
ADIFOR: Automatic Di�erentiationin a Source Translator EnvironmentChristian Bischof, Argonne National Laboratory,Alan Carle, Rice University,George Corliss, Argonne National Laboratory, andAndreas Griewank, Argonne National LaboratoryAbstract The numerical methods employed in the so-lution of many scienti�c computing problems requirethe computation of derivatives of a function f : Rn !Rm. ADIFOR (Automatic Di�erentiation In FORtran)is a source transformation tool that accepts Fortran77 code for the computation of a function and writesportable Fortran 77 code for the computation of thederivatives. In contrast to previous approaches, ADI-FOR views automatic di�erentiation as a source trans-formation problem and employs the data analysis ca-pabilities of the ParaScope Fortran programming en-vironment. Experimental results show that ADIFORcan handle real-life codes and that ADIFOR-generatedcodes are competitive with divided-di�erence approxi-mations of derivatives. In addition, studies suggest thatthe source-transformation approach to automatic dif-ferentation may improve the time required to computederivatives by orders of magnitude.Keywords. Derivative, gradient, Jacobian, automaticdi�erentiation, chain rule, ParaScope Parallel Program-ming Environment, source transformation and opti-mization.1 IntroductionThe methods employed for the solution of many sci-enti�c computing problems require the evaluation ofderivatives of some function. Probably the best knownare gradient methods for optimization [11], Newton'smethod for the solution of nonlinear systems [9, 11],and the numerical solution of sti� ordinary di�erentialequations [6, 10]. The function f to be di�erentiated isusually represented in the form of a computer program,not in a closed form as a single expression.

For purposes of illustration, we assume that f : x 2Rn 7! y 2 R and that we wish to compute the deriva-tives of y with respect to x. We call x the independentvariable and y the dependent variable. There are fourapproaches to computing derivatives (these issues arediscussed in more detail in [14]):Hand-Coded: Computing derivatives by hand is dif-�cult and error-prone, especially as the problemcomplexity increases.Divided Di�erences: The derivative of f with re-spect to the ith component of x at a particularpoint x0 is approximated by either one-sided dif-ferences@ f(x)@ xi ���x=x0 � f(x0 + h � ei)� f(x0)hor central di�erences@ f(x)@ xi ���x=x0 � f(x0 + h � ei)� f(x0 � h � ei)2h :Here ei is the ith Cartesian basis vector. Comput-ing derivatives by divided di�erences has the ad-vantage that we need only the function as a \blackbox." The principle disadvantage of divided di�er-ences is that their accuracy is hard to assess. Asmall step size, h, is needed for properly approxi-mating derivatives, yet may lead to numerical can-cellation and the loss of many digits of accuracy.In addition, di�erent scales of the xi's may requiredi�erent step sizes for the various parameters.Symbolic Di�erentiation: Given a string describingthe de�nition of a function, symbolic manipula-tion packages such as Maple, Reduce, Macsyma, orMathematica provide exact derivatives, expressingthe derivatives in terms of the intermediate vari-ables. For example, iff(x) = x(1) � x(2) � x(3) � x(4) � x(5);1

we obtainrf(x) = 0BBBB@ x(2) � x(3) � x(4) � x(5)x(1) � x(3) � x(4) � x(5)x(1) � x(2) � x(4) � x(5)x(1) � x(2) � x(3) � x(5)x(1) � x(2) � x(3) � x(4) 1CCCCA :The evaluation ofrf in this form is very ine�cient,so modern symbolic processors devote considerableattention to e�cient evaluations of common subex-pressions. Branches and loops in the code de�ningf present formidable challenges, which are beingaddressed by developers of symbolic systems on abasis similar to that presented here. The princi-ple disadvantage of symbolic processors is that theymay run into resource limitationswhen the functiondescription is su�ciently long and complicated.Automatic Di�erentiation: Automatic di�erentia-tion techniques rely on the fact that every func-tion, no matter how complicated, is executed on acomputer as a (potentially very long) sequence ofelementary operations such as additions, multipli-cations, and elementary functions such as sin andcos. By applying the chain rule@@tf(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@tg(t)���t=t0�(1)over and over again to the composition of those el-ementary operations, one can compute derivativeinformation of f exactly and in a completely me-chanical fashion. ADIFOR uses this approach totransform Fortran 77 programs. For example, if wehave a program for computing f = Q5i=1 x(i)subroutine prod5(x,f)real x(5), ff = x(1) * x(2) * x(3) * x(4) * x(5)returnendADIFOR produces a programwhose computationalsection is shown in Figure 1.r$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2do g$i$ = 1, gp

g$f(g$i$) = r$1bar * g$x(g$i$,1) + r$2bar* g$x(g$i$,2) + r$3bar * g$x(g$i$,3) +r$4bar * g$x(g$i$,4) + r$3 * g$x(g$i$,5)end dof = r$3 * x(5)Figure 1. ADIFOR-generated codeThe $ sign is used to emphasize ADIFOR-generatedvariables. To improve readability, we deleted con-tinuation line characters. If the variable x is ini-tialized to the desired value x0, g$p to 5, and thearray g$x to the 5�5 identity matrix, then on exitthe vector g$y contains @ f(x)@ x jx=x0 . No redundantsubexpressions are computed here, since the overallproduct is computed in a binary-tree fashion, andthe proper pieces of the product are reused in thederivative computation.In the next section, we shall give a brief introduc-tion to automatic di�erentiation. Section 3 describesthe overall use of the forward mode of automatic dif-ferentiation, while employing the reverse mode for ef-�ciency within assignment statements. Section 4 de-scribes how ADIFOR provides this functionality in thecontext of a source transformation environment, andgives the rationale for choosing such an approach. InSection 5, we present some experimental results whichshow that the run time required for ADIFOR-generatedexact derivative codes compares favorably with divided-di�erence derivative approximations. In Section 6, weoutline ongoing work and present evidence that thesource-transformation approach to automatic di�eren-tiation may reduce the time to compute derivatives byorders of magnitude.2 Automatic Di�erentiationAutomatic di�erentiation takes advantage of the factthat the source code also contains information aboutderivatives of the function. ADIFOR (Automatic Di�er-entiation In FORtran) [3] augments the original sourcecode with additional statements that propagate valuesof derivative objects in addition to the values of the vari-ables computed in the original code. Given a Fortransubroutine (or a collection of subroutines) for a func-tion f , ADIFOR produces Fortran 77 subroutines forthe computation of the derivatives of f .We illustrate automatic di�erentiation with an exam-ple. Assume that we have the sample program shown inFigure 2 for the computation of a function f : R2 7! R2.Here, the vector x contains the independent variables,and the vector y contains the dependent variables. Thefunction described by this program is de�ned except atx(2) = 0 and is di�erentiable except at x(1) = 2.

if x(1) > 2 thena = x(1) + x(2)elsea = x(1) * x(2)endifdo i = 1, 2a = a * x(i)end doy(1) = a / x(2)y(2) = sin (x(2))Figure 2. Sample program for a function f : x 7! yWe can transform this program into one for comput-ing derivatives by associating a derivative object rtwith every variable t. Assume that rt contains thederivatives of t with respect to the independent vari-ables x, rt = @ t@ x(1)@ t@ x(2) ! :We can propagate these derivatives by using elementarydi�erentiation arithmetic based on the chain rule [14,20] for computing the derivatives of y(1) and y(2), asshown in Figure 3. In this example, each assignment toa derivative is actually a vector assignment of length 2.if x(1) > 2.0 thena = x(1) + x(2)ra = rx(1) + rx(2)elsea = x(1) * x(2)ra = x(2) * rx(1) + x(1) * rx(2)endifdo i = 1, 2temp = aa = a * x(i)ra = x(i) * ra + temp * rx(i)end doy(1) = a / x(2)ry(1) = 1.0 / x(2) * ra- a / (x(2) * x(2)) * rx(2)y(2) = sin (x(2))ry(2) = cos (x(2)) * rx(2)Figure 3. Sample program of Figure 2 augmented withderivative codeThis mode of automatic di�erentiation, where wemaintain the derivatives with respect to the indepen-dent variables, is called the forward mode of automaticdi�erentiation. The reverse mode of automatic di�eren-tiation maintains the derivative of the �nal result withrespect to an intermediate quantity. These quantities,usually referred to as adjoints, measure the sensitivityof the �nal result with respect to some intermediatequantity.

The reverse mode requires fewer operations than theforward mode if the number of independent variables islarger than the number of dependent variables. This isexactly the case for computing a gradient, which can beviewed as a Jacobian matrix with only one row. Thisissue is discussed in more detail in [14, 16, 17].Wolfe observed [23], and Baur and Strassen con�rmed[2], that if care is taken in handling quantities which arecommon to the (rational) function and its derivatives,then the cost of evaluating a gradient with n compo-nents is a small multiple of the cost of evaluating theunderlying scalar function. Despite the advantages ofthe reverse mode from the viewpoint of complexity, theimplementation for the general case is quite compli-cated. It requires the ability to access in reverse or-der the instructions performed for the computation off and the values of their operands and results. Currenttools (see [18]) achieve this by storing a record of ev-ery computation performed. An interpreter performs abackward pass on this \tape." The resulting overheadoften dominates the complexity advantage of the reversemode in an actual implementation (see [12, 13]).We also note that even though we showed the compu-tation only of �rst derivatives, the automatic di�erenti-ation approach can easily be generalized to the compu-tation of univariate Taylor series or Hessians and mul-tivariate higher-order derivatives [8, 15, 20].This discussion is intended to demonstrate thatthe principles underlying automatic di�erentiation arenot complicated: We just associate extra computa-tions (which are entirely speci�ed on a statement-by-statement basis) with the statements executed in theoriginal code. As a result, a variety of implementationsof automatic di�erentiation have been developed overthe years (see [18] for a survey).3 A Hybrid ApproachFor e�ciency in ADIFOR, we have adopted a hybrid ap-proach to computing derivatives that is generally basedon the forward mode, but uses the reverse mode to com-pute the gradients of assignment statements contain-ing complex expressions. The hybrid mode is e�ectivebecause assignment statements often compute a singledependent variable given the values of multiple inde-pendent variables, an ideal case for the reverse mode.For this restricted case, the reverse mode code can beimplemented entirely as inline code, thereby avoidingpotentially recursive programming implied by the Baurand Strassen proof [2].A simple example will illustrate the advantages of thehybrid mode. Consider the statementw = �y=(z � z � z);

where y and z depend on the independent variables.We have already computed ry and rz and now wishto compute rw. By breaking up this compound state-ment into unary and binary statements and applyingthe chain rule to each statement, we get the forwardmode code shown in Figure 4.There is another way, though. The chain rule tells usthat rw = @ w@ y � ry+ @ w@ z � rz:Hence, if we know the \local" derivatives (@ w@ y ; @ w@ z) of wwith respect to z and y, we can easily compute rw, thederivatives of w with respect to x. The local derivatives(@ w@ y ; @ w@ z) can be computed e�ciently by using the re-verse mode of automatic di�erentiation. In the reversemode, let tbar denote the adjoint object correspond-ing to t. The goal is for tbar to contain the derivative@ w@ t . We know that wbar = @ w@ w = 1:0. We can computeybar and zbar by applying the following simple rule tothe statements executed in computing w, but in reverseorder: if s = f(t), then tbar += sbar * (df=dt)if s = f(t;u), then tbar += sbar * (df=dt)ubar += sbar * (df=du)Using this recipe (and some simple optimizations), wegenerate the reverse mode code shown in Figure 4.Forward Mode:t1 = - yr t1 = - r yt2 = z * zr t2 = r z * z + z * r zt3 = t2 * zr t3 = r t2 * z + t2 * r zw = t1 / t3r w = (r t1 - r t3 * w) / t3Reverse Mode:t1 = - yt2 = z * zt3 = t2 * zw = t1 / t3t1bar = (1 / t3)t3bar = (- t1 / t3)t2bar = t3bar * zzbar = t3bar * t2zbar = zbar + t2bar * zzbar = zbar + t2bar * zybar = - t1barr w = ybar * r y + zbar * r zFigure 4. Forward versus reverse mode in computingderivatives of w = -y/(z*z*z)

The forward mode code in Figure 4 requires spacefor three auxiliary gradient vectors and contains fourvector assignments. In contrast, the reverse mode coderequires space for �ve scalar auxiliary adjoint objectsand has only one vector assignment.4 ADIFOR Design: Principlesand AdvantagesADIFOR has been developed within the context ofthe ParaScope Parallel Programming Environment [7],which combines dependence analysis with interprocedu-ral analysis to support ambitious interprocedural codeoptimization and semi-automatic parallelization of For-tran programs. While our primary goal is not code opti-mization or parallelization of Fortran programs, ParaS-cope provides us with a Fortran parser, data abstrac-tions for representing Fortran programs and sophisti-cated facts derived fromFortran programs, and tools forconstructing and manipulating those representations.In particular, ParaScope tools compute data
ow in-formation, dependence graphs, control
ow graphs, anda call graph. The data-dependence analysis capabil-ities are critical for determining which variables needto have derivative objects associated with them, a pro-cess we call variable nomination. Only those variables zwhose values depend on an independent variable x andin
uence a dependent variable y need to have derivativeinformation associated with them.Another advantage of basing ADIFOR within a so-phisticated code optimization framework is that mecha-nisms are already in place for simplifying the derivativecode that we generate by application of the statement-by-statement hybrid mode translation rules. By apply-ing constant folding and forward substitution, we elimi-nate multiplications by 1.0 and additions of 0.0, and wereduce the number of variables that must be allocatedto hold derivative values [1].In summary, ADIFOR proceeds as follows:1. The user speci�es the subroutine that correspondsto the \function" for which he wishes derivatives,as well as the variable names that correspond to de-pendent and independent variables. These namescan be subroutine parameters or variables in com-mon blocks. In addition to the source code for the\function" subroutine, the user must submit thesource code for all subroutines that are directly orindirectly called from this subroutine.2. ADIFOR parses the code, builds the call graph,collects intraprocedural and interprocedural depen-dency information, and determines active variables.

3. ADIFOR allocates derivative objects.4. The original source code is augmented with deriva-tive statements. The forward mode is used overall,while the reverse mode is used for assignment.5. The augmented code is optimized, eliminatingunnecessary arithmetic operations and temporaryvariables.The resulting code generated by ADIFOR can becalled by user programs in a
exible manner to be usedin conjunction with standard software tools for opti-mization, solving nonlinear equations, or for sti� or-dinary di�erential equations. A discussion of callingthe ADIFOR-generated code from users' programs inincluded in [4].The ease of use of ADIFOR follows from its basis ina sophisticated compilation environment. In many ap-plications, the \function" whose derivatives we wish tocompute is a collection of subroutines, and all that isexpected of the user is to specify which of the variablescorrespond to the independent and dependent variables.In addition, the code generated by automatic di�erenti-ation is easy to transport between di�erent machines.ADIFOR takes those requirements into account. Itsuser interface is simple, and the ADIFOR-generatedcode is e�cient and portable. In comparison with otherimplementations of automatic di�erentiation (see [18]for a survey), ADIFOR provides the following features:Portability: ADIFOR produces vanilla Fortran 77code. ADIFOR-generated derivative code requiresno run-time support and can easily be ported be-tween di�erent computing environments.Generality: ADIFOR supports almost all of Fortran77, including nested subroutines, common blocks,and equivalences.E�ciency: ADIFOR-generated derivative code iscompetitive with codes that compute the deriva-tives by divided di�erences. In most applicationswe have run, the ADIFOR-generated code is fasterthan the divided-di�erence code.Preservation of Software Development E�ort:The code produced by ADIFOR respects the data
ow structure of the original program. That is, ifthe user invested the e�ort to develop code thatvectorizes and parallelizes well, then the ADIFOR-generated derivative code also vectorizes and paral-lelizes well. In fact, the derivative code o�ers morescope for vectorization and parallelization.Extensibility: ADIFOR employs a consistentsubroutine-naming scheme that allows the user to

supply his own derivative routines. In this fashion,the user can exploit domain-speci�c knowledge, uti-lize vendor-supplied libraries, and minimize compu-tational bottlenecks.Ease of Use: ADIFOR requires the user to supply theFortran source code for the subroutine representingthe function to be di�erentiated and for all lower-level subroutines. The user then selects the vari-ables (in either parameter lists or common blocks)that correspond to the independent and dependentvariables. ADIFOR then determines which othervariables throughout the program require deriva-tive information. A detailed description of the useof ADIFOR-generated code appears in [4].Intuitive Interface: An X-windows interface for AD-IFOR (called xadifor) makes it easy for the user tocreate the ASCII script �le that ADIFOR reads.This functional division makes it easy both to setup the problem and to rerun ADIFOR if changesin the code for the target function require a newtranslation.Using ADIFOR, one then need not worry about theaccurate and e�cient computation of derivatives, evenfor complicated functions. As a result, the computa-tional scientist can concentrate on the more importantissues of algorithm design or system modeling.5 Experimental ResultsIn this section, we report on the execution time ofADIFOR-generated derivative codes in comparison withdivided-di�erence approximations of �rst derivatives onsome larger codes. While the ADIFOR system runs ona SPARC platform, the ADIFOR-generated derivativecodes are portable and can run on any computer thathas a Fortran 77 compiler.The \heart" problemwas given to us by Janet Rogers,National Institute of Standards and Technology in Boul-der, Colorado. The code submitted to ADIFOR com-putes elementary Jacobian matrices which are then as-sembled to a large sparse Jacobian matrix used in anorthogonal-distance regression �t [5]. The code named\adiabatic" is from Larry Biegler, Chemical Engineer-ing Department, Carnegie-Mellon University, and im-plements adiabatic
ow, a common module in chem-ical engineering [22]. The code named \reactor" wasgiven to us by Hussein Khalil, Reactor Analysis andSafety Division, Argonne National Laboratory. Whilethe other codes were used in an optimization setting,the derivatives of the \reactor" code are used for sensi-tivity analysis to ensure that the model is robust withrespect to certain key parameters. Finally, the code

Table 1. Performance of ADIFOR-generated derivative codes compared todivided-di�erence approximations for a single Jacobian evaluationCode Div. Di�. ADIFOR ADIFORProblem Jacobian Size Run time Run time Improve-Name Size (lines) (seconds) (seconds) ment MachineHeart 1� 8 1305 11641.1 13941.30 -20% SPARC 1Adiabatic 6� 6 1089 0.54 0.18 67% SPARC 1Reactor 3� 29 1455 42.34 36.14 15% SPARC 4/490Reactor 3� 29 1455 13.34 8.33 38% RS6000/500Shock 190� 190 1403 0.041 0.023 44% RS6000/500Shock 190� 190 1403 0.46 0.31 33% SPARC 1named \shock" was given to us by Greg Shubin, Boe-ing Computer Services, Seattle, Washington. This codeimplements the steady shock tracking method for theaxisymmetric blunt body problem [21]. The Jacobianhas a banded structure. The \normal" Jacobian has190 columns, although the Jacobian compression tech-niques outlined in [4] requires only 28 columns.Table 1 summarizes the time required by theADIFOR-generated derivative codes with respect to di-vided di�erences. These tests were run on a SPARCsta-tion 1, a SPARC 4/490, or an IBM RS6000/550.Di�erent machines are cited because of the di�erentsources of the codes being run. The column of the tablelabeled \ADIFOR Improvement" indicates the percent-age improvement of the running time of the ADIFOR-generated derivative code over an approximation of thedivided-di�erence running times. This column con-tains the machine-independent comparison data. Forthe \shock" code, we had a derivative code based onsparse divided di�erences supplied to us. In the othercases, we estimated the time for divided di�erences bymultiplying the time for one function evaluation by thenumber of independent variables. This approach is con-servative, yet typical in an optimization setting, wherethe function value already has been computed for otherpurposes. An improvement greater than 0% indicatesthat the ADIFOR-generated derivatives ran faster thandivided di�erences.We see that already in its current version, ADIFORperforms well in competition with divided-di�erenceapproximations. For all codes that we processed,ADIFOR-generated code is up to a factor of three faster,and never worse by more than a factor of 1.82. This im-provement in the speed of derivative computations isobtained without the user having to make any modi-�cations to the code. We also see that ADIFOR canhandle problems where symbolic techniques would bealmost certain to fail, such as the \shock" or \reactor"codes.

We conclude that ADIFOR-generated derivatives aremore than suitable as a substitute for handcoded ordivided-di�erence derivatives. Virtually no time invest-ment is required by the user to generate the codes.In most codes, ADIFOR-generated codes outperformdivided-di�erence derivative approximations. In addi-tion, the fact that ADIFOR computes exact derivatives(up to machine precision) may signi�cantly increase therobustness of optimization codes or ODE solvers, wheregood derivative values are critical for the convergenceof the numerical scheme.6 Future WorkWe are planning many enhancements to improve theperformance of ADIFOR-generated code. The most im-portant seems to be the increased use of the reversemode for better performance. The reverse mode re-quires us to reverse the computation from a trace of atleast part of the computation, which we later interpret.If we can accomplish the code reversal at compile time,we can truly exploit the reverse mode, since we shallnot incur the overhead that is associated with run-timetracing.ADIFOR currently does a compile-time reversal ofcomposite right-hand sides of assignment statements,but there are other syntactic structures such as paral-lel loops for which this could be performed at compiletime. In a parallel loop, there are no dependencies be-tween di�erent iterations. Thus, in order to generatecode for the reverse mode, it is su�cient to reverse thecomputation inside the loop body. This can easily bedone if the loop body is a basic block. The potentialof this technique is impressive. Hand-compiling reversemode code for the loop bodies of the torsion problem, aproblem in the MINPACK-2 test set collection [19], weobtained the performance shown in Figure 5. This �g-ure shows the ratio of gradient/function evaluation on aSolbourne SE/900 for the current ADIFOR version and

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70

o o

o

o

o

o

o

o

o o o o o o

------ current ADIFOR

-.-.-. ADIFOR w/ loops done in reverse mode

Solbourne 5E/900

ra
ti

o

number of grid points in each dimensionFigure 5: Ratio of gradient/function evaluationfor a hand-modi�ed ADIFOR code that uses the reversemode for the bodies of parallel loops. The gradients areof size nint � nint, where nint is the number of gridpoints in each dimension.Approximation of the gradient by divided di�erencescosts nint � nint function evaluations. Hence, we seethat� the current ADIFOR is faster than divided-di�erence approximations by a factor of 70 on aproblem of size 4900; and� using the reverse mode for loop bodies, we can com-pute the gradient in about six to seven times thecost of a function evaluation, independent of thesize of the problem.Taken together, these points mean that for the problemof size 4900, we can improve the speed of derivativecomputation by over two orders of magnitude comparedto divided-di�erence computations.We also plan to develop a better understanding ofthe techniques that are used for symbolic approachesfor computing derivatives, especially with respect toreasoning about mathematical identities. For exam-ple, if presented with a statement like x = sin(y)**2+ cos(y)**2, ADIFOR will dutifully apply the chainrule, while the mathematical reasoning built into a sym-bolic system might recognize this identity and simplifyit. The chain-rule based automatic di�erentiation ap-proach underlying ADIFOR is a perfect overall frame-work for the computation of derivatives since it is moreor less insensitive to the overall size of the code. Onthe other hand, symbolic techniques, whose executiontime depends signi�cantly on the size of the problempresented, �t in well as simpli�cation or optimization

techniques at the statement or basic-block level. Weintend to explore this issue further.AcknowledgementThis work was supported by the Applied Mathemat-ical Sciences subprogram of the O�ce of Energy Re-search, U.S. Department of Energy, under Contract W{31{109{Eng{38; through NSF Cooperative AgreementNo. CCR{8809615; and by the W. M. Keck Foundation.References[1] Alfred V. Aho, Ravi I. Sethi, and Je�rey D. Ull-man. Compilers: Principles, Techniques, andTools. Addison-Wesley, Reading, Mass., second edi-tion, 1986.[2] W. Baur and V. Strassen. The complexity of partialderivatives. Theoretical Computer Science, 22:317{ 330, 1983.[3] Christian Bischof, Alan Carle, George Corliss, An-dreas Griewank, and Paul Hovland. Generatingderivative codes from Fortran programs. PreprintMCS{P263{0991, Mathematics and Computer Sci-ence Division, Argonne National Laboratory, Ar-gonne, Ill. 60439, 1991. Also appeared as TechnicalReport 91185, Center for Research in Parallel Com-putation, Rice University, Houston, Tex. 77251.[4] Christian Bischof and Paul Hovland. Using ADI-FOR to compute dense and sparse Jacobians. Tech-nical Memorandum ANL/MCS{TM{158, Mathe-matics and Computer Science Division, ArgonneNational Laboratory, Argonne, Ill. 60439, October1991. ADIFOR Working Note # 2.[5] Paul T. Boggs and Janet E. Rogers. Orthogonaldistance regression. Contemporary Mathematics,112:183 { 193, 1990.[6] J. C. Butcher. Implicit Runge-Kutta processes.Math. Comp., 18:50 { 64, 1964.[7] D. Callahan, K. Cooper, R. T. Hood, Ken Kennedy,and Linda M. Torczon. ParaScope: a parallel pro-gramming environment. International Journal ofSupercomputer Applications, 2(4), December 1988.[8] Bruce D. Christianson. Automatic Hessians byreverse accumulation. Technical Report NOCTR228, The Numerical Optimisation Center, Hat-�eld Polytechnic, Hat�eld, U.K., April 1990.

[9] T. F. Coleman, B. S. Garbow, and J. J. Mor�e. Soft-ware for estimating sparse Jacobian matrices. ACMTrans. Math. Software, 10:329 { 345, 1984.[10] G. Dahlquist. A special stability problem for linearmultistep methods. BIT, 3:27 { 43, 1963.[11] John Dennis and R. Schnabel. Numerical Meth-ods for Unconstrained Optimization and NonlinearEquations. Prentice-Hall, Englewood Cli�s, N.J.,1983.[12] Lawrence C. W. Dixon. Automatic di�erentiationand parallel processing in optimisation. TechnicalReport No. 180, The Numerical Optimisation Cen-ter, Hat�eld Polytechnic, Hat�eld, U.K., 1987.[13] Lawrence C.W. Dixon. Use of automatic di�erenti-ation for calculating Hessians and Newton steps. InAndreas Griewank and George F. Corliss, editors,Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application, pages 114 { 125.SIAM, Philadelphia, Penn., 1991.[14] Andreas Griewank. On automatic di�erentiation.In M. Iri and K. Tanabe, editors, MathematicalProgramming: Recent Developments and Applica-tions, pages 83 { 108. Kluwer Academic Publishers,1989.[15] Andreas Griewank. Automatic evaluation of �rst-and higher-derivative vectors. In R. Seydel, F. W.Schneider, T. K�upper, and H. Troger, editors, Pro-ceedings of the Conference at W�urzburg, Aug. 1990,Bifurcation and Chaos: Analysis, Algorithms, Ap-plications, volume 97, pages 135 { 148. Birkh�auserVerlag, Basel, Switzerland, 1991.[16] Andreas Griewank. Achieving logarithmic growthof temporal and spatial complexity in reverse au-tomatic di�erentiation. Optimization Methods andSoftware, to appear. Also appeared as PreprintMCS{P228{0491, Mathematics and Computer Sci-ence Division, Argonne National Laboratory, 9700S. Cass Ave., Argonne, Ill. 60439, 1991.[17] Andreas Griewank, David Juedes, Jay Srinivasan,and Charles Tyner. ADOL-C, a package for theautomatic di�erentiation of algorithms written inC/C++. ACM Trans. Math. Software, to appear.[18] David Juedes. A taxonomy of automatic di�eren-tiation tools. In Andreas Griewank and George F.Corliss, editors, Automatic Di�erentiation of Algo-rithms: Theory, Implementation, and Application,pages 315 { 329. SIAM, Philadelphia, Penn., 1991.

[19] Jorge J. Mor�e. On the performance of algorithmsfor large-scale bound constrained problems. InT. F. Coleman and Y. Li, editors, Large-Scale Nu-merical Optimization, pages 32 { 45. SIAM, 1991.[20] Louis B. Rall. Automatic Di�erentiation: Tech-niques and Applications, volume 120 of LectureNotes in Computer Science. Springer Verlag,Berlin, 1981.[21] G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B.Wardlaw, and L. B. Hackerman. Steady shocktracking, Newton's method, and the supersonicblunt body problem. SIAM J. on Sci. and Stat.Computing, 3(2):127 { 144, June 1982.[22] J. M. Smith and H. C. Van Ness. Introduction toChemical Engineering. McGraw-Hill, New York,1975.[23] PhilipWolfe. Checking the calculation of gradients.ACM Trans. Math. Softw., 6(4):337 { 343, 1982.

