency is su�ciently superior to other orderings to justify theiruse as an ordering. To show this, we give total execution time, the time for boththe incomplete factorization and the triangular matrix solutions, for the BUILDINGproblem in Figure 6. Note that each axis of the graph has a logarithmic scale. Fromthis �gure, it is clear that the multicolor ordering gives rise to better parallel executiontimes than the other orderings.We now examine the parallel e�ciency to show that it is asymptotically constantfor the multicoloring algorithm. We give the computation rates for the forward trian-gular matrix solution for the BUILDING problem in Figure 7. The trends are similarfor the incomplete factorization and for the backward triangular matrix solution andare not shown. For more than 16 processors it can be concluded that the computationalrates for the multicoloring algorithm are essentially constant and are much higher thanthose for the other orderings. The minimum degree and nested dissection orderingsappear to be almost scalable. As discussed above, the nested dissection must be able to�nd good global separators to be successful, unlike the minimum degree and multicolororderings which are local ordering hueristics. However, the RCM algorithm is clearlynot scalable.It is instructive to observe both the number of messages and the message volumeassociated with each ordering. Given that the amount of computation on each processoris close to constant, the message tra�c is a good indicator of performance. We givethese numbers for the BUILDING problem in Figures 8 and 9. Not surprisingly, thenumber of messages is lowest for IDO and highest for RCM. Also, as expected, IDOhas the highest message volume. As predicted by Corollary 3.2, the message volumevaries by less than a factor of 2 between the di�erent orderings.We now validate the model from Section 3 using results from the PLATE prob-14
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Fig. 8. The average number of messages sent per processor15
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Fig. 9. The average number of bytes sent per processorlem. Estimated and actual execution times are given in Figure 10. The model doesa reasonable job of predicting performance for the IDO ordering. The gap is likelycaused by two factors: (1) time for the data structure manipulation associated withpacking messages, and (2) contention among messages for edges in the interconnectionnetwork.5. Conclusions. Our results have shown that for the matrices considered the col-oring heuristics �nd close to optimal colorings. The combination of the graph coloringand incomplete factorization was shown to result in a scalable, parallel algorithm. Theincrease in parallelism a�orded by this reordering more than o�sets any of the increasesseen in the number of iterations required for convergence over other commonly usedordering heuristics. Lastly, we note several topics possibly requiring additional study.The coloring produced by the heuristic may often leave a single color with veryfew nodes. One solution to this problem is to remove from the graph the constrainingedges associated with those nodes [15] and use this smaller graph as the structure forthe triangular system. However, a better approach would be an algorithm that couldtry to recolor a subset of the nodes to eliminate this problem.It is well known that the convergence rate of ICCG can be improved by allowinglimited �ll-in during the incomplete factorization. If edges in the graph between nodesof the same color are not created during factorization, then such �ll-in will not reducethe level of parallelism. In fact, such �ll-in should increase the computation to com-munication ratio. However, by disallowing �ll-in from occurring in particular edges,we may reduce the e�ect of �ll-in on the convergence rate.To demonstrate scalability we used problems in which the same element type wasused throughout the structure. If the element mix on each processor was signi�cantlydi�erent, then the number of nodes in each color might vary greatly on each processor.16
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Fig. 10. Comparison of execution time model against actual execution timesThis situation would result in a workload imbalance. However, this problem can beaddressed by restricting the number of nodes on each processor that can be coloredthe same color, or by \shu�ing" the colors to balance them.Finally, a signi�cant pitfall for the straightforward incomplete factorization algo-rithm is that it may fail to produce a positive-de�nite factorization, even though thematrix is positive de�nite. Because positive de�niteness is required for the conjugategradient method [10], some mechanism must be included to deal with the detection ofinde�niteness during the incomplete factorization process. It is not su�cient to simplychange a diagonal that becomes non-positive during the factorization to become nega-tive; this approach will often result in a poor preconditioner because the non-positivediagonal was caused by something that occurred earlier during the factorization andremains in the incomplete factor. For the results presented in this paper, we have usedthe technique of adding an increasing multiple of the diagonal until the matrix canbe successfully factored. However, we note that an improvement of these methods forforcing a positive de�nite factorization while still maintaining a good preconditioner isan important area for future research.REFERENCES[1] B. Bollob�as, Graph Theory, Springer-Verlag, New York, 1979.[2] D. Br�elaz, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251{256.17
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