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In an informative article [18], Lazer and McKenna proposed a modi�edmathematical model for the onset of large-amplitude oscillations in suspen-sion bridges by wind with speci�c velocities. The study was motivated by theinadequacy of older theories to explain the collapse of the Tacoma NarrowsBridge of Seattle in 1941.In the Lazer-McKenna model, the motion of the bridge is, as usual,governed by a system of di�erential equations, more speci�cally, semilinearelliptic di�erential equations, the complexity of which depends on the de-gree of approximation and simpli�cations one is willing to accept. One of thenew ideas introduced is the asymmetry of the restoring force from a cable,with respect to expansion and compression. The authors' basic assumptionis that the cable \strongly resists expansion, but does not resist compres-sion." The study of elliptic equations involving a nonlinear restoring-forceterm of this type is still largely unexplored. In the same article, Lazer andMcKenna posed many interesting open questions. Some of these have notbeen answered even in the one-dimensional case, when the elliptic equationbecomes a second-order nonlinear ordinary di�erential equation.The study of the multiplicity of boundary value problems of semilin-ear elliptic equations has attracted much attention recently. The surveypaper [18] is a good source of reference to previous work by Lazer andMcKenna and others. We mention the related problem of the uniqueness ofthe positive solution (called the ground state when the solution exists in theentire space Rn), which we have actively worked on in the past few years.Many other authors have contributed to this area; see [2{8,12{14,16,17,20-22] and the references therein. It turns out that techniques used in studyingthis latter problem can be borrowed to tackle problems mentioned in [18].In the present work, the boundary value problem we are interested in is�u(x) + f(u(x)) = h(x) in 
 � Rn; (1)subject to the Dirichlet boundary conditionu(x) = 0 on @
; (2)where f(u) is a genuinely, nonlinear continuously di�erentiable function on(�1;1), and h(x) is any continuous function in 
.2



The one-dimensional special case of the problem isu00(x) + f(u(x)) = h(x); x 2 (0; �); (3)u(0) = u(�) = 0: (4)We shall refer to a solution of (3){(4) as a D-solution and reserve the simplerterm solution for one that satis�es (3), but not necessarily the Dirichletboundary conditions.A central problem in the theory is the determination of upper and lowerbounds for the number of distinct D-solutions when f satis�es certain condi-tions. By continuity, the range of f 0 is a connected subinterval of (�1;1).Of particular interest is the dependence of the bounds on I . Let �n denotethe nth Dirichlet eigenvalue of the Laplacian on 
. In the one-dimensionalcase, �n = n2.It is a well-known result of Dolph [9] (and Hammerstein [10] for the casen = 1) that if the range of f 0 lies \strictly" between �n and �n+1 (moreprecisely, if I � (�n + �; �n+1), for some � > 0), then the Dirichlet problemhas a unique solution.We say that the range of f 0 crosses the nth eigenvalue if �n 2 I . In sucha case, multiple solutions are possible. A result of Lazer and McKenna in[19] shows that if the �rst few eigenvalues are crossed, then there can betwice as many solutions as there are eigenvalues crossed. It is easy to seethat unless further conditions are imposed on f , there can be no �nite upperbound for the number of solutions.The �rst upper bound was obtained by Ambrosetti and Prodi [1], whoshowed that under the assumptionsf is strictly convex (5)and only the �rst eigenvalue �1 is crossed; (6)there are at most two solutions.When a higher eigenvalue is crossed instead, there can be three solu-tions. Earlier numerical evidence supported the belief that three was theupper bound when only one eigenvalue was crossed. Lazer and McKennaformulated this question and its generalization as3



Problem 5 (in [18]). \If n2 < f 0(�1) < (n + 1)2, (n + 1)2 <f 0(+1) < (n + 2)2, and f 00(s) > 0, are there always at mostthree solutions to (3){(4)? � � �(much harder) If n2 < f 0(�1) < f 0(+1) < (n + k + 1)2, andf 00(s) > 0, are there at most 2k + 1 [solutions]?"The �rst part of the conjecture was refuted recently in [11] when weconstructed an example having �ve solutions. A natural question that ensuesis whether �ve is now the upper bound. In this article, we show that therecan be no �nite upper bound. The example we give, in fact, has an in�nitenumber of solutions. This result, incidentally, also settles the second partof Problem 5 in the negative.The ultimate interest, of course, is in the corresponding problem for thehigher-dimensional case, (1){(2), but any information on the one-dimensionalcase can shed light on the higher-dimensional case.Theorem 1 For any integer n > 1 and any � > 0, there exists a strictlyconvex function f , such thatn2 � � < f 0(x) < n2 + �and the Dirichlet problem (3){(4) has an in�nite number of solutions for anychoice of the function h(x).Proof. In the example we construct below, the range of f 0 crosses thesecond eigenvalue �2 = 4. The example can be easily modi�ed to take careof other eigenvalues.The approach we use is the familiar shooting method. We study theone-parameter family of solutions u(x; ) of (3) determined by the initialconditions u(0; ) = 0; u0(0; ) = : (7)As we vary , we note the sign of u(�; ). A change in sign implies theexistence of a D-solution. 4



We use an idea we exploited in [15] to con�rm another conjecture (theone-dimensional analog of Problem 2 raised in [18]):If f 0(1) = 1, then the number of solutions becomes unboundedas h(x) becomes large in a certain sense.Suppose that for large positive values of u, f 0(u) is approaching a constantlimit �2. Let u(x; ) be a solution of (3) having a very large initial slope .Obviously, u(x) will be positive in some subinterval (0; �) � (0; �) and hasa large amplitude uM = max fu(x) : x 2 [0; �]g. We scale u vertically toa function of unit amplitude, u = u(x)=uM . It satis�es the di�erentialequation u00(x) + �f(u)u �u(x) = h(x)uM : (8)Since  is very large, u(x) becomes very large within a short distance fromthe initial point x = 0, and stays large throughout most of (0; �). Thus,f(u)=u � �2 for the majority of points in (0; �), and the right-hand sideof (8) is very small. We can argue (as in [15] using the classical Sturm-Liouville comparison theorem) that u(x) is approximately a solution of thelinearized equation U 00(x) + �2U(x) = 0: (9)In particular, if � is taken to be the �rst zero of u(x), then � � �=�.Likewise, if for large negative values of u, f 0(u) is approaching someconstant limit �2, then any negative solution u(x) of (3) in a subinterval(�; �)� (0; �), with su�ciently large amplitude, is an approximate solutionof U 00(x) + �2U(x) = 0: (10)In particular, if � and � are consecutive zeros of u(x), then � � � � �=�.In other words, if we let  be su�ciently large, then the solution u(x; ),after some vertical scaling, coincides approximately with a solution ofU 00(x) + F (U(x)) = 0; (11)which is obtained by replacing f(x) in (3) with the two-piece linear functionF (u) = ( f 0(1)u; u � 0f 0(�1)u; u � 0 : (12)5



Let us now choose two numbers a and b such that2� � < b < a < 2 + � and 1a + 1b = 1: (13)Without loss of generality, we may assume that � < 1. This will ensure thata solution u(x; ) of (3) cannot have more than three zeros in (0; �).We shall construct our function f so thatf 0(1) = a2 and f 0(�1) = b2: (14)It is easy to see that the corresponding di�erential equation (12) has an in�-nite number of D-solutions (they are identical modulo a constant multiple),each with exactly three zeros 0, � = �=a, and �. Hence by our observation,those solutions u(x; ) of (3) with large  will almost be D-solutions. Bymanipulating the way f 0(u) converges to a2 and b2, respectively, as u!1and �1, one can make u(�; ) change sign in�nitely many times, thus ob-taining an in�nite number of D-solutions.We sketch the construction here; the proof of the details can be �lled inby the reader without much di�culty.Choose two sequences of numbers fang and fbng such thatb < � � �< b2 < b1 < 2 < a1 < a2 < � � � < a; (15)limn!1 an = a; limn!1 bn = b; (16)and 1an + 1bn ( > 1; n odd< 1; n even : (17)This can be achieved in the following way. The sequence fang can be anyincreasing sequence with limit a. Take b̂n = an=(1 � an). Then modifyeach b̂n, by either increasing or decreasing its value (a little is enough)according to whether n is odd or even, to get bn.For each n, construct f(u) in an interval [�un; un] for some su�cientlylarge un in the following inductive way. Assume that f(u) has already beende�ned in [�un�1; un�1]. First continue f(u) outside this interval as if it weregoing to have the limits limu!1 f 0(u) = a2n and limu!�1 f 0(u) = b2n, whilemaintaining the strict monotonicity of f 0. Then, as the slope  is gradually6



increased, u(x; ), after being scaled, will be more and more approximatelyequal to a solution of U 00n (x) + Fn(Un(x)) = 0; (18)where Fn(U) = ( a2nU; u � 0b2nU; u � 0 : (19)By (17), such a solution satis�esUn(�)( > 0; n odd< 0; n even : (20)Thus, if  is large enough, u(�; ) has the same sign as Un(�). Fix onesuch , and let un be any number larger than max fju(x; )j : x 2 [0; �]g.We summarize by giving an intuitive picture of our arguments. Thebehavior of u(x; ), as  ! 1, is inuenced by the values of f 0(u) forlarge values of u. Our choice of a and b means that, asymptotically, u(x; )approaches a D-solution, but the exact sign of u(�; ) depends delicately onthe relative sizes of f 0(u) for positive and negative large values of u. Wechoose the sequence of fang and fbng discretely, with the property (17), sothat the positive side and the negative side of u win out alternatively, thusproducing an in�nite number of changes of sign for u(�; ).It is an interesting question to askwhat additional condition on f is required to restore 3 and 2k + 1as upper bounds for the number of D-solutions, as stated in Prob-lem 5 of [18]?A wild guess is f 00(s) > 0.The method of scaling used in the proof of Theorem 1 can be used toderive a simple su�cient condition for the �niteness of the number of D-solutions. We look at the limiting boundary value problem (11). If it has noD-solution, then for su�ciently large , both positive and negative, u(x; )is not a D-solution of the original problem. Hence, all D-solutions of (3)occur within a bounded interval of initial slopes. As a consequence, theremust be a �nite number of D-solutions.7



For the next result, we do not assume that f is convex, but only thatlimu!�1 f 0(u) = f 0(�1) exist and are �nite: (21)It is easy to give examples for which either f 0(�1) or f 0(1) is equal to 1and an in�nte number of D-solutions exist. Hence, we also assume thatf 0(�1) 6= 1: (22)Lemma Assume that (21) and (22) hold. Ifeither f 0(1) or f 0(�1) < 1; (23)then only a �nite number of D-solutions exist.Proof. First assume that both f 0(�1) and f 0(1) are < 1. Then nonontrivial solutions of (11) can have more than one zero in [0; �]. Hence,(11) has no D-solutions. Suppose that f 0(1) > 1 and f 0(�1) < 1. Anysolution of (11) starting from the left endpoint x = 0 with a negative initialslope will not vanish again before or at x = �. Thus, it is not a D-solution.On the other hand, any solution starting from x = 0 with a positive initialslope must vanish once in (0; �) and then becomes negative all the way upto x = �. Thus, it is not a D-solution either. The conclusion follows.To deal with the remaining cases, we assume thatlimu!1 f 0(u) = a2 and limu!�1 f 0(u) = b2: (24)Theorem 2 Suppose that (21) and (22) hold. The boundary value problem(3){(4) has a �nite number of solutions if either (23) is satis�ed ornone of the three numbers aba+ b; ab+ aa+ b ; or ab+ ba + b is an integer, (25)where a and b are de�ned in (24).Proof. In view of the lemma, it su�ces to consider the second case. Again,we look at the limiting boundary value problem (11). The situation in whichab=(a + b) is an integer corresponds to the existence of a D-solution withthe same number of positive and negative half-cycles, while the other twosituations correspond to the existence of one more negative half-cycle andthe existence of one more positive half-cycle, respectively.8
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