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A Worst-Case Example Using Linesearch Methodsfor Numerical Optimization with Inexact GradientEvaluations. �Richard G. Carter yAbstractTwo approaches often used to improve the robustness of numerical optimization algorithmsare linesearch and trust region methods. Trust region methods have previously been shown tobe extremely forgiving of high levels of noise and inaccuracy in gradient evaluations. We presenta worst-case example demonstrating that linesearch methods can be very fragile with respect tosuch noise.1 IntroductionGiven the unconstrained minimization problemminimize f(x) ; f : <n ! < ; (1)we consider iterative numerical algorithms such as Newton's method or quasi-Newton methods.These algorithms compute a local quadratic model about a given iterate xk and generate newiterates xk+1 = xk + sk using this model. For instance, if the quadratic model is k(xk + s) = f(xk) + gTk s+ 12sTBks (2)(where gk approximates rf(xk), the gradient of f at xk , and Bk is a symmetric positive de�nitematrix approximating r2f(xk), the Hessian of f at xk), then the simplest quasi-Newton methodwould be to take xk+1 = xk + dk, where dk is the step to the minimizer of the quadratic modeldk � �B�1k gk: (3)In practice, this approach usually works well when x0 is su�ciently close to the problem solution,but may not work at all otherwise. To make such methods more robust they are usually modi�edby the imposition of either a linesearch or a trust region methodology.�This research was supported by the Army Research O�ce under grant DAALO3-89-C-0038.yArmy High Performance Computing Research Center, Institute of Technology, University of Minnesota, 1100Washington Avenue South, Minneapolis, Minnesota 554151



In linesearch methods, rather than taking xk+1 = xk + dk, we instead set xk+1 = xk + �kdk forsome positive �k. The steplength �k is computed by a one-dimensional search procedure (hence thename linesearch) that attempts to approximately minimize f(xk + �kdk) for positive �k. A broadvariety of search procedures and step acceptance criteria have been proposed; a good introductionto these techniques can be found in [4]. These procedures assume that dk is a strict descentdirection for f (trivially true if gk is exact and Bk is positive de�nite) and will iterate until an�k is found that provides a su�cient reduction in the function. Convergence proofs typically relyon the assumptions that gk � rf(xk) and that in the limit the search directions do not becomeorthogonal to the steepest descent directions �rf(xk).Trust region methods do not con�ne their search path to the single direction dk. A full descrip-tion of the trust region approach is beyond the scope of this paper (the reader is referred to [4]and [7]), but we note that it has been well established (see, for instance, [7], [11], [2], and [1] ) thattrust region methods are extremely robust with respect to gradient errors.In this paper we present a class of examples demonstrating how linesearch methods can fail ifeven tiny amounts of error are present in the gradient. Speci�cally, given any nonzero �, we cangenerate a su�ciently bad example such that even though the relative error in the gradient is lessthan �, the search direction d0 computed by the linesearch technique at the initial iteration is anascent direction on the function f . In contrast, convergence results have been shown [2] for trustregion methods with � in excess of 0:5.2 A Simple Quadratic ExampleSelect � 2 (0; 1), and de�ne f(x) � 12xTAx ; (4)where A is a positive de�nite matrix with condition number 1=�2 de�ned byA � 12  � + ��1 � � ��1� � ��1 � + ��1 ! so that A�1 � 12  ��1 + � ��1 � ���1 � � ��1 + � ! : (5)2



Further select  2 (0; 1], and de�nex0 � p22  1� �1 + � ! ; g0 � p22  � � � � � ! ; and B0 � A: (6)Then we havef(x0) = �2(1 + 2) ; rf(x0) = p22  � + � + � ! and r2f(x0) = A: (7)Using these de�nitions, one can easily establish that the \ideal" Newton direction isdIdeal0 � � r2f(x0)�1 rf(x0) = � p22  1� �1 + � ! = �x0 ; (8)hence x0+dIdeal0 is the exact solution. However, the Newton direction actually computed using theinexact gradient g0 is d0 � � B�10 g0 = � p22  �1� ��1 + � ! : (9)Thus, the one-dimensional cross section of f in the direction d0 isf(x0 + �d0) = f(x0) + ��(1� 2) + �2 �2(1 + 2): (10)Notice that krf(x0)k = kg0k and kd0k = kdIdeal0 k. More speci�cally, g0 is a rotation of rf(x0)through the angle �g while d0 is a rotation of dIdeal0 through the angle �s, with�g = cos�1 2 � �22 + �2! and �s = cos�1  2�2 � 12�2 + 1! : (11)Two �nal quantities of interest are the angle between d0 and the steepest descent direction �rf(x0):�d = cos�1  �2(2 � 1)(1 + 2�2)1=2(�4 + 2�2)1=2! (12)and the relative error in the gradient:� � kg0 � rf(x0)kkg0k = 2�(2 + �2)1=2 : (13)Given these equations, we can generate a number of interesting examples by selecting appro-priate values of � and . Consider, for instance,  = 1. First note that for any choice of �, �d is�2 so that d0 is orthogonal to the steepest descent direction. Hence the directional derivative of f3
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-1 -0.5 0 0.5 1 1.5 2 2.5Figure 1: Level sets of f and  0 with  = 1, � = 0:1in the direction d0 is zero even though the computed directional derivative gT0 d0=kd0k is negative.Moreover, for any � 6= 0, we have f(x0 + �d0) > f(x0), so descent can never be achieved in the d0direction even if nonpositive � values are allowed in the linesearch.Figure 1 shows the level sets of both f and  0 at x0 for  = 1 and � = 10�1, along with the trueand approximate gradients and the computed and ideal Newton steps. We see that a very slightchange in the gradient approximation results in a dramatic change in the search direction d0.If we select � = 10�3, simple calculations show that the relative error in g0 is only 0:2% andthat the angle between g0 and rf(x0) is just over 0:1 degrees. Yet not only is d0 orthogonal torf(x0), but it is also almost diametrically opposite in direction from dIdeal0 ! �As � approaches zero, the matrix A becomes successively more ill-conditioned, and errors in g0are magni�ed by successively greater factors when used in the computation of the search directiond0, as the following table shows.�In fact, for  = 1 we can write �s = � � �g and �s�g = ��g � 1 .4



Table 1. Behavior of d0 as A becomes ill-conditioned, with  = 1�g �s� � (degrees) (degrees) �s�g10�1 0.199 11.4 168.579 0.148D+0210�2 0.200D-01 1.15 178.854 0.156D+0310�3 0.200D-02 0.115 179.885 0.157D+0410�4 0.200D-03 0.115D-01 179.989 0.157D+0510�5 0.200D-04 0.115D-02 179.999 0.157D+0610�6 0.200D-05 0.115D-03 180.000 0.157D+07We see that for an even moderately ill-conditioned matrix, a small error in g0 can result in asearch direction d0 almost diametrically opposite the correct search direction dIdeal0 : For all of theseexamples with  = 1, there exists no value of � for which descent in f is achieved; hence anylinesearch will necessarily fail.Even more pathological examples can be generated by selecting di�erent values of . Forinstance, if  = 12 , then �d is greater than 90 degrees, and d0 is actually a strict ascent direction onf . That is, the directional derivative of f in the dk direction, rf(x0)Td0=kd0k, is strictly positive(even though the computed directional derivative, gT0 d0=kd0k, is strictly negative). Again, this istrue even for very small values of relative gradient error. Investigation of such examples is left asan exercise for the reader.3 ConclusionsMuch debate has occurred over the years between advocates of linesearch techniques and devoteesof trust region methodologies. Some arguments center upon issues such as simplicity or eleganceand are therefore unanswerable. Other issues are more tangible: linesearch codes are often cited assuperior with respect to scale invariance and with respect to linear-algebra-cost-per-iteration, whiletrust region methods are often regarded as superior for nonconvex problems. However, trust regionmethods can be made scale invariant with the proper preconditioning [7] and can be implemented ifdesired with very inexpensive linear algebra (e.g. [8],[3], [10]), while modi�ed linesearch techniquesexist which at least partially address the issue of negative curvature (e.g. [6],[5]). In the opinion5



of the author, none of the arguments raised in the past (with the possible exception of the issue ofnonconvexity) are overwhelmingly convincing to objective observers.In contrast the situation for once seems quite clear if one considers the relative merits of trustregion versus linesearch approaches using the criteria of robustness with respect to inexact gradients.Robust convergence results have been shown for trust region algorithms even in the presence ofsigni�cant gradient error. However, when computing a search direction in a linesearch method, avery small amount of error in the computed gradient may result in a computed search directionalmost diametrically opposite the desired direction. This search direction may be orthogonal to thesteepest descent direction or may even be a strict ascent direction on f . Linesearch techniques willinvariably fail if this occurs. While the worst-case examples presented here represent particularlypoor combinations of starting point and gradient error, linesearch algorithms are nevertheless inprinciple highly vulnerable to the slightest inaccuracies or noise in gradient evaluations. A numericalcomparison of actual performance of linesearch versus trust region approaches in the presence ofgradient noise for a limited number of test problems can be found in [9].References[1] R. Carter, Numerical experience with a class of algorithms for nonlinear optimization us-ing inexact function and gradient information, Tech. Report 89-46, Institute for ComputerApplications in Science and Engineering, 1989. (SIAM J. Sci. Statist. Comput., to appear).[2] , On the global convergence of trust region algorithms using inexact gradient information,SIAM J.Numer. Anal., 28 (1991), pp. 251{265.[3] J. Dennis Jr. and H. Mei, Two new unconstrained optimization algorithms which use func-tion and gradient values, J. Optim. Theory Appl., 28 (1979), pp. 453{482.[4] J. Dennis Jr. and R. Schnabel, Numerical Methods for Unconstrained Optimization andNonlinear Equations, Prentice-Hall, Englewood Cli�s, New Jersey, 1983.6
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