
ADIFOR Working Note #6:Structured Second- and Higher-Order Derivativesthrough Univariate Taylor Series�MCS Preprint P296{0392byChristian Bischof, George Corliss, and Andreas GriewankAbstractSecond- and higher-order derivatives are required by applications in scienti�c computation, espe-cially for optimization algorithms. The two complementary concepts of interpolating partial deriva-tives from univariate Taylor series and preaccumulating of \local" derivatives form the mathematicalfoundations for accurate, e�cient computation of second- and higher-order partial derivatives forlarge codes. We compute derivatives in a fashion that parallelizes well, exploits sparsity or otherstructure frequently found in Hessian matrices, can compute only selected elements of a Hessianmatrix, and computes Hessian � vector products.1 IntroductionDiscussions of automatic di�erentiation for computing �rst-order partial derivatives and Taylorcoe�cients of arbitrary order have appeared in the literature regularly over the past 30 years [5,15,16,23,24,30]. Juedes [20] includes a survey of 29 software packages for automatic di�erentiation. Inthis paper, we describe two concepts:1. interpolation of partial derivatives from an ensemble of Taylor series of single independents,and2. preaccumulation of \local" derivatives at the statement or scalar function level.The complementary concepts of interpolating partial derivatives from univariate Taylor series andpreaccumulating \local" derivatives form the mathematical basis on which to build a software toolcapable of e�ciently computing accurate second- and higher-order partial derivatives for large codes.This is a signi�cant new capability: neither symbolic tools nor divided di�erence approximationscan deliver that capability.Our focus is on second-order partial derivatives as required by optimization software. Our ap-proach for the e�cient computation of second derivatives has the following characteristics:Enhances Parallelism: Any parallelization or vectorization built into the original code is main-tained. The additional code for computing �rst- and second-order derivatives increases thescope for e�cient parallelization.Utilizes Structure: The generated code takes advantage of the sparsity that is often present inHessian matrices.�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research,U.S. Department of Energy, under Contract W-31-109-Eng-38 and through NSF Cooperative Agreement No. CCR-8809615. 1



Computes Hessian � vector: The generated code can compute a Hessian � vector product di-rectly in a manner that is much more e�cient than �rst computing the Hessian and thenmultiplying.Allows Slices: It is possible to compute selected elements of the Hessian without computing theentire matrix. This capability allows for run-time storage trade-o�s when the Hessian is toolarge to compute the entire matrix at once, or if the application requires only some of theelements (the diagonal, for example).Supports Vector Functions f : Rn 7! Rm: A separate Hessian is computed for each componentwith one invocation of the tool, subject only to limitations of memory size. This is necessaryfor many optimization algorithms and for e�cient parallelization.Provides a Growth Path: The framework for computing second-order derivatives generalizes tohigher-order derivatives.In Section 2, we outline the need for second- and higher-order derivatives in scienti�c computa-tions, especially in optimization, and point out some of the reasons for the increased computationalcomplexity of second derivatives. In Section 3, we describe automatic di�erentiation applied to thenaive propagation of gradients and Hessians in the forward mode. In Sections 4 and 5, we presentthe two contributions of this paper: the interpolation of partial derivatives from univariate Taylorseries and the preaccumulation of \local" derivatives, respectively. Section 6 shows how to accesssecond derivatives, to exploit sparsity, to compute subsets of a Hessian, and to compute Hessian� vector products. In Section 7, we generalize the second-derivative results to the computationof higher-order mixed partial derivatives. Finally, we outline conclusions and directions for furtherresearch.2 Need for High-Order DerivativesSecond- and higher-order derivatives are required by applications in scienti�c computation, es-pecially for optimization algorithms.2.1 Derivatives in OptimizationThe primary motivation for adding the ability to compute second derivatives comes from opti-mization. Given f : Rn 7! R, unconstrained optimization algorithms minimize f locally by solvingrf = 0 using a Newton or a secant-type iterative method [12,13]. The Newton iteration requiresthe Hessian r2f . In nonlinearly constrained optimization, the curvature of the constraint surfacesis represented by the Hessians r2ci of the active constraints ci(x) = 0. Often, all these secondderivatives are aggregated into the Hessian of the Lagrangianr2L = r2f +Xi �ir2ci;where the Lagrange multipliers �i are derived in some way from �rst-derivative information, that is,the gradients of the objective and the active constraints. In most large-scale optimization problems,the Hessians of the objective and constraints are sparse or otherwise structured.Moreover, many optimization codes require at various stages of the calculation only limitedsecond-derivative information, for example: 2



r2Lv Hessian � vector products for iterative solversvTr2Lv Second directional curvature in line searchDiag(r2L) Diagonals for preconditioning of equationsr2LZ One-sided projection onto tangent spaceZTr2 LZ Two-sided projection onto tangent spaceHere, v is an arbitrary vector, and Z is a rectangular matrix whose columns span the orthogonalcomplement of the active constraint gradients. Another interesting optimization technique thatinvolves selected second-derivative information is the use of merit functions that are both smoothand exact [14]. That is, that obtain unconstrained minima exactly at the constraint minimizers.Williamson uses exact Hessian values in a nonlinear programming algorithm [31].Secant methods for approximating second derivatives have been quite successful in the contextof unconstrained optimization. For problems of this type, they are considered a useful alternativeto the true Hessian, partly because they reduce the linear algebra e�ort per step from O(n3=3) toO(n2) in the dense case. However, this saving is lost in the nonlinearly constrained case, and thedetermination of a successful approximation to the Hessian of the Lagrangian is still an open researchquestion. One primary reason is that approximating the Hessian in constrained optimization is amuch more complicated problem than approximating the Hessian in unconstrained optimization,since the Hessian of the Lagrangian is not necessarily positive de�nite even at the solution.The other strong motivation for using the analytical Hessian is that it often has a great deal ofstructure that a secant approximation cannot take into account. For example, in many applications,the Hessian is very sparse, and by exploiting this sparsity, the computation the true Hessian is notexpensive. Currently, this structuring is done by hand in some applications. Hence, it is importantthat a tool for computing second derivatives support sparse computations.Software for solving problems in unconstrained optimization (Dennis and Schnabel [12], for ex-ample) often views analytic second-derivative information as optional, but desirable. If the user isable to supply code for computingr2f , the algorithms often display the quadratic convergence rateof Newton's method, rather than the superlinear rate of the secant method. Writing code for theanalytic second derivative is a tedious and error-prone process, even for problems of modest codesize like those in the Hock and Schittkowski [19] or the MINPACK-2 [3] test suites. For applicationssuch as multidisciplinary optimization [27,28] where the code de�ning the function f may be tens ofthousands of lines long, hand-coding even rf is unthinkable. Software for constrained optimizationhas viewed analytic second-derivative information as so di�cult to supply that only Williamson'scode [31] even provides the opportunity for a knowledgeable user to supply it. The techniques out-lined in this paper make the computation of accurate second-derivative information feasible. Withthis information, software for unconstrained optimization can routinely use second derivatives toattain quadratic convergence, and software for the constrained case can be redesigned without beingrestricted to Hessian-free algorithms.Third-, fourth-, and higher-order partial derivatives are required by some algorithms for solvingpotentially degenerate nonlinear systems or for nested optimization problems. Berz [6] and Mich-elotti [22] discussed the problem of beam tracing in the Superconducting Super Collider. In thatapplication, up to m = 10 derivatives in n = 6 variables are needed to describe the physical system.As scientists understand that high derivatives can be feasibly obtained when n is reasonably small,more applications requiring such high-order partial derivatives may be recognized, and algorithmsmay be developed that e�ciently utilize higher derivatives.3



2.2 Cost of Complete Jacobians and HessiansUsing the reverse mode of automatic di�erentiation, one can compute the gradient of a scalarfunction for no more than �ve times the arithmetic operations needed to evaluate the functionitself [4]. However, this result does not extend to the Jacobians of vector functions. By applyingthe cheap gradient result to each component of the vector function, one can bound the total costof evaluating the Jacobian by no more than �ve times the sum of the costs of evaluating all of thecomponent functions separately. This total cost is often much larger than the cost of evaluatingall components of the vector function simultaneously, where common subexpressions need to becalculated only once. For vector functions that are themselves gradients of f , such joint terms aretypical. As an example, let us consider the sum of squares residualf(x) = 12 jjrjj22; r = Ax� b;where A is a matrix, and b is a vector of compatible size. The complexity of evaluating r and itsnorm f is given by the number of nonzero elements in A, which we assume to be signi�cantly largerthan the number n of independent variables. The gradient and Hessian of f are given byrf = AT r; r2f = ATA:The entire vector rf can be evaluated for exactly twice the e�ort of calculating r. Evaluatingjust one component of rf separately costs half as much, since the intermediate vector r must becalculated �rst. Hence, the cheap gradient result applied to each component of rf implies thatthe Hessian can be calculated for no more than 5n times the e�ort of evaluating r. The factor 5in that bound can be left o�, but otherwise it provides a realistic estimate. Thus, we concludethat Hessians can indeed be up to O(n) times as expensive as the underlying scalar function andgradient. Moreover, the Hessians may have little or no sparsity, even if there is a lot of structure.For example, if A is the identity appended with one additional dense row, then the Hessian rf isdense.2.3 Partitioning and ParallelismIndependent of what methodology one adopts for the evaluation of Jacobian and Hessian ma-trices, both run-time and memory requirements will usually grow at least linearly with the numberof independent variables. Now suppose the simultaneous di�erentiation with respect to all n inde-pendent variables on one processor takes too long and/or requires too much memory. Then, onemay partition the independent variables into a family of groups with no more than some p < nelements and perform several derivative evaluation runs, either in parallel on several processors orsuccessively in a serial mode. For �rst derivatives, this partitioning approach can be adopted quiteeasily, for example, by utilizing the interface of ADIFOR (Automatic Di�erentiation In FORtran) [7]or ADOL{C (Automatic Di�erentiation Of aLgorithms written in C) [18].Each pair of independent variables that corresponds to a nonzero entry in the Hessian must occurtogether in at least one of the groups. In graph-theoretical terms, this requirement means coveringthe connectivity graph of the sparsity pattern by a set of subgraphs with no more than p nodes suchthat each edge occurs in at least one of the subgraphs. In the dense case, the graph is a clique withn(n� 1)=2 edges. Since each p-element subgraph has at most p(p� 1)=2 edges, one needs at leastn(n� 1)p(p� 1) � �np�2di�erentiations with respect to groups of no more than p independent variables to calculate theHessian in parallel or sequentially in pieces. 4



If p is even and divides n, then the following scheme comes within a factor of two of this lowerbound. Partition the independent variables into 2n=p �xed subgroups of p=2 elements each. Thereare �2np � 1� np � 2�np�2pairwise combinations of subgroups, each forming a group of p elements. Spreading the evaluationof a dense Hessian in time or across processors increases the (serial) complexity at most by a factorof two. Since no communication is necessary at all, linear speed up is achievable on any multi-processor. Hence, roughly the same complexity growth by a factor of two must occur if the Hessianis simply treated as the Jacobian of the gradient, disregarding its symmetry.It is not immediately clear how the simple scheme sketched above can be adopted to the sparsecase. In this paper, we will propose a scheme that makes full use of sparsity and can be partitionedto any level without any communications overhead.3 Forward-Mode HessiansAutomatic di�erentiation is a well-known technique for the accurate, e�cient computation ofderivatives [15,16,17,21,24]. It is neither symbolic nor based on potentially unstable �nite-di�erenceapproximations. It propagates values according to the familiar rules of calculus. There are twofundamental modes for propagating derivative values: the forward mode that we use here, and thereverse mode (see [15]).One could use the forward mode of automatic di�erentiation to compute the gradient and thedense Hessian of f by propagating the �rst- and second-derivative objects strictly in the forwardmode [25]. We describe how this would be done to show that the combination of preaccumulationand interpolation yields much more e�cient code.Suppose that u and v are active variables (they depend on values of independent variables). Thevalues of ru, rv, r2u, and r2v have been computed along with the values for u and v. As anexample of a typical operation, suppose that f = u � v. Then by the chain rule, we havef = uvrf = u � rv +ru � vr2f = u � r2v +ru � (rv)T +rv � (ru)T + v � r2u:Table 1 gives the computational complexity for the * operator.Table 1. Computational complexity of the * operatorCost +'s *'sFunction 0 1Gradient n 2nHessian 1:5n(n+ 1) 2n(n+ 1)The complexity of the other operators is similar, di�ering only in the constants. The storage com-plexity for the naive forward propagation of rf and r2f is proportional to n2=2 times the storagerequired for computing f .The time and storage complexity for the naive forward propagation contrasts sharply with thecorresponding complexities for the univariate Taylor series whose complexities are a small multipleof (the number of nonzero elements of r2f) � (the corresponding costs for f).The alternative of reverse mode propagation of adjoint values [15] is attractive for computinggradients, but for the highly structured Hessians and higher-order derivatives, the forward mode issatisfactory. 5



4 Interpolating Derivatives from Taylor SeriesThe two central ideas of this paper are described in this section and the next. In this section,we compute second-order partial derivatives by interpolation from sets of three-term univariateTaylor series. The interpolation scheme for second-order partial derivatives is a special case of aninterpolation scheme for arbitrarily high-order mixed partial derivatives, thus providing a naturalgrowth path for any software tool based on this method. This treatment was inspired by a remarkby Rall [26].In the following section, we show how the preaccumulation of local derivatives complements theinterpolation scheme, yielding an e�cient method for computing second-order partial derivatives.Let us consider the example that we have two independent variables x and y. We wish to computethe three distinct second-order partial derivatives of f : R2 7! R. The two-dimensional Taylor seriestells us thatf(x0 + hx; y0 + hy) := f(hx; hy)= f(x0; y0) + (fx; fy)� hxhy �+12 � (hx; hy)� fxx fxyfxy fyy �� hxhy �+ O �(hx + hy)3� ; (1)where all derivatives of f are evaluated at (x0; y0). For the special case hx = hy = h, we obtainf(x0 + h; y0 + h) := f(h)= f(x0; y0) + (fx + fy) � h+ (fxx + fyy + 2fxy) � h2=2 +O �h3� : (2)Because of the uniqueness of the Taylor series, f(h) is the same as the univariate Taylor expansionin the direction u = x+ y: f(h) = f(x0; y0) + hfu + h2fuu=2: (3)Equations (2) and (3) imply thatfu = fx + fy and fuu = fxx + 2fxy + fyy:Hence fxy = 0:5(fuu � (fxx + fyy)); (4)and the three distinct second-order partial derivatives of f can be recovered from values computedas three univariate Taylor series.In general, let f : x 2 Rn 7! y 2 R. We wish to compute the gradient rf and the Hessianr2f . Assume that we know the locations of the p nonzero elements of r2f . Let l(i; j) map theindex pairs (i; j) corresponding to nonzero Hessian elements into 1 : : : p. For each active variable w,we propagate the value w := w(x+ t � u)jt=0 and the two p-vectors w0 and w00 containing values forthe �rst and second terms, respectively, of the Taylor series for w(t)jt=0. Here, u represents the pdirections corresponding to the nonzero elements of r2f ,u = � ei for i = jei + ej for i 6= j � for all (i; j) s.t. @2f@xi@xj 6= 0;and 0 denotes di�erentiation with respect to t. The propagation of �rst and second derivativesparallelizes in the p-direction. That is, for both vectors w0 and w00, there is no interaction betweenthe p di�erent elements. Hence, we omit indexing of the vectors w0 and w00, except in an examplewhere we use square braces w0[i] to denote indexing across directions.6



The Taylor series give us the �rst derivatives and the diagonal entries of the Hessian. Theo�-diagonal Hessian entries are recovered by interpolation as suggested by Equation (4):@2f@xi@xj = 0:5�w00[l(i; j)]� (w00[l(i; i)] + w00[l(j; j)])� (5)In contrast to the naive forward propagation of Hessian matrices described in Section 3, thecomputation of Hessians as an ensemble of univariate Taylor series has the following advantages.The univariate Taylor series approach� handles sparse Hessians by generating series only for nonzero entries,� handles very large Hessians by generating elements in multiple sweeps,� can generate arbitrary elements with little redundant computation,� parallelizes and vectorizes,� uses simple data structures { scalars and vectors, rather than symmetric matrices,� is easier to understand when coding individual operators, and� generalizes to higher derivatives (see Section 7).In exchange, some computation is necessary to extract o�-diagonal entries according to Equation (4),but that process is only done once at the end of the computation.5 Preaccumulation of DerivativesIn the preceding section, we described an interpolation scheme for computing high-order deriva-tives from values obtained by propagating ensembles of univariate Taylor series. In this section,we discuss the second major contribution of this paper: the preaccumulation of derivatives. Thepreaccumulation of derivatives allows us to extend the results of the preceding section, where itwas implicitly assumed that we were dealing with binary operations or unary elementary functions.Here, we cover complicated expressions in assignment statements, embedded function calls, or evenbasic blocks of code.Let the variables y and z depend on a vector x of independent variables. The �rst and secondderivatives ry, rz, r2y, and r2z are available from earlier computations. If w = f(y; z), the chainrule tells us that rw = @w@y � ry + @w@z � rz; andr2w = @w@y � r2y + @w@z � r2z (6)+@2w@y2 � (ry)2 + 2 @2w@y@z � ry � rz + @2w@z2 � (rz)2:Hence, if we know the \local" derivatives (@w@y ; @w@z ) and (@2w@y2 ; @2w@y@z ; @2w@z2 ) of w with respect to z andy, we can easily compute rw and r2w, the derivatives of w with respect to x. An example ofEquation (6) is given in Equation (7) for the simple case w = f(y; z) = y � z. Equation (6) forpropagating Taylor series has the much simpler form given by Equation (8).The idea is that the large \global" derivatives rw are propagated in the forward mode from oneassignment statement to another, while the scalar \local" derivatives (@w@y ; @w@z ) are preaccumulatedindependently of the larger 
ow of control from one statement to the next. ADIFOR was the �rst7



tool for automatic di�erentiation to use preaccumulation of local derivatives by applying the reversemode at the statement level for the e�cient computation of �rst derivatives [7,9]. The hierarchy of\local" and \global" derivatives extends to higher-order derivatives.Consider the alternatives for computing �rst- and second-order derivatives of an active variablew that is given by an expression involving k active variables:w = f(s1; s2; : : : ; sk):There are two alternatives for computing w0: and w001. parse the expression for f , and propagate �rst- and second-order derivatives for each interme-diate quantity; or2. preaccumulate �rst- and second-order derivatives of f with respect to its local independentvariables, and use the local derivatives to compute w0 and w00.All currently existing automatic di�erentiation software that can compute second-order derivativesuses the �rst alternative. We will see that these two alternatives lie at opposite ends of a spectrum.Each is optimal in operation counts for some expressions. We advocate a mixed strategy.Next, we describe the two alternatives for computing w0 and w00 in more detail.5.1 Parse f and Propagate Derivatives for Each IntermediateAs is common in the automatic di�erentiation literature (see [15,24], for example), suppose thatf has been parsed into a sequence of q unary and binary operations with operands either s1, : : :,sk or else earlier intermediate results. Then in our case, the parsed code is annotated with codefor generating the �rst- and second-order Taylor coe�cients. As an example of a typical operation,suppose that f = y � z: f = y � zf 0 = y � z0 + y0 � z (7)f 00 = y � z00 + 2y0 � z0 + y00 � z:(Comparison with the code in Section 3 for forward-mode Hessians shows why univariate Taylorseries are preferred.) The important point to note about evaluating operators of this form is thatthere are 2q vector loops of length p.The storage cost of propagating derivatives for each intermediate result is 2p times the storagerequirements of f . The operation count for propagating derivatives for each intermediate result isabout 5p times the operation count for evaluating f itself.The special case in which f is a linear function of active variables w = f(s1; : : : ; sk) =P ai � si,where the ai are constants, deserves special attention:w = X ai � siw0 = X ai � si0w00 = X ai � si00:For assignment statements of this form, propagating derivatives by parsing into unary and binaryoperations is faster than the method of preaccumulation described in the following section.8



5.2 Preaccumulate First- and Second-Order DerivativesIf w = f(s1; : : : ; sk), let rf and r2f denote the \local" gradient and Hessian, respectively, of fwith respect to s1; : : : ; sk. If we extend Equation (6) to complicated right-hand sides and to secondderivatives, we get w = f(s1; : : : ; sk)w0 = kXi=1(rf)i � si0= rfT � s0 (8)w00 = kXi=1 24(rf)i � si00 + si0 � kXj=1 �(r2f)i;j � sj 0�35= rfT � s00 + s0T � r2f � s0:Equation (8) represents derivatives in each of the p directions, which may be computed in parallel.The important point to note in Equation (8) is that there are only two vector loops of lengthp, independent of the numer of variables or operations on the right-hand side of the assignmentstatement. The local k-element gradient rf and the local k2-element Hessian r2f can be computedin any manner. We may apply preaccumulation again to less complicated subfunctions, or we mayuse the forward mode, the reverse mode, a combination of the two, or analytic formulas, if they areeasy to derive.The storage cost of preaccumulating local derivatives is about 2p times the storage allocated byf , plus k+ k2, where k is the largest number of active variables appearing on the right-hand side ofany assignment statement. Usually, k << p.The operation count for preaccumulating local derivatives is about (3k + k2)p, plus the cost ofcomputing the local derivatives. In practice, many elements of the local Hessian r2f are zero, andcomputations can be omitted.The special case in which f is a composition of nonlinear functions of a small number of activevariables (eg. w = exp(ss21 )) deserves special attention. For this example, the method based onparsing given in the previous section requires 4 vector loops of length p, while the preaccumulationmethod requires only 2 vector loops of length p. Further, the bodies of the loops, as well as thecomputation of the local derivatives, are relatively simple.A successful tool for second-order partial derivatives satisfying the requirements given in Section1 can be built using either the method of propagating derivatives for each intermediate result or themethod of preaccumulating local derivatives. The examples given here show that neither method,by itself, is optimal. Hence, we prefer a mixed strategy. For example, suppose a code computesconductivity as an ugly nonlinear function of an average of values from 7 nearest neighbors in athree-dimensional grid such asw = exp(a(sdown + sup + seast + swest + ssouth + snorth + scenter)):The method based on parsing to unary and binary operations generates 6 intermediate results and14 vector loops of length p. The method of preaccumulation generates only 2 vector loops, but thelocal Hessian has 49 nonzero entries which must be accumulated and then accessed inside the loopbodies. On the other hand, rewriting the expression asw1 = a(sdown + sup + seast + swest + ssouth + snorth + scenter)w = exp(w1)yields generated code with only 4 vector loops. The local \Hessian" for the second assignment is ascalar instead of a 7 � 7 matrix. The advantage is much more pronounced if exp is replaced by amore complicated nonlinear function. 9



The characterization of expressions for which preaccumulation is best and those for which parsingto elementary operations is best is a question that is under continuing study.6 Structured EvaluationsIn this section, we describe how users of our approach are able to access second derivatives, toexploit sparsity, to compute subsets of a Hessian, and to compute Hessian � vector products.6.1 Seeding to Exploit SparsityLet us assume that we have independent variables xi, i = 1; : : : ; n. If we are interested incomputing all nonzero entries in the Hessian, then we set xi0[l] = xj 0[l] = 1 for l = l(i; j), the indexfunction discussed in Section 4. The other �rst- and all second-directional derivatives xi00[l] are setto zero, since clearly @2xi@xj@xk = 0 for all i; j; k:For example, suppose that n = 5 and that r2f has the sparsity structurer2f = �� �� 0 �� � 0 �� 0 0 � �Then, the �rst-derivative Taylor series are initialized as follows. The order does not matter. Weillustrate using column-major order for the nonzero elements of the lower triangle of the Hessianmatrix. Direction Index of NonzeroIndex l Hessian Element x10 x20 x30 x40 x501 (1,1) 1 0 0 0 02 (2,1) 1 1 0 0 03 (3,1) 1 0 1 0 04 (4,1) 1 0 0 1 05 (5,1) 1 0 0 0 16 (2,2) 0 1 0 0 07 (4,2) 0 1 0 1 08 (3,3) 0 0 1 0 09 (4,4) 0 0 0 1 010 (5,4) 0 0 0 1 111 (5,5) 0 0 0 0 1The number of nonzeros in the Taylor coe�cients for xi is exactly the number of nonzeros in columni of the lower triangle or in row i of the upper triangle of the Hessian matrix. In this example, thenumber of distinct nonzero elements in the Hessian matrix is p = 11. All second-order derivativesare initially set to 0. That is, xi00[i] = 0.On return from the subroutine that has been generated for computing �rst- and second-orderderivatives, f and the p-vectors f 0 and f 00 contain the �rst three terms of the univariate Taylor seriesin the p directions corresponding to the nonzero entries of the Hessian. The elements of the Hessianthemselves are reconstructed from Equation (5).10



6.2 Computing SlicesBy \slices" we mean a structured subset of the entire Hessian matrix. For example, one mightneed the diagonal elements, a single row, a set of rows (or columns), or a square submatrix. The useof univariate Taylor series makes it easy to compute only selected elements of the Hessian matrix.Equation (4) shows that in order to extract the element (r2f)i;j , one need only to propagateunivariate Taylor series in the three directions xi, xj, and u = xi + xj .6.3 Computing Hessian � VectorThe components of the vector r2f �v are not Taylor coe�cients themselves. However, they canbe readily propagated by using univariate Taylor series. The key observation is that sincef(x + t v) = f(x) + t (rf)T v + 12 t2vTr2fv;seeding (without loss of generality) the �rst component of xi0 = vi; i = 1; : : :n, yieldsf 0 = (rf)T v; andf 00 = vTr2fv:This is a generalization of the seeding that we have done so far, where v = ei or v = ei + ej . Inparticular, for z = v + ej , we obtainf 0 = (rf)Tw + @f@xj ; andf 00 = vTr2fv + @2f@xj2 + 2eTj r2fv: (9)Equation (9) contains the information that we are looking for, namely, eTj r2fv, the jth com-ponent of the Hessian-vector product r2fv. Hence, after computing a Taylor series each foru = v; u = ej ; u = v + ej and indexing the coe�cients in that order, we can recover eTj r2fvas eTj r2fv = 0:5 (f 00[n+ j + 1]� (f 00[j + 1]� f 00[1])) : (10)The subscript indicates the direction with respect to which the Taylor series was initialized. Hence,for n variables, we need to compute Taylor series forv; e1; : : : ; en; v + e1; : : : ; v + en:For maximum e�ciency, two Taylor series evaluations can be saved. Let us assume w.l.o.g. thate1 = v � nXi=2 �iei:Then eT1r2fv = vr2fv � nXi=2 �ieTi r2fv:Exploiting this fact, the computation of a Hessian-vector product requires the evaluation of 2n� 1Taylor series, a slight advantage in complexity over divided di�erences. This complexity comparesvery favorably with the n(n+ 1)=2 Taylor series required to compute the full, dense Hessian.A generalization of this scheme allows us to compute the product of the Hessian with a rectangularmatrix Z. 11



7 Higher-Order DerivativesOur primary interest in this paper has been in second-order derivatives, but the techniques ofinterpolation from univariate Taylor series and of preaccumulation of local derivative values can begeneralized to higher-order derivatives. In this section, we survey the propagation of Taylor series ofa single variable which forms the basic building block we then apply to the computation of high-ordermixed partial derivatives.7.1 Univariate Taylor SeriesWe brie
y survey the propagation of Taylor series of a single independent variable w = f(t). Adiscussion of univariate Taylor series demonstrates that in this restricted context, the computationof derivatives of arbitrarily high order is well understood (see [23] or [24], for example). The in-terpolation scheme described below shows how arbitrary partial derivatives of a function of manyindependent variables can be e�ciently computed from the much simpler univariate Taylor seriescase.With a few exceptions [6,29], the automatic evaluation of higher derivatives has been restrictedto cases with one independent variable. The k-th derivatives are usually scaled by 1=k! to storeTaylor coe�cients. Scaling by 1=k! reduces operation counts and reduces the risks of over
ow. Ifthe client algorithm actually wants derivatives, the Taylor coe�cients can be rescaled at the end ofthe computation. The forward propagation of truncated Taylor series with m terms requires O(m)arithmetic operations and memory accesses for each addition or subtraction operation and (m +1)(m+2)=2 arithmetic operations for each multiplication, division, or special function evaluation [23,24]. We may use the factor of (m+ 1)(m+ 2)=2 as a measure of the cost ratio between the forwardpropagation of m-term series and as a means for evaluating the underlying function.The use of Fourier transforms and other fast convolution methods yields the product of twopolynomials with an asymptotic complexity O(m logm). One could determine for each value ofm the best scheme for each computing environment, exploiting the obvious vectorizability. In thispaper, we will continue to use O(m2), rather than the theoretical O(m logm) as the complexity ofmultiplication, and consequently as the estimate for the cost ratio. The use of the larger asymptoticbound is justi�ed because we are primarily concerned with relatively low-order derivatives (Hessiansare second order) and because the generation of Taylor series one term at a time for ODEs is notknown to yield to Fourier transform techniques.Figure 1 illustrates the forward propagation of Taylor series of a single independent variable,where we store the Taylor coe�cients Ui := u(i)(t)=i!. We give only the code corresponding to thesimple assignment statement w = �y=(z � z) using a parsing of the expression into a sequence ofelementary unary and binary operations.S0 = �Y0T0 = Z0 � Z0W0 = S0=T0Si = �Yi for i = 1; : : : ;mTi = iXj=0Zj � Zi�j for i = 1; : : : ;mWi = 0@Si � iXj=1Wi�j � Tj1A =T0 for i = 1; : : : ;mFigure 1. Forward propagation of univariate Taylor coe�cients12



The appropriate recurrence relations for each operation or elementary function are given by Moore [23]or by Rall [24]. Multiplication of two polynomials of degree m (or, equivalently, the convolutionof their coe�cients) is the central workhorse of all higher-derivative calculations [11], including themultivariate case and the reverse mode. Hence, it is important for the performance of automaticdi�erentiation that the core routine for multiplying two polynomials be implemented with maximale�ciency for each m, much as dense linear algebra computations rely on e�cient implementationsof the BLAS [2,1].In the next section, we show how the relatively simple recurrence relations for univariate Taylorcoe�cients as illustrated in Figure 1 can be used to compute mixed partial derivatives of any orderfor multivariate functions of interest in such applications as optimization.7.2 General Interpolation SchemeEquation (5) is a special case of a general-purpose, e�cient scheme for computing high-orderpartial derivatives from values obtained by propagating univariate Taylor series, which we describehere. The general scheme may be applied in the future to extend the capabilities of the sourcetransformation tool to support higher derivatives.A polynomial P of degree m in n variables is uniquely characterized by its values at the grid-points i = (i1; i1; : : : ; in) with 0 � ij and nXj=1 ij � m:Given the values P (i) at these grid points, the value of P at any other point x 2 Rn can be obtainedby the simple Lagrangian interpolation formula:P (x) = X0�i;eTi�mLi(x)P (i)=Li(i); (11)where e denotes the vector of 1's andLi(x) = j�mYj>eT i(eTx� j) � j<i1Yj=0 (x1 � j) � � � j<ijYj=0 (xj � j) � � � j<inYj=0 (xn̂ � j)is the unique polynomial (up to scaling) of degree m that vanishes at all gridpoints except i. Inpractice, this polynomial should be converted into a more e�cient representation.Now, we sketch how the grid values P (i) of a Taylor polynomialP (x) = f(x) +O �kxkm+1�can be obtained by using a bundle of univariate Taylor expansions.A polynomial of degree m in n variables containsb(n +m � 1;m) := �n +m � 1m �terms of the highest order (i.e., m). The corresponding variable exponents form multi-indexes kwith eTk = m. These n-vectors may be interpreted as grid points in the domain of f (see Figure2), and we can calculate the univariate Taylor polynomialsPk(t) = f(t � k) + O(tm+1)by automatically di�erentiating the program that de�nes f at t = 0. The functions Pk representrestrictions of P to lines running through the origin. For each i,P (t � k) = Pk(t) with t 2 R:13
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Figure 2: Interpolation grid with lines and hyperplanes for m = 4 and n = 2The lines t � k intersect each of the m hyperplanesHj := fx 2 Rn : eTx = jg for j = 1; 2; : : : ;min b(n + m � 1;m) points. Some of these intersection points correspond to the cubic grid pointsi � Rn considered above, but many of them do not. To obtain the value of P at a general grid pointi, we can interpolate P on the hyperplane Hj with j = eT i. On this (n � 1)-dimensional subspace,the intersections with the lines t � k form a regular grid of b(n � 1 + m;m) points at which thevalues of P are known. The number b(n� 1 +m;m) corresponds exactly to the degrees of freedomof an m-th degree polynomial with n � 1 variables, the restriction of P to Hj, in this case. Withrespect to suitable internal coordinates, the intersection points form a cubic grid. The Lagrangianformula (Equation (11)) can be applied to obtain the values P (i) for all grid points i with eT i � m.Subsequently, we may use the values P (i) to interpolate P (x) for arbitrary x 2 Rn. This is anargument for feasibility; it may be possible to replace this two-stage interpolation procedure with amore e�cient scheme. Further possible savings do not a�ect the complexity.It was shown above that we must propagate b(n+m�1;m) univariate series for general n and m.Consequently, the complexity ratio for the interpolation approach versus the conventional approachis m � nn+m � minfn;mgin terms of storage andq(n;m) = 12(m+ 2)(m + 1) � (n +m � 1)(n+m � 2) : : :n(2n+m)(2n+m� 1) � � � (2n+ 1) � 32in terms of arithmetic operations per convolution. If there is not enough storage to compute allthe univariate expansions in one pass, they can be calculated in groups over several forward sweeps.14
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