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1. Introduction. Many iterative methods exhibit excellent parallel e�ciencyif the matrices have been reordered according to a graph coloring [13]. However,for most of these iterative methods, the convergence rate after reordering is slowerthan that of the \natural" ordering. For example, for the standard �ve-pointdi�erence operator the incomplete Cholesky preconditioner has a condition numberof 2(2+p2)�2h2 with the natural ordering [2] and a condition number of 1�2h2 with ared/black ordering [8].Harrar [5] has observed experimentally for the SSOR PCG method that theconvergence rate improves if more colors are used to color the graph of the matrix.Using the natural ordering and the colorings described in x2, we show in Figure 1the reduction in the residual for the ICCG method. These results are for thestandard nine-point di�erence operator on a 128 � 128 grid. We observe that asthe number of colors is increased, the number of iterations necessary to achieve thesame accuracy decreases. For large problems, one can use more colors with some
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Fig. 1. The convergence rate and the cost of ICCG with varying numbers of colorssacri�ce of parallel e�ciency and reduce solution time by reducing the number ofiterations. For example, in the right plot in Figure 1 we show the predicted timesassociated with these multicolorings when we use a variant of the parallel executionmodel given by Elman and Agr�on [3] for solving the same 128� 128 grid problemwith 16 processors. For the model, we chose the parameters � = 10, c = 10, ands = 1; the same parameters suggested by Elman and Agr�on in x6 of their paper.For two di�erent iterative methods, a stationary method and a preconditionedmethod, we use Fourier analysis techniques to prove that increasing the numberof colors will result in faster convergence. This analytic information can be usedby practitioners to make algorithmic design trade-o�s on high-performance archi-tectures.The �rst method that we examine is a multilevel version of the red/black SORmethod [15]: a generalization suggested by Kuo and Levy [9]. By using a multilevel1



approach, a consistent ordering can be obtained for any number of colors. Theoptimal relaxation factor can be cheaply computed for any consistently ordered,symmetric positive de�nite matrix [4]. Consider the four-color example given inFigure 2. At the outermost level of the multilevel algorithm, the four colors aresplit into two groups to form a 2 � 2 block matrix. This 2 � 2 matrix is triviallyconsistently ordered, and an optimal relaxation parameter can be computed. Atthe second level, each block is split into two matrices to form 2� 2 block matricesfor which optimal relaxation parameters can be computed. At the innermost level,the matrices are diagonal. Given that each processor will have approximately
(diagonal matrix)

Outer level

2nd level

Inner level

3
.

3
4

.

.
.

.
.

0
0

0
0

1
.

.

.

. 1
2

.
.

0
0

0
0 2

4Fig. 2. A multilevel SOR algorithm for four colorsthe same number of grid points of a given color, the load balancing throughoutthe algorithm will be quite good. Further discussion of this algorithm is given inx3. We note that for the speci�c case of four-coloring the nine-point Laplacian,an alternative to the multilevel SOR algorithm is a nonconsistently ordered SORalgorithm for which the optimal relaxation parameter can be determined by solvinga quartic equation [1].The multilevel SOR algorithm has advantages over the traditional approachof obtaining a consistent ordering by breadth-�rst search (BFS) and then usingred/black SOR. In the BFS approach, subproblems associated with narrow stripsof grid points must be solved. For the large matrices that must be solved on parallelcomputers, these subproblems cannot �t onto a single processor. For example, ifwe wish to solve a symmetric matrix generated from a �nite di�erence stencil ona cube, the subproblems are planes of the cube. The subproblem size increasesas the cube size is increased, but the memory on a single processor is �xed; for ascalable parallel implementation the subproblems must be split across processors.Therefore, one is faced once again with the problem of solving sparse matricesin parallel. In the multilevel algorithm, the parallel solution of the subproblemsis inherent in the algorithm. The only operations required are sparse matrix by2



vector multiplication and the solution of the diagonal submatrices; both operationsare parallel.The BFS algorithm has an additional drawback when solving unstructuredproblems in parallel. The parallel determination of the subproblem strips is di�-cult. In general, no good parallel method for BFS exists; therefore, the orderingof the nodes can take an inordinate amount of time on a parallel computer. Incontrast, good parallel graph coloring heuristics exist. Recently Jones and Plass-mann have given a scalable, parallel heuristic for �nding colorings for unstructured,sparse matrices [7].In addition to the multilevel SOR algorithm, we analyze the conjugate gradientalgorithm preconditioned by an incomplete Cholesky factorization [11, 12]. Jonesand Plassmann have given scalable, parallel methods for the ICCG algorithm forsolving unstructured, sparse, symmetric positive de�nite matrices [6].The remainder of the paper is organized as follows. In x2 we analyze theconvergence properties of the multilevel SOR algorithm with varying numbers ofcolors. We further discuss the multilevel algorithm and give experimental resultsin x3. In x4 we give a similar but more limited analysis for ICCG.2. Analysis of Multilevel SOR. In this section, we use Fourier analysis to�nd the spectral radius of the multilevel SOR algorithm for the �ve-point Laplacianoperator for any number of colors. This general analysis is restricted to a particularcoloring pattern. We also give a shorter, restricted proof for a di�erent coloringpattern for which the outer iteration uses blocks rather than strips. We believethat the extension of these results to other operators and coloring patterns isstraightforward in many cases. More important, we have found these results tohold true in practical, complicated problems.Consider an N � N grid, whose nodes are colored by using the followingpattern. n 1 3 5 n� 1 2 4n� 1 2 4 6 � � � n 1 3n 1 3 5 � � � n� 1 2 4n� 1 2 4 6 n 1 3(2.1)We index the x-direction by j and the y-direction by k. For convenience we usethe notation Sj;� = sin(j��h)(2.2) Cj;� = cos(j��h);where h = 1=(N +1). Let xj;k be the discretization of the scalar function x at thepoint (j; k) on the grid. If the color of the grid point (j; k) is c, we denote thispoint by x(c)j;k and de�ne the Fourier transform of this point by the equationx(c)j;k = X(�; �)2K(c) x̂(c)�;�Sj;�Sk;�:(2.3) 3



We do not explicitly compute the set K(c) here; we only note that the lowestfrequency pair included is (�; �) = (1; 1).Consider the action of the standard �ve-point Laplacian operator � on thescalar function x at grid point (j; k):� h24 �(j; k)x = xj;k � 14(xj�1;k + xj+1;k + xj;k�1 + xj;k+1):(2.4)In the frequency domain, we note that the transformed Laplacian operator is ap-proximately block diagonal, with a block �̂(�; �) for each frequency pair (�; �). By\approximately" we mean that for more than four colors, there is a term involv-ing S1;�Cj;�Sk;� that does not cancel in the Fourier representation of Equation 2.4.However, we are interested only in the low-frequency limit. For �xed �, we havethat S1;� ! 0 as N ! 1. In this limit, which we assume for the rest of thissection, these blocks can be expressed as�̂(�; �) = " M̂n(�; �) N̂n(�; �)N̂Tn (�; �) M̂n(�; �) # :(2.5)This block operator acts on the vector x̂(�; �) given byx̂(�; �) = 266666664 x̂(1)�;�x̂(2)�;�...x̂(n)�;� 377777775 :(2.6)Substituting Equation 2.3 into Equation 2.4, we are able to compute the twon=2 � n=2 matrices M̂n(�; �) and N̂n(�; �)M̂n(�; �) = 266666666666664 1 �� ���� 1 0 ���� 0 1 �� ��0 �� �� 1 0 . . .�� 0 . . . ��. . . 1 ���� �� 1 377777777777775 ;(2.7)
N̂n(�; �) = 2666666666664 0 ���� 0000�� 00 �� 3777777777775 ;(2.8) 4



where �� = �C1;�=2 and �� = �C1;�=4.We consider only the outer level of the multilevel SOR iteration by groupingall grid points colored by the �rst n=2 colors into a �rst group, and the remainderof the grid points into a second group. For example, with n = 8, we have thefollowing partition of the grid.8 1 3 5 7 2 4 67 2 4 6 8 1 3 58 1 3 5 7 2 4 67 2 4 6 8 1 3 5(2.9)Note that the grid is partitioned into strips; for n = 4 we obtain the equivalent ofthe standard line red/black ordering.This multilevel SOR iteration is consistently ordered. Thus, we can compute[15] the optimal relaxation parameter, !�, for SOR from the spectral radius, �J ,of the Jacobi iteration matrix from the equation!� = 21 +q1 � �2J :(2.10)The computation of �J is more straightforward in the frequency domain. Becauseof the special structure of M̂n and N̂n and the approximate block diagonal structureof the Jacobi iteration matrix, we �nd�J � max(�;�) �(M̂�1n (�; �)N̂n(�; �)):(2.11)It is clear that the maximum in Equation 2.11 is obtained for the lowest frequencymode, (�; �) = (1; 1), where the block diagonal approximation is most accurate.To simplify the notation in the following discussion, let Mn = Mn(1; 1), Nn =Nn(1; 1), � = �1, and � = �1. For n = 2i+1, we de�ne �i = �(M̂�1n N̂n). It will beuseful to de�ne the following recursion relation:s1 = cos(�h)=22� cos(�h)(2.12) r1 = s1si+1 = s2i1� r2iri+1 = ri(1 + si+1):Theorem 2.1. Let ri and si be de�ned by the recursion relations shown inEquation 2.12. The spectral radius of the Jacobi iteration satis�es �i = ri + si.Proof: Suppose v is the eigenvector corresponding to the largest eigenvalue ofM̂�1n N̂n. By inspection, we note that the product N̂nv has the special form[xx 0 � � � 0xx ]T . Thus, the computation of the spectral radius is equivalent tocomputing the sum of four components of M̂�1n multiplied by �,�i = ���� h(M̂�1n )1;1 + (M̂�1n )1;2 + (M̂�1n )1;n2�1 + (M̂�1n )1;n2 i��� :(2.13) 5



The value of these components can be computed by an induction argument anduse of the Sherman-Morrison-Woodbury formula(A+ UV T )�1 = A�1 �A�1U(I + V TA�1U)�1V TA�1 :(2.14)Let M̂n = A+ UV T ;(2.15)where the matrix A is A = " M̂n=2 00 M̂n=2 # ;(2.16)and the matrices U and V are given byU = 26666666664 0 0 1 00 0 0 11 0 0 00 1 0 0 37777777775 ; V = � 26666666664 1 0 0 00 1 0 00 0 1 00 0 0 1 37777777775 ;(2.17)where U and V are n2 � 4 matrices. Here we show the middle 4 rows; the rest ofthese matrices are zero. Let S be the last two columns of M̂�1n=2, and let �S be the�rst two columns of M̂�1n=2. We note that the matrix M̂�1n=2 is persymmetric (i.e.,symmetric about the \other" diagonal), so that �S is the persymmetric version ofS. Also, let K be the leading principal 2 � 2 matrix of �M̂�1n=2. We compute thefollowing matrices, A�1U = " 0 S�S 0 #(2.18) A�1V = � " S 00 �S #V TA�1U = " 0 KK 0 # :Continuing with our computation, we have"I +  0 KK 0 !#�1 = " Ke �KKe�KKe Ke # ;(2.19)where Ke = (I �K2)�1:(2.20)Combining these facts with Equation 2.14, we have(A+ UV T )�1 = A�1 + � " SKKeST �SKe �ST� �SKeST �SKKe �ST # :(2.21) 6



We observe that A is structured so that if we look at A as a block matrixwith 2 � 2 blocks, each of these 2 � 2 blocks is symmetric and has equal diagonalelements. Therefore, each block, and in particular K and Ke, can be diagonalizedwhen conjugated by the orthogonal matrixQ = 1p2 " 1 1�1 1 # :(2.22)Thus, to compute �i as given in Equation 2.13, we need only compute the largestdiagonal elements of the upper left 2� 2 block and upper right 2� 2 block of (A+UV T )�1 when conjugated by Q. We denote these values by ri and si, respectively.Direct calculation establishes the recursion relation given in Equation 2.12. 2Table 1A comparison of the predicted and calculated values of �J for 8 colorsMesh Size Prediction Calculated4� 4 0.51433 0.509658� 8 0.79573 0.7945616 � 16 0.93520 0.9351124 � 24 0.96919 0.9691732 � 32 0.98213 0.98213In Table 1, by direct calculation of �J we show that our low frequency Fourierrepresentation of the Laplacian is quite accurate. The values for �J predicted byTheorem 2.1 converge rapidly to the computed values. We note that Parter [14]obtains an approximation to the dominant eigenvalue �R of the k-line Richardsonmethod (equivalent to the Jacobi iteration) for elliptic partial di�erential equa-tions with constant coe�cients. For the Laplace equation with Dirichlet boundaryconditions, this approximation is given by�R � 1 � k2�h2 ;(2.23)where � is the minimum eigenvalue of the Laplacian on the given domain. In ourcase, the domain is the unit square; thus we have � = 2�2.In Figure 3 we compare the estimate obtained by Parter in Equation 2.23with the Fourier analysis estimate given by Theorem 2.1. The exact values for thespectral radius are indistinguishable from the Fourier values in this �gure.We note that a multilevel algorithm based on these colorings has the disad-vantage that the inner iterations will require information exchange along the entirestrip. For large problems it is unrealistic to expect that these strips will �t onto oneprocessor. One can avoid interprocessor communication at all levels of the multi-level iteration, except the outer level, by using a \block" coloring. One possible7
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where �� = �C1;�=4 and �� = �C1;�=4.Consider the computation of the spectral radius of the Jacobi iteration matrixfor the lowest frequency mode. We note that conjugation by the block diagonalorthogonal matrix, with the diagonal blocks given by Equation 2.22, yields a systemwith spectral radius equivalent to that obtained from a line red/black analysis. 2Table 2A comparison of the calculated values of �J for line R/B and the block 8-coloringMesh Size Line R/B Block 8-Coloring4� 4 0.67928 0.666678� 8 0.88625 0.8851516� 16 0.96652 0.9664624� 24 0.98435 0.98434This result is veri�ed by the computational results shown in Table 2. Finally,we note that experimentally it can also be demonstrated that �i = �i asymptoti-cally for i > 1.
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3. Results for Multilevel Algorithm. In this section we briey discussthe multilevel SOR algorithm when used with the block colorings described inthe second part of x2. Following Kuo and Levy [9], we consider solving the innersubproblems iteratively; we may perform only a few iterations for each subproblem.We are now concerned with the convergence of the multilevel SOR algorithm whenthe inner subproblems are not solved to full accuracy.From Lanzkron et al. [10] we know that the multilevel SOR algorithm can becharacterized as an inner/outer iteration method. To guarantee convergence fora two-level inner/outer iteration method, the outer iteration must be a regularsplitting and the inner iteration must be weak regular. For the model problem thesplitting A = D � L � U =M �NM = !�1(D � !L)�1N = !�1(!U + (1 � !)D)(3.29)induced by the outer iteration is not a regular splitting because N is not positivewhen ! > 1. However, we expect that if the inner problems are solved to reasonableaccuracy, then the method will converge.
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Fig. 5. Comparison of R/B SOR with 8-color multilevel SOR with varying numbers of inneriterationsIn Figure 5 we show the convergence of the multilevel SOR algorithm withdi�erent numbers of inner iterations and compare this convergence with that of thestandard red/black SOR algorithm for the 5-pt stencil. We also show that, given aparallel execution timemodel1 similar to that used in Section 1, the multilevel SORalgorithm can have performance advantages over algorithms using fewer numbers1 The results are from a 16 � 16 grid using 16 processors with model parameters s = 1,� = 1000, and c = 0:1. 10



of colors. This advantage is magni�ed as the ratio of the message startup costrelative to the cost of computation increases.4. Analysis of Incomplete Factorization. In this section we examine thee�ect of many color orderings on the condition number of the model system pre-conditioned by incomplete Cholesky factors. We prove the limited result that aparticular four-color ordering results in a smaller condition number than a two-color, R/B ordering. We have observed experimentally (see Figure 1) that theconvergence continues to improve as the number of colors increases beyond four.We consider a slightly di�erent four-coloring from that used in the precedingsection. 2 4 2 41 3 1 32 4 2 41 3 1 3(4.30)Consider the discrete Laplacian matrix A ordered according to this coloring. Theincomplete factorization A � LLT results in the local operator, Lj;k, acting at thegrid point (j; k) given byLj;k = 8>>>>><>>>>>: 1; (j; k) color 1q78 � 14(Ey + E�1y ); (j; k) color 2q78 � 14(Ex + E�1x ); (j; k) color 3q57 �q27(Ex + E�1x + Ey + E�1y ); (j; k) color 4 ;(4.31)where Ex and Ey are the shift operators in the x and y directions. As observedby Kuo and Chan [8], this representation is accurate only far from the boundary.Therefore, the results derived from equation 4.31 are valid asymptotically.We note that the Fourier representation of the preconditioned system, L̂�1ÂL̂�T ,is block diagonal, using the basis given in equation 2.3. The block correspondingto the frequency pair (�; �) is given byL̂�1�;�Â�;�L̂�T�;� = 0BBBBB@ 1 0 0 00 �2(�2+a)(2+a)7 �2ab7 2b�8a2b7p2p50 �2ab7 �2(�2+b)(2+b)7 2a�8b2a7p2p50 2b�8a2b7p2p5 2a�8b2a7p2p5 49�12a2�12b235 1CCCCCA ;(4.32)where a = cos ��h and b = cos ��h.If ��;� are the eigenvalues of block matrix in equation 4.32, the conditionnumber of the preconditioned system is given by�(L�1AL�T ) = max�;� j ��;� jmin�;� j ��;� j :(4.33) 11



It is evident that the maximum and minimum eigenvalues occur for a = b = 0 and(�; �) = (1; 1), respectively. Thus, we �nd thatmax�;� j ��;� j = 75 ;(4.34)and min�;� j ��;� j = 170 h89 � 44 cos2(�h)� 16 cos4(�h)i(4.35)� 170 h81 + 8 cos2(�h)� 912 cos4(�h) + 1408 cos6(�h) + 256 cos8(�h)i12 :We compute that min�;� j ��;� j = 5629(�h)2 + o(h2). Thus, we obtain the approxi-mation �(L�1AL�T ) � 2940�2h2 :(4.36)If two colors are used, Kuo and Chan [8] prove that the condition number isasymptotically equal to 1�2h2 .In Table 3 our approximations to the eigenvalues are compared to the cal-culated eigenvalues for several mesh sizes. We observe that the computed valuesconverge to predicted values with increasing mesh size.Table 3Comparison of calculated eigenvalues and predicted eigenvalues for ICCGApproximate Calculated Approximate CalculatedMesh Size Maximum � Maximum � Minimum � Minimum �4� 4 1.4000 1.1197 0.7623 0.44358� 8 1.4000 1.3219 0.2347 0.215416 � 16 1.4000 1.3782 0.0659 0.064432 � 32 1.4000 1.3943 0.0175 0.0174Experimental evidence similar to the graph in x1 supports the conjecture thatincreasing the number of colors beyond four will continue to improve the conver-gence rate of ICCG. However, proving this conjecture is more di�cult than for themultilevel SOR algorithm. The reason for this di�culty is that the block diago-nal approximation is asymptotically accurate only for the low-frequency analysis,not for the high-frequency analysis. Because we can accurately determine only thesmallest eigenvalue of the preconditioner, an exact bound for the condition numberwhen more colors are used is not yet possible.5. Conclusion. The convergence of iterative methods when used with mul-ticoloring can be improved if the number of colors is increased. For two speci�citerative methods, multilevel SOR and ICCG, we have proven that if the numberof colors is increased, then the convergence will be faster. This general result is not12



limited to speci�c colorings schemes; it appears to apply to many di�erent coloringschemes.Using experimental models, we have also shown that the overall executiontime can be decreased when more colors are used. A trade-o� exists betweenaccelerating convergence by using more colors and improving parallel e�ciency byusing fewer colors. This trade o� should be examined when implementing iterativemethods using multicoloring. REFERENCES[1] L. M. Adams, R. J. LeVeque, and D. M. Young, Analysis of the SOR iteration forthe 9-point Laplacian, SIAM Journal on Numerical Analysis, 25 (1988), pp. 1156{1180.[2] T. F. Chan and H. C. Elman, Fourier analysis of iterative methods for elliptic boundaryvalue problems, SIAM Review, 31 (1989), pp. 20{49.[3] H. C. Elman and E. Agr�on, Ordering techniques for the preconditioned conjugate gra-dient method on parallel computers, Computer Physics Communications, 53 (1989),pp. 253{269.[4] L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, NewYork, 1981.[5] D. L. Harrar II, Conjugate Gradient Methods for Red/Black Systems on Vector Comput-ers, Ph.D. thesis, Department of Applied Mathematics, University of Virginia, 1989.[6] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems,Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill., 1991.[7] M. T. Jones and P. E. Plassmann, A parallel graph coloring heuristic, SIAM Journalon Scienti�c and Statistical Computing (to appear).[8] C.-C. J. Kuo and T. F. Chan, Two-color Fourier analysis of iterative algorithms forelliptic problems with red/black ordering, SIAM Journal on Scienti�c and StatisticalComputing, 11 (1990), pp. 767{793.[9] C.-C. J. Kuo and B. C. Levy, A two-level four-color SOR method, SIAM Journal onNumerical Analysis, 26 (1989), pp. 129{151.[10] P. J. Lanzkron, D. J. Rose, and D. B. Szyld, Convergence of nested classical iterativemethods for linear systems, Numerische Mathematik, 58 (1991), pp. 685{702.[11] T. A. Manteuffel, An incomplete factorization technique for positive de�nite linear sys-tems, Mathematics of Computation, 34 (1980), pp. 473{497.[12] J. Meijerink and H. van der Vorst, An iterative solution method for linear systemsof which the coe�cient matrix is a symmetric M-matrix, Mathematics of Computation,31 (1977), pp. 148{162.[13] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum,New York, 1988.[14] S. V. Parter, \Multi-line" iterative methods for elliptic di�erence equations and funda-mental frequencies, Numerische Mathematik, 3 (1961), pp. 305{319.[15] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York,1971. 13


