
Information Hiding in Parallel ProgramsIan FosterMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, USAAbstractA fundamental principle in program design is to isolate di�cult or changeabledesign decisions. Application of this principle to parallel programs requires identi-�cation of decisions that are di�cult or subject to change, and the development oftechniques for hiding these decisions. We experiment with three complex applications,and identify mapping, communication, and scheduling as areas in which decisions areparticularly problematic. We develop computational abstractions that hide such de-cisions, and show that these abstractions can be used to develop elegant solutions toprogramming problems. In particular, they allow us to encode common structures,such as transforms, reductions, and meshes, as software cells and templates that canreused in di�erent applications. An important characteristic of these structures isthat they do not incorporate mapping, communication, or scheduling decisions: theseaspects of the design are speci�ed separately, when composing existing structures toform applications. This separation of concerns allows the same cells and templates tobe reused in di�erent contexts.Keywords: information hiding; parallel programming; program composition; reuse; soft-ware cell; template; virtual topology1 IntroductionA fundamental principle in program design is to isolate di�cult or changeable designdecisions, so that interfaces between program components are simple and unlikely tochange [24]. Application of this principle has been found to reduce design complexity,facilitate reuse of components, and decrease the cost of modi�cations. In sequential pro-gramming, good programmers routinely hide decisions concerned with data structures,storage management, and hardware-dependent features. Multicomputer programs, whichcoordinate the activities of hundreds or thousands of processors, necessarily involve addi-tional design decisions. Hence we ask: Which of these decisions are particularly problem-atic? Are there program-structuring techniques that can isolate these decisions?We have conducted a series of programming experiments over the past several yearsin an e�ort to answer these questions. These experiments have proceeded in conjunctionwith an interdisciplinary investigation of the methods and algorithms required to executeclimate models on multicomputers. Numerical methods used in climate models are oftencomplex; parallel algorithms for these methods have correspondingly rich structures, with1

unusual domain decompositions, irregular communication structures, and architecture-dependent mapping strategies. Hence, such algorithms provide a demanding testbed fordesign techniques.In the �rst phase of these experiments, we designed and implemented numerous vari-ants of three atmospheric modeling algorithms. This exercise revealed sources of com-plexity, impediments to reuse, and costly design changes. Analysis showed that mostdi�culties could be traced to design decisions concerned with the mapping to processorsof the subtasks and subdomains produced by an initial functional and/or domain decom-position, the communication between these components, or the scheduling of tasks mappedto the same processor.In the second phase, we explored techniques for isolating such decisions. This led usto develop an integrated set of four computational abstractions. Each of the �rst threeis responsible for hiding a di�erent class of design decision: virtual topologies for map-ping, virtual channels for communication, and lightweight processes for scheduling. Thefourth, the port array, is used when specifying communication decisions involving processensembles. Together, these abstractions allow us to develop program components with-out committing to mapping, communication, or scheduling decisions, and to introducethese decisions in a stepwise fashion when composing components to form more complexprograms. The components composed in this fashion can de�ne the distributed compu-tation structures that we call software cells, or may be templates that de�ne a class ofpossible cells, with the code to be executed in the cell provided as a parameter. In thisrespect, the work complements and extends previous work [13], in which virtual channelsand lightweight processes were used to decouple mapping, communication, and schedulingdecisions, but cells and templates were not supported.Run-time support required by the abstractions can be developed on an ad-hoc basisfor each application, integrated into message-passing tools, or encapsulated in program-ming language constructs. We prefer the third approach, and have developed program-ming language support for the abstractions for both Fortran and the concurrent languagePCN [6, 14]. Here, we work with PCN, which is supported by a public-domain compilerdeveloped at Argonne National Laboratory and Caltech [15].1The rest of the paper is as follows. In Section 2, we present the three atmosphericmodeling algorithms used in programming experiments. In Sections 3 and 4, we analyzedesign problems in these algorithms and introduce the computational abstractions thatwe use to overcome these problems. In Section 5, we show how these abstractions areencapsulated in PCN. In Section 6{9, we present a set of cells and templates and use theseto develop implementations for the algorithms. In Section 10, we compare our approachwith other work in parallel program design. We conclude in Section 11.We have chosen to focus on a small set of atmospheric modeling algorithms in thispaper so as to provide the reader with a detailed understanding of our approach. However,the techniques have also been applied in areas as diverse as computational chemistry,computational biology, and optimization, each time with excellent results. Hence, we feeljusti�ed in arguing that the approach is of general utility, and in recommending its use toother developers of complex parallel programs.1The software is accessible by anonymous FTP from info.mcs.anl.gov, directory pub/pcn.2

2 Parallel Algorithms for Climate ModelingComputer climate models have at their core a numerical method used to simulate atmo-spheric motion. This method must address the \pole problem": the singularities thatarise at the poles in conventional coordinate systems. Accuracy and computational re-quirements are also important. Recently, with the advent of parallel supercomputers,suitability for parallel execution has become an important concern.We present parallel algorithms for a spectral transform method on a latitude-longitudemesh, a control volume method on an icosahedral mesh, and a �nite di�erence methodon a composite mesh. Space does not permit more than a cursory description of themethods themselves; the interested reader is referred to the excellent comparative articleby Browning, Hack, and Swarztrauber [5]. All three algorithms have been implementedand extensively evaluated on parallel computers, including the 528-processor, 20-GopsIntel DELTA supercomputer [9, 12, 27].2.1 Spectral Transform AlgorithmThe spectral transform method is popular because of its spectral accuracy and its avoid-ance of the pole problem. An arbitrary scalar �eld a(�; �) on a latitude-longitude mesh(physical space) is approximated by a truncated series of its spectral coe�cients amn (spec-tral space) as follows: a(�; �) = m=MXm=�M MXn=jmj amn Pmn (�)eim�; (1)where Pmn are the associated Legendre functions.Computation is performed in both physical and spectral space. Data is transferred be-tween the two spaces by forward and inverse spectral transforms. As Equation 1 suggests,the forward transform can be implemented by a fast Fourier transform (FFT) followedby a Legendre transform. The FFT operates on each latitude independently to producea set of intermediate quantities. The Legendre transform then operates on each columnof the intermediate array independently to produce the spectral coe�cients. The inversespectral transform operates in the reverse sequence.We obtain a parallel algorithm by decomposing the latitude/longitude mesh in twodimensions to obtain equal-sized submeshes. Other data structures are also decomposedappropriately. Parallel FFTs must be performed between submeshes containing the samelatitude, and parallel summations between submeshes containing the same longitude [12,27]. In addition, parallel reductions over the entire mesh are required to produce diagnosticquantities.The subdomains produced by decomposition can be mapped to the nodes of a parallelcomputer in several ways. Figure 1 shows three possible mappings of a latitude/longitudemesh decomposed into 4�4 submeshes to a 2�8 mesh computer. The �rst mapping resultsin FFTs being performed along each row of the parallel computer, and global summationsalong disjoint columns. The second mapping clusters nodes involved in the same FFT,while the third mapping clusters nodes involved in the same summation. The optimalmapping depends on machine architecture, problem size, and other factors [12].3

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

0 1 4 5 8 9 12 13
2 3 6 7 10 11 14 15

0 1 2 3 4 5 6
8 9 10 11 12 13 14

7
15

0 4 1 5 2 6 3 7
8 12 9 13 10 14 11 15

FFT

Sum

(1)

(2)

(3)Figure 1: Alternative Mappings for the Spectral Transform2.2 Control Volume/Icosahedral Mesh AlgorithmThe icosahedral method is an explicit grid-point method and hence requires less commu-nication than the spectral transform. In addition, the icosahedral grid is quasi-uniformon the sphere. This grid is constructed from a spherical icosahedron with 12 nodes and20 equilateral triangular surfaces. Each spherical triangle is further partitioned into N2smaller triangles based on geodesic arguments. All points in this grid have six surroundingtriangles, except for the 12 principal nodes of the icosahedron, which have only �ve. Ateach point, we connect by geodesic curves the centroids of the neighboring triangles toproduce the hexagons or pentagons that serve as the control area elements for numericalintegration [9].For convenience in implementation, each triangle is joined with one of its neighbors toform a rhombus; each of these 10 rhombi then contains an N � N mesh. The two polarpoints are located in two separate \polar rhombi."
10

11

0 1 2 3 4

5 6 7 8 9Figure 2: Icosahedral Mesh Domain DecompositionA second-order, conservative control volume method is implemented on this grid. Theuse of hexagonal and pentagonal control elements means that computation at each pointrequires data from either �ve or six neighboring points. For simplicity in exposition, weshall assume a �ve-point stencil in subsequent discussion. However, the extension to themixed six/seven-point stencil is straightforward [9].We obtain a parallel algorithm by decomposing each nonpolar rhombus into a number4

(say C2) of subrhombi. This gives a total of 10C2 + 2 subdomains: 10C2 meshes con-taining (N=C)2 points and two individual points (the polar rhombi). This organization isillustrated in Figure 2, for C=4. Communication must be performed to obtain values fromneighboring subdomains during integration. In addition, a global reduction is required tocompute diagnostics. The design of an e�cient mapping is complicated by the irregulardomain. On some parallel computers, it may be desirable to place two or more subdomainson the same processor.2.3 Finite Di�erence/Composite Mesh AlgorithmOur second explicit grid-point method avoids the pole problem by the use of two equal-sized, overlapping square meshes, centered at the north and south poles. The surfaceof the sphere is mapped onto these meshes as follows. The area on the sphere fallingabove a speci�ed L degrees of southern latitude (i.e., the northern hemisphere and anoverlap region) is mapped onto one mesh by using a stereographic projection; the southernhemisphere is projected onto the other mesh in a similar fashion.During computation, points within the projected region on each mesh are updatedby using a �nite di�erence method. The �nite di�erence computation within each meshrequires the values of points within that mesh but outside the projected region. Thesevalues are obtained by interpolation from the other mesh.The parallel algorithm partitions each mesh into some number (e.g., C � C) of equal-sized submeshes or charts, as illustrated in Figure 3. (The solid circles delimit the projectedregions in each mesh, and the dashed circles the interpolation regions.) Note that thenumber of points falling within the projected region, and hence the amount of computation,varies from chart to chart. Communication requirements also vary signi�cantly. Chartscontaining points within the projected or interpolation regions must exchange boundaryvalues with those neighboring charts that also satisfy this criterion. Some of these chartsmust also exchange interpolation data with charts in the other mesh. Each chart hencecommunicates with between 0 and 4 neighbors within its mesh and with 0 or more chartsin the other mesh. In addition, global reductions are required to compute diagnostics.
North SouthFigure 3: Composite Mesh Domain Decomposition5

The mapping of subdomains to the nodes of a parallel computer is complicated by aneed for load balancing. As the amount of computation and communication performedcan vary signi�cantly from chart to chart, we would like to map charts to processors in away that minimizes load imbalance while maintaining locality of communication betweenneighbors. An optimal mapping is likely to require placement of several charts on a singleprocessor.3 What Should be Hidden?The three parallel algorithms share common characteristics. All are based on straightfor-ward (if irregular) domain decompositions. All have complex communication requirements.All require potentially complex and machine-dependent mappings which may place severalsubdomains on some processors. All can be decomposed into simpler building blocks suchas mesh computations, FFTs, and reductions; however, each algorithm uses these buildingblocks in di�erent contexts and for di�erent purposes.As implementors of these algorithms, we wish to experiment with algorithmic and ar-chitectural alternatives; hence, it should be easy to modify target architecture, mappings,communication structures, grid point stencils, etc. It should be possible to reuse commonstructures, so as to avoid duplication of e�ort involved in developing and optimizing code.Finally, we wish to reduce the e�ect of communication latency by overlapping computationand communication.Analysis of these characteristics and requirements leads us to identify three classesof design decision that are either di�cult or likely to change: mapping, communication,and scheduling. Mapping decisions are architecture-dependent and hence likely to change.Communication decisions are di�cult to change if, as is the case in many �rst-generationmessage-passing systems, the location and identity of message receivers must be explicitlyspeci�ed in sender code. Scheduling is problematic if an algorithm overlaps computationand communication: in most systems, this can be achieved only by intimate and complexintermingling of the code for the various tasks mapped to a single processor.We use a single example to illustrate the value of isolating mapping, communication,and scheduling decisions. Recall that the spectral algorithm involves several parallel re-ductions: one per longitude, and one over the whole mesh. It should be possible to reusethe same code for each of these operations. However, as each reduction involves a di�er-ent set of processors, a di�erent set of communication partners, and di�erent schedulingrequirements, reuse is possible only if mapping, communication, and scheduling decisionscan be isolated and speci�ed separately from the reduction algorithm. In the next section,we shall see how this separation is achieved.4 Information-Hiding AbstractionsWe describe four abstractions that can be used to isolate mapping, communication, andscheduling decisions: virtual topologies, virtual channels, lightweight processes, and portarrays.A virtual topology consists of a number of virtual processors, or nodes. Mapping inside6

a program component is speci�ed with respect to such a topology; the mapping of thenodes of this topology to physical processors (or to the nodes of another virtual topology)is speci�ed by a separate mapping function, introduced when the component is incorpo-rated in a larger program. Hence, mapping decisions (number and placement of virtualprocessors) are isolated from algorithmic speci�cations. Hierarchies of such topologiescan be de�ned, allowing the programmer to compose layouts when composing programcomponents.A virtual channel is a named, single-writer communication stream that supports readand write operations; tasks can communicate if and only if they share a virtual channel.A program component interacts with other components by reading and writing virtualchannels passed as arguments; the identity of these components is speci�ed when thecomponent is incorporated in a larger program. Hence, communication decisions (identityand location of communication partners) are isolated from algorithmic speci�cations. Thesingle-writer property of virtual channels means that a composition of two or more programcomponents that communicate via virtual channels is guaranteed to be deterministic ifthe components are themselves deterministic. This property greatly simpli�es programdevelopment.A program component can be decomposed into one or more lightweight processes. Aprocess is delayed if it is waiting for data on a virtual channel; otherwise, it is executable.Executable processes are selected for execution according to some fair scheduling algo-rithm. Hence, scheduling decisions are isolated in a scheduling algorithm: algorithmicspeci�cations need indicate only how tasks are to be distributed to virtual processors andhow tasks are to communicate.The port array is a distributed array of virtual channels, with a speci�ed number of el-ements per node of the virtual topology in which it is created. An important characteristicof a port array is that when passed as an argument to a program component executing ina di�erent virtual topology, its indices are remapped so that the new program componentis able to view it as a local port array declared in the new topology. This makes it possi-ble to isolate communication decisions from algorithmic speci�cations, even when dealingwith ensembles of processes. A cell executing in a virtual topology can select input andoutput channels from port arrays passed as arguments; connections between componentsare established by the code that sets up these port arrays. As the port array is distributed,these connections can be established in constant time.4.1 Software Cells and TemplatesAn important aspect of these abstractions is that they permit us to de�ne what we callcells and templates. A software cell is a reusable parallel program component that executeswithin a virtual topology. A cell de�nition speci�es the processes that are to execute withinthe topology, the code to be executed by these processes, and the port arrays to be usedfor intercell communication. A cell de�nition does not specify mapping decisions (theseare encapsulated in the mapping function used to de�ne the virtual topology), intercellcommunication decisions (these are encapsulated in the code that sets up the port arrayspassed as arguments), or scheduling decisions (these are encapsulated in the schedulingalgorithm that supports lightweight processes). Hence, a cell de�nition can be reused7

without change in di�erent contexts.The code to be executed by a cell may be speci�ed by parameters, in which case werefer to the cell de�nition as a template. Templates increase the potential for reuse byallowing the same parallel structure to be used for di�erent purposes.As our terminology suggests, there are similarities between these mechanisms andconstructs used in VLSI design. A software cell is much like a VLSI cell, and the portarrays used to connect cells resemble the arrays of pins used for the same purpose in VLSI.4.2 Virtual TopologiesWe provide additional information on virtual topologies. A topology comprises one or morenodes and an associated type indicating how these nodes are organized. Simple topologiesinclude the point (a single node), the one-dimensional array, the two-dimensional mesh,and the balanced binary tree. We shall also de�ne more complex application-speci�ctopologies.A mapping function is used to embed a virtual topology in a physical or virtual topol-ogy. It speci�es the type and size of the new topology and the embedding of its nodesin the existing topology. A mapping may perform one or more of the following types oftransformation.Reshaping: The new topology has a di�erent type from its parent, or its nodes areordered di�erently | for example, a mapping that embeds an array of size m �n ina mesh of size m� n.Restriction: The new topology does not embed nodes in every node of its parent | forexample, a mapping that embeds an array in a row of a mesh.Expansion: The new topology embeds more than one node in a node of the parenttopology | for example, a mapping that embeds two nodes in every parent node.For example, the following pseudo-code speci�es a restriction mapping row(r) thatembeds an array in the rth row of a mesh. The function topology() returns the parenttopology type. As the mesh has size m�n, the new topology has type array and size m; thefunction oldnode speci�es that node i (0 �i<m) is located in node i+r*m of the mesh.function row(r):if topology() != {"mesh",m,n} or r < 0 or r >= n then errorelse return({"array",m}, /* Type of new topology */m, /* Size of new topology */oldnode(i) = i + r*m /* Embedding function */)A location function is used to specify relative or absolute positions within a topology.It maps a node number and a topology type to a node number. As examples, we specifylocation functions node(i), which computes an absolute location i in any topology, andnorth, which computes a relative location in a mesh. The function location() returnsthe node number of the procedure that executes it.8

function node(i): /* Absolute location */if i < 0 or i >= nodes()-1 then errorelsereturn i /* New location */function north: /* Relative location in mesh */if topology() != {"mesh",m,n} or location() < m then errorelsereturn location()-m /* New location */5 Using the AbstractionsOur presentation has so far focused on concepts. We now examine how virtual topologies,virtual channels, lightweight processes, and port arrays can be used to develop parallelprograms.Although some multicomputers and operating systems incorporate certain of theseabstractions as primitive mechanisms [25, 11, 28], it will in general be necessary to providecompile-time or run-time support. There is much to be gained from standardizing thissupport so that it can be reused in many applications. It is also desirable to de�neinterfaces that encourage or enforce correct usage.One viable approach is to incorporate the necessary concepts in an extended message-passing library. This can be layered on top of an existing message-passing library, andmay implement virtual topologies by accessing an indirection table when sending messages,lightweight processes by using operating system facilities, and virtual channels by messagetypes.We prefer the alternative approach of encapsulating the abstractions in language con-structs. Responsibility for implementation then rests in a compiler. This reduces potentialfor programmer error, allows more succinct speci�cations, and facilitates compile-time ver-i�cation and optimization.The language constructs required to support the abstractions are not complex andcan in principle be de�ned for any language. For example, we have de�ned appropriateextensions for both Fortran and the high-level concurrent language Program CompositionNotation (PCN) [6, 14]. We choose to work with PCN here, as this already provideselegant representations of virtual channels and lightweight processes and can be extendedstraightforwardly to support virtual topologies and port arrays. We describe those aspectsof the extended PCN language that are relevant to the present discussion.5.1 Extended PCNThe syntax of PCN is similar to that of the C programming language.Lightweight Processes. A PCN solution to a programming problem is a set of proce-dures, each with the following general form (k; l � 0).9

name(arg1,...,argk)declaration1, ..., declarationl;blockA block is a call to a PCN procedure (or to a procedure in a sequential languagesuch as Fortran or C), a composition, or a primitive operation such as assignment. Acomposition is written f op block1, ..., blockmg, n > 0, where op is one of \jj", \;",or \?", indicating that the blocks block1, ..., blockm are to be executed concurrently, insequence, or as a set of guarded commands, respectively. Blocks in a parallel compositionexecute as lightweight processes.Virtual Channels. Interprocess communication is expressed in terms of read and writeoperations on specialized de�nitional variables. These variables are distinguished by a lackof declaration, are initially unde�ned, can be written (de�ned) once using the primitiveoperator \=", and once written cannot be modi�ed. A process that requires the value ofan unde�ned variable blocks until the required data is available.A shared de�nitional variable can be used to exchange a sequence (stream) of valuesbetween a producer and a consumer. The producer sends a message by de�ning the sharedvariable to be a structured term (a tuple) containing the message plus a new variable. Thisprocess can then be repeated with the new variable. For example, the producer could usethe following sequence of operations to communicate the messages "hello" and "goodbye"to any process with a reference to x. (The notation fe1,...,eng denotes a tuple withelements e1,...,en.)x = f"hello",tg, t = f"goodbye",t2g, t2 = []A shared de�nitional variable provides an elegant implementation of a virtual channel,with read and write operations on the variable corresponding to send and receive opera-tions. A powerful feature of this data type is that it can be included in messages. Thisallows channels to be established dynamically, as in the stream communication protocoloutlined in the preceding paragraph.Location and Mapping. Programs invoke mapping functions to execute subcomputa-tions within di�erent virtual topologies. An annotation \in M" on a block denotes invo-cation of mapping function M; it causes the block to execute within the virtual topologyreturned by M.Programs invoke location functions to place subcomputations on speci�c virtual pro-cessors. An annotation \@ L" on a block location denotes invocation of location functionL; it causes the block to execute on the virtual processor with index returned by L.Port Arrays. A port declaration creates a one-dimensional distributed array of de�-nitional variables. A declaration \port P[N];" creates a port array P with N elements,distributed blockwise across the nodes of the virtual topology in which the port array isdeclared. For example, a declaration \port p[2*nodes()];" creates a port array p with10

2*nodes() elements; p[2*i] and p[2*i+1] are located on the ith node of the currenttopology (0�i<nodes(), where the function nodes() returns the number of nodes in thattopology).Cells and Templates. Cell and template de�nitions use location functions to placeprocedure calls within the current topology and may pass port array elements to individualprocedure calls. For example, the following template executes the procedure named byparameter op on every node of the current topology, passing each call the local element ofport array P. The quanti�cation i over 0..nodes()-1 causes i to range over the nodes,and the location function node(i) locates the ith call to op on the i node. The variableop is quoted in the parallel composition to indicate that it is being used as a variable,not a string. For clarity, we capitalize variable names denoting port arrays in this andsubsequent programs.replicate(op,P)port P[];{|| i over 0..nodes()-1 : `op`(P[i]) @ node(i) }Execution of this procedure in a four-node array topology creates the following set ofprocesses, with the lines representing the port elements passed as arguments: the cell'sinterface to the outside world. These port elements can be used to establish connectionsto other cells.
P[0] P[1] P[2] P[3]

op op op opFor brevity, we shall sometimes use the following more compact representation of acell. This represents the same cell as the preceding �gure, and indicates that the port Pis to be used for input.
o p

P5.2 Ring Pipeline ExampleWe use an example to illustrate how PCN programs are developed by composing simplercells and templates. The following template creates a single process in each node of thecurrent topology and uses the local port array S to establish internal communicationstreams between neighboring processes, so that each process has two streams, one sharedwith each neighbor. The code to be executed at each node is provided as a parameter. In11

addition, the ith node of this ring pipeline structure is given elements I[i] and O[i] ofthe two port arrays I and O passed as parameters, so as to allow communication with theoutside world. The \%" represents the modulus operator. As in C, the dimension of anarray passed as an argument is not speci�ed.ring_pipe(op,I,O)port S[nodes()], I[], O[];{|| i over 0..nodes()-1 :`op`(I[i],O[i],S[(i+1)%nodes()],S[i]) @ node(i)}The process structure created by this procedure can be drawn as follows, with the solidlines indicating the port connections to the outside world and the dotted lines representinginternal streams.
op op op op

I[0] I[1] I[2] I[3]

O[0] O[1] O[2] O[3]

o p

I

O

ORORThe following procedures implement simple input and output cells. The procedureload reads values from a �le and sends them to successive elements of the port array P;the procedure store writes to a �le values received on successive elements of port arrayQ. Both use the sequential composition operator to sequence I/O operations.load(file,P)port P[];{ ; i over 0..nodes()-1 : read(file,stuff), P[i] = stuff }store(file,Q)port Q[];{ ; i over 0..nodes()-1 : write(file,Q[i]) }We compose the three cells to obtain a program main that reads data from infile,executes a user-supplied function in the ring pipeline (e.g., a naive N-body algorithm),and �nally writes results to outfile.main(infile,outfile)port P1[nodes()], P2[nodes()];{|| load(infile,P1),ring_pipe(nbody(),P1,P2),store(outfile,P2)} 12

Data ows from load to ring pipe via port array P1 and from ring pipe to storevia port array P2. This is illustrated in the following �gure, which shows the cell structurerepresented by program main, and the process structure that would be created on a four-processor computer.
op op op opring_pipe

P1

P2

load

store

load

storeThis program can be developed and tested on a uniprocessor. We can then experimentwith alternative mappings. Let us assume that the program main is invoked in a ringtopology (i.e., main(infile,outfile) in ring). Mapping decisions are then encapsu-lated entirely within the mapping function ring. Possible mappings include the following.(1) One ring node is placed on each processor. This is simple, but may prevent placementof ring neighbors on adjacent processors. (2) Two ring nodes are placed on each processor.This ensures that ring neighbors can always be located on adjacent processors. (3) Manyring nodes are placed on each processor. This can be useful if there is signi�cant variationin the amount of work performed at di�erent pipeline nodes, or if it desirable to overlapcomputation and communication.This example, although simple, illustrates most aspects of our approach. (One impor-tant exception is restriction mappings, which will be demonstrated in subsequent exam-ples.) Note how easy it is to change mapping decisions. No change to the application codeis required: only a mapping function need be modi�ed, even if a mapping places more thanone subdomain (process) on a physical processor. Note also how logically distinct programcomponents are separated and packaged as reusable cells and templates. This separationis possible because the cell de�nitions specify only local decisions; mapping decisions areencapsulated in the mapping function that implements the ring topology, communicationdecisions in the code that sets up the port arrays P1 and P2, and scheduling decisions ina scheduling algorithm.6 Building BlocksThe climate modeling algorithms of Section 2, like the ring pipeline, can be constructedfrom simpler building blocks. Here, we present six such cells and templates: fft, reduce,mesh, mesh io, mesh io2, and router. Some of these are illustrated in Figure 4. All sixinteract with other components by means of port arrays. The �rst �ve operate looselysynchronously: that is, each computation phase consumes one data item from each elementof an input port and produces one data item on each element of an output port. The sixthoperates asynchronously: data items can be received and processed independently. Inthe Appendix, we show that the fft and reduce cells can be expressed as instances of acommon template, butterfly. We also present an implementation of mesh io2.13

m e s hr o u t e r

In

Out

r e d u c e

Out

In

f f t

In

Out Figure 4: Building BlocksCell fft(in port,out port): The fft procedure de�nes a cell that computes the fastFourier transform of distributed data. The data to be transformed is input on the elementsof in port. The fft nodes compute the transform and output the transformed data onthe elements of out port.Template reduce(op,in port,out port): The reduce template is used to de�ne cellsthat reduce distributed data by using a speci�ed binary operator (e.g., maximum, addition)and distribute the reduced value to the nodes participating in the reduction. The datato be reduced is input on in port. The reduce nodes reduce the data by using op, andoutput a copy of the reduced value on each element of out port.Template mesh(op,nsi,nso,wei,weo): A variety of mesh templates can be de�ned toimplement di�erent communication patterns, boundary conditions, etc. The mesh tem-plate invokes op in each node of a 2-dimensional mesh and establishes communicationstreams between each node and its north, east, south, and west neighbors. Communica-tion streams to nodes on the edges of the mesh are taken from ports nsi, nso, wei, andweo. The ports nsi and nso provide input and output on the north and south edges ofthe mesh, and ports wei and weo provide input and output on the west and east edges.Template mesh io(op,i,o,nsi,nso,wei,weo): The related template mesh io in ad-dition associates an element of an input and output port with each node in the mesh.Template mesh io2(op,i1,o1,o1,o2): The template mesh io2 provides two input andoutput ports and no edge connections.Cell router(in port,out port): A router cell provides general routing capabilities.A message with the general form fi,msgg appended to any element of in port causes thespeci�ed msg to be appended to the ith element of out port.The router cell abstracts traditional message-passing facilities, with three extensions.First, routing is performed within a user-de�ned virtual topology rather than a physicalcomputer. Second, messages transmitted via the router cannot interfere with other com-munications. Third, the router provides a termination mechanism: it shuts down, de�ning14

all elements of out port to be the special element nil ([]), if all elements of in port arede�ned to be nil.7 Spectral Transform ImplementationWe now develop implementations for the algorithms presented in Section 2. Similar strate-gies are employed in each case. We �rst de�ne a virtual topology with the same structureas the domain decomposition. Then, we develop the implementation by composing variouscells (e.g., mesh, FFT, reduction) in the framework of this topology. Finally, we specify themapping of the complete program, using the mapping function that de�nes the topology.We �rst examine the spectral transform algorithm (Section 2.1). Recall that thisdecomposes the latitude/longitude mesh into lat�long subdomains.7.1 Virtual TopologiesWe de�ne a spectral mesh topology with the same structure as the domain decomposition:i.e., lat�long nodes, organized as a mesh. The mapping function spectral mesh forthis topology will be discussed in Section 7.3. We shall also require mapping functionsrow(r) and col(c), which de�ne subtopologies of type array comprising the rth row andcth column of the spectral mesh, respectively. The mapping function row(r) has beende�ned in Section 4.2; col(c) is similar.7.2 Code SketchRecall that our parallel algorithm involves lat parallel FFTs (each operating on datafrom long subdomains), long parallel summations (each operating on data from latsubdomains), and one parallel summation that operates on all subdomains (Section 2.1).As we illustrate in Figure 5, this structure can be constructed by composing two existingcomponents (reduce and fft cells: Section 6) with the code to be executed within a singlenode (submesh: shown as n).
f f t

f f t

f f t

f f t

r e d u c e

r
e
d
u
c
e

r
e
d
u
c
e

r
e
d
u
c
e

r
e
d
u
c
e

& & &

n n n n

n n n n

n n nn

n n nnFigure 5: Code Structure for Spectral TransformThis composition is speci�ed in Figure 6. The top level composes a summation cellwith the procedure spectral, which executes within the spectral mesh topology. Theprocedure spectral composes lat FFT cells, one per row of the spectral mesh; long15

summation cells, one per column; and lat�long submesh processes, one per node. Thesummation cells are instances of the reduce template.Six port arrays are used to connect co-located processes from the various cells. Theports i and o connect the global reduce cell to the rest of the program. The ports fti,fto, lri, and lro connect the fft and local reduce cells to the submesh processes. Intotal, each submesh process is passed six communication streams as arguments. These arethree input/output pairs, to the global summation cell, a FFT cell, and a local summationcell, respectively.sphere(lat,long)port I[nodes()], O[nodes()];{|| spectral(I,O,lat,long) in spectral_mesh(lat,long),reduce(sum(),I,O)}spectral(I,O,lat,long)port I[], O[];port Fti[nodes()], Fto[nodes()], Lri[nodes()], Lro[nodes()];{|| {|| i over 0..lat-1 : fft(Fti,Fto) in row(i) },{|| j over 0..long-1 : reduce(sum(),Lri,Lro) in col(j) },{|| k over 0..nodes()-1 :submesh(k,I[k],O[k],Fti[k],Fto[k],Lri[k],Lro[k]) @ node(k)}} Figure 6: Code Sketch for Spectral TransformSeveral aspects of Figure 6 bear careful study. First, consider the hierarchy of virtualtopologies used in this program. At the top level, we have some unspeci�ed topology.The mapping function spectral mesh reshapes this topology to create a structure withthe same shape as the spectral transform's domain decomposition: this allows the parallelalgorithm to be developed independently of mapping issues. The mapping functions rowand col restrict the spectral mesh topology to create array subtopologies: this serves bothto locate the fft and reduce cells correctly within the spectral mesh and to allow reuseof these cell de�nitions, which create an appropriate process structure within the virtualtopology in which they are invoked. Finally, the location function node replicates thesubmesh procedure throughout the spectral mesh topology.Second, consider the techniques used to compose the cells spectral and reduce. Theports I and O connect co-located process pairs from the two structures. The spectral cellwill generate periodically a data item on each element of I. The reduce cell receives thesevalues, performs internal communication to compute their sum, and outputs the sum oneach element of O. The result computed is independent (modulo rounding di�erences) ofthe mapping employed in the spectral structure, as speci�ed by the mapping functionspectral mesh, as long as this mapping is one-to-one from nodes of the spectral mesh to16

nodes of its parent topology, that is, as long as spectral mesh only reshapes and doesnot expand or restrict. The techniques used to compose cells when a mapping is notone-to-one are discussed in Section 9.3.It is apparent that a substantial part of the program is formed from pre-existing build-ing blocks; the application-speci�c code is primarily concerned with putting these blockstogether. Our abstractions, by separating mapping, communication, and scheduling deci-sions from algorithm speci�cations, allow cells (in this case, fft and reduce) to be usedin di�erent contexts without modi�cation. Mapping decisions are encapsulated in the rowand column operators that de�ne the subtopologies in which the fft and reduce cellsare executed. Communication decisions are encapsulated in the declarations of the portarrays. Multiple processes (FFT, reduction, submesh) mapped to the same processor arescheduled according to the availability of data.We complete this code sketch by outlining in Figure 7 the code executed within asingle submesh. This represents the application-speci�c computational code that mustbe provided to complete the program. In essence, each submesh alternates between per-forming computation with local data and communicating with cells that perform FFT,local summation, and global summation operations. The submesh procedure initiates anFFT or summation by sending a message on the appropriate communication stream. Theprocesses constituting this structure perform the transform or summation and eventuallyreturn a result. This communication is encapsulated in the procedure exchange, whichsends a message in (to = [injto1]) and concurrently awaits a reply out (fr ?= [ojf]-> : : :).7.3 MappingWe explore alternative mappings by changing the mapping function spectral mesh. (Theglobal summation structure is mapped separately.) For example, the following procedureimplements mapping (1) in Figure 1. It uses the identity function (oldnode(i) = i) toembed each node of the new topology in the corresponding node of the old topology.function spectral_mesh(lat,long):if topology() != {"mesh",m,n} or m*n != lat*long then errorelse return({"mesh",lat,long},lat*longoldnode(i) = i)The following procedure implements mapping (2) in Figure 1. The mapping function ismore complex, but remains manageable.function spectral_mesh(lat,long):if topology() != {"mesh",m,n} or m*n != lat*long then errorelse return({"mesh",lat,long},lat*long, 17

submesh(id,to_gs,fr_gs,to_fft,fr_fft,to_sum,fr_sum){ ; init(id,state),compute(state,to_gs,fr_gs,to_fft,fr_fft,to_sum,fr_sum)}compute(state,to_g,fr_g,to_f,fr_f,to_s,fr_s){ ; compute1(state,fftdata),exchange(fftdata,result1,to_f,fr_f,to_f1,fr_f1),compute2(result1,state,sumdata),exchange(sumdata,result2,to_s,fr_s,to_s1,fr_s1),compute2(result2,state,diagnostics),exchange(diagnostics,globsum,to_g,fr_g,to_g1,fr_g1),compute(state,globsum,to_g1,fr_g1,to_f1,fr_f1,to_s1,fr_s1)}exchange(in,out,to,fr,to1,fr1){|| to = [in|to1],fr ?= [o|f] -> {|| out=o, fr1=f}} Figure 7: Spectral Transform | Submesh Codeoldnode(i) = mm + nn*mwhere ls = sqrt(long)lt = i/long, ln = i%longmm = (lt%(m/ls))*ls + ln%lsnn = (lt/(m/ls))*ls + ln/ls)8 Control Volume/Icosahedral Mesh ImplementationRecall that the problem domain in the second algorithm consists of two polar points andten equal-sized rhombi (meshes) and that each mesh is partitioned into C2 submeshes(Section 2.2).8.1 Virtual Topologies and MappingAs in the spectral transform, we de�ne a specialized virtual topology with the samestructure as the domain decomposition (Figure 2). The icosahedral mesh topology com-prises ten C � C mesh structures and two polar nodes. We assume a mapping functionicosahedral mesh that de�nes a mapping for this topology. We shall also require map-ping functions rhombus(i) and pole(j), de�ned below, which create subtopologies (oftype mesh and point, respectively) comprising the nodes in the ith mesh or jth pole.18

function rhombus(i):if topology() != {"icosahedral_mesh",C} ori < 0 or i > 9 then errorelse return({"mesh",C,C},C*C,oldnode(i) = r*C*C + i)function pole(i):if topology() != {"icosahedral_mesh",C} ori < 0 or i > 1 then errorelse return({"point",1},1,oldnode(i) = 10*C*C + i)The mapping function icosahedral mesh is not presented here. We have observed thaton modern multicomputers such as the 528-node Intel Touchstone DELTA, performanceis not particularly sensitive to the mapping employed [9], as high-performance communi-cation reduces the importance of locality. On machines where communication locality isimportant, we can fold the virtual topology (locating two or more nodes per processor) soas to reduce message latency.8.2 Code SketchThe parallel algorithm involves nearest-neighbor communication within each rhombus andmore complex communication between rhombi and the poles. In addition, global reduc-tions are used to compute diagnostic information (Section 2.2).The code sketch in Figure 8 shows that this structure can be constructed by composingtwo pre-existing components (mesh io and reduce: Section 6) and an application-speci�cprocedure (interconnect). Ten calls to the mesh io template establish intrarhombuscommunication channels and create the processes that handle computation in submeshes.One call to reduce creates the cell used to perform global reductions. The interconnectprocedure establishes interrhombus communication channels.Note that the parallel program is speci�ed as a template, with the code to be exe-cuted at polar and nonpolar nodes provided as arguments. The mapping functions \inrhombus()" and \in pole()" locate the rhombus cells and pole processes within theicosahedral mesh topology.The interconnect procedure establishes interrhombus communication channels byconnecting elements of ports nsi, nso, wei, and weo. For example, the following fragmentestablishes communications between the southern edges of rhombi 0{4 and the northernedges of rhombi 5{9. The rest of the procedure is similar.{|| i over 0..4, j over 0..c-1 :19

sphere(meshop,poleop)port I[nodes()], O[nodes()];{|| ico(meshop,poleop,I,O) in icosahedral_mesh,reduce(maximum(),I,O)}ico(meshop,poleop,I,O)port I[],O[];port Nsi[nodes()],Nso[nodes()],Wei[nodes()],Weo[nodes()];{|| {|| i over 0..9 :mesh_io(meshop,I,O,Nsi,Nso,Wei,Weo) in rhombus(i)},`poleop`(0,I,O,Nsi,Nso,Wei,Weo) in pole(0),`poleop`(1,I,O,Nsi,Nso,Wei,Weo) in pole(1),interconnect(Nsi,Nso,Wei,Weo)} Figure 8: Code Sketch for Icosahedral Mesh{|| Nsi[i*c*c+j] = Nso[(i+5)*c*c+(c-1)*c+j])Nso[i*c*c+j] = Nsi[(i+5)*c*c+(c-1)*c+j])} @ node(i*c*c+j)}As in the spectral code, a substantial part of the program is formed from existingbuilding blocks. It is also instructive to examine what is involved in making various mod-i�cations. The reduction algorithm can be changed simply by substituting an alternativetemplate. A change to the numerical method's stencil involves substitution of an alterna-tive mesh template and some changes to interconnect. As always, alternative mappingsare speci�ed simply by changing a mapping function. In each case, modi�cations arerestricted to a small piece of code.9 Finite Di�erence/Composite Mesh ImplementationRecall that in the third algorithm the problem domain consists of two equal-sized meshesand that each mesh is partitioned into C2 equal-sized charts (Section 2.3).9.1 Virtual Topologies and MappingAs in the �rst two algorithms, we de�ne a specialized virtual topology with the samestructure as the domain decomposition (Figure 3). The composite mesh topology com-prises two meshes, each partitioned into C � C charts. We assume a mapping functioncomposite mesh that de�nes the mapping of this topology to a physical computer. We20

shall also require mapping functions northern and southern, which create subtopologiesof type mesh, comprising just the northern and southern component of the compositemesh, respectively.Mapping is complicated by the fact that di�erent charts perform varying amounts ofcomputation and communication. An optimal mapping should probably locate a varyingnumber of charts on di�erent processors so as to minimize load imbalances. The use ofthe composite mesh topology makes the implementation of this mapping strategy straight-forward. The composite mesh program locates one chart in each node of the compositemesh topology. The composite mesh mapping function maps a variable number of nodesto each physical processor.9.2 Code SketchThe parallel algorithm involves nearest-neighbor communication between charts withineach mesh and more complex intermesh communication for the purposes of interpolation.In addition, global reductions are used to compute diagnostic information (Section 2.3).The code sketch in Figure 9 shows that this structure can be constructed by compos-ing three pre-existing components: mesh io2, reduce, and router. The procedure solvecomposes the procedure composite (in the composite mesh topology) and a reduce tem-plate, used to implement the global summation. The procedure composite composes twoinvocations of the mesh io2 template and a router cell. Recall that the mesh io2 templatetakes two pairs of port arrays as arguments; in this case, these are used for communicationwith the reduce and router cells.The calls to mesh io2 create sets of C2 chart processes in the northern and southernmeshes and establishes the communication streams needed for communication betweenneighboring charts in each mesh. Each chart process (except those on a mesh edge) hasconnections to north, south, east, and west neighbors. Each process must determinewhether to engage in computation and which connections to use for communication.The interpolation communication structure is complex and not easily de�ned in termsof indices into port arrays. Fortunately, it is straightforward to construct the communi-cation structure dynamically by using the router. First, each chart process determinesthe data that it requires from other charts. Then, each chart uses the router to send amessage to each chart from which it requires data. This message contains a descriptionof the required data and a new de�nitional variable to be used for subsequent exchanges.For example, if a chart A requires data D from a chart B, it uses the router to send amessage fD;Sg to B, where S is a de�nitional variable. Upon receipt of this message,B records the data to be sent to A (D) and the stream on which it must be sent (S).As A also records S, this exchange dynamically establishes a channel between A and B.Note that this exchange takes advantage of the virtual channel's status as a �rst-class datastructure, which allows it to be included in messages.Finally, each chart process possesses streams to and from neighbors in the grid, streamson which it is to send interpolation data, and streams on which it is to receive interpola-tion data. All necessary communication channels have been established, and each chartprocess can proceed to execute a compute{communicate cycle similar to that de�ned forthe spectral transform submesh process (Figure 7).21

main(){|| solve() in composite_mesh }solve()port I[nodes()], O[nodes()];{|| composite(I,O),reduce(maximum(),I,O)}composite(I,O)port I[], O[], Ri[nodes()], Ro[nodes()];{|| mesh_io2(chart(0),I,O,Ri,Ro) in northern,mesh_io2(chart(1),I,O,Ri,Ro) in southern,router(Ri,Ro)} Figure 9: Code Sketch for Composite Mesh9.3 Many-to-One CommunicationThe program in Figure 9 creates two cells (reduce and composite) within a compositemesh topology. A de�ciency of this formulation is that the composite mesh mapping isunlikely to be optimal for the reduce cell, as we have assumed in Section 9.1 that itwould be optimized for the composite cell. We would prefer to create the reduce networkdirectly on the underlying computer; in this way, any clever embeddings developed for thereduce cell can be exploited. Hence, we rewrite the top level of the composite mesh codeas follows.solve()port I[nodes()], O[nodes()];{|| composite(I,O) in composite_mesh,reduce(maximum(),I,O)}Recall that this technique is applied in the spectral transform and icosahedral codes(Figures 6 and 8). We did not apply it in Figure 9 because the mapping functioncomposite meshmay expand as well as reshape the topology in which it is applied. That is,it may place several nodes of the new topology on each node of the original topology. Thiscreates di�culties when we compose a cell de�ned on the new topology (e.g., composite)with a cell de�ned on the parent topology (e.g., reduce): there is no longer a one-to-onerelationship between nodes in the two cells. (A similar situation arises if the mappingfunction used to produce the o�spring topology performs a restriction operation.)This turns out to be a common situation; in fact, although we have ignored the possi-bility, it can also arise in the spectral transform and icosahedral algorithms if the mapping22

functions spectral mesh or icosahedral mesh expand and/or restrict as well as reshape.Hence, we provide the following mechanism for dealing with many-to-one communication.Consider two ports, the �rst of dimension 1 in the parent topology and the second ofarbitrary dimension in the expanded and/or restricted o�spring topology. The primitiveoperation connect, when invoked with these two ports as arguments, de�nes each elementof the �rst port to be a tuple containing those elements of the second port that are mappedto the corresponding parent topology node.More precisely: Let P be a port of dimension 1 de�ned in a topology T , and Q be a portof dimension q de�ned in S, the subtopology of T obtained by the mapping function F . Theprimitive operation connect(P,Q) de�nes each element P [i] of P , 0 � i <sizeof(T), tobe a tuple containing those elements Q[j � q+ l], 0 � j <sizeof(S), 0 � k < q, such thatthe mapping function F locates the jth node of S in the ith node of T .We use this mechanism in the procedure composite. Two additional ports are de�ned,Li and Lo, and two connect calls are used to de�ne each element of I and O to be a tupleof port elements. The reduce cell most be modi�ed to deal with tuples of streams as inputand output.composite(I,O)port I[], O[];port Ri[nodes()], Ro[nodes()], Li[nodes()], Lo[nodes()];{|| mesh_io2(chart(NORTH),Li,Lo,Ri,Ro) in northern,mesh_io2(chart(SOUTH),Li,Lo,Ri,Ro) in southern,router(Ri,Ro),connect(I,Li),connect(O,Lo)}10 Related WorkProgram structuring and reuse are important themes in parallel computing research. Thesethemes are particularly visible in CSP [19], functional programming [21, 18], concurrentlogic programming [10, 16], object-oriented programming [1], and Unity [7]. Most of thesesystems are based on lightweight process and message-passing ideas similar to those ex-plored in this paper. However, for a variety of reasons, they do not support the sameforms of composition and reuse. CSP's processes and channels cannot be created dynam-ically or communicated in messages. Some of these restrictions can be removed [3], butthe overall model is static rather than dynamic. We have not emphasized the dynamicaspect of our approach in this paper, but in practice we frequently generate or change thecon�guration of software cells during program execution. In concurrent functional andlogic programming, the concept of a distributed array of channels is absent, making itdi�cult to specify the composition of process ensembles. In concurrent object-orientedprogramming, the concept of a channel is absent, making it di�cult to specify determin-istic computations.There are clearly similarities between our ideas and fundamental concepts of VLSIdesign [23]. In particular, the notions of cell and port are used in an analogous manner,23

to control complexity in large circuits. However, it is important not to be misled by theobvious analogies. Software is more exible than hardware and admits more general andelegant solutions to many problems. For example, a software cell is not restricted to twodimensions and need not be mapped to contiguous processors; software cells and wires canoverlap.Concepts similar to our software cells and ports have been proposed by several re-searchers, notably the iWARP group [2], Griswold et al. [17], and Browne et al. [4]. Thefocus of iWARP is the generation of e�cient programs for a systolic processor. Hence,the forms of programs that can be speci�ed is limited: the contiguous submesh is the onlytopology supported and the number of channels is limited. Griswold et al. propose pro-cess ensembles as a means of organizing data, computation, and communication. However,their concepts do not support hierarchies of topologies. Browne et al. propose a compo-sitional calculus for specifying interconnections between software chips. The integrationof this calculus into a programming notation is not discussed, and the notion of virtualtopology is absent.The use of virtual topologies to abstract mapping decisions was �rst proposed byMartin [22]. Hudak [20] and Taylor [26], among others, have used similar ideas to specifymapping decisions in declarative programming systems. In Hudak's scheme, arbitraryinteger functions can be used to specify both relative and absolute locations. Taylor usesthem to specify relative locations in an in�nite computing surface. However, the importantconcepts of mapping function and software cells are absent from these proposals.Chien and Dally's Concurrent Aggregates (CA) language allows the de�nition of ho-mogeneous collections of objects called aggregates; messages addressed to an aggregate arerouted to one of its members [8]. As in our proposal, concurrent structures can be de-�ned and composed with other structures to build concurrent programs. However, issuesassociated with spatial organization of such structures are not addressed.We conclude with a note concerning what is currently the most common approach tomulticomputer programming, which we will refer to as \heavyweight message passing".In this approach, applications are structured as heavyweight processes, one per physicalprocessor; processes communicate by sending and receiving messages. Unfortunately, thisstructure fails to isolate design decisions concerned with mapping, communication, andscheduling. As only one process can be located on each processor, and messages must bedirected to processors, logically disjoint design decisions become inextricably intertwinedand are clearly visible in module interfaces. As a consequence, programs become complexand inexible, and reusable libraries are hard to de�ne. It is important to realize that inmany cases these di�culties are not inherent in programming problems but are insteadartifacts of this particular approach.11 ConclusionsResearch in sequential programming has demonstrated the value of isolating design de-cisions that are di�cult or likely to change. We have argued that in multicomputerprograms, design decisions concerned with mapping, communication, and scheduling areproblematic and hence deserving of encapsulation. We have described four computational24

abstractions that together allow these decisions to be isolated and hidden. Virtual topolo-gies, virtual channels, and lightweight processes provide mechanisms for isolating mapping,communication, and scheduling decisions, while port arrays allow these techniques to beapplied to program components that must execute on many processors.In addition to describing the abstractions, we have shown how they can be encapsulatedin programming language constructs, and have outlined solutions to three substantialparallel programming problems. These code sketches indicate how the abstractions allowcomplex programs to be developed by composing existing templates, and how mapping,communication, and scheduling decisions can be separated from algorithmic speci�cations.As a consequence, changes that in most programming systems would be extremely di�cult(e.g., exploring a di�erent mapping) can be accomplished by changing a few lines ofcode. Similarly, overlapping of computation and communication, normally di�cult toaccomplish, is achieved automatically.We believe that the most signi�cant aspect of this work is that it is now possible tode�ne truly modular (and hence reusable) parallel libraries. In particular, we are able tode�ne cells: parallel program components with speci�ed internal logic and external com-munication ports, but encapsulating no mapping, communication, or scheduling decisions.Instead, these decisions are isolated in the code used to compose cells to form applications.Thus, the same cell can be used unchanged in di�erent contexts. Even greater exibilityis provided by templates: cell de�nitions parameterized with the code to be executed ateach node.We have assumed in this paper that all cells are implemented with the same tech-nology (PCN). However, there is no reason why cells should not be implemented usingdi�erent techniques (e.g., message-passing libraries or data-parallel languages), as long asimplementations do not encapsulate mapping, communication, or scheduling decisions.AcknowledgmentsThis research was supported by the Applied Mathematical Sciences subprogram and theAtmospheric and Climate Research Division of the O�ce of Energy Research, U. S. Depart-ment of Energy, under Contract W-31-109-Eng-38. Development of PCN was sponsoredby the National Science Foundation's Center for Research in Parallel Computation un-der Contract NSF CCR-8809615. We thank fellow participants in the CHAMMP climatemodeling program at Argonne National Laboratory, the National Center for AtmosphericResearch, and Oak Ridge National Laboratory for assistance with development of sequen-tial and parallel codes.References[1] Agha, G., Actors, MIT Press, 1986.[2] Borkar, S., et al., iWarp: An integrated solution to high-speed parallel computing,Proc. Supercomputing Conf., 330{339, 1988.25

[3] Brinch Hansen, P., Joyce | a programming language for distributed systems, Softw.P. and E., 17, 29{50, 1987.[4] Browne, J., Werth, J., and Lee, T., Intersection of parallel structuring and reuseof software components, Proc. Intl Conf. on Parallel Processing, Penn. State Press,1989.[5] Browning, G., Hack, J., and Swarztrauber, P., A comparison of three numericalmethods for solving di�erential equations on the sphere, Mon. Wea. Rev., 117 (5),1989.[6] Chandy, C., and Taylor, S., An Introduction to Parallel Programming, Jones andBartlett, 1991.[7] Chandy, K. M., and Misra, J. Parallel Program Design, Addison-Wesley, 1988.[8] Chien, A., and Dally, W., Concurrent Aggregates, Proc. ACM Symp. on Principlesand Practice of Parallel Programming, ACM, 1990, 187{196.[9] Chern, I., and Foster, I., Design and parallel implementation of two methods forsolving PDEs on the sphere, Proc. Conf. on Parallel Computational Fluid Dynamics,Stuttgart, Germany, Elsevier Science Publishers B.V., 1991.[10] Clark, K., and Gregory, S., A relational language for parallel programming, Proc.1981 ACM Conf. on Functional Programming Languages and Computer Architectures,1981, 171{178.[11] Dally, W. J., et al., The J-Machine: A �ne-grain concurrent computer, InformationProcessing 89, G. X. Ritter (ed.), Elsevier Science Publishers B.V., North Holland,IFIP, 1989.[12] Foster, I., Gropp, W., and Stevens, R., The parallel scalability of the spectral trans-form method, Mon. Wea. Rev., March 1992.[13] Foster, I., Kesselman, C., and Taylor, S., Concurrency: Simple concepts and powerfultools, The Computer Journal, 33(6):501{507, 1990.[14] Foster, I., Olson, R., and Tuecke, S., Productive parallel programming: The PCNapproach, Scienti�c Programming, 1(1), 1992 (in press).[15] Foster, I., and Taylor, S., A compiler approach to scalable concurrent program design,Technical Report, Argonne National Laboratory, 1992.[16] Gregory, S., Parallel Logic Programming in PARLOG, Addison-Wesley, 1987.[17] Griswold, W., Harrison, G., Notkin, D., and Snyder, L., Port ensembles: A commu-nication abstraction for nonshared memory parallel programming, Proc. Intl Conf.on Parallel Processing, Penn. State Press, 1990.[18] Henderson, P., Functional Programming, Prentice-Hall, 1980.26

[19] Hoare, C., Communicating sequential processes, CACM, 21(8), 666{677, 1978.[20] Hudak, P., Para-functional programming, IEEE Computer, 60{70, Aug 1986.[21] Kahn, G., The semantics of a simple language for parallel programming, Proc. IFIPCongress '74, North Holland, 1974.[22] Martin, A., The torus: An exercise in constructing a processing surface, Proc. Conf.on VLSI, Caltech, 52{57, Jan. 1979.[23] Mead, C., and Conway, L., Introduction to VLSI Systems, Addison Wesley, 1980.[24] Parnas, D., On the criteria to be used in decomposing systems into modules, CACM15(2), 1053{1058, 1972.[25] Seitz, C. L., Multicomputers, Developments in Concurrency and Communication,C.A.R. Hoare (ed.), Addison-Wesley, 1991.[26] Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, 1989.[27] Walker, D., Drake, J., and Worley, P., Parallelizing the spectral transform method |Part II, Tech. Rep. ORNL/TM-11855, Oak Ridge National Laboratory, Oak Ridge,Tenn., 1991. (Available from DOE O�ce of Scienti�c and Technical Information.)[28] Young, M., et al., The duality of memory and communication in Mach, Proc. 11thSymp. on Operating System Principles, ACM, 63{76, 1987.Appendix: Implementation of Building BlocksWe present PCN implementations for three building blocks used in this paper. Thebrief descriptions that accompany the programs highlight selected features but do notexplain all details.Buttery Template. Both the reduce and fft cells (Section 6) can be de�ned in termsof a butterfly template, which creates cells with a buttery network as their internalcommunication structure. The template operates loosely synchronously and is invoked asbutterfly(op,In,Out). Each time data arrives on the port array In, the supplied opis invoked with the message and a list of buttery communication streams as arguments.The value returned by op is output on Out.A possible implementation is given in Figure 10. The code veri�es that the number ofprocessors (p) is a power of two, declares a port Ps of dimension log2 p (for the butterycommunication streams), and creates a streams and bflynode process on each node of thecurrent topology. Each streams process collects log2 p input streams and log2 p outputstreams for its node. The bflynode processes handle the actual computation: when amessage arrives on in, a process invokes the supplied op with the message and a vector ofcommunication streams as arguments. The value returned by the operator is output onout. 27

The supplied programmaps the ith node of the buttery (0 � i < p) to the ith node ofthe current topology. This mapping is e�cient in an array topology but not necessarily inother topologies. A more sophisticated implementation would specify alternative mappingsfor di�erent architectures.Reduce Template. The reduce template reduces a set of values received on one portarray, using a supplied binary operator, and broadcasts the result of the reduction opera-tion on another port array. This operation can be programmed with a buttery network,as shown in Figure 11. Note the use of the butterfly template, parameterized with thereduce bfly procedure. In each of log2 p phases (one per element on the list of streamspassed to reduce bfly), each node sends a partially reduced value to another node in thenetwork, receives a partially reduced value, and performs a reduction operation.Mesh Template. An implementation of the mesh io2 template is provided in Fig-ure 12. This program actually implements a torus with wrap-around connections betweenwest/east and north/south edges, as the edge connections are ignored by the compositemesh code that uses this template, and it is simpler to wrap the edges connections thanto leave them unconnected. Note how the call to op is passed the appropriate elements ofI1, O1, I2, and O2, as well as N, E, S, and W. (The macro I(i,j) is used to compute portarray indices, as two-dimensional port arrays are not supported directly.) The locationfunction mesh node is used to locate the calls to op within the mesh topology.

28

butterfly(op,In,Out)port In[], Out[];{|| power_of_two(nodes(),r),{ ? r == "false" -> error(),default -> {|| log2(nodes(),l2),bfly(op,In,Out,l2)}}}bfly(op,In,Out,l2)port In[], Out[], Ps[l2*nodes()];{|| i over 0..nodes()-1 :{|| streams(i,l2,l2-1,i,1,Ps,is,os),bflynode(op,In[i],Out[i],is,os) } @ node(i)}streams(i,l2,l,ii,k,Ps,is,os)port Ps[];{ ? l >= 0 -> {|| { ? ii%2 == 0 -> si = {"+",Ps[l*l2 + i+k]},ii%2 != 0 -> si = {"-",Ps[l*l2 + i-k]}},so = Ps[l*l2 + i],is = [si|is1], os = [so|os1],streams(i,l2,l-1,ii/2,k*2,Ps,is1,os1)},default -> {|| is=[], os=[]}}bflynode(op,in,out,is,os){ ? in ?= [id|in1] ->{|| `op`(id,od,is,os,is1,os1),out = [od|out1],bflynode(in1,out1,is1,os1)}} Figure 10: Buttery Template29

reduce(op,In,Out)port In[], Out[];{|| butterfly(reduce_bfly(op),In,Out) }reduce_bfly(op,in,out,is,os,is1,os1){ ? os ?= [o|os2] ->{|| o = [in|o1], os1 = [o1|os3], /* Send IN on O */is ?= [{_,[v|i]}|is2] -> /* Recv V on I */{|| `op`(in,v,newv), /* Reduce IN and V */is1 = [{_,i}|is3], /* Prepare to recurse */reduce(op,newv,out,is2,os2,is3,os3)}},os ?= [] -> {|| out=in, is1=[], os1=[]} /* Done */} Figure 11: Reduction Template#define I(i,j) ((((i)+m)%m)*n + ((j)+n)%n)mesh_io2(op,I1,O1,I2,O2)port I1[],O1[],I2[],O2[];port N[nodes()],E[nodes()],S[nodes()],W[nodes()];{ ? topology() ?= {"mesh",m,n} ->{|| i over 0..m-1 :{|| j over 0..n-1 :`op`(I1[I(i,j)], O1[I(i,j)], I2[I(i,j)], O2[I(i,j)],{N[I(i,j)], E[I(i,j)], S[I(i,j)], W[I(i,j)],S[I(i-1,j)], W[I(i,j+1)],N[I(i+1,j)], E[I(i,j-1)]}) @ mesh_node(i,j)}} Figure 12: Mesh Template30

