
Application of Automated Deduction to the Search forSingle Axioms for Exponent Groups�William McCune and Larry WosMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439-4801U.S.A.e-mail: mccune@mcs.anl.gov, wos@mcs.anl.govphone: 708-252-3065 or 312-493-0767March 30, 1995AbstractWe present new results in axiomatic group theory obtained by using automateddeduction programs. The results include single axioms, some with the identity andothers without, for groups of exponents 3, 4, 5, and 7, and a general form for singleaxioms for groups of odd exponent. The results were obtained by using the programsin three separate ways: as a symbolic calculator, to search for proofs, and to search forcounterexamples. We also touch on relations between logic programmingand automatedreasoning.1 IntroductionA group of exponent n is a group in which for all elements x, xn is the identity e. Groupsof exponent 2, xx = e, are also called Boolean groups. A single axiom for an equationaltheory is an equality from which the entire theory can be derived by equational reasoning.We are concerned with single axioms for groups of exponent n, n � 2. B. H. Neumann[6, p.83] gives a general form for single axioms for certain subvarieties of groups, includingexponent groups. The axioms it produces are very long, they contain inverse, and theydo not contain the identity. We sought shorter axioms without inverse, some without andothers with identity. When we started the study, we knew of simple single axioms forBoolean groups [4]. Since then, we have found many single axioms, not containing theidentity, for exponents 3, 5, and 7, and a general form for groups of odd exponent. Wehave also found single axioms, containing the identity, for exponents 2 and 4 and for oddn, 3 � n � 17.We made extensive use of three types of symbolic computation in discovering the axioms.First, the automated deduction program Otter [1, 2] was used as a symbolic calculator,�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.



performing strictly algorithmic deductions, to generate sets of candidate single axioms.We consider such use to be a type of logic programming. Second, Otter also played itstraditional role as a theorem prover, to attempt to show that candidates are in fact singleaxioms. Third, the program Finder [7] was used to search for counterexamples, to showthat candidates are not single axioms.The �rst two types of computation listed above illustrate our view on the relationshipsbetween logic programming and automated reasoning [8]. Although the theoretical founda-tions of the two areas are closely related and the implementation methods can be similar,practical applications are usually far apart, with logic programming relying on algorithmicdeduction, and automated reasoning on less-focused search.Several of the methods we used are based on recent work in which single axioms werediscovered for the left group and right group calculi [3] and for several axiomatizations ofordinary groups and Abelian groups [4].2 Axiomatizations of Exponent GroupsThroughout the paper, e is the group identity, (x � y) is product, x�1 is inverse, and xn isright-associated.The variety of groups of exponent n, n � 1, can be axiomatized with the following setof three equalities.(x � y) � z = x � (y � z) associativity (2.1)e � x = x left identity (2.2)xn = e exponent property (2.3)(Inverse is not required, because x�1 = xn�1. Also, left identity can be replaced with rightidentity x � e = x.) However, the identity e need not be mentioned, for the following setaxiomatizes the same structures.(x � y) � z = x � (y � z) associativityyn � x = x left identity without e (2.4)xn = yn exponent property without e (2.5)(Again, left identity can be replaced with right identity x � yn = x.)An equality � = � is a single axiom for groups of exponent n if and only if it holds ingroups of exponent n and one of the above sets can be derived from it. (It is known thateither � or � must be a variable.) Note that the mirror image of a single axiom, obtainedby 
ipping arguments of all occurrences of product, is also a single axiom.3 Programs UsedOtter is a resolution/paramodulation automated deduction system for �rst-order logicwith equality. As well as its normal role of searching for proofs, Otter can be \pro-grammed" to perform symbolic computation tasks. We list here examples of tasks thatarose during our study of exponent groups and that can be addressed by \programming"Otter. 2



� Given a string of terms, construct the set of products of the terms with all possibleassociations. For example, a string of length 5 produces a set of 14 associations.� Given term t, construct ft0jt0 can be obtained from t by inserting one occurrence ofeg.� Given a set of equalities, rewrite each with x�1 = x � x � x; then paramodulate onelevel from the left argument of x � x � x � x = e.� Given a set of equalities, generate 10,000 consequences of the set; then extract equal-ities with three distinct variables and one occurrence of e.The preceding methods and others were used to generate sets of candidate single axiomsfor exponent groups.We used Otter as a theorem prover to attempt to show that candidates are singleaxioms. The search strategy was based on Knuth-Bendix completion, and it included thefollowing enhancements.� Equalities that could not be oriented into rewrite rules were allowed to participate inthe search.� We placed a limit on the length of equalities. The limit for each case was typicallydetermined by experimentation.� We used the ratio strategy [5], which combines best-�rst search and breadth-�rstsearch, for selecting the next equality for application of paramodulation.� Denials of the associativity, identity, and exponent properties were input, but theydid not participate in the searches. They were used only to detect proofs.� We occasionally pruned the search based on our intuition.When working on a particular type of candidate, we ran individual Otter jobs, carefullytuning the strategy. In contrast, with a set of, say, 1000 candidates we would �x the strategyand automatically run a sequence of 1000 Otter searches, each with a small time limit.Finder [7] is a program that searches for models of sets of �rst-order clauses. Given acandidate, if Finder produces a model violating a group property or the exponent property,the candidate is not a single axiom. Most of our useful assistance from Finder was withjobs of less than one minute, �nding models of less than �ve elements.4 Results4.1 Single Axioms without the IdentityFor groups with exponent 2, we already knew short single axioms [4], for example,((x � y) � z) � (x � z) = y. (4.1)3



In contrast to (4.1), the axiom produced by B. H. Neumann's general form contains 14occurrences of product and 9 occurrences of inverse, and we have not been able to verify itwith Otter.For exponent 3, we quickly found the following, each of which is a single axiom, byconsidering all associations of xxxyzzz = y.x � ((x � (x � (y � (z � z)))) � z) = y (4.2)x � ((x � ((x � y) � z)) � (z � z)) = y (4.3)x � ((((x � x) � (y � z)) � z) � z) = y (4.4)For exponent 4, we considered all associations of several strings, but we failed to �ndshort single axioms (without the identity e).For exponent 5, we found 14 single axioms (excluding mirror images), including thefollowing, by considering associations of xxxxxyzzzzz = y.x � (x � ((x � (x � (x � (y � (z � (z � (z � z))))))) � z)) = y (4.5)x � (x � ((x � (x � ((x � y) � z))) � (z � (z � (z � z))))) = y (4.6)Odd Exponent Without Identity. We noticed a similarity between (4.2) and (4.5)and conjectured that the following equalities (written without the operator and assumingright association where parentheses are omitted) are single axioms for exponents 7 and 9,respectively.xxx(xxxxyzzzzzz)z = y exponent 7 (4.7)xxxx(xxxxxyzzzzzzzz)z = y exponent 9 (4.8)Otter quickly proved the conjectures. We also veri�ed the obvious general form for oddexponents through 21. We noticed similarities in the Otter proofs that (4.2), (4.5), (4.7),and (4.8) are single axioms for exponents 3, 5, 7, and 9, respectively, and proved (by hand)that the general form holds for all odd exponents.We believe that there exists another general form for groups of odd exponent that canbe obtained by generalizing (4.3) and (4.6), but we have not yet worked out all the details.Even Exponent Without Identity. We failed to �nd any new single axioms for groupsof exponent 6 or exponent 8, and we have little intuition about general forms for singleaxioms for even exponents.4.2 Single Axioms with IdentityOur main reason for seeking single axioms with the identity for exponent groups is thatin the case of ordinary groups, single axioms exist in terms of product and inverse, butno single axioms exist in terms of product, inverse, and identity [6]. We believe also thataxioms with identity are more natural and appealing.For exponent 2, we easily found many single axioms with one occurrence of the identitye by considering simple transformations of known single axioms without e. An example isx � ((y � (e � z)) � (x � z)) = y, (4.9)4



which is also a single axiom for exponent 2 if (e � z) is replaced with z. We conjectured thatan equality without e is a single axiom if and only if the result of inserting one occurrenceof e in any position is also a single axiom. However, with the assistance of Finder, wefound counterexamples to both directions of the equivalence. Results for exponent 3 weresimilar to those for exponent 2. A sample single axiom for exponent 3 isx � ((x � ((x � y) � z)) � (e � (z � z))) = y. (4.10)For exponent 4, we had no single axioms without e to use as a starting point, so weturned to brute force. We considered the 1429 associations of xxxxyzzzz = y, and for eachof those, the 17 subterms at which an occurrence of e can be inserted. By symmetry weinserted e only to the left of the subterms and had 1429 � 17 = 24293 candidates, each withone occurrence of e. With each candidate, we ran an Otter search with a time limit of 30seconds. (Most searches were terminated in less than 30 seconds by the restrictive searchstrategy.) One single axiom emerged:x � ((x � ((x � ((e � ((x � y) � z)) � z)) � z)) � z) = y. (4.11)Several of the other candidates derived su�cient properties except for associativity, andwhen we reran those candidates with a greater time limit, nine more single axioms emerged.Note that in (4.11), none of the products is applied to two products. All single axioms knownto us for exponent 4 have that property.For exponent 6, we considered the set analogous to the exponent 4 candidates and ranOtter searches with a subset of those, but we failed to �nd single axioms.Odd Exponent with Identity. We observed the following relationships between (4.3),(4.6), and (4.10). Equalities (4.3) and (4.10) (both exponent 3) are similar except for e, and(4.6) (exponent 5) has a form similar to (4.3) (exponent 3). By analogy, we conjecturedthat (written without the operator and assuming right association where parentheses areomitted)xx(xx(xy)z)ezzzz = y (4.12)xxx(xxx(xy)z)ezzzzzz = y (4.13)are single axioms for exponents 5 and 7, respectively. Otter proved the required theorems.We then conjectured that the obvious general form holds for all odd exponents.Otter has checked the general form for cases through exponent 17 (the �rst proof forexponent 17 required 23 hours on a SPARCstation 2 and had 181 steps), but we have notyet worked out the details for the general proof. As in the general forms without e, we areattempting to generalize the Otter proofs for cases 3; 5; 7; � � � ; 17 with e, but the Otterproofs with e are much more complex.AppendixWe present here an Otter proof (found in less than 1 second on a SPARCstation 2) that(4.3) is strong enough to be a single axiom for groups of exponent 3. Equalities 88, 99, and104 below are su�cient properties. The justi�cation m ! n indicates paramodulation fromm into n, and :m;n; � � � indicates simpli�cation with m;n; � � �.5



6 x � ((x � ((x � y) � z)) � (z � z)) = y [(4.3)]8 x � (y � ((z � z) � (z � z))) = (x � y) � z [6!6]10 (y � (y � ((y � x) � (z � z)))) � z = x [6!8]13 (x � ((x � (x � y)) � z)) � (z � z) = y [8!10]15 ((x � x) � x) � x = x [8!10]19 (x � x) � (((x � x) � x) � (x � x)) = x [15!6]23 (((x � x) � x) � (x � y)) � (y � y) = x [15!13:15]27 (x � (z � ((z � (z � y)) � (u � u)))) � u = x � y [13!8]29 (x � x) � (x � ((x � x) � (x � x))) = x [19!6]31 (x � y) � (((y � y) � (y � y)) � ((y � y) � (y � y))) = x [8!23:15]33 (x � (((y � y) � y) � (y � (z � z)))) � z = x � y [23!8]40 (x � (y � z)) � (z � z) = x � y [8!33:15]47 x � (x � (x � y)) = y [13:40]49 (x � y) � z = x � (y � ((z � z) � (z � z))) [33!27:15,15]61 (x � (y � z)) � ((u � u) � (u � u)) = x � (y � (z � u)) [40!40]64 x � ((y � x) � (y � x)) = y � y [47!40]76 (x � y) � ((y � y) � (y � (y � y))) = x [31:61]80 (x � x) � (x � x) = x [29:64]88 (x � y) � z = x � (y � z) [49:80]99 x � (y � (y � y)) = x [76:88,47,88]104 x � (x � x) = y � (y � y) [99!47]References[1] W. McCune. Otter 2.0 Users Guide. Tech. Report ANL-90/9, Argonne National Laboratory,Argonne, IL, March 1990.[2] W. McCune. What's New in Otter 2.2. Tech. Memo ANL/MCS-TM-153, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, IL, July 1991.[3] W. McCune. Automated discovery of new axiomatizations of the left group and right groupcalculi. Journal of Automated Reasoning, 9(1):1{24, 1992.[4] W. McCune. Single axioms for groups and Abelian groups with various operations. Journal ofAutomated Reasoning, 10(1):1{13, 1993.[5] W. McCune and L. Wos. Experiments in automated deduction with condensed detachment.In D. Kapur, editor, Proceedings of the 11th International Conference on Automated Deduction,Lecture Notes in Arti�cial Intelligence, Vol. 607, pages 209{223, New York, June 1992. Springer-Verlag.[6] B. H. Neumann. Another single law for groups. Bull. Australian Math. Soc., 23:81{102, 1981.[7] J. Slaney. Finder, �nite domain enumerator: Version 1.0 notes and guide. Tech. Report TR-ARP-10/91, Automated Reasoning Project, Australian National University, Canberra, Australia,1991.[8] L. Wos and W. McCune. Automated theorem proving and logic programming: A natural sym-biosis. Journal of Logic Programming, 11(1):1{53, July 1991.
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