ADIFOR: Automatic Differentiation
in a Source Translator Environment

Christian Bischof, Argonne National Laboratory,
Alan Carle, Rice University,

George Corliss, Argonne National Laboratory, and

Andreas Griewank, Argonne National Laboratory

Abstract The numerical methods employed in the so-
lution of many scientific computing problems require
the computation of derivatives of a function f : R™* —
R™. ADIFOR (Automatic Differentiation In FORtran)
is a source transformation tool that accepts Fortran
77 code for the computation of a function and writes
portable Fortran 77 code for the computation of the
derivatives. In contrast to previous approaches, ADI-
FOR views automatic differentiation as a source trans-
formation problem and employs the data analysis ca-
pabilities of the ParaScope Fortran programming en-
vironment. Experimental results show that ADIFOR
can handle real-life codes and that ADIFOR-generated
codes are competitive with divided-difference approxi-
mations of derivatives. In addition, studies suggest that
the source-transformation approach to automatic dif-
ferentation may improve the time required to compute
derivatives by orders of magnitude.

Keywords. Derivative, gradient, Jacobian, automatic
differentiation, chain rule, ParaScope Parallel Program-
ming Environment, source transformation and opti-
mization.

1 Introduction

The methods employed for the solution of many sci-
entific computing problems require the evaluation of
derivatives of some function. Probably the best known
are gradient methods for optimization [11], Newton’s
method for the solution of nonlinear systems [9, 11],
and the numerical solution of stiff ordinary differential
equations [6, 10]. The function f to be differentiated is
usually represented in the form of a computer program,
not in a closed form as a single expression.

For purposes of illustration, we assume that f : x €
R” — y € R and that we wish to compute the deriva-
tives of y with respect to . We call = the independent
variable and y the dependent variable. There are four
approaches to computing derivatives (these issues are
discussed in more detail in [14]):

Hand-Coded: Computing derivatives by hand is dif-
ficult and error-prone, especially as the problem
complexity increases.

Divided Differences: The derivative of f with re-
spect to the i¢th component of x at a particular
point xzqg is approximated by either one-sided dif-
ferences

3 f(x)

8902»

_ fwo+hxe)— f(zo)

~
r=To h

or central differences

J f(x) Nf(xo—l—h*ei)—f(xo—h*ei).

o=vo 2h

8902»

Here €; 18 the ith Cartesian basis vector. Comput-
ing derivatives by divided differences has the ad-
vantage that we need only the function as a “black
box.” The principle disadvantage of divided differ-
ences is that their accuracy is hard to assess. A
small step size, h, is needed for properly approxi-
mating derivatives, yet may lead to numerical can-
cellation and the loss of many digits of accuracy.
In addition, different scales of the z;’s may require
different step sizes for the various parameters.

Symbolic Differentiation: Given a string describing
the definition of a function, symbolic manipula-
tion packages such as Maple, Reduce, Macsyma, or
Mathematica provide exact derivatives, expressing
the derivatives in terms of the intermediate vari-
ables. For example, if

F(@) = 2(1) x 2(2) * x(3) * w(4) * z(5),

we obtaln

Vi)=] z(1)*x(2)*xz(4) * z(5)
(1) *2(2) * 2(3) * x(4)

The evaluation of V f in this form is very inefficient,
so modern symbolic processors devote considerable
attention to efficient evaluations of common subex-
pressions. Branches and loops in the code defining
f present formidable challenges, which are being
addressed by developers of symbolic systems on a
basis similar to that presented here. The princi-
ple disadvantage of symbolic processors is that they
may run into resource limitations when the function
description is sufficiently long and complicated.

Automatic Differentiation: Automatic differentia-
tion techniques rely on the fact that every func-
tion, no matter how complicated, is executed on a
computer as a (potentially very long) sequence of
elementary operations such as additions, multipli-
cations, and elementary functions such as sin and
cos. By applying the chain rule

t:tg)

o) = (10) (o0
()

— [

o Tt

over and over again to the composition of those el-
ementary operations, one can compute derivative

information of f exactly and in a completely me-

chanical fashion. ADIFOR uses this approach to

transform Fortran 77 programs. For example, if we
. 5 .

have a program for computing f = [[;_; (?)

subroutine prod5(x,f)

real x(5), £

f = x(1) * x(2) * x(3) * x(4) * x(5)
return

end

ADIFOR produces a program whose computational
section is shown in Figure 1.

r$1 = x(1) * x(2)
r$2 = r$1 * x(3)
r$3 = r$2 * x(4)
r$4 = x(5) * x(4)
r$5 = r$4 * x(3)
r$ibar = r$5 * x(2)
r$2bar = r$5 * x(1)
r$3bar = r$4 * r$1
r$4bar = x(5) * r$2
do gi = 1, gdp$

g$f(g$is) = r$ibar * g¥x(g$i$,1) + r$2bar
* g$x(g$is,2) + r¥3bar * gdx(gis,3) +
r$dbar * g$x(gi,4) + r$3 * gPx(g$is,5)
end do
f = r$3 * x(5)

Figure 1. ADIFOR-generated code

The $ sign is used to emphasize ADIFOR-generated
variables. To improve readability, we deleted con-
tinuation line characters. If the variable x is ini-
tialized to the desired value xq, g$p to 5, and the
array g$x to the b x b identity matrix, then on exit
the vector g$y contains 65(;) |z=z,- No redundant
subexpressions are computed here, since the overall
product is computed in a binary-tree fashion, and
the proper pieces of the product are reused in the
derivative computation.

In the next section, we shall give a brief introduc-
tion to automatic differentiation. Section 3 describes
the overall use of the forward mode of automatic dif-
ferentiation, while employing the reverse mode for ef-
ficiency within assignment statements. Section 4 de-
scribes how ADIFOR provides this functionality in the
context of a source transformation environment, and
gives the rationale for choosing such an approach. In
Section 5, we present some experimental results which
show that the run time required for ADIFOR-generated
exact derivative codes compares favorably with divided-
difference derivative approximations. In Section 6, we
outline ongoing work and present evidence that the
source-transformation approach to automatic differen-
tiation may reduce the time to compute derivatives by
orders of magnitude.

2 Automatic Differentiation

Automatic differentiation takes advantage of the fact
that the source code also contains information about
derivatives of the function. ADIFOR (Automatic Differ-
entiation In FORtran) [3] augments the original source
code with additional statements that propagate values
of derivative objects in addition to the values of the vari-
ables computed in the original code. Given a Fortran
subroutine (or a collection of subroutines) for a func-
tion f, ADIFOR produces Fortran 77 subroutines for
the computation of the derivatives of f.

We illustrate automatic differentiation with an exam-
ple. Assume that we have the sample program shown in
Figure 2 for the computation of a function f : R? — RZ2.
Here, the vector x contains the independent variables,
and the vector y contains the dependent variables. The
function described by this program is defined except at
x(2) = 0 and is differentiable except at x(1) = 2.

if x(1) > 2 then
a=x(1) + x(2)

else
a=x(1) * x(2)
endif
doi=1, 2
a=a* x(i)
end do

y(1) = a / x(2)
y(2) = sin (x(2))

Figure 2. Sample program for a function f : x — y

We can transform this program into one for comput-
ing derivatives by associating a derivative object Vt
with every variable t. Assume that YVt contains the
derivatives of t with respect to the independent vari-

ables x,
ot
Vt = (ox(1)) :
2%x(2)

We can propagate these derivatives by using elementary
differentiation arithmetic based on the chain rule [14,
20] for computing the derivatives of y(1) and y(2), as
shown in Figure 3. In this example, each assignment to
a derivative is actually a vector assignment of length 2.

if x(1) > 2.0 then

a=x(1) + x(2)

Va = Vx(1) + Vx(2)
else

a=x(1) * x(2)

Va = x(2) * Vx(1) + x(1) * Vx(2)
endif
doi=1, 2

temp = a

a=a* x(i)

Va = x(i) * Va + temp * Vx(i)
end do
y(1) = a / x(2)
Vy(1) = 1.0 / x(2) * Va

-a/ (x(2) *# x(2)) * Vx(2)

y(2) = sin (x(2))
Vy(2) = cos (x(2)) * Vx(2)

Figure 3. Sample program of Figure 2 augmented with
derivative code

This mode of automatic differentiation, where we
maintain the derivatives with respect to the indepen-
dent variables, 1s called the forward mode of automatic
differentiation. The reverse mode of automatic differen-
tiation maintains the derivative of the final result with
respect to an intermediate quantity. These quantities,
usually referred to as adjoints, measure the sensitivity
of the final result with respect to some intermediate
quantity.

The reverse mode requires fewer operations than the
forward mode if the number of independent variables is
larger than the number of dependent variables. This is
exactly the case for computing a gradient, which can be
viewed as a Jacobian matrix with only one row. This
issue is discussed in more detail in [14, 16, 17].

Wolfe observed [23], and Baur and Strassen confirmed
[2], that if care is taken in handling quantities which are
common to the (rational) function and its derivatives,
then the cost of evaluating a gradient with n compo-
nents is a small multiple of the cost of evaluating the
underlying scalar function. Despite the advantages of
the reverse mode from the viewpoint of complexity, the
implementation for the general case i1s quite compli-
cated. It requires the ability to access in reverse or-
der the instructions performed for the computation of
f and the values of their operands and results. Current
tools (see [18]) achieve this by storing a record of ev-
ery computation performed. An interpreter performs a
backward pass on this “tape.” The resulting overhead
often dominates the complexity advantage of the reverse
mode in an actual implementation (see [12, 13]).

We also note that even though we showed the compu-
tation only of first derivatives, the automatic differenti-
ation approach can easily be generalized to the compu-
tation of univariate Taylor series or Hessians and mul-
tivariate higher-order derivatives [8, 15, 20].

This discussion is intended to demonstrate that
the principles underlying automatic differentiation are
not complicated: We just associate extra computa-
tions (which are entirely specified on a statement-by-
statement basis) with the statements executed in the
original code. As a result, a variety of implementations
of automatic differentiation have been developed over
the years (see [18] for a survey).

3 A Hybrid Approach

For efficiency in ADIFOR, we have adopted a hybrid ap-
proach to computing derivatives that is generally based
on the forward mode, but uses the reverse mode to com-
pute the gradients of assignment statements contain-
ing complex expressions. The hybrid mode is effective
because assignment statements often compute a single
dependent variable given the values of multiple inde-
pendent variables, an ideal case for the reverse mode.
For this restricted case, the reverse mode code can be
implemented entirely as inline code, thereby avoiding
potentially recursive programming implied by the Baur
and Strassen proof [2].

A simple example will illustrate the advantages of the
hybrid mode. Consider the statement

w=—y/(z+zx*z),

where y and z depend on the independent variables.
We have already computed Vy and Vz and now wish
to compute Vw. By breaking up this compound state-
ment into unary and binary statements and applying
the chain rule to each statement, we get the forward
mode code shown in Figure 4.

There is another way, though. The chain rule tells us
that

Vu = E*Vy—i—g—Z*Vz.
Hence, if we know the “local” derivatives (g—l;, %—f) of w
with respect to z and y, we can easily compute Vw, the
derivatives of w with respect to x. The local derivatives
(g—l;, %—f) can be computed efficiently by using the re-
verse mode of automatic differentiation. In the reverse
mode, let tbar denote the adjoint object correspond-
ing to t. The goal 1s for tbar to contain the derivative
%—f. We know that wbar = g—g = 1.0. We can compute
ybar and zbar by applying the following simple rule to
the statements executed in computing w, but in reverse

order:

if s = f(t), then tbar += sbar * (df/dt)
if s = f(t,u), then tbar += sbar * (df/dt)
ubar += sbar * (df/du)

Using this recipe (and some simple optimizations), we
generate the reverse mode code shown in Figure 4.

Forward Mode:
tl=-y

Vtl=-Vy

t2 =z % z

Vt2=V z+z+2z%V z

t3 = t2 % z
Vt3 =V t2 %z + t2 % V z
w=1t1/ t3

Vau =(Vt1-V t3x*w)/t3

Reverse Mode:

tl=-y

t2 =z % z
t3 = t2 % z
w=1t1/ %3

tlbar = (1 / t3)
t3bar = (- t1 / t3)
t2bar = t3bar * z
zbar = t3bar * t2

zbar = zbar + t2bar * z
zbar = zbar + t2bar * z
ybar = - tilbar

V w=ybar # V y + zbar * V z

Figure 4. Forward versus reverse mode in computing
derivatives of w = -y/(z*z*z)

The forward mode code in Figure 4 requires space
for three auxiliary gradient vectors and contains four
vector assignments. In contrast, the reverse mode code
requires space for five scalar auxiliary adjoint objects
and has only one vector assignment.

4 ADIFOR Design:
and Advantages

Principles

ADIFOR has been developed within the context of
the ParaScope Parallel Programming Environment [7],
which combines dependence analysis with interprocedu-
ral analysis to support ambitious interprocedural code
optimization and semi-automatic parallelization of For-
tran programs. While our primary goal is not code opti-
mization or parallelization of Fortran programs, ParaS-
cope provides us with a Fortran parser, data abstrac-
tions for representing Fortran programs and sophisti-
cated facts derived from Fortran programs, and tools for
constructing and manipulating those representations.

In particular, ParaScope tools compute data flow in-
formation, dependence graphs, control flow graphs, and
a call graph. The data-dependence analysis capabil-
ities are critical for determining which variables need
to have derivative objects associated with them, a pro-
cess we call variable nomination. Only those variables z
whose values depend on an independent variable x and
influence a dependent variable y need to have derivative
information associated with them.

Another advantage of basing ADIFOR within a so-
phisticated code optimization framework is that mecha-
nisms are already in place for simplifying the derivative
code that we generate by application of the statement-
by-statement hybrid mode translation rules. By apply-
ing constant folding and forward substitution, we elimi-
nate multiplications by 1.0 and additions of 0.0, and we
reduce the number of variables that must be allocated
to hold derivative values [1].

In summary, ADIFOR, proceeds as follows:

1. The user specifies the subroutine that corresponds
to the “function” for which he wishes derivatives,
as well as the variable names that correspond to de-
pendent and independent variables. These names
can be subroutine parameters or variables in com-
mon blocks. In addition to the source code for the
“function” subroutine, the user must submit the
source code for all subroutines that are directly or
indirectly called from this subroutine.

2. ADIFOR parses the code, builds the call graph,
collects intraprocedural and interprocedural depen-
dency information, and determines active variables.

3. ADIFOR allocates derivative objects.

4. The original source code is augmented with deriva-
tive statements. The forward mode is used overall,
while the reverse mode is used for assignment.

5. The augmented code is optimized, eliminating
unnecessary arithmetic operations and temporary
variables.

The resulting code generated by ADIFOR can be
called by user programs in a flexible manner to be used
in conjunction with standard software tools for opti-
mization, solving nonlinear equations, or for stiff or-
dinary differential equations. A discussion of calling
the ADIFOR-generated code from users’ programs in
included in [4].

The ease of use of ADIFOR follows from its basis in
a sophisticated compilation environment. In many ap-
plications, the “function” whose derivatives we wish to
compute 1s a collection of subroutines, and all that is
expected of the user 1s to specify which of the variables
correspond to the independent and dependent variables.
In addition, the code generated by automatic differenti-
ation is easy to transport between different machines.
ADIFOR takes those requirements into account. Its
user interface is simple, and the ADIFOR-generated
code is efficient and portable. In comparison with other
implementations of automatic differentiation (see [18]
for a survey), ADIFOR provides the following features:

Portability: ADIFOR produces vanilla Fortran 77
code. ADIFOR-generated derivative code requires
no run-time support and can easily be ported be-
tween different computing environments.

Generality: ADIFOR supports almost all of Fortran
77, including nested subroutines, common blocks,
and equivalences.

Efficiency: ADIFOR-generated derivative code 1is
competitive with codes that compute the deriva-
tives by divided differences. In most applications
we have run, the ADIFOR-generated code is faster
than the divided-difference code.

Preservation of Software Development Effort:
The code produced by ADIFOR respects the data
flow structure of the original program. That is, if
the user invested the effort to develop code that
vectorizes and parallelizes well, then the ADIFOR-
generated derivative code also vectorizes and paral-
lelizes well. In fact, the derivative code offers more
scope for vectorization and parallelization.

Extensibility: ADIFOR employs a
subroutine-naming scheme that allows the user to

conslstent

supply his own derivative routines. In this fashion,
the user can exploit domain-specific knowledge, uti-
lize vendor-supplied libraries, and minimize compu-
tational bottlenecks.

Ease of Use: ADIFOR requires the user to supply the
Fortran source code for the subroutine representing
the function to be differentiated and for all lower-
level subroutines. The user then selects the vari-
ables (in either parameter lists or common blocks)
that correspond to the independent and dependent
variables. ADIFOR, then determines which other
variables throughout the program require deriva-

tive information. A detailed description of the use
of ADIFOR-generated code appears in [4].

Intuitive Interface: An X-windows interface for AD-
TFOR (called xadifor) makes it easy for the user to
create the ASCII script file that ADIFOR reads.
This functional division makes it easy both to set
up the problem and to rerun ADIFOR if changes
in the code for the target function require a new
translation.

Using ADIFOR, one then need not worry about the
accurate and efficient computation of derivatives, even
for complicated functions. As a result, the computa-
tional scientist can concentrate on the more important
issues of algorithm design or system modeling.

5 Experimental Results

In this section, we report on the execution time of
ADIFOR-generated derivative codes in comparison with
divided-difference approximations of first derivatives on
some larger codes. While the ADIFOR system runs on
a SPARC platform, the ADIFOR-generated derivative
codes are portable and can run on any computer that
has a Fortran 77 compiler.

The “heart” problem was given to us by Janet Rogers,
National Institute of Standards and Technology in Boul-
der, Colorado. The code submitted to ADIFOR com-
putes elementary Jacobian matrices which are then as-
sembled to a large sparse Jacobian matrix used in an
orthogonal-distance regression fit [5]. The code named
“adiabatic” is from Larry Biegler, Chemical Engineer-
ing Department, Carnegie-Mellon University, and im-
plements adiabatic flow, a common module in chem-
ical engineering [22]. The code named “reactor” was
given to us by Hussein Khalil, Reactor Analysis and
Safety Division, Argonne National Laboratory. While
the other codes were used in an optimization setting,
the derivatives of the “reactor” code are used for sensi-
tivity analysis to ensure that the model is robust with
respect to certain key parameters. Finally, the code

Table 1. Performance of ADIFOR-generated derivative codes compared to
divided-difference approximations for a single Jacobian evaluation

Code | Div. Diff. | ADIFOR | ADIFOR
Problem Jacobian | Size Run time | Run time | Improve-

Name Size (lines) | (seconds) | (seconds) ment Machine
Heart 1x8 1305 11641.1 13941.30 -20% SPARC 1
Adiabatic 6 x6 1089 0.54 0.18 67% SPARC 1
Reactor 3 x 29 1455 42.34 36.14 15% | SPARC 4/490
Reactor 3 x 29 1455 13.34 8.33 38% RS6000/500
Shock 190 x 190 1403 0.041 0.023 44% RS6000/500
Shock 190 x 190 1403 0.46 0.31 33% SPARC 1

named “shock” was given to us by Greg Shubin, Boe-
ing Computer Services, Seattle, Washington. This code
implements the steady shock tracking method for the
axisymmetric blunt body problem [21]. The Jacobian
has a banded structure. The “normal” Jacobian has
190 columns, although the Jacobian compression tech-
niques outlined in [4] requires only 28 columns.

Table 1 summarizes the time required by the
ADIFOR-generated derivative codes with respect to di-
vided differences. These tests were run on a SPARCsta-
tion 1, a SPARC 4/490, or an IBM RS6000/550.

Different machines are cited because of the different
sources of the codes being run. The column of the table
labeled “ADIFOR Improvement” indicates the percent-
age improvement of the running time of the ADIFOR-
generated derivative code over an approximation of the
divided-difference running times. This column con-
tains the machine-independent comparison data. For
the “shock” code, we had a derivative code based on
sparse divided differences supplied to us. In the other
cases, we estimated the time for divided differences by
multiplying the time for one function evaluation by the
number of independent variables. This approach is con-
servative, yet typical in an optimization setting, where
the function value already has been computed for other
purposes. An improvement greater than 0% indicates
that the ADIFOR-generated derivatives ran faster than
divided differences.

We see that already in its current version, ADIFOR
performs well in competition with divided-difference
approximations. For all codes that we processed,
ADIFOR-generated code is up to a factor of three faster,
and never worse by more than a factor of 1.82. This im-
provement in the speed of derivative computations is
obtained without the user having to make any modi-
fications to the code. We also see that ADIFOR, can
handle problems where symbolic techniques would be
almost certain to fail, such as the “shock” or “reactor”
codes.

We conclude that ADIFOR-generated derivatives are
more than suitable as a substitute for handcoded or
divided-difference derivatives. Virtually no time invest-
ment is required by the user to generate the codes.
In most codes, ADIFOR-generated codes outperform
divided-difference derivative approximations. In addi-
tion, the fact that ADIFOR, computes ezact derivatives
(up to machine precision) may significantly increase the
robustness of optimization codes or ODE solvers, where
good derivative values are critical for the convergence
of the numerical scheme.

6 Future Work

We are planning many enhancements to improve the
performance of ADIFOR-generated code. The most im-
portant seems to be the increased use of the reverse
mode for better performance. The reverse mode re-
quires us to reverse the computation from a trace of at
least part of the computation, which we later interpret.
If we can accomplish the code reversal at compile time,
we can truly exploit the reverse mode, since we shall
not incur the overhead that is associated with run-time
tracing.

ADIFOR currently does a compile-time reversal of
composite right-hand sides of assignment statements,
but there are other syntactic structures such as paral-
lel loops for which this could be performed at compile
time. In a parallel loop, there are no dependencies be-
tween different iterations. Thus, in order to generate
code for the reverse mode, it 1s sufficient to reverse the
computation inside the loop body. This can easily be
done if the loop body 1s a basic block. The potential
of this technique is impressive. Hand-compiling reverse
mode code for the loop bodies of the torsion problem, a
problem in the MINPACK-2 test set collection [19], we
obtained the performance shown in Figure 5. This fig-
ure shows the ratio of gradient/function evaluation on a

Solbourne SE/900 for the current ADIFOR version and

Solbourne 5£/900
80
70
60k T current ADIFOR
50 - ADIFOR w/ loops dong in reverse mode
o
£ w

30

20

105

10 2 30 40 50 60 70

number of grid pointsin each dimension

Figure 5: Ratio of gradient/function evaluation

for a hand-modified ADIFOR code that uses the reverse
mode for the bodies of parallel loops. The gradients are
of size nint * nint, where nint 1s the number of grid
points in each dimension.

Approximation of the gradient by divided differences
costs nint * nint function evaluations. Hence, we see
that

e the current ADIFOR is faster than divided-
difference approximations by a factor of 70 on a
problem of size 4900; and

e using the reverse mode for loop bodies, we can com-
pute the gradient in about six to seven times the
cost of a function evaluation, independent of the
size of the problem.

Taken together, these points mean that for the problem
of size 4900, we can improve the speed of derivative
computation by over two orders of magnitude compared
to divided-difference computations.

We also plan to develop a better understanding of
the techniques that are used for symbolic approaches
for computing derivatives, especially with respect to
reasoning about mathematical identities. For exam-
ple, if presented with a statement like x = sin(y)**2
+ cos(y)**2, ADIFOR will dutifully apply the chain
rule, while the mathematical reasoning built into a sym-
bolic system might recognize this identity and simplify
it. The chain-rule based automatic differentiation ap-
proach underlying ADIFOR is a perfect overall frame-
work for the computation of derivatives since it is more
or less insensitive to the overall size of the code. On
the other hand, symbolic techniques, whose execution
time depends significantly on the size of the problem
presented, fit in well as simplification or optimization

techniques at the statement or basic-block level. We
intend to explore this issue further.

Acknowledgement

This work was supported by the Applied Mathemat-
ical Sciences subprogram of the Office of Energy Re-
search, U.S. Department of Energy, under Contract W-
31-109-Eng—38; through NSF Cooperative Agreement
No. CCR-8809615; and by the W. M. Keck Foundation.

References

[1] Alfred V. Aho, Ravi I. Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, Mass., second edi-
tion, 1986.

[2] W.Baur and V. Strassen. The complexity of partial
derivatives. Theoretical Computer Science, 22:317

- 330, 1983.

[3] Christian Bischof, Alan Carle, George Corliss, An-
dreas Griewank, and Paul Hovland. Generating
derivative codes from Fortran programs. Preprint
MCS-P263-0991, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, Ar-
gonne, I1l. 60439, 1991. Also appeared as Technical
Report 91185, Center for Research in Parallel Com-
putation, Rice University, Houston, Tex. 77251.

[4] Christian Bischof and Paul Hovland. Using ADI-
FOR to compute dense and sparse Jacobians. Tech-
nical Memorandum ANL/MCS-TM-158, Mathe-
matics and Computer Science Division, Argonne
National Laboratory, Argonne, Ill. 60439, October
1991. ADIFOR Working Note # 2.

[5] Paul T. Boggs and Janet E. Rogers. Orthogonal
distance regression. Contemporary Mathematics,

112:183 — 193, 1990.

[6] J. C. Butcher. TImplicit Runge-Kutta processes.
Math. Comp., 18:50 — 64, 1964.

[7] D. Callahan, K. Cooper, R. T. Hood, Ken Kennedy,
and Linda M. Torczon. ParaScope: a parallel pro-
gramming environment. Iniernational Journal of
Supercomputer Applications, 2(4), December 1988.

[8] Bruce D. Christianson. Automatic Hessians by
reverse accumulation. Technical Report NOC
TR228, The Numerical Optimisation Center, Hat-
field Polytechnic, Hatfield, U.K.; April 1990.

[9]

[13]

[15]

[17]

[18]

T. F. Coleman, B. S. Garbow, and J. J. Moré. Soft-
ware for estimating sparse Jacobian matrices. ACM

Trans. Math. Software, 10:329 — 345, 1984.

G. Dahlquist. A special stability problem for linear
multistep methods. BIT, 3:27 — 43, 1963.

John Dennis and R. Schnabel. Numerical Meth-
ods for Unconstrained Optimization and Nonlinear
Fquations. Prentice-Hall, Englewood Cliffs, N.J.
1983.

Lawrence C. W. Dixon. Automatic differentiation
and parallel processing in optimisation. Technical
Report No. 180, The Numerical Optimisation Cen-
ter, Hatfield Polytechnic, Hatfield, U.K., 1987.

Lawrence C. W. Dixon. Use of automatic differenti-
ation for calculating Hessians and Newton steps. In
Andreas Griewank and George F. Corliss, editors,
Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, pages 114 — 125.
SIAM, Philadelphia, Penn., 1991.

Andreas Griewank. On automatic differentiation.
In M. Ir1 and K. Tanabe, editors, Mathematical
Programmang: Recent Developments and Applica-
tions, pages 83 — 108. Kluwer Academic Publishers,
1989.

Andreas Griewank. Automatic evaluation of first-
and higher-derivative vectors. In R. Seydel, F. W.
Schneider, T. Kupper, and H. Troger, editors, Pro-
ceedings of the Conference at Wirzburg, Aug. 1990,
Bifurcation and Chaos: Analysis, Algorithms, Ap-
plications, volume 97, pages 135 — 148. Birkhauser
Verlag, Basel, Switzerland, 1991.

Andreas Griewank. Achieving logarithmic growth
of temporal and spatial complexity in reverse au-
tomatic differentiation. Optimization Methods and
Software, to appear. Also appeared as Preprint
MCS-P228-0491, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, 9700

S. Cass Ave., Argonne, I1l. 60439, 1991.

Andreas Griewank, David Juedes, Jay Srinivasan,
and Charles Tyner. ADOL-C, a package for the
automatic differentiation of algorithms written in
C/C++. ACM Trans. Math. Software, to appear.

David Juedes. A taxonomy of automatic differen-
tiation tools. In Andreas Griewank and George F.
Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application,

pages 315 — 329. STAM, Philadelphia, Penn., 1991.

[19]

[20]

Jorge J. Moré. On the performance of algorithms
for large-scale bound constrained problems. In
T. F. Coleman and Y. Li, editors, Large-Scale Nu-
merical Optimization, pages 32 — 45. STAM, 1991.

Louis B. Rall. Automatic Differentiation: Tech-
niques and Applications, volume 120 of Lecture
Notes in Computer Science. Springer Verlag,
Berlin, 1981.

G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B.
Wardlaw, and L. B. Hackerman. Steady shock
tracking, Newton’s method, and the supersonic
blunt body problem. SIAM J. on Seci. and Stat.
Computing, 3(2):127 — 144, June 1982.

J. M. Smith and H. C. Van Ness. Introduction to
Chemical Engineering. McGraw-Hill, New York,
1975.

Philip Wolfe. Checking the calculation of gradients.
ACM Trans. Math. Softw., 6(4):337 — 343, 1982.

