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Abstract
Two approaches often used to improve the robustness of numerical optimization algorithms
are linesearch and trust region methods. Trust region methods have previously been shown to
be extremely forgiving of high levels of noise and inaccuracy in gradient evaluations. We present

a worst-case example demonstrating that linesearch methods can be very fragile with respect to
such noise.

1 Introduction

Given the unconstrained minimization problem
minimize f(z), f:R" =R , (1)

we consider iterative numerical algorithms such as Newton’s method or quasi-Newton methods.
These algorithms compute a local quadratic model about a given iterate x; and generate new

iterates xp4q1 = 2 + s using this model. For instance, if the quadratic model is
T 1 T
Vp(zg +5) = flor) + gp s+ 3° Bys (2)

(where g; approximates V f(zy), the gradient of f at zy, and By is a symmetric positive definite
matrix approximating V2 f(x},), the Hessian of f at ), then the simplest quasi-Newton method

would be to take xxy1 = ap + d, where dj, is the step to the minimizer of the quadratic model
dp = —Bk_lgk. (3)

In practice, this approach usually works well when z is sufficiently close to the problem solution,
but may not work at all otherwise. To make such methods more robust they are usually modified

by the imposition of either a linesearch or a trust region methodology.
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In linesearch methods, rather than taking 11 = 21 + di, we instead set x4 = 2p + apdy, for
some positive ay. The steplength ay is computed by a one-dimensional search procedure (hence the
name linesearch) that attempts to approximately minimize f(x; + axdy) for positive ay. A broad
variety of search procedures and step acceptance criteria have been proposed; a good introduction
to these techniques can be found in [4]. These procedures assume that dj is a strict descent
direction for f (trivially true if g is exact and By is positive definite) and will iterate until an
ay is found that provides a sufficient reduction in the function. Convergence proofs typically rely
on the assumptions that g = V f(2) and that in the limit the search directions do not become
orthogonal to the steepest descent directions —V f(zy).

Trust region methods do not confine their search path to the single direction dj. A full descrip-
tion of the trust region approach is beyond the scope of this paper (the reader is referred to [4]
and [7]), but we note that it has been well established (see, for instance, [7], [11], [2], and [1] ) that
trust region methods are extremely robust with respect to gradient errors.

In this paper we present a class of examples demonstrating how linesearch methods can fail if
even tiny amounts of error are present in the gradient. Specifically, given any nonzero (, we can
generate a sufficiently bad example such that even though the relative error in the gradient is less
than (, the search direction dy computed by the linesearch technique at the initial iteration is an
ascent direction on the function f. In contrast, convergence results have been shown [2] for trust

region methods with ¢ in excess of 0.5.
2 A Simple Quadratic Example

Select € € (0,1), and define

flz) = §xTAx , (4)

where A is a positive definite matrix with condition number 1/¢? defined by

1l ettt e—et 41 et+e et —¢
A:§( 1 ) so that A =5l 1 g ) (5)
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Further select v € (0,1], and define

T @(1_76) 7905\/5(—’}/—6) , and By = A. (6)

2 1+ ve

Then we have

ww:§u+%>,Vﬂmﬁﬂ@(;Qj

5 ) and V?f(zq) = A. (7)

Using these definitions, one can easily establish that the “ideal” Newton direction is

2 —
dy'e = = V2 f(w0)™! V(wo) = - g ( 1+ e ) - "

hence zq + did® is the exact solution. However, the Newton direction actually computed using the

_ V2 [ —1—ye
doE—Bolgoz—— _1+Z€ . (9)

inexact gradient gg is

Thus, the one-dimensional cross section of f in the direction dy is
€
f(zo+ ado) = Flwo) +ac(1~ %) + 0*S(1 +77). (10)

Notice that |V f(zo)|| = ||go|| and [|do|| = ||did®||. More specifically, go is a rotation of V f(x)

through the angle ©, while dy is a rotation of did°® through the angle ©,, with

2 2 2.2 1
0, = cos™! (7 ‘ ) and O, = cos™! (L) . (11)

,}/2 + €2 ’}/262 + 1

Two final quantities of interest are the angle between dg and the steepest descent direction —V f(zq):

2(~2
RS | (-1
0g = cos ((1 +y2e)/2(et ¢ 7262)1/2) (12)

and the relative error in the gradient:

llgo — VS (o)l _ 2¢

¢ ol P+ (13)

Given these equations, we can generate a number of interesting examples by selecting appro-

priate values of € and . Consider, for instance, v = 1. First note that for any choice of ¢, Q4 is

5 so that dg is orthogonal to the steepest descent direction. Hence the directional derivative of f
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Figure 1: Level sets of f and ¢g with vy =1, ¢ = 0.1

direction even if nonpositive a values are allowed in the linesearch.

V f(z0), but it is also almost diametrically opposite in direction from dite!t *

dg, as the following table shows.

*In fact, for ¥ =1 we can write @, =7 — Qg and 2= = T _ 1,
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in the direction dy is zero even though the computed directional derivative gl do/||dol| is negative.

Moreover, for any o # 0, we have f(zq + ady) > f(zg), so descent can never be achieved in the dgy

Figure 1 shows the level sets of both f and ¢ at xo for y = 1 and € = 107!, along with the true
and approximate gradients and the computed and ideal Newton steps. We see that a very slight
change in the gradient approximation results in a dramatic change in the search direction dg.

If we select ¢ = 1072, simple calculations show that the relative error in gg is only 0.2% and

that the angle between gg and V f(x¢) is just over 0.1 degrees. Yet not only is dy orthogonal to

As ¢ approaches zero, the matrix A becomes successively more ill-conditioned, and errors in gg

are magnified by successively greater factors when used in the computation of the search direction



Table 1. Behavior of dy as A becomes ill-conditioned, with v =1

0, O,
€ ¢ (degrees)  (degrees) 8—;
1071 0.199 11.4 168.579 | 0.148D4-02
1072 | 0.200D-01 1.15 178.854 | 0.156D4-03

1077 | 0.200D-02 |  0.115 179.885 | 0.157D+04
107* | 0.200D-03 | 0.115D-01  179.989 | 0.157D+405
107° | 0.200D-04 | 0.115D-02  179.999 | 0.157D+06
107% | 0.200D-05 | 0.115D-03  180.000 | 0.157D407

We see that for an even moderately ill-conditioned matrix, a small error in gg can result in a
search direction dy almost diametrically opposite the correct search direction dii®®. For all of these
examples with v = 1, there exists no value of a for which descent in f is achieved; hence any
linesearch will necessarily fail.

Even more pathological examples can be generated by selecting different values of v. For
instance, if v = %, then Q4 is greater than 90 degrees, and dy is actually a strict ascent direction on
f. That is, the directional derivative of f in the dj, direction, V f(z0)Tdo/||dol|, is strictly positive
(even though the computed directional derivative, gd'do/||do||, is strictly negative). Again, this is
true even for very small values of relative gradient error. Investigation of such examples is left as

an exercise for the reader.
3 Conclusions

Much debate has occurred over the years between advocates of linesearch techniques and devotees
of trust region methodologies. Some arguments center upon issues such as simplicity or elegance
and are therefore unanswerable. Other issues are more tangible: linesearch codes are often cited as
superior with respect to scale invariance and with respect to linear-algebra-cost-per-iteration, while
trust region methods are often regarded as superior for nonconvex problems. However, trust region
methods can be made scale invariant with the proper preconditioning [7] and can be implemented if
desired with very inexpensive linear algebra (e.g. [8],[3], [10]), while modified linesearch techniques

exist which at least partially address the issue of negative curvature (e.g. [6],[5]). In the opinion



of the author, none of the arguments raised in the past (with the possible exception of the issue of
nonconvexity) are overwhelmingly convincing to objective observers.

In contrast the situation for once seems quite clear if one considers the relative merits of trust
region versus linesearch approaches using the criteria of robustness with respect to inexact gradients.
Robust convergence results have been shown for trust region algorithms even in the presence of
significant gradient error. However, when computing a search direction in a linesearch method, a
very small amount of error in the computed gradient may result in a computed search direction
almost diametrically opposite the desired direction. This search direction may be orthogonal to the
steepest descent direction or may even be a strict ascent direction on f. Linesearch techniques will
invariably fail if this occurs. While the worst-case examples presented here represent particularly
poor combinations of starting point and gradient error, linesearch algorithms are nevertheless in
principle highly vulnerable to the slightest inaccuracies or noise in gradient evaluations. A numerical
comparison of actual performance of linesearch versus trust region approaches in the presence of

gradient noise for a limited number of test problems can be found in [9].
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