A Dirichlet Problem with Infinite Multiplicity™

Man Kam Kwong

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, I 60439-4801

Dedicated to Professor V. Lakshmitkantham
on his 65th birthday

Abstract

We construct examples of strictly convex functions f on (—o0, 00)
satisfying f/(—oo) < n? < f’(co) such that the Dirichlet problem
w4+ f(u) = h(z) in [0, 7], w(0) = u(x) = 0, has an infinite number
of solutions, for any choice of h(x). Kaper and Kwong earlier have
presented examples with five solutions to settle a conjecture raised by
Lazer and McKenna. Here, we also give a sufficient condition for the
number of solutions to be finite. Bounds for the number of solutions
of a Dirichlet problem are of interest in the study of boundary value
problems of semilinear elliptic equations.
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In an informative article [18], Lazer and McKenna proposed a modified
mathematical model for the onset of large-amplitude oscillations in suspen-
sion bridges by wind with specific velocities. The study was motivated by the
inadequacy of older theories to explain the collapse of the Tacoma Narrows
Bridge of Seattle in 1941.

In the Lazer-McKenna model, the motion of the bridge is, as usual,
governed by a system of differential equations, more specifically, semilinear
elliptic differential equations, the complexity of which depends on the de-
gree of approximation and simplifications one is willing to accept. One of the
new ideas introduced is the asymmetry of the restoring force from a cable,
with respect to expansion and compression. The authors’ basic assumption
is that the cable “strongly resists expansion, but does not resist compres-

sion.”

The study of elliptic equations involving a nonlinear restoring-force
term of this type is still largely unexplored. In the same article, Lazer and
McKenna posed many interesting open questions. Some of these have not
been answered even in the one-dimensional case, when the elliptic equation

becomes a second-order nonlinear ordinary differential equation.

The study of the multiplicity of boundary value problems of semilin-
ear elliptic equations has attracted much attention recently. The survey
paper [18] is a good source of reference to previous work by Lazer and
McKenna and others. We mention the related problem of the uniqueness of
the positive solution (called the ground state when the solution exists in the
entire space R"), which we have actively worked on in the past few years.
Many other authors have contributed to this area; see [2-8,12-14,16,17,20-
22] and the references therein. It turns out that techniques used in studying
this latter problem can be borrowed to tackle problems mentioned in [18].

In the present work, the boundary value problem we are interested in is
Au(z)+ f(u(z))=h(z) inQCR", (1)

subject to the Dirichlet boundary condition
uw(z) =0 on 09, (2)

where f(u) is a genuinely, nonlinear continuously differentiable function on
(—00,00), and h(z) is any continuous function in €.



The one-dimensional special case of the problem is
u’(z)+ fu(z)) = h(z), z€(0,7), (3)

u(0) = u(7) = 0. (4)

We shall refer to a solution of (3)—(4) as a D-solution and reserve the simpler
term solution for one that satisfies (3), but not necessarily the Dirichlet
boundary conditions.

A central problem in the theory is the determination of upper and lower
bounds for the number of distinct D-solutions when f satisfies certain condi-
tions. By continuity, the range of f’ is a connected subinterval of (—oo, 00).
Of particular interest is the dependence of the bounds on I. Let A, denote
the n'™® Dirichlet eigenvalue of the Laplacian on ). In the one-dimensional
case, A\, = n’.

It is a well-known result of Dolph [9] (and Hammerstein [10] for the case
n = 1) that if the range of f’ lies “strictly” between A, and A,41 (more
precisely, if I C (A, 4 €, A 41), for some € > 0), then the Dirichlet problem
has a unique solution.

We say that the range of f’ crosses the nth eigenvalue if A, € I. In such
a case, multiple solutions are possible. A result of Lazer and McKenna in
[19] shows that if the first few eigenvalues are crossed, then there can be
twice as many solutions as there are eigenvalues crossed. It is easy to see
that unless further conditions are imposed on f, there can be no finite upper
bound for the number of solutions.

The first upper bound was obtained by Ambrosetti and Prodi [1], who
showed that under the assumptions

f is strictly convex (5)

and
only the first eigenvalue A; is crossed, (6)

there are at most two solutions.

When a higher eigenvalue is crossed instead, there can be three solu-
tions. Earlier numerical evidence supported the belief that three was the
upper bound when only one eigenvalue was crossed. Lazer and McKenna
formulated this question and its generalization as



ProBLEM 5 (in [18]). “If n? < f'(—o0) < (R4 1)?, (n4 1)* <
f'(+00) < (n+2)?, and f"(s) > 0, are there always at most
three solutions to (3)—~(4)?

(much harder) If n* < f'(—o0) < f'(+o0) < (n4 k+ 1)?, and
f"(s) > 0, are there at most 2k + 1 [solutions]?”

The first part of the conjecture was refuted recently in [11] when we
constructed an example having five solutions. A natural question that ensues
is whether five is now the upper bound. In this article, we show that there
can be no finite upper bound. The example we give, in fact, has an infinite
number of solutions. This result, incidentally, also settles the second part
of Problem 5 in the negative.

The ultimate interest, of course, is in the corresponding problem for the
higher-dimensional case, (1)—(2), but any information on the one-dimensional
case can shed light on the higher-dimensional case.

Theorem 1 For any integer n > 1 and any € > 0, there exists a strictly
conver function f, such that

n*—e< fllz)<n?+e

and the Dirichlet problem (3)—(4) has an infinite number of solutions for any
choice of the function h(z).

Proof. In the example we construct below, the range of f’ crosses the
second eigenvalue Ay = 4. The example can be easily modified to take care
of other eigenvalues.

The approach we use is the familiar shooting method. We study the
one-parameter family of solutions u(z;+) of (3) determined by the initial
conditions

w(0;7) =0, u'(0;7)=17. (7)

As we vary v, we note the sign of u(m;v). A change in sign implies the
existence of a D-solution.



We use an idea we exploited in [15] to confirm another conjecture (the
one-dimensional analog of Problem 2 raised in [18]):

If f'(00) = o0, then the number of solutions becomes unbounded
as h(x) becomes large in a certain sense.

Suppose that for large positive values of u, f'(u) is approaching a constant
limit a?. Let u(x;v) be a solution of (3) having a very large initial slope 7.
Obviously, u(x) will be positive in some subinterval (0,p) C (0,7) and has
a large amplitude up; = max{u(z):z € [0,p]}. We scale u vertically to

a function of unit amplitude, @ = u(z)/upr. It satisfies the differential
equation
h
u upm

Since v is very large, u(z) becomes very large within a short distance from
the initial point 2 = 0, and stays large throughout most of (0,p). Thus,
f(u)/u = a* for the majority of points in (0,p), and the right-hand side
of (8) is very small. We can argue (as in [15] using the classical Sturm-
Liouville comparison theorem) that w(«) is approximately a solution of the
linearized equation

U (2) + a*TU(z) = 0. (9)
In particular, if p is taken to be the first zero of u(z), then p = 7/a.

Likewise, if for large negative values of u, f'(u) is approaching some
constant limit 32, then any negative solution u(z) of (3) in a subinterval
(p,o) C (0,7), with sufficiently large amplitude, is an approximate solution
of

U'(z)+ p*U(x) = 0. (10)

In particular, if p and o are consecutive zeros of u(x), then o — p =~ 7/f3.

In other words, if we let v be sufficiently large, then the solution u(z;7v),
after some vertical scaling, coincides approximately with a solution of

U" () + F(U()) =0, (11)

which is obtained by replacing f(z) in (3) with the two-piece linear function

Flu) = { e (12)

(—o0)u, ©w<0



Let us now choose two numbers ¢ and b such that

1 1
2—€e<b<a<24+€e and _—I_E:l' (13)
a

Without loss of generality, we may assume that ¢ < 1. This will ensure that
a solution u(xz;~) of (3) cannot have more than three zeros in (0, 7).

We shall construct our function f so that
fl(x)=a®> and f/(—o0) = b2 (14)

It is easy to see that the corresponding differential equation (12) has an infi-
nite number of D-solutions (they are identical modulo a constant multiple),
each with exactly three zeros 0, p = 7/a, and 7. Hence by our observation,
those solutions u(z;v) of (3) with large v will almost be D-solutions. By
manipulating the way f'(u) converges to a? and b2, respectively, as u — oo
and —oo, one can make u(w;~) change sign infinitely many times, thus ob-
taining an infinite number of D-solutions.

We sketch the construction here; the proof of the details can be filled in
by the reader without much difficulty.

Choose two sequences of numbers {a, } and {b,} such that

b< - <bhy<h <2<ag<az<---<a, (15)
lim a, =a, lim b, =0, (16)

and

1 1] >1, n odd
an E{ <1, n even (17)
This can be achieved in the following way. The sequence {a,} can be any
increasing sequence with limit a. Take b, = a,/(1 = a,). Then modify
each b,, by either increasing or decreasing its value (a little is enough)

according to whether n is odd or even, to get b,,.

For each n, construct f(w) in an interval [—u,,, u,] for some sufficiently
large u,, in the following inductive way. Assume that f(u) has already been
defined in [—uy,—1, u,—1]. First continue f(u)outside this interval as if it were
going to have the limits lim, ., f/(u) = a% and lim,__., f'(u) = b2, while
maintaining the strict monotonicity of f’. Then, as the slope « is gradually



increased, u(z;v), after being scaled, will be more and more approximately
equal to a solution of

Uyl(2) + Fu(Un(2)) = 0, (18)
where
a’l, u>0
By (17), such a solution satisfies
>0, n odd
Un() { <0, n even (20)

Thus, if v is large enough, u(w;7) has the same sign as U,(7). Fix one
such v, and let u,, be any number larger than max {|u(z;v)|:z € [0, 7]}.

We summarize by giving an intuitive picture of our arguments. The
behavior of u(x;v), as ¥ — oo, is influenced by the values of f'(u) for
large values of u. Our choice of @ and b means that, asymptotically, u(z;y)
approaches a D-solution, but the exact sign of u(w;~) depends delicately on
the relative sizes of f/'(u) for positive and negative large values of u. We
choose the sequence of {a, } and {b,} discretely, with the property (17), so
that the positive side and the negative side of u win out alternatively, thus
producing an infinite number of changes of sign for u(7;v). 1

It is an interesting question to ask

what additional condition on f is required to restore 3 and 2k + 1

as upper bounds for the number of D-solutions, as stated in Prob-
lem 5 of [18]7

A wild guess is f"(s) > 0.

The method of scaling used in the proof of Theorem 1 can be used to
derive a simple sufficient condition for the finiteness of the number of D-
solutions. We look at the limiting boundary value problem (11). If it has no
D-solution, then for sufficiently large v, both positive and negative, u(x;~)
is not a D-solution of the original problem. Hence, all D-solutions of (3)
occur within a bounded interval of initial slopes. As a consequence, there
must be a finite number of D-solutions.



For the next result, we do not assume that f is convex, but only that

lirin f'(u) = f(+o00) exist and are finite. (21)

It is easy to give examples for which either f'(—o0) or f/(o0) is equal to 1
and an infinte number of D-solutions exist. Hence, we also assume that

f(+o0) £ 1. (22)

Lemma Assume that (21) and (22) hold. If
either f'(cc0) or f'(—o0) < 1, (23)

then only a finite number of D-solutions exist.

Proof. First assume that both f'(—cc) and f/(cc) are < 1. Then no
nontrivial solutions of (11) can have more than one zero in [0,7]. Hence,
(11) has no D-solutions. Suppose that f’(oc0) > 1 and f'(—o0) < 1. Any
solution of (11) starting from the left endpoint 2 = 0 with a negative initial
slope will not vanish again before or at 2 = 7. Thus, it is not a D-solution.
On the other hand, any solution starting from = = 0 with a positive initial
slope must vanish once in (0,7) and then becomes negative all the way up
to x = w. Thus, it is not a D-solution either. The conclusion follows. 1

To deal with the remaining cases, we assume that

lim f(u)=a* and lim f'(u) = b2 (24)

U— OO

Theorem 2 Suppose that (21) and (22) hold. The boundary value problem
(3)-(4) has a finite number of solutions if either (23) is satisfied or

b b b+ b
acfl—b’ aa:ba, or L;—I——I_b is an integer, (25)

where a and b are defined in (24).

none of the three numbers

Proof. In view of the lemma, it suffices to consider the second case. Again,
we look at the limiting boundary value problem (11). The situation in which
ab/(a + b) is an integer corresponds to the existence of a D-solution with
the same number of positive and negative half-cycles, while the other two
situations correspond to the existence of one more negative half-cycle and
the existence of one more positive half-cycle, respectively. 1
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