
ADIFOR Working Note #4:ADIFOR: Fortran Source Translationfor E�cient Derivatives�Christian BischofyAlan CarlezGeorge CorlissyAndreas GriewankyPaul HovlandyArgonne Preprint MCS{P278{1291Abstract. The numericalmethods employed in the solution of many scienti�c computing problems require the computationof derivatives of a function f :Rn !Rm. Both the accuracy and the computational requirements of the derivative computationare usually of critical importance for the robustness and speed of the numerical method. ADIFOR (Automatic Di�erentiationIn FORtran) is a source translation tool implemented by using the data abstractions and program analysis capabilities ofthe ParaScope Parallel Programming Environment. ADIFOR accepts arbitrary Fortran 77 code de�ning the computation ofa function and writes portable Fortran 77 code for the computation of its derivatives. In contrast to previous approaches,ADIFOR views automatic di�erentiation as a process of source translation that exploits computational context to reduce thecost of derivative computations. Experimental results show that ADIFOR can handle real-life codes, providing exact derivativeswith a running time that is competitivewith the standard divided-di�erenceapproximationsof derivatives and that may performorders of magnitude faster than divided-di�erences in certain cases. The computational scientist using ADIFOR is freed fromworrying about the accurate and e�cient computation of derivatives, even for complicated \functions" and hence is able toconcentrate on the more important issues of algorithm design or system modeling.Key words. Large-scale problems, derivative, gradient, Jacobian, automatic di�erentiation, optimization, sti� ordinarydi�erential equations, chain rule, parallel, ParaScope Parallel Programming Environment, source transformation and optimiza-tion.1 Automatic Di�erentiationThe methods employed for the solution of many scienti�c computing problems require the evaluation ofderivatives of some function f that is usually represented as a computer program, not in closed form.Probably best known are gradient methods for optimization [13], Newton's method for the solution ofnonlinear systems [13], and the numerical solution of sti� ordinary di�erential equations [8]. These methodsare examples of a large class of methods for numerical computation, where the computation of derivatives isa crucial ingredient in the computation of a numerical solution.A conventional compiler extracts from the Fortran source code for computing a function a sequenceof unary and binary operations and elementary functions and decisions that can be executed to computethe function values. More sophisticated compilers extract from the source code information that allowssome of the computations to be executed e�ciently on vector or parallel computers. Stetter has observedthat in many applications, high-quality scienti�c computing requires the extraction of more mathematicalinformation than just the function values [34]. For example, Neumaier [27] listed 15 mathematical properties(including derivative values, Lipschitz constants, enclosures, and asymptotic expansions) that might bepropagated along with the values of the variable.Automatic di�erentiation takes advantage of the fact that the source code also contains information aboutderivatives of the function. ADIFOR (Automatic Di�erentiation In FORtran) [3] augments the originalsource code with additional statements that propagate values of derivative objects in addition to the values�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U.S. De-partment of Energy, under Contract W{31{109{Eng{38, through NSF Cooperative Agreement No. CCR{8809615, and by theW. M. Keck Foundation.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439.zCenter for Research on Parallel Computation, Rice University, P. O. Box 1892, Houston, TX 77251.1

if x(1) > 2 thena = x(1)+x(2)elsea = x(1)*x(2)endifdo i = 1, 2a = a*x(i)end doy(1) = a/x(2)y(2) = sin(x(2))Figure 1: Sample program for a function f : x 7! yof the variables computed in the original code. Given a Fortran subroutine (or a collection of subroutines)for a function f , ADIFOR produces Fortran 77 subroutines for the computation of the derivatives of f .For discussion, we assume that f : x 2 Rn 7! y 2 R and that we wish to compute the derivatives of y withrespect to x. We call x the independent variable and y the dependent variable. While the terms \dependent",\independent", and \variable" are used in many di�erent contexts, this terminology corresponds to themathematical use of derivatives. There are four approaches to computing derivatives [16]:By Hand: As the problem complexity increases, this approach becomes increasingly di�cult and error-prone.Divided di�erences: The derivative of f with respect to the ith component of x at a particular pointx0 is approximated by either one-sided di�erences or central di�erences. Computing derivatives bydivided di�erences has the advantage that we treat the function as a \black box." The main drawbackof divided di�erences is that their accuracy is hard to assess. A small step size h is needed forproperly approximating derivatives, yet may lead to numerical cancellation and the loss of many digitsof accuracy. In addition, di�erent scales of the xi's may require di�erent step sizes for the variousparameters.Symbolic Di�erentiation: This functionality is provided by symbolic manipulation packages such asMaple, Reduce, Macsyma, or Mathematica. Given a string describing the de�nition of a function,symbolic manipulation packages provide exact derivatives, expressing the derivatives all in terms ofthe intermediate variables. Symbolic di�erentiation is a powerful technique, but it may derive poorcomputational recipes and may run into resource limitations when the function description is compli-cated. Functions involving branches or loops cannot be readily handled by symbolic di�erentiation.Automatic Di�erentiation: Automatic di�erentiation techniques rely on the fact that every function, nomatter how complicated, is executed on a computer as a (potentially very long) sequence of elementaryoperations such as additions, multiplications, and elementary functions such as sin and cos. By applyingthe chain rule @@tf(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@tg(t)���t=t0�over and over again to the composition of the elementary operations, one can compute derivativeinformation of f exactly (up to machine precision, of course), in a completely mechanical fashion thatavoids the potential pitfalls of divided di�erences. The techniques of automatic di�erentiation aredirectly applicable to functions with branches and loops.We illustrate automatic di�erentiation with an example. Assume that we have the sample program shownin Figure 1 for the computation of a function f : R2 7! R2. Here, the vector x contains the independentvariables, and the vector y contains the dependent variables. The function described by this program isde�ned except at x(2) = 0 and is di�erentiable except at x(1) = 2.We can transform this program into one for computing derivatives by associating a derivative objectrt with every variable t. Assume that rt contains the derivatives of t with respect to the independent2

if x(1) > 2.0 thena = x(1)+x(2)ra = rx(1) + rx(2)elsea = x(1)*x(2)ra = x(2) * rx(1) + x(1) * rx(2)endifdo i = 1, 2temp = aa = a * x(i)ra = x(i) * ra + temp * rx(i)end doy(1) = a/x(2)ry(1) = 1.0/x(2) * ra - a/(x(2)*x(2)) * rx(2)y(2) = sin(x(2))ry(2) = cos(x(2)) * rx(2)Figure 2: Sample program of Figure 1 augmented with derivative codevariables x, rt = @ t@ x(1)@ t@ x(2) ! :We can propagate these derivatives by using elementary di�erentiation arithmetic based on the chain rule[16, 29] for computing the derivatives of y(1) and y(2) as shown in Figure 2. In this example, each assignmentto a derivative is actually a vector assignment of length 2.This mode of automatic di�erentiation, where we maintain the derivatives with respect to the inde-pendent variables, is called the forward mode of automatic di�erentiation. The reverse mode of automaticdi�erentiation maintains the derivative of the �nal result with respect to an intermediate quantity. Thesequantities, usually referred to as adjoints, measure the sensitivity of the �nal result with respect to someintermediate quantity. This approach is closely related to the adjoint sensitivity analysis for di�erentialequations that has been used at least since the late sixties, especially in nuclear engineering [9, 10], weatherforecasting [26], and neural networks [35].The reverse mode requires fewer operations than the forward mode if the number of independent variablesis larger than the number of dependent variables. This is exactly the case for computing a gradient, whichcan be viewed as a Jacobian matrix with only one row. This issue is discussed in more detail in [16, 18, 20].Despite its advantages from the viewpoint of complexity, the implementation of the reverse mode for thegeneral case is quite complicated. It requires the ability to access in reverse order the instructions performedfor the computation of f and the values of their operands and results. Current tools (see [24]) achieve thisby storing a record of every computation performed. An interpreter performs a backward pass on this\tape." The resulting overhead often dominates the complexity advantage of the reverse mode in an actualimplementation (see [14, 15]).We also note that even though we showed the computation only of �rst derivatives, the automaticdi�erentiation approach can easily be generalized to the computation of univariate Taylor series or Hessiansand multivariate higher-order derivatives [12, 17, 29].This discussion is intended to demonstrate that the principles underlying automatic di�erentiation arenot complicated: We just associate extra computations (which are entirely speci�ed on a statement-by-statement basis) with the statements executed in the original code. As a result, a variety of implementationsof automatic di�erentiation have been developed over the years (see [24] for a survey).Most of these implementations implement automatic di�erentiation by means of operator overloading,which is a language feature of several modern programming languages, including C++, Ada, Pascal-XSC,and Fortran 90. Operator overloading provides the possibility of associating side-e�ects with the elementaryarithmetic operations. For example, the addition of the derivative vectors that is required in the forwardmode can be associated with each addition \+" in the user's program. Operator overloading also allows3

for a simple implementation of the reverse mode, since the \tape" can be created as a by-product of theevaluation of f . The only drawback is that for straightforward implementations, the length of the tapeis proportional to the number of arithmetic operations performed by f [20, 5]. Recently, Griewank [18]suggested an approach to overcome this limitation through clever checkpointing.Nonetheless, for all their simplicity and elegance, operator overloading approaches have two fundamentaldrawbacks:Loss of context: Since all computation is performed as a by-product of elementary operations, it is verydi�cult, if not impossible, to perform optimizations that transcend one elementary operation. Theresulting disadvantages, especially those associated with the exploitation of parallelism, are discussedin [2].Loss of E�ciency: The overwhelming majority of codes for which computational scientists want deriva-tives are written in Fortran 77, which does not support operator overloading. While we can emu-late operator overloading by associating a subroutine call with each elementary operation, this ap-proach slows down computation considerably, and usually also imposes some restrictions on the syn-tactic structure of the code that can be processed. Examples of this approach are DAPRE [28, 33],GRESS/ADGEN [22, 23], and JAKEF [21]. Experiments with some of these systems are describedin [32].2 Hybrid Mode of Automatic Di�erentiationWe believe that the lack of e�ciency of previously existing automatic di�erentiation tools has preventedautomatic di�erentiation from becoming a standard tool for mainstream high-performance computing, eventhough there are numerous applications where the need for accurate �rst- and higher-order derivativeshas essentially mandated the use of automatic di�erentiation techniques and prompted the development ofcustom-tailored automatic di�erentiation systems (see [19]). For the majority of applications, however, ex-isting automatic di�erentiation implementations have provided derivatives substantially slower than divided-di�erence approximations, discouraging potential users.Since the e�ciency of computing derivatives is so crucial to the success of automatic di�erentiation forlarge applications, we are developing ADIFOR, an automatic di�erentiation tool for Fortran, with the explicitgoal of computing derivatives e�ciently. Motivated by demands that ADIFOR deliver exact derivativesquickly in order to be considered as a tool for serious high-performance computing, we have adopted ahybrid approach to computing derivatives that is generally based on the forward mode, but uses the reversemode to compute the gradients of assignment statements containing complex expressions. The hybrid modeis e�ective because assignment statements often compute a single dependent variable given the values ofmultiple independent variables, an ideal case for the reverse mode, and because, for this restricted case, thereverse mode code can be implemented entirely as inline code. Hence there is no need to construct the tape.Let us use an example to illustrate the advantages of the hybrid mode. Consider the statementw = �y=(z � z � z);where y and z depend on the independent variables. We have already computed ry and rz and now wishto compute rw. By breaking up this compound statement into unary and binary statements and applyingthe chain rule to each statement, we get the forward mode code shown in Figure 3.There is another way, though. The chain rule tells us thatrw = @ w@ y � ry+ @ w@ z � rz:Hence, if we know the \local" derivatives (@ w@ y ; @ w@ z) of w with respect to z and y, we can easily computerw, the derivatives of w with respect to x. The local derivatives (@ w@ y ; @ w@ z) can be computed e�ciently byusing the reverse mode of automatic di�erentiation. In the reverse mode, let tbar denote the adjoint objectcorresponding to t. The goal is for tbar to contain the derivative @ w@ t . We know that wbar = @ w@ w = 1:0. We4

Forward Mode:t1 = - yr t1 = - r yt2 = z * zr t2 = r z * z + z * r zt3 = t2 * zr t3 = r t2 * z + t2 * r zw = t1 / t3r w = (r t1 - r t3 * w) / t3 Reverse Mode:t1 = - yt2 = z * zt3 = t2 * zw = t1 / t3t1bar = (1 / t3)t3bar = (- t1 / t3)t2bar = t3bar * zzbar = t3bar * t2zbar = zbar + t2bar * zzbar = zbar + t2bar * zybar = - t1barr w = ybar * r y + zbar * r zFigure 3: Forward versus reverse mode in computing derivatives of w = -y/(z*z*z)can compute ybar and zbar by applying the following simple rule to the statements executed in computingw, but in reverse order: if s = f(t), then tbar += sbar * (df / dt)if s = f(t,u), then tbar += sbar * (df /dt)ubar += sbar * (df /du)Using this simple recipe (and some simple optimizations), we generate the reverse mode code shown inFigure 3.The forward mode code in Figure 3 requires space for three auxiliary gradient vectors and contains fourvector assignments. In contrast, the reverse mode code requires space for �ve scalar auxiliary adjoint objectsand has only one vector assignment.3 ADIFOR Design and ImplementationADIFOR has been developed within the context of the ParaScope Parallel Programming Environment [11],which combines dependence analysis with interprocedural analysis to support ambitious interproceduralcode optimization and semi-automatic parallelization of Fortran programs. While our primary goal is notcode optimization or parallelization of Fortran programs, ParaScope provides us with a Fortran parser, dataabstractions for representing Fortran programs and sophisticated facts derived from Fortran programs, andtools for constructing and manipulating those representations. In particular, ParaScope tools compute� data ow facts for scalars and regular array sections,� dependence graphs for array elements,� control ow graphs,� constant and symbolic facts, and� a call graph.The data-dependence analysis capabilities are critical for determining which variables need to have deriva-tive objects associated with them, a process we call variable nomination. Only those variables z whose valuesdepend on an independent variable x and inuence a dependent variable y need to have derivative informationassociated with them. Such a variable is called active. Variables that do not require derivative informationare called passive. Interprocedurally, variable nomination proceeds in a series of passes over the program callgraph by using an interaction matrix for each subroutine. This interaction matrix represents which input5

parameters or variables in common blocks inuence which output parameters or variables in common blocks.This analysis is also crucial in determining the sets of active/passive variable binding contexts in which eachsubroutine may be invoked. For example, consider the code for computing y = 3.0 * x * x:subroutine threexx(x,y)call prod(3.0,x,t)call prod(t,x,y)endsubroutine prod(x,y,z)z = x * yendIn the �rst call to prod, only the second and third of prod's parameters are active, whereas in the secondcall, all variables are active. ADIFOR recognizes this situation and performs procedure cloning to generatedi�erent augmented versions of prod for these di�erent contexts. The decision to do cloning based onactive/passive variable context will eventually be based on an assessment of the savings made possibleby introducing the cloned procedures, in accordance with the goal-directed interprocedural transformationapproach being adopted within ParaScope [7].Another advantage of basing ADIFOR within a sophisticated code optimization framework is that mecha-nisms are already in place for simplifying the derivative code that we generate by application of the statement-by-statement hybrid mode translation rules. By applying constant folding and forward substitution, weeliminate multiplications by 1.0, and additions of 0.0, and we reduce the number of variables that must beallocated to hold derivative values [1].In summary, ADIFOR proceeds as follows:1. The user speci�es the subroutine that corresponds to the \function" for which he wishes derivatives,as well as the variable names that correspond to dependent and independent variables. These namescan be subroutine parameters or variables in common blocks. In addition to the source code for the\function" subroutine, the user must submit the source code for all subroutines that are directly orindirectly called from this subroutine.2. ADIFOR parses the code, builds the call graph, collects intraprocedural and interprocedural depen-dency information, and determines active variables.3. Derivative objects are allocated in a straightforward fashion: Derivative objects for parameters areagain parameters. Derivative objects for variables in common blocks and local variables are againallocated in common blocks and as local variables, respectively.4. The original source code is augmented with derivative statements. The reverse mode is used for assign-ment statements, and the forward mode is used overall. Subroutine calls are rewritten to propagatederivative information, and procedure cloning is performed as needed.5. The augmented code is optimized, eliminating unnecessary arithmetic operations and temporary vari-ables.The resulting code generated by ADIFOR can be called by user programs in a exible manner to beused in conjunction with standard software tools for optimization, solving nonlinear equations, or for sti�ordinary di�erential equations. A discussion of calling the ADIFOR-generated code from users' programs inincluded in [4].4 Using ADIFORThe issues of ease of use and portability have received scant attention in software for automatic di�erentiation.In many applications, the \function" whose derivatives we wish to compute is a collection of subroutines,and all that should be expected of the user is to specify which of the variables correspond to the independentand dependent variables. In addition, the code generated by automatic di�erentiation should be easy totransport between di�erent machines. 6

ADIFOR takes those requirements into account. Its user interface is simple, and the ADIFOR-generatedcode is e�cient and portable. Unlike previous approaches, ADIFOR can deliver this functionality because itviews automatic di�erentiation from the outset as a source transformation problem. The goal is to automateand optimize the source translation process that was shown in very simple examples of the preceding section.By taking a source translator view, we can bring the many man-years of e�ort of the compiler communityto bear on this problem.ADIFOR di�ers from other implementations of automatic di�erentiation (see [24] for a survey) by beingbased on a source translation paradigm and by having been designed from the outset with large-scale codesand the need for highly e�cient derivative computations in mind. ADIFOR provides the following features:Portability: ADIFOR produces vanilla Fortran 77 code. ADIFOR-generated derivative code requires norun-time support and can easily be ported between di�erent computing environments.Generality: ADIFOR supports almost all of Fortran 77, including nested subroutines, common blocks, andequivalences.E�ciency: ADIFOR-generated derivative code is competitive with codes that compute the derivatives bydivided di�erences. In most applications we have run, the ADIFOR-generated code is faster than thedivided-di�erence code.Preservation of Software Development E�ort: The code produced by ADIFOR respects the data owstructure of the original program. That is, if the user invested the e�ort to develop code that vectorizesand parallelizes well, then the ADIFOR-generated derivative code also vectorizes and parallelizes well.In fact, the derivative code o�ers more scope for vectorization and parallelization.Extensibility: ADIFOR employs a consistent subroutine naming scheme that allows the user to supplyhis own derivative routines. In this fashion, the user can exploit domain-speci�c knowledge, utilizevendor-supplied libraries, and minimize computational bottlenecks.Ease of Use: ADIFOR requires the user to supply the Fortran source code for the subroutine representingthe function to be di�erentiated and for all lower-level subroutines. The user then selects the vari-ables (in either parameter lists or common blocks) that correspond to the independent and dependentvariables. ADIFOR then determines which other variables throughout the program require derivativeinformation. A detailed description of the use of ADIFOR-generated code appears in [4].Intuitive Interface: An X-windows interface for ADIFOR (called xadifor) makes it easy for the user to setup the ASCII script �le that ADIFOR reads. This functional division makes it easy both to set up theproblem and to rerun ADIFOR if changes in the code for the target function require a new translation.Using ADIFOR, one then need not worry about the accurate and e�cient computation of derivatives,even for complicated \functions." As a result, the computational scientist can concentrate on the moreimportant issues of algorithm design or system modeling.5 Experimental ResultsIn this section, we report on the execution time of ADIFOR-generated derivative codes in comparison withdivided-di�erence approximations of �rst derivatives. While the ADIFOR system runs on a Sparc platform,the ADIFOR-generated derivative codes are portable and can run on any computer that has a Fortran 77compiler.The problems named \camera," \micro," \heart," \polymer," \psycho," and \sand" were given to usby Janet Rogers, National Institute of Standards and Technology in Boulder, Colorado. The test codessubmitted to ADIFOR compute elementary Jacobian matrices that are then assembled to form a large sparseJacobian matrix that is used in an orthogonal-distance regression �t [6]. The code named \adiabatic" is fromLarry Biegler, Carnegie-Mellon University Chemical Engineering Department, and implements adiabaticow, a common module in chemical engineering [31]. The code named \shock" was given to us by GregShubin, Boeing Computer Services, Seattle, Washington. This code implements the steady shock tracking7

Code Div Di� ADIFOR ADIFORProblem Jacobian Size Run-time Run-time Improve-Name Size (lines) (seconds) (seconds) ment MachineSand 1� 4 24 0.16 0.07 56% RS6000Sand 1� 4 24 0.36 0.18 50% Sparc 4/490Psycho 1� 5 26 0.70 0.38 46% RS6000Psycho 1� 5 26 2.95 1.49 49% Sparc 4/490Polymer 2� 6 34 3.12 1.20 62% RS6000Polymer 2� 6 34 9.18 4.84 47% Sparc 4/490Camera 2� 13 97 1.82 1.81 0.5% RS6000Camera 2� 13 97 8.19 13.87 -69% Sparc 4/490Micro 4� 20 153 6.39 3.35 47% RS6000Micro 4� 20 153 23.0 16.17 30% Sparc 4/490Table 1: Performance of ADIFOR-generated derivative codes compared to divided-di�erence approximationson orthogonal-distance regression examplesCode Div Di� ADIFOR ADIFORProblem Jacobian Size Run-time Run-time Improve-Name Size (lines) (seconds) (seconds) ment MachineHeart 1� 8 1305 11641.1 13941.30 -20% Sparc1Adiabatic 6� 6 1089 0.54 0.18 67% Sparc1Reactor 3� 29 1455 42.34 36.14 15% Sparc 4/490Reactor 3� 29 1455 13.34 8.33 38% RS6000Shock 190� 190 1403 0.041 0.023 44% RS6000Shock 190� 190 1403 0.46 0.31 33% Sparc1Table 2: Performance of ADIFOR-generated derivative codes compared to divided-di�erence approximationsmethod for the axisymmetric blunt body problem [30]. The Jacobian has a banded structure, and thecompressed Jacobian has 28 columns, compared with 190 for the \normal" uncompressed Jacobian. Lastly,the code named \reactor" was given to us by Hussein Khalil, Argonne National Laboratory Reactor Analysisand Safety Division. While the other codes were used in an optimization setting, the derivatives of the\reactor" code are used for sensitivity analysis to ensure that the model varies gracefully with certain keyparameters.Table 1 and Table 2 summarize the performance of ADIFOR-generated derivative codes with respect todivided di�erences. These tests were run on a Sparcstation 1, a Sparc 4/400, or an IBM RS6000/550. Thenumbers reported in Table 1 are actually for 10,000 evaluations of the Jacobian, while those in Table 2 arefor a single evaluation of the Jacobian.The column of the tables labeled \ADIFOR Improvement" indicates the percentage improvement ofthe running time of the ADIFOR-generated derivative code over an approximation of the divided-di�erencerunning times. For the \shock" code, we had a derivative code based on sparse divided di�erences supplied tous. In the other cases, we estimated the time for divided di�erences by multiplying the time for one functionevaluation by the number of independent variables. This conservative approach is typical in an optimizationsetting where the function value already has been computed for other purposes. An improvement greaterthan 0% indicates that the ADIFOR-generated derivatives ran faster than divided di�erences.The percentage improvement for the \camera" problem indicates a stronger than expected dependenceof running times of ADIFOR-generated code on the choice of compiler and architecture. In fact, the 69%degradation in performance on the \camera" problem is because the Sparc compiler misses an opportunity tomove loop-invariant cos and sin invocations outside of loops, as occurs in the following ADIFOR-generated8

code: C cteta = cos(par(4))d$0 = par(4)do 99969 g$i$ = 1, gpg$cteta(g$i$) = -sin(d$0) * g$par(g$i$, 4)99969 continuecteta = cos(d$0)ADIFOR will eventually move loop-invariant code outside of the vector loops.We see that already in its current version, ADIFOR performs well in competition with divided di�erences.We also see that ADIFOR can handle problems where symbolic techniques would be almost certain to fail,such as the \shock" or \reactor" codes.ADIFOR-generated derivatives can also outperform hand-coded derivatives. For example, consider theswirling ow problem from the MINPACK{2 test problem collection [25]. The problem consists of a coupledsystem of boundary value problems describing the steady ow of a viscous, incompressible, axisymmetric uidbetween two rotating, in�nite coaxial disks. The number of variables in the resulting optimization problemdepends on the discretization. Figure 4 shows the performance of the hand-coded derivative code suppliedas part of the original swirling ow code and that of the ADIFOR-generated code, properly initialized toexploit the sparsity structure of the Jacobian. On an RS6000/320, the ADIFOR-generated code signi�cantlyoutperforms the hand-coded derivatives. On one processor of the CRAY Y-MP/18, ADIFOR and the hand-coded derivatives perform comparably. The values of the derivatives computed by the ADIFOR-generatedcode agree to full machine precision with the values from the hand-coded derivatives. On the other hand,the accuracy of the divided-di�erence approximations depends on the user's careful choice of a step size.
0

1

2

3

0 200 400 600 800 1000 1200 1400 1600 1800

IBM RS6000/320

tim
e

order of Jacobian

hand coded
ADIFOR w/ compressed Jacobian

0

0.01

0.02

0.03

0.04

0 200 400 600 800 1000 1200 1400 1600 1800

Cray Y/MP, 1 processor

tim
e

order of Jacobian

hand coded
ADIFOR w/ compressed JacobianFigure 4: Swirling ow Jacobian6 Conclusions and Future WorkWe conclude that ADIFOR-generated derivatives are an attractive substitute for hand-coded or divided-di�erence derivatives. Virtually no time investment is required by the user to generate the codes. In mostcodes, ADIFOR-generated codes outperform divided-di�erence derivative approximations. In addition, thefact that ADIFOR computes exact derivatives (up to machine precision) may signi�cantly increase therobustness of optimization codes or ODE solvers, where good derivative values are critical for the convergenceof the numerical scheme.We are planning many improvements for ADIFOR. The most important are the following:9

� generation of code to compute second- and higher-order derivatives as required by many applicationsin numerical optimization,� automatic detection of sparsity,� increased use of the inline version of the reverse mode for better performance, and� integration with parallel programming models such as Fortran-D.References[1] Alfred V. Aho, Ravi I. Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools.Addison-Wesley, Reading, Mass., second edition, 1986.[2] Christian Bischof. Issues in parallel automatic di�erentiation. In Andreas Griewank and George F.Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application.SIAM, Philadelphia, Penn., 1991, 100{113.[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Generatingderivative codes fromFortran programs. Preprint MCS{P263{0991,Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Ill., 1991. Also appeared as Technical Report 91185,Center for Research in Parallel Computation, Rice University, Houston, Texas.[4] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians. TechnicalMemorandum ANL/MCS{TM{158, Mathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, Ill., October 1991.[5] Christian Bischof and James Hu. Utilities for building and optimizing a computational graph foralgorithmic decomposition. Technical Memorandum ANL/MCS{TM{148, Mathematics and ComputerSciences Division, Argonne National Laboratory, Argonne, Ill., April 1991.[6] Paul T. Boggs and Janet E. Rogers. Orthogonal distance regression. Contemporary Mathematics,112:183{193, 1990.[7] Preston Briggs, Keith D. Cooper, Mary W. Hall, and Linda Torczon. Goal-directed interproceduraloptimization. CRPC Report CRPC{TR90102, Center for Research on Parallel Computation, RiceUniversity, November 1990.[8] J. C. Butcher. The Numerical Analysis of Ordinary Di�erential Equations (Runge-Kutta and GeneralLinear Methods). John Wiley and Sons, 1987.[9] D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. J.Math. Phys., 22(12):2794{2802, 1981.[10] D. G. Cacuci. Sensitivity theory for nonlinear systems. II. Extension to additional classes of responses.J. Math. Phys., 22(12):2803{2812, 1981.[11] D. Callahan, K. Cooper, R. T. Hood, Ken Kennedy, and Linda M. Torczon. ParaScope: A parallelprogramming environment. International Journal of Supercomputer Applications, 2(4), December 1988.[12] Bruce D. Christianson. Automatic Hessians by reverse accumulation. Technical Report NOC TR228,The Numerical Optimisation Center, Hat�eld Polytechnic, Hat�eld, U.K., April 1990.[13] John Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and NonlinearEquations. Prentice-Hall, Englewood Cli�s, N.J., 1983.[14] Lawrence C. W. Dixon. Automatic di�erentiation and parallel processing in optimisation. TechnicalReport No. 180, The Numerical Optimisation Center, Hat�eld Polytechnic, Hat�eld, U.K., 1987.10

[15] Lawrence C. W. Dixon. Use of automatic di�erentiation for calculating Hessians and Newton steps.In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application. SIAM, Philadelphia, Penn., 1991, 114{125.[16] Andreas Griewank. On automatic di�erentiation. In M. Iri and K. Tanabe, editors, MathematicalProgramming: Recent Developments and Applications. Kluwer Academic Publishers, 1989, 83{108.[17] Andreas Griewank. Automatic evaluation of �rst- and higher-derivative vectors. In R. Seydel, F. W.Schneider, T. K�upper, and H. Troger, editors, Proceedings of the Conference at W�urzburg, Aug. 1990, Bi-furcation and Chaos: Analysis, Algorithms, Applications, volume 97. Birkh�auser Verlag, Basel, Switzer-land, 1991, 135{148.[18] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse auto-matic di�erentiation. Optimization Methods and Software, to appear. Also appeared as Preprint MCS{P228{0491, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill.,1991.[19] Andreas Griewank and George F. Corliss, editors. Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application. SIAM, Philadelphia, Penn., 1991.[20] Andreas Griewank, David Juedes, Jay Srinivasan, and Charles Tyner. ADOL-C, a package for theautomatic di�erentiation of algorithms written in C/C++. ACM Trans. Math. Software, to appear.Also appeared as Preprint MCS{P180{1190, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, Ill., 1990.[21] Kenneth E. Hillstrom. JAKEF { A portable symbolic di�erentiator of functions given by algorithms.Technical Report ANL{82{48, Mathematics and Computer Science Division, Argonne National Labo-ratory, Argonne, Ill., 1982.[22] Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs. In AndreasGriewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implemen-tation, and Application. SIAM, Philadelphia, Penn., 1991, 243{250.[23] Jim E. Horwedel, Brian A. Worley, E. M. Oblow, and F. G. Pin. GRESS version 1.0 users manual.Technical Memorandum ORNL/TM 10835, Martin Marietta Energy Systems, Inc., Oak Ridge NationalLaboratory, Oak Ridge, Tenn., 1988.[24] David Juedes. A taxonomy of automatic di�erentiation tools. In Andreas Griewank and George F.Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application.SIAM, Philadelphia, Penn., 1991, 315{329.[25] Jorge J. Mor�e. On the performance of algorithms for large-scale bound constrained problems. In T. F.Coleman and Y. Li, editors, Large-Scale Numerical Optimization. SIAM, 1991, 32{45.[26] I. Michael Navon and U. Muller. FESW | A �nite-element Fortran IV program for solving the shallowwater equations. Advances in Engineering Software, 1:77{84, 1970.[27] Arnold Neumaier. Rigorous recursive calculations with functions. Talk presented at Second InternationalConference on Industrial and Applied Mathematics (Washington, D.C.), July 1991.[28] John D. Pryce and Paul H. Davis. A new implementation of automatic di�erentiation for use withnumerical software. Technical Report TR AM-87-11, Mathematics Department, Bristol University,1987.[29] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of Lecture Notes inComputer Science. Springer Verlag, Berlin, 1981.[30] G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B. Wardlaw, and L. B. Hackerman. Steady shock tracking,Newton's method, and the supersonic blunt body problem. SIAM Journal on Scienti�c and StatisticalComputing, 3(2):127{144, June 1982. 11

[31] J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering. McGraw-Hill, New York, 1975.[32] Edgar J. Souli�e. User's experience with Fortran precompilers for least squares optimization problems.In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application. SIAM, Philadelphia, Penn., 1991, 297{306.[33] Bruce R. Stephens and John D. Pryce. The DAPRE/UNIX Preprocessor Users' Guide v1.2. RoyalMilitary College of Science at Shrivenham, 1990.[34] Hans J. Stetter. Inclusion algorithms with functions as data. Computing, Suppl., 6:213{224, 1988.[35] P. Werbos. Applications of advances in nonlinear sensitivity analysis. In Systems Modeling and Opti-mization, New York, 1982. Springer Verlag, 762{777.

12

