
Productive Parallel Programming: The PCN Approach�Ian Foster, Robert Olson, and Steven TueckeMathematics and Computer Science DivisionArgonne National Laboratory, Argonne, IL 60439AbstractWe describe the PCN programming system, focusing on those features designedto improve the productivity of scientists and engineers using parallel supercomputers.These features include a simple notation for the concise speci�cation of concurrentalgorithms, the ability to incorporate existing Fortran and C code into parallel ap-plications, facilities for reusing parallel program components, a portable toolkit thatallows applications to be developed on a workstation or small parallel computer andrun unchanged on supercomputers, and integrated debugging and performance analy-sis tools. We survey representative scienti�c applications and identify problem classesfor which PCN has proved particularly useful.Keywords: PCN, program composition, parallel programming, reuse, templates.1 IntroductionAfter many years as academic curiosities, computers combining hundreds or thousands ofpowerful microprocessors have overtaken vector processors and become essential tools forscientists and engineers. Unfortunately, the programming of these parallel supercomputersis still immensely time consuming. Frequently, many months of e�ort are required todevelop, validate, and tune parallel codes; apparently minor algorithmic changes can takeweeks. These factors severely limit the productivity and creativity of those using theseadvanced machines.A clear need exists for tools that reduce the cost of program development to more man-ageable levels. Good software engineering practice tells us that these tools should possessthree characteristics: (1) a notation that permits us to program smarter, by lessening thegap between our conception of a problem solution and its eventual implementation; (2)support for code reuse that allows us to program less, by reusing old code when solvingnew problems; and (3) a toolkit that permits us to program faster, by reducing the e�ortrequired to �nd errors, adapt programs to di�erent architectures, etc.In this article, we introduce PCN, a parallel programming system with these character-istics. PCN has been developed over the past three years at Argonne National Laboratoryand the California Institute of Technology. It features a simple concurrent language (Pro-gram Composition Notation), facilities for reuse of sequential and parallel code, and atoolkit supporting compilation, debugging, and performance analysis. Important bene�ts�To appear in: Scienti�c Programming. 1

of the approach include the ability to rapidly prototype complex concurrent algorithms,particularly those involving dynamic communication or computation structures; applica-tion portability, which permits programs developed on workstation to move to networks ofworkstations and to parallel supercomputers with little change; the ability to incorporateexisting Fortran and C code into parallel programs; and support for the reuse of parallelprogram structures in di�erent applications.PCN is not the solution to all programming problems. A disadvantage for some pro-grammers is the need to learn a new programming language. Others are uncomfortablewith a high-level approach, preferring to program parallel computers at the lowest levelpossible. In addition, the PCN system is research software and, as such, not yet as so-phisticated as conventional sequential programming systems. Nevertheless, it has alreadybeen used successfully to develop applications and to teach parallel programming to un-dergraduates. We expect it to prove useful to many users and for many purposes.Rather than an academic exposition of PCN, this article provides an informal intro-duction to its capabilities and an analysis of the experiences of those using it to addresssubstantial programming problems. By conveying the
avor of the approach and indi-cating the classes of problems for which it appears particularly appropriate, we hope tostimulate our readers to experiment with PCN in their own applications. The latest ver-sion of both the software and detailed documentation can be obtained by anonymous FTPfrom the directory pub/pcn at info.mcs.anl.gov.The rest of this article is divided into �ve parts. These provide an overview of the ap-proach, a description of the programming language, a discussion of the techniques used toreuse existing code, a description of the programming tools, and a survey of representativeapplications.2 ApproachThe focus of the PCN approach to parallel programming is the development of programs bythe parallel composition of simpler components, in such a way that the resulting programspreserve properties of the components that they compose. In particular, deterministiccompositions of deterministic components should themselves be deterministic: the resultof such computations should never depend on the order in which components are scheduledfor execution. Similarly, the result computed by a program should be independent of howits components are mapped to processors. This compositional property is critical to boththe development of robust applications and the reuse of existing code.The PCN language is carefully designed to realize compositionality. In particular, itrequires that concurrently executing components interact by reading and writing specialsingle-assignment or de�nitional variables. A de�nitional variable is initially unde�nedand can be assigned at most a single value. If a component attempts to read an unde�nedvariable, execution of that component is suspended until the variable is de�ned. Hence, theresult of a computation can never depend on the time at which read and write operationsoccur.This focus on parallel composition and de�nitional variables leads to the followingapproach to parallel program design. A problem is decomposed into a large numberof subproblems and a process is created for each subproblem. PCN code is written toorganize the exchange of data between these processes and to coordinate their execution.2

Existing software cells and templates may be integrated into the program; these de�nesets of processes that implement commonly-used operations such as parallel reductions ortransforms. Finally, the mapping of the processes to the processors of a parallel computeris speci�ed; this can alter performance but not the result computed.The PCN compiler is optimized for e�cient execution of programs that create manyprocesses and that communicate and synchronize via de�nitional variables. It ensuresthat process creation, scheduling, termination, and migration are extremely inexpensiveoperations: typically a few tens of instructions. (Process migration incurs an additionalcost proportional to the size of a process's data.) Read and write operations on de�nitionalvariables are implemented in terms of pointer operations within a single address space andmessage passing between address spaces. Processes are scheduled for execution so as tooverlap computation and communication. Data structures are created dynamically anddeallocated either when the process in which they are de�ned terminates (in the case oflocal variables) or when they are no longer accessible (in the case of de�nitional variablesshared by several processes).Components composed by PCN programs can be written in PCN or in sequential lan-guages such as Fortran and C. In the latter case, existing code and compiler technology canbe reused. Programs that do not use Fortran common or C global data can be composedin exactly the same way as PCN programs. If programs do use common/global data,then certain restrictions apply, as the use of common/global data violates the require-ment that programs only communicate via de�nitional variables. This issue is discussedin Section 4.1.3 NotationProgramming is rarely easy, but an appropriate notation can make it less di�cult. AsWhitehead observed of mathematics: \By relieving the brain of all unnecessary work, agood notation sets it free to concentrate on more advanced problems" [11]. In parallel pro-gramming, a good notation should express concurrency, communication, synchronization,and mapping straightforwardly and clearly. It should also discourage nondeterminism,just as a mathematical notation avoids ambiguity.The programming notation used in the PCN system is Program Composition Nota-tion (PCN). PCN extends sequential programming with two simple ideas | concurrentcomposition and single-assignment variables | and de�nes how these ideas interact withconventional sequential constructs [1, 6]. The PCN system also incorporates two addi-tional constructs | virtual topologies and port arrays | that allow the de�nition andreuse of parallel program structures called cells and templates [4].Our description of the PCN language is divided into �ve parts. These describe in turnthe constructs used to specify concurrency, communication and synchronization, non-determinism, mapping, and composition of process ensembles.3.1 ConcurrencySyntax is similar to that of the C programming language. A program is a set of procedures,each with the following general form (k; l � 0).3

name(arg1,...,argk)declaration1; ...; declarationl;blockA block is a call to a PCN procedure (or to a procedure in a sequential language such asFortran or C), a composition, or a primitive operation such as assignment. A compositionis written fop block1, ..., blockmg, m > 0, where op is one of \jj" (parallel), \;"(sequential), or \?" (choice), indicating that the blocks block1, ..., blockm are to beexecuted concurrently, in sequence, or as a set of guarded commands (a sort of parallelcase statement, with each block being a condition/action pair), respectively.A parallel composition speci�es opportunities for parallel execution but does not indi-cate how the composed blocks (which can be thought of as lightweight processes) are tobe mapped to processors. The techniques used to specify mapping are described below.3.2 Communication and SynchronizationStatements in a parallel composition communicate and synchronize by reading and writingspecial single-assignment or de�nitional variables. (Conventional, or mutable, variables arealso supported, but can be used only within sequential blocks.) De�nitional variables aredistinguished by a lack of declaration, are initially unde�ned, can be written (de�ned)once using the primitive operator \=", and once written cannot be modi�ed. (An attemptto overwrite a de�nitional variable is
agged as a runtime error.) A process that requiresthe value of an unde�ned variable suspends until the required data is available. This pro-vides a data
ow model of computation, with execution order within parallel compositionsdetermined by availability of data.Processes that share a de�nitional variable can communicate regardless of their loca-tion in a parallel computer. For example, in the parallel composition fjj producer(x),consumer(x)g, the two procedure calls producer(x) and consumer(x) can use x to com-municate, whether they are executing concurrently on one processor or in parallel on twoprocessors.Consider the following de�nitions for producer and consumer. The producer de�nesits parameter to be the string "hello", hence communicating this value to any processthat shares that variable (in the composition in the previous paragraph, this is consumer).The consumer is de�ned in terms of a choice composition. The two guarded commandsde�ne tests on the parameter v (v == "hello" and v != "hello") and the actions thatare to be performed if these tests succeed (calls to the procedures greet() or ignore(v),respectively). Hence, the procedure consumer suspends until v has a value and thenexecutes one of the two procedures.producer(u) consumer(v){|| u = "hello"} { ? v == "hello" -> greet(),v != "hello" -> ignore(v)}Stream Communication. A shared de�nitional variable would not be very useful ifit could only be used to exchange a single value. Fortunately, simple techniques allow a4

single variable to be used to communicate a stream of values [5]. A stream acts like aqueue: the producer places elements on one end, and the consumer(s) take them o� theother.Stream communication is achieved by the incremental construction of linked list struc-tures. The technique makes use of a data type called the tuple. A tuple is representedby zero or more terms enclosed in parentheses, for example fg (the empty tuple) orfhead, tailg (a two-tuple). The match operator \?=" is used to access a tuple's compo-nents. For example, x ?= fmsg, xtg checks whether x is a two-tuple and, if so, de�nesmsg and xt to be references to its two components.Imagine a producer and a consumer sharing a variable x. The producer de�nes x tobe a two-tuple containing a message and a new de�nitional variable (x = fmsg, xtg).The consumer matches x ?= fmsg, xtg to access both the message and the new variable.These operations both communicate msg to the consumer and create a new shared variablext that can be used for further communication. This process can be repeated arbitrarilyoften to communicate a stream of messages from the producer to the consumer. Thestream is closed by de�ning the shared variable to be the empty tuple.The following program implements this protocol. The stream producer generates nmessages, calling produce to generate each message, and then closes the stream. Thestream consumer consumes messages until the stream is closed, calling greet or ignoreto process each incoming message. Note that both procedures are de�ned recursively. Forexample, the producer generates one message (by de�ning u to be the tuple fmsg, u1g)and then calls itself recursively to produce further messages. Recursion is often usedin PCN because it allows the introduction of an unbounded number of new de�nitionalvariables; the PCN compiler is designed to compile such programs e�ciently, and in facttranslates recursive procedures into iterative code. Explicit iterative constructs are alsoavailable; these are described in a subsequent section.stream_producer(n, u){ ? n > 0 ->{|| produce(n, msg),u = {msg, u1},stream_producer(n-1, u1)},n == 0 -> u = {}}stream_consumer(v){ ? v ?= {msg,v1} ->{|| { ? msg == "hello" -> greet(),msg != "hello" -> ignore(msg)},stream_consumer(v1)}} 5

3.3 NondeterminismThe use of de�nitional variables as a communication mechanism avoids errors due to time-dependent interactions. Race conditions, in which the result of a computation dependson the time at which a process reads a variable, cannot occur: a consumer of a variablealways suspends until the variable has a value, and then computes with a value that cannotchange.Nevertheless, it is sometimes useful to be able to specify nondeterministic execution,particularly in reactive applications. PCN also allows the speci�cation of nondeterministicactions, but in a tightly controlled manner. Only if the conditions associated with two ormore actions in a guarded command are not mutually exclusive is execution nondetermin-istic. For example, the following procedure merges two input streams (in stream1 andin stream2) into a single output stream (out stream). Note that the two streams are notmutually exclusive: as guards are executed concurrently, messages can be received fromeither input stream, in a time-dependent manner.merge(in_stream1, in_stream2, out_stream){ ? in_stream1 ?= {msg, more_in1} ->{|| out_stream = {msg, more_out},merge(more_in1, in_stream2, more_out)},in_stream2 ?= {msg, more_in2} ->{|| out_stream = {msg, more_out},merge(in_stream1, more_in2, more_out)}}PCN programs in which conditions are mutually exclusive are guaranteed to be deter-ministic. This is an important property that greatly simpli�es parallel programming. (Thereader might be concerned about the possibility of writing conditions which are mistakenlynot mutually exclusive. In practice, this has not proved to be a problem.)Two potential sources of nondeterminism which are not prevented by PCN are concur-rent I/O operations and concurrent access to Fortran common or C global data by Fortranor C procedures composed by PCN. The latter issue is discussed in Section 4.1.3.4 MappingParallel compositions de�ne concurrent processes; shared de�nitional variables de�ne howthese processes communicate and synchronize. Together with the sequential code executedby the di�erent processes, these components de�ne a concurrent algorithm that can beexecuted and debugged on a uniprocessor computer. However, we do not yet have a parallelprogram: we must �rst specify how these processes are to be mapped to the processorsof a parallel computer. Important features of PCN are that the mapping can be speci�edby the programmer, and that the choice of mapping a�ects only the performance, not the6

correctness, of the program. The following language features are used when writing codeto de�ne mappings.Information Functions. When de�ning mappings, we sometimes require informationabout the computer on which a process is executing. This information is provided by theprimitive functions topology(), nodes(), and location().topology(): Returns a tuple describing the type of the computer, e.g. f"mesh",16,32gor f"array",512g.nodes(): Returns the number of nodes in the computer.location(): Returns the location of the process on the computer.Location Functions. Mapping is speci�ed by annotating procedure calls with system-or user-de�ned location functions, using the in�x operator \@". These functions are eval-uated to identify the node on which an annotated call is to execute; unannotated callsexecute on the same node as the procedure that called them. For example, the followingtwo procedures implement the location functions node(i) and mesh node(i,j), whichcompute the location of a procedure that is to be mapped to the ith node of an arrayand the (i,j)th node of a mesh, respectively. Note the use of a match (?=) to accessthe components of the mesh topology type. The per cent character, \%", is the modulusoperator. function node(i){|| return(i%nodes()) }function mesh_node(i, j){ ? topology() ?= {"mesh", rows, cols} ->return((i*rows + j)%nodes()),default -> error()}The following composition uses the function node(i) to locate the procedure callsp(x) and c(x). fjj p(x) @ node(10), c(x) @ node(20)gLocation functions are often used in an iterative construct called a quanti�cation tocreate a computation that executes on many processors. A quanti�cation has the generalform { op i over low..high : block },and speci�es that block should be executed once for each i in the range low..high, eitherconcurrently (if op = jj) or sequentially (if op = ;).The following two procedures use quanti�cations and the location functions de�nedpreviously to execute the procedure work in every node of an array and mesh, respectively.7

For example, a call to array on a 1024-processor computer will create 1024 instances ofwork(), one per processor. (In practice, we may choose to use a more e�cient tree-basedspawning algorithm on a large machine.)array(){|| i over 0..nodes()-1 :work() @ node(i)}mesh(){ ? topology() ?= {"mesh", rows, cols} ->{|| i over 0..rows-1 :{|| j over 0..cols-1 :work() @ mesh_node(i, j)}},default -> error()}Virtual Topologies and Map Functions. The ability to specify mapping by meansof location functions would be of limited value if these mappings had to be speci�ed withrespect to a speci�c computer. Not only might this computer have a topology that wasinconvenient for our application, but the resulting program would not be portable.PCN overcomes this di�culty by allowing the programmer to de�ne mappings withrespect to convenient virtual topologies rather than a particular physical topology. Avirtual topology consists of one or more virtual processors or nodes, plus a type indicatinghow these nodes are organized. For example, 512 nodes may be organized as a one-dimensional array, a 32� 16 mesh, etc.The embedding of a virtual topology in another physical or virtual topology is speci�edby a system- or user-de�ned map function. A map function is evaluated in the contextof an existing topology; it returns a tuple containing three values: the type of the newembedded topology, the size of the new topology, and the function that is to be usedto locate each new topology node in the existing topology. For example, the followingfunction embeds a mesh of size rows�cols in an array topology; the mapping will beperformed with the location function node provided previously. (The location function isquoted to indicate that it should not be evaluated.) Note that the map function does notcheck whether the new topology \�ts" in the old topology. It is quite feasible to create avirtual topology with more nodes than the physical topology on which it will execute.function mesh_in_array(rows, cols){ ? topology ?= {"array", n} ->{|| type = {"mesh", rows, cols},size = rows*cols,map_fn = `node()`,return({type, size, map_fn})}, 8

default -> error()}We use the in�x operator \in" to specify the map functions that will generate thevirtual topologies used in di�erent components of a program. For example, if the meshprocedure speci�ed previously is to be executed on an array computer, we may invoke itas follows. mesh() in mesh_in_array(rows,cols)Virtual topologies and map functions allow us to develop applications with respect to aconvenient and portable virtual topology. When moving to a new machine, it is frequentlypossible to get adequate performance with just a naive embedding of this virtual topology.For example, our applications invariably treat all computers as linear arrays, regardlessof their actual topology, and nevertheless achieve good performance. If communicationlocality were important (for example, if we moved to a machine without cut-through rout-ing), we would probably have to develop a map function that provides a more specializedembedding. This can generally be achieved without changing the application code.3.5 Port ArraysRecall that individual processes communicate by reading and writing shared de�nitionalvariables, as in the composition fjj producer(x), consumer(x)g. The port array pro-vides a similar mechanism for use when composing sets of processes.A port array is a array of de�nitional variables that has been distributed evenly acrossthe nodes of a virtual topology. A declaration \port P[N];" creates a port array P with Nelements, distributed blockwise across the nodes of the virtual topology in which the portarray is declared. N must be an integer multiple of nodes(). Elements of a port array areaccessed by indexing, in the same way as ordinary arrays; the elements can be used asordinary de�nitional variables.The following procedure, a variant of the array procedure given earlier, uses portarrays for two purposes: �rst, to provide each ring node() process with de�nitional vari-ables for use as input and output streams; and second, to establish internal communicationstreams between neighboring processes, so that each process has two streams, one sharedwith each neighbor. The ith node of this structure is given elements I[i] and O[i] ofthe two port arrays I and O passed as parameters, so as to allow communication withthe outside world, and two elements of the local port array S. As in the C programminglanguage, the dimension of an array passed as an argument is not speci�ed.ring(I, O)port S[nodes()], I[], O[];{|| i over 0..nodes()-1 :ring_node(I[i], O[i], S[i], S[(i+1)%nodes()]) @ node(i)}The process structure created by a call to this procedure in a four-processor virtualtopology can be represented as follows, with the solid lines indicating external port connec-tions and the dotted lines internal streams. The box separates the internals of the process9

structure from what is visible to other processes. The ring node procedure executed byeach process can use the four de�nitional variables passed as arguments to communicatewith other processes.
RNRN RN RN

I[0] I[1] I[3]

O[0] O[2]O[1] O[3]

I[2]

S[1] S[2 S[3] S[0]S[2]4 ReuseThe ability to reuse existing code is vital to productive programming. The PCN systemsupports two forms of reuse: reuse of sequential code written in C or Fortran, and reuse ofparallel code written in PCN. The former is important when migrating existing sequentialapplications to parallel computers; the latter is becoming increasingly important as ourparallel code base grows.4.1 Sequential Code: Multilingual ProgrammingA simple interface allows sequential code (currently, Fortran and C are supported) to beintegrated into PCN programs as procedure calls, indistinguishable for most purposes fromcalls to PCN procedures. Sequential procedures can be passed de�nitional and mutabledata, but suspend until de�nitional data is available and hence never deal with incompleteinformation. Sequential procedures can modify only mutable variables.A de�ciency of the Fortran interface is that no special allowance is made for \common"data. Each physical processor has a single copy of all common data declared in an appli-cation's Fortran code, and every process on a processor has access to that data. Hence,while PCN data structures are encapsulated in processes to prevent concurrent access, thesame protection is not provided for common data. It is the programmer's responsibilityto avoid errors due to concurrent access. Experience shows that programmers deal withthis problem in one of two ways. (1) If an application is of moderate size, or is being de-veloped from scratch, they often choose to eliminate common data altogether. This maybe achieved by allocating arrays in PCN and passing them to the di�erent Fortran pro-grams. Although this approach requires substantial changes to the application, the bulkof the existing Fortran can be retained, and the full
exibility of PCN is available to theprogrammer. (2) If substantial rewriting of an application is not possible, programmersmaintain common data in its usual form and use PCN to organize operations on this datain a way that avoids nondeterminate interactions. Although certain operations are thenmore di�cult (e.g., process migration is complicated, and the programmer must check forrace conditions manually), other bene�ts of the PCN approach still apply.The interface to sequential programming languages means that we do not need tothrow away the many years of investment in sequential code and compiler developmentwhen moving to parallel computers. Fortran and C are good sequential languages but are10

less well suited to parallel programming. Experience suggests that PCN is a good parallellanguage; nevertheless, it cannot compete with Fortran and C in code base and compilertechnology. Multilingual programming permits us to take the best from each approach,using PCN for mapping, communication, and scheduling, and Fortran and C for sequentialcomputation.4.2 Parallel Code: Cells and TemplatesCells. Our approach to the reuse of parallel code is based on what we term a softwarecell: a set of processes created within a virtual topology to perform some distinct functionsuch as a reduction or a mesh computation, and provided with one or more port arraysfor communication with other program components [4]. We have already seen severalexamples of cells: for instance, the procedure ring in the preceding section implements acell that performs ring pipeline computations.The interface to a PCN cell consists simply of the port arrays and de�nitional variablesthat are its arguments. A cell de�nition does not name the processors on which it willexecute, the processes with which it will communicate, or the time at which it expectsto execute. These decisions are encapsulated in the code that composes cells to createparallel programs: a virtual topology speci�es the number and identity of processors, portarrays specify communication partners, and the PCN compiler handles scheduling. As wewill see in subsequent examples, the simplicity of this interface allows cells to be reusedin many di�erent contexts.Templates. The ring cell would be more useful if the code to be executed at each nodecould be speci�ed as a parameter. This is possible, and in this case we refer to the cellde�nition as a template, as it encodes a whole family of similar cells. For example, thefollowing is a template version of ring. The procedure to be executed is passed as theparameter op, which is quoted in the body to indicate that it is used as a variable.ring(op, I, O)port S[nodes()], I[], O[];{|| i over 0..nodes()-1 :`op`(I[i], O[i], S[(i+1)%nodes()], S[i]) @ node(i)}This template invokes the supplied procedure with four de�nitional variables as addi-tional arguments. For example, if op has the value nbody(p), then a procedure callnbody(p,d1,d2,d3,d4) (d1..d4 being the variables from the port array) is invoked oneach node of the virtual topology. All parameters to op must be de�nitional variables; it isthe programmer's responsibility to ensure that the number and type of these parametersmatchs op's de�nition.Example. We illustrate how cells and templates are composed to construct completeapplications. We make use of the ring template and also the following simple input andoutput cells: load reads values from a �le and sends them to successive elements of theport array P; store writes to a �le values received on successive elements of port array Q.Both use the sequential composition operator to sequence I/O operations.11

load(file, P)port P[];{ ; i over 0..nodes()-1 : read(file, stuff), P[i] = stuff }store(file, Q)port Q[];{ ; i over 0..nodes()-1 : write(file, Q[i]) }We compose the three cells to obtain a program main that reads data from infile,executes a user-supplied function in the ring pipeline (e.g., a naive N-body algorithm),and �nally writes results to outfile. Note that although we use a parallel composition,data dependencies will force the three stages to execute in sequence. However, if loadwere to output a stream of values rather than a single value per node, them the threestages could execute concurrently, as a pipeline.main(param,infile, outfile)port P1[nodes()], P2[nodes()];{|| load(infile, P1),ring(`nbody(param)`, P1, P2),store(outfile, P2)}Data
ows from load to ring via port array P1 and from ring to store via port arrayP2. This is illustrated in the following �gure, which shows the process structure createdin a four-node topology.
RNRN RN RN

store

load

P1

P2The complete program executes in an array topology (\main(if,of) in array()")and will create a ring with one process per node of that topology.5 ToolsThe high-level nature of the PCN language requires a sophisticated compiler (to achievee�cient execution on sequential and parallel computers) and a specialized debugger (to12

keep track of multiple concurrent processes). These tools are integrated with other com-ponents to form a toolkit that supports debugging, performance tuning, and integration ofFortran and C code, and that allows programs to be executed on a wide variety of parallelcomputers and workstation networks [6]. In this section, we describe four componentsof this toolkit: compiler, network implementation, parallel debugger, and performanceanalysis tools.5.1 Portable Compiler and Runtime SystemWe summarize the techniques used to translate PCN programs into executable code, soas to provide some insights into the e�ciency of the PCN implementation.The PCN compiler implements both the PCN language and the constructs introducedto support reuse of parallel code. It translates PCN programs to a machine-independent,low-level form that is linked with both object code for sequential language procedures anda small runtime system, to produce an executable program. The compiler is responsible forgenerating code to perform specialized operations such as creating processes, suspendingprocesses, terminating processes, and generating messages; the runtime system routesincoming messages, schedules executable processes, and manages the heap on which areallocated process records, program data, etc.The compiler and runtime system have been carefully designed to optimize the cre-ation, scheduling, migration, and termination of lightweight processes. A process withn arguments is represented by a process record that occupies n + 2 words of memory,with n of these words containing pointers to arguments; hence, processes can be created,scheduled, or descheduled in a few tens of instructions. A process is migrated to anotherprocessor by communicating the process record and the data structures accessible fromthis process record. Thus, the cost of migration is primarily the cost of transferring itsdata, and processes with little data can be migrated extremely cheaply. The low costof scheduling means that the runtime system is able to schedule idle tasks when waitingfor the results of remote communication operations. That is, it automatically overlapscomputation and communication operations.The compiler does not currently optimize the performance of pure PCN code, whichmay execute 5{10 times slower than equivalent Fortran or C code. As PCN applicationstypically spend much of their time executing Fortran or C, this has not been a seriousdi�culty. (The pro�ling tools described below can be used to identify bottlenecks; if nec-essary, PCN procedures can be rewritten in Fortran or C to improve performance.) Futurecompilers will improve PCN performance, allowing a larger proportion of applications tobe written in PCN.A novel aspect of the compiler is a programmable source transformation system, in-corporated as an optional stage in the compiler pipeline, after the parser and before theencoder. Programmers can use this facility to implement application-speci�c extensions tothe PCN language. For example, the transformation system has been used to implementspecialized composition operators that generate self-scheduling computations [3].5.2 Network ImplementationThe network implementation of PCN (net-PCN) allows users to treat a set of workstationsas a parallel computer. Programs developed for multiprocessors and multicomputers can13

be run without modi�cation on networks, although because of higher communication costs,algorithms must normally be more coarse-grained to execute e�ciently.Net-PCN can run on any machine that supports the TCP communication protocol.Hence, a single computation can in principle run on several workstations of a particulartype, several workstations of di�ering types, several processors of a multiprocessor, or amix of workstations and multiprocessor nodes. Currently, we require that all processorsinvolved in a computation employ common representations for the basic PCN data types(characters, integers, and double-precision
oats). In the future, type conversions willbe performed automatically, allowing PCN programs to run transparently on arbitrarynetworks.A useful component of Net-PCN is a utility program called host-control, whichprovides facilities for managing a network computation. This utility allows the user toinquire about the status of nodes available to Net-PCN, add and delete nodes, and executeprograms [10].5.3 PDB: A Parallel DebuggerDebugging tools that assist in the location of logical errors are, of course, a critical compo-nent of any programming system. PCN's unconventional language constructs, in partic-ular its lightweight processes and data
ow synchronization, require specialized debuggingsupport. This is provided by the PCN symbolic debugger, PDB.The major di�erence between PCN and conventional sequential programming lan-guages is that in PCN programs, many threads of control (processes) can be active at onetime. Hence, PDB not only provides conventional debugger features, such as the ability tointerrupt execution and examine program arguments, but also permits the user to examineenabled and suspended processes, identify de�nitional variables for which values have yetto be produced, and control the order in which processes are scheduled for execution.A common error in PCN programming is for one program component not to producea value required by another component. This results in a deadlock situation, in which allprocesses are suspended waiting for data. This situation can be detected by PDB. Theprogrammer can examine the set of suspended processes and identify variables for whichno values have been produced.5.4 Understanding PerformanceIn parallel computing, where performance is critical and often non-intuitive, it is importantto provide tools to assist in the identi�cation of performance errors. Two such tools, Gaugeand Upshot, have been integrated into PCN.Gauge. Gauge is an execution pro�ler: it collects information about the amount of timethat each processor spends in di�erent parts of a program [9]. It also collects procedurecall counts, message counts, and idle time information. Three properties of Gauge makeit particularly useful: pro�ling information is collecting automatically, without any pro-grammer intervention; the overhead incurred to collect this information is small, typicallymuch less than 1 per cent; and the volume of data does not increase with execution time.A powerful data exploration tool permits graphical exploration of pro�le data. The use ofGauge is illustrated in a subsequent section.14

Upshot. Upshot is a trace analysis tool that can provide insights into the �ne-grainedoperation of parallel programs [8]. Upshot requires that the programmer instrument aprogram with calls to event logging primitives. These events are automatically recordedand written to a �le when a program runs. A graphical trace analysis tool allows theprogrammer to examine temporal dependencies between events. Like any trace-basedtool, Upshot su�ers from scaling problems. However, it can be useful when used in acontrolled manner, to examine local phenomena identi�ed as problematic by Gauge.6 ApplicationsPCN has been used in substantial programming projects that have produced programsused to further scienti�c research on the world's fastest computers. For example, the�rst two applications operational on the 528-processor, 30 G
ops Intel Touchstone Deltasystem | a geophysical modeling code and a
uid dynamics code | were both PCNprograms [2, 7]. Here, we describe one of those programs, survey other representativeapplications, and identify factors that appear to favor the use of PCN for programmingprojects.6.1 Icosahedral Climate Modeling CodeThis application implements a numerical method proposed for use in climate models, asecond-order, conservative control volume method on an icosahedral-hexagonal grid. Thecode was developed to permit detailed studies of both the method's accuracy and the long-term behavior of fundamental modes of the atmospheric circulation. The code integratesexisting Fortran and C code into a parallel framework implemented in PCN [2].An icosahedral-hexagonal grid can be structured as 10 n�n meshes plus two separatepolar points. The parallel algorithm decomposes each mesh into c2 submeshes, giving 10c2 + 2 subdomains, two with one point and the rest with (n/c)2 points. Communicationmust be performed to obtain values from neighboring subdomains during integration. Thedesign of an e�cient mapping is complicated by the irregular domain. On some parallelcomputers, it may be desirable to place two or more subdomains on the same processor.
10

11

0 1 2 3 4

5 6 7 8 9Figure 1: Icosahedral Mesh Domain Decomposition15

Implementation. The development of the parallel code is simpli�ed if mapping is spec-i�ed with respect to a virtual topology with the same shape as the problem domain [4].We de�ne an ico mesh topology containing ten c�c meshes and two polar processors(Figure 1) and map functions rhombus(i) and pole(i) that embed subtopologies corre-sponding to a single mesh or pole in an ico mesh. These functions are de�ned as follows.They locate rhombus i on nodes ic2..(i+1)c2-1 and pole �j on node 10c2+j of an ico meshtopology. function rhombus(i){ ? topology() ?= {"ico_mesh", c}, i >= 0, i < 10 ->{|| type = {"mesh",c,c},size = c*c,map_fn = `add_offset(i*c*c)`,return({type, size, map_fn})},default -> error()}function pole(i){ ? topology() ?= {"ico_mesh", c}, i >= 0, i < 2 ->{|| type = {"mesh",1,1},size = 1,map_fn = `add_offset(10*c*c+i)`,return({type, size, map_fn})},default -> error()}function add_offset(offset,i){|| return(i + offset) }The following sketch of the top-level code for this application shows how mapping isexpressed in terms of the icosahedral topology. Ten calls to a mesh template are used toset up a mesh cell inside each rhombus, two calls to poleop set up the polar computa-tions, a call to a reduce cell establishs a global reduction structure (used for computingglobal minimums), and the interconnect procedure establishes communication streamsbetween the various cells. For brevity, we omit the de�nitional variables representingcommunication streams.sphere(){|| {|| i over 0..9 :mesh(...) in rhombus(i)},poleop(...) in pole(0),poleop(...) in pole(1),reduce(...),interconnect(...) 16

}The mesh procedure used to create a single mesh is essentially the same as that out-lined in Section 3.4. As the code executed within a subdomain is derived from the originalFortran and C, and a global reduction library is available, the only code that must be de-veloped speci�cally for this application is the interconnect procedure and some interfacecode. To give an impression of what the interface code looks like, we include the maindriver executed for each subrhombus. Conceptually, this alternates communication andcomputation. However, there are some subtleties. For example, the code communicateswith a reduction cell to determine a global time step (�t) consistent with the CFL con-dition. The use of the new �t is delayed for one iteration so as to permit overlapping ofthe communication required for the reduction with other computation. This is achievedby using dt as �t in the current step, and passing new dt to the recursive call to stepfor use as �t in the next step.step(args,tau,tmax,dt,subrhombus,streams,to_r)double subrhombus[];{ ? tau < tmax ->{ ; {|| /* Compute "local_dt" */find_local_dt(subrhombus,local_dt),/* Check old "dt" ok for this time step */{ ? local_dt < dt -> error() },/* Initiate computation of "new_dt" */to_r = {{"min",local_dt,new_dt},to_r1}/* Exchange data with neighbors */communications(streams,subrhombus,streams1)},pre_filter(args,subrhombus),/* Compute on grid, using old "dt" */update_grid(args,dt,tau,subrhombus),post_filter(args,subrhombus),/* Proceed to next time step, passing "new_dt" */step(args,tau+dt,tmax,new_dt,subrhombus,streams1,to_r1)},default -> terminate(args,subrhombus)}Experiences. The parallel code was developed in collaboration with the mathematicianwho wrote the original sequential code. He provided advice to the undergraduate internwho wrote the parallel program, and assisted with various enhancements to the numericalmethod. We were fortunate in that the Fortran code used common storage only forconstants; storage for program data was allocated by a C driver. This meant that wecould reuse much of the Fortran without change. In addition, once we had set up theconstants in the common storage on each processor, we were free to map processes to17

processors in any way we wanted. The complete code totals 1400 lines Fortran, 870 linesC, and 750 lines of PCN. The relatively large amount of PCN code re
ects the fact thata number of enhancements to the sequential code were implemented in PCN rather thanFortran, due to the greater ease of programming in the higher-level language.The parallel program was developed, debugged, and re�ned on a Sun workstation.The resulting code was moved to a 26-node Sequent Symmetry shared memory computerfor performance studies and from there was ported with only minor changes to a 192-node Symult s2010 mesh, 64-node Intel iPSC/860 hypercube, and 528-node i860-basedIntel Touchstone Delta mesh. The changes were due primarily to use of a di�erent I/Ostructure on the Delta, and a need to work around certain de�ciencies in the Delta's �lesystem (since corrected). This portability allowed us to obtain scienti�c results within oneweek of the Delta's being installed at Caltech in May 1991; applications developed withother technologies were not operational until weeks or even months later.Pro�le and trace data provided by Gauge and Upshot allowed us to identify mappingand load balancing problems in early versions of our program. One problem was that atoo-coarse grained decomposition of the Fortran code gave the PCN compiler too littleopportunity to overlap computation and communication. The result was much idle time.A more �ne-grained implementation was easily achieved in a few hours work; this gavethe good performance results reported below.An example of a load imbalance is illustrated in Figure 2. This is a Gauge histogramdisplay of summary data for a run on 492 Delta processors, with each pixel in the verticaldimension representing a processor and shading distinguishing time spent idle (light) andbusy (dark). (About 260 processors are visible.) A slight load imbalance is evident: itappears that the processors handling location (0,0) in each rhombus are spending moretime computing than other processors. Other Gauge facilities allowed us to isolate theFortran routine in which the load imbalance occurs, at which point it was easily correctedby modifying the Fortran code. We claim that without Gauge it would have been di�cultto correct this load imbalance (or even, perhaps, to suspect its existence).Good parallel e�ciencies are achieved on all four parallel computers. On the Delta, weobtain approximately 2.5 G
ops (5 M
ops per processor) and 80 per cent e�ciency relativeto the pure Fortran code running on a single i860 processor, for a problem size of N = 56(approximately 150-km resolution). This compares favorably with other applications,which have typically achieved 3{6 M
ops/processor. Tuning of the sequential Fortran andimprovements to the Delta compiler are expected to further improve overall performance.The parallel code uses a simple embedding of the icosahedral mesh that is not special-ized for either hypercube or mesh topologies. This mapping does not attempt to clusterneighboring icosahedral mesh nodes but simply allocates nodes in the icosahedral mesh toconsecutive nodes in the underlying computer. It is speci�ed as follows.function icosahedron(c){|| type = {"ico_mesh", c},size = 10*c*c+2,map_fn = `node()`,return({type, size, map_fn})}Because parallel e�ciency is so good, we have not been motivated to explore alternative18

Figure 2: Gauge performance display: time breakdown
19

mappings of the icosahedral mesh. (Some tinkering with the mapping did not appear togenerate signi�cant improvements; this is probably to be expected, given that cut-throughrouting in the Symult and Delta reduces the importance of communication locality.) Nev-ertheless, the use of the icosahedral virtual topology leaves us with the option of exploringalternatives in the future, if either improvements in per-node performance increase rela-tive communication costs, or the code is ported to a machine on which locality is moreimportant. One potentially interesting mapping would fold the whole icosahedral meshstructure (locating two or more nodes per processor) so as to reduce message latency. Ofcourse, this can be achieved without changing the application code.6.2 Application SurveyMost applications developed to date are, like the icosahedral code, scienti�c in nature;almost all use PCN to organize the parallel execution of pre-existing Fortran or C code.Although they solve a wide variety of problems, many can be structured in terms of oneor more of a small number of basic cells and templates. We describe some representativeexamples, indicating the structures used in the implementations. We also give code sizeswhen this information is available to us.Mesh Structures. The structure of many di�erent mesh-based applications can becaptured in one- or two-dimensional mesh templates. A two-dimensional mesh templateforms a building block for both the icosahedral code and another climate modeling codebased on overlapping stereographic meshes [2] (3800 lines C, 640 lines PCN). Other mesh-based applications include a computational
uid dynamics code developed by Harrar et al.for computing Taylor-vortex
ows, based on a torus structure [7] (5300 lines Fortran, 900lines PCN); a �nite-element code for simulating
ow in Titan rocket engines (9000 linesFortran, 180 lines PCN); and a parallel implementation of the mesoscale weather modelMM4 (15000 lines Fortran, 250 lines PCN). Work is under way to build a version of MM4in which the mesh template performs dynamic load balancing.Ring Structures. Cells similar to the ring structure presented in Section 4.2 form thebasis for several applications. A code for computing nonlinear dynamics properties ofextended climate simulations uses an algorithm similar to that used for naive N-bodysimulations of molecular dynamics (250 lines Fortran, 170 lines PCN). Essentially thesame algorithm and structure have also been used in programs for computing molecularinteractions and covariances between bases in genetic sequences (the latter is 500 lines C,800 lines PCN). Similar structures are used in a parallel implementation of the spectraltransform method used in climate modeling (7400 lines Fortran, 370 lines PCN).Tree Structures. Tree and butter
y structures are used in many codes to performparallel reductions. A good example of a code based entirely on a tree structure is onedeveloped by Wright to solve two-point boundary value problems [12] (700 lines Fortran,50 lines PCN). This algorithm dynamically creates a process tree; data is produced at theleaves,
ows up the tree to the root (being reduced at each node) and then back down tothe leaves to yield the �nal solution [6]. The code is de�ned with respect to a tree virtualtopology; the map function that de�nes this topology speci�es how the complete structure20

is embedded in a parallel computer. Note that it is the low cost of process creation andmigration in PCN which makes this dynamic formulation of the algorithm (which providedto be particularly convenient) feasible.Self-Scheduling Structures. A self-scheduling program incorporates code to dynami-cally map tasks to idle processors; although this approach introduces additional overheadrelative to a static schedule, it is essential for some very dynamic problems. Self-schedulingprograms can be constructed easily in PCN because of the simplicity of process migra-tion [3]. (The global address space provided by the compiler means that processes canbe migrated as data structures.) Self-scheduling applications include codes for aligninggenetic sequences, computing phylogenetic trees, and predicting protein structure. (Com-putational biology is a rich source of applications for self-scheduling techniques, becauseof the frequent use of heuristics.) An application under development at Argonne schedulestasks to ring structures (each involving several processors) rather than to individual proces-sors. An interesting aspect of all these codes is that the scheduling code can be separatedfrom the application-speci�c code in a distinct scheduling cell. Alternative scheduling cellscan be substituted without changing the application; typically the scheduling structure isspeci�ed in 20{100 lines of code.Genetic Algorithms. Genetic optimization algorithms maintain a population of can-didate solution vectors and apply simulated natural selection to improve the quality ofthis population. One approach to parallelizing these algorithms is to maintain multiplepopulations, with periodic exchanges of individual vectors. Our PCN implementation of aparallel genetic algorithm is parameterized with the initialization, mutation, and matingoperators that de�ne a genetic algorithm. The PCN code handles all aspects of executionon a parallel computer, using a router cell for asynchronous communication of selectedindividuals between populations and a reduction cell for computing global values whenchecking for termination. The PCN code totals 500 lines; applications developed with thiscode have added anything from a few hundred lines of C to 6000 lines of Fortran.6.3 DiscussionAs this brief survey shows, PCN applications span a wide range, from the simple andstraightforward to the sophisticated and complex. The amount of PCN code incorporatedin the various programs depends both on the complexity of the parallel algorithms andthe extent to which PCN was used for algorithm development in addition to porting.It is probably too early to draw �rm conclusions regarding the merits of the approach.However, we can make a few observations concerning user reactions. We �nd that pro-grammers perceive a substantial bene�t from the use of PCN (and frequently becomeardent advocates of the technology) when their programming problem has one or more ofthe following characteristics.� A complex communication structure, or a need to overlap computation and commu-nication.� A need for load balancing. 21

� Dynamic computation, communication, or mapping structures.� A need for portability and scalability.� Initial performance errors that are corrected by using Gauge.� An interest in exploring algorithmic alternatives: e.g., di�erent stencils, reductionstrategies, communication algorithms, or mappings.� An ability to reuse existing cells and templates.In contrast, programmers working with simple, regular problems (such as one-dimensionaldecompositions with static mapping) �nd it hard to justify the inevitable learning curveassociated with a new approach to programming.7 ConclusionsThe ability to develop parallel programs quickly and easily is becoming increasingly impor-tant to many scientists and engineers. Although we cannot expect parallel programmingto become easy, we can avoid unnecessary di�culties by using appropriate tools. In thisarticle, we have described tools that take us several steps beyond the low level facilitiescommonly available on parallel supercomputers. A simple concurrent programming no-tation allows us to express complex parallel algorithms without unnecessary contortions.Interfaces to sequential languages allow us to reuse existing Fortran and C code. Supportfor cells and templates allows us to de�ne and reuse parallel program structures. Com-piler, debugging, and performance analysis tools reduce the labor associated with programdevelopment and provide portability over a wide range of machines.PCN has already been used to develop substantial applications; other applicationprojects are under way. Optimizing compilers are being developed, with particular empha-sis on the requirements of �ne-grained computers. Libraries of software cells and templatesare being developed to support
uid dynamics, geophysical modeling, and computationalchemistry; similar libraries can and should be developed for other areas of computationalscience.AcknowledgmentsThis work is a collaborative e�ort involving research groups at Argonne and Caltech.As such, it owes a great debt to many individuals. Steve Taylor leads the research atCaltech. Mani Chandy has contributed to the language de�nition. Sharon Brunett andDong Ling are responsible for compiler development. Gauge and Upshot were developedby Carl Kesselman and Ewing Lusk, respectively. I-liang Chern and Steve Hammondhelped develop the icosahedral grid application.This research was supported at Argonne by the National Science Foundation's Cen-ter for Research on Parallel Computation under Contract NSF CCR-8809615 and by theApplied Mathematical Sciences subprogram of the O�ce of Energy Research, U. S. De-partment of Energy, under Contract W-31-109-Eng-38.22

References[1] Chandy, C., and Taylor, S., An Introduction to Parallel Programming, Jones andBartlett, 1991.[2] Chern, I., and Foster, I., Design and parallel implementation of two methods forsolving PDEs on the sphere, Proc. Conf. on Parallel Computational Fluid Dynamics,Stuttgart, Germany, Elsevier Science Publishers B.V., 1991.[3] Foster, I., Automatic generation of self-scheduling programs, IEEE Trans. Paralleland Distributed Systems, 2(1):68{78, 1991.[4] Foster, I., Information hiding in parallel programs, Preprint MCS-P290-0292, Ar-gonne National Laboratory, 1992.[5] Foster, I., and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-Hall, Englewood Cli�s, N.J., 1989.[6] Foster, I., and Tuecke, S., Parallel Programming with PCN, Technical Report ANL-91/32, Argonne National Laboratory, 1991.[7] Harrar, H., Keller, H., Lin, D., and Taylor, S., Parallel computation of Taylor-vortex
ows, Proc. Conf. on Parallel Computational Fluid Dynamics, Stuttgart, Germany,Elsevier Science Publishers B.V., 1991.[8] Herrarte, V., and Lusk, E., Studying parallel program behavior with Upshot, Tech-nical Report ANL-91/15, Argonne National Laboratory, 1991.[9] Kesselman, C., Integrating Performance Analysis with Performance Improvement inParallel Programs, Technical Report UCLA-CS-TR-91-03, UCLA, 1991.[10] Olson, R., Using host-control, Technical Memo ANL/MCS-TM-154, Argonne Na-tional Laboratory, 1991.[11] Whitehead, A., An Introduction to Mathematics, Oxford University Press, 1958.[12] Wright, S., Stable parallel algorithms for two point boundary value problems, PreprintMCS{P178{0990, Argonne National Laboratory, and SIAM J. Sci. Statist. Comput.,1992 (in press).
23

