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1 Statement of the ProblemIn this article we present two symmetry results for positive solutions of the reaction-di�usionequation �u+ f(u) = 0; x 2 
; (1:1)where 
 is a bounded connected domain in RN (N = 2; 3; : : :). In the �rst problem, 
is not speci�ed, but both u and its normal derivative @nu are required to vanish on theboundary @
 of 
. In the second, 
 is a ball in RN , and u is required to vanish on theboundary of the ball.The �rst problem would clearly be overdetermined if 
 were speci�ed. However, as 
 isleft unspeci�ed, the extra degree of freedom may be enough to allow for a solution|which,in this case, consists of the pair (
; u). We refer to this problem as the free boundaryproblem. Of particular interest is the question whether a solution of the free boundaryproblem, if it exists, has any symmetry properties.The second problem is a standard boundary value problem with Dirichlet data. Werefer to it as the Dirichlet problem. The question here is whether a solution u is radiallysymmetric if f is continuous, but not necessarily Lipschitz continuous at the origin.These problems are discussed in more detail in the following subsections. Our resultsare presented in Theorems 1 and 2 below. Section 2 contains some preliminary material forthe proofs of these theorems; the proofs are given in Sections 3 and 4. This article extendsand generalizes our earlier communication [1].1.1 Free Boundary ProblemIn a recent discussion of some computational problems in plasma physics, Miller et al. [2]proposed an interesting free boundary problem for reaction-di�usion equations. The phys-ical problem, which concerns the existence of equilibrium con�gurations with magneticislands in a Tokamak fusion device, can be posed as a free boundary problem for the partialdi�erential equation �u+pu� 1 = 0; x 2 
; (1:2)where 
 is a bounded connected domain in RN (N = 2; 3; : : :). The function u mustbe positive throughout 
, and u and its normal derivative @nu must vanish on @
. Theexpression pu�1 in the di�erential equation (1.2) is the simplest form the source term cantake; another typical expression is up � uq, where 0 � q < p � 1. Therefore, the generalform of the free boundary problem is8><>: �u+ f(u) = 0; x 2 
;u(x) > 0; x 2 
;u(x) = 0; @nu(x) = 0; x 2 @
; (1:3)where the domain 
 � RN is unspeci�ed and f is a nonlinear function that is de�ned andcontinuous on [0;1), but generally not Lipschitz continuous at 0.2



In [3], Kaper and Kwong investigated the free boundary problem for the radially symmet-ric case, assuming that 
 is a ball of (unknown) radius R centered at the origin, where the so-lution u depends only on the distance r = jxj from the origin. They proved that, for a broadclass of functions f , there exists a pair (R; u) with R > 0 and u 2 C2((0; R))\ C1([0; R]),such that 8>>><>>>: u00 + N�1r u0 + f(u) = 0; 0 < r < R;u(r) > 0; 0 < r < R;u0(0) = 0;u(R) = 0; u0(R) = 0: (1:4)Speci�cally, they showed that the existence of (R; u) follows if f and its integral F ,F (u) = � Z u0 f(s) ds; (1:5)satisfy the following conditions:(F1) f is continuous on [0;1) and locally Lipschitz continuous on (0;1).(F2) There exists a � > 0, such that F (u) > 0 for 0 < u < �, F (�) = 0, and f(u) > 0 foru � �.(F3) With � as in (F2), R �0 F�1=2(u) du <1.(F4) lim infu!1 f(u) > 0.The solution of (1.4) is unique if f satis�es the additional condition(F5) With � as in (F2), u 7! f(u)=(u� �) is nonincreasing for u > �.The uniqueness follows immediately from an earlier result of Kaper and Kwong [4], whichis itself an extension of an earlier result of Peletier and Serrin [5]. The conditions (F1)through (F5) are satis�ed for functions f of the type f(u) = up � uq for most, but not all,values of p and q in the range 0 � q < p � 1.In this article we turn again to the original problem (1.3) and address the issue whethera classical solution (
; u), if it exists, is necessarily radially symmetric. Numerical resultspresented for the case N = 2 in [2] seem to indicate that the implication is false if f(u) =pu� 1; the function u in [2, Fig. 6] is clearly not radially symmetric.We prove the following theorem.Theorem 1 If f is such that f(u) = f1(u) + f2(u); (1:6)where f1 is continuous and nondecreasing and f2 is Lipschitz continuous on [0;1), thenany classical solution (
; u) of the free boundary problem (1.3) that satis�es the condition3



u 2 C2(
) is necessarily radially symmetric|that is, 
 is an open ball in RN , 
 = BR(x0)say, and u is radially symmetric about the center x0 of the ball. Furthermore,@u@r < 0; 0 < r = jx� x0j < R: (1:7)The conditions of the theorem, together with the conditions (F1) through (F5) above,guarantee that the free boundary problem (1.3) has one and only one classical solution(
; u) and that this solution is necessarily radially symmetric.The conditions of Theorem 1 are satis�ed, for example, if f(u) = up�1, where 0 < p � 1.(Take f1(u) = up and f2(u) = �1.) They are not satis�ed, however, if f(u) = up � uq ,where 0 < q < p � 1.The proof of Theorem 1 is given in Section 3.1.2 Dirichlet ProblemOur second result is for the Dirichlet problem for the reaction-di�usion equation (1.1) in aball of radius R (R > 0) in RN (N = 2; 3; : : :). Without loss of generality, we may assumethat the ball is centered at the origin, so 
 = BR(0).According to the celebrated result of Gidas, Ni, and Nirenberg [6, Section 1.1, Theo-rem 1, and Section 2.3, Remark 1], any classical solution of the Dirichlet problem,8><>: �u+ f(u) = 0; x 2 BR(0);u(x) > 0; x 2 BR(0);u(x) = 0; x 2 @BR(0); (1:8)is necessarily radially symmetric about the origin if f is the sum of a function that is contin-uous and nondecreasing and a function that is Lipschitz continuous on [0;1); furthermore,@u=@r < 0 for 0 < r < R. If such a decomposition of f is not possible, then it is an openproblem whether classical solutions of (1.8), if they exist, are indeed radially symmetric.Actually, the examples given in [6, Section 2.4] show that these cases could be very delicate.We prove the following theorem.Theorem 2 If f is such that f(u) = f1(u) + f2(u); (1:9)where f1 is continuous on [0;1), locally Lipschitz continuous on (0;1), and nonincreasingnear 0, and f2 is Lipschitz continuous on [0;1), then any classical solution u of (1:8) isnecessarily radially symmetric about 0. Furthermore,@u@r < 0; 0 < r = jxj < R: (1:10)4



The theorem covers the case f(u) = up � uq, where 0 < q < p � 1, as f is decreasing on[0; (q=p)1=(p�q)).The proof of Theorem 2 is given in Section 4.1.3 DiscussionThe following discussion clari�es the relationship between Theorems 1 and 2.The central question of interest to us was whether the existence of a positive solution(
; u) of the free boundary problem (1.3) implies its radial symmetry when the nonlinearsource term f is continuous, but not necessarily Lipschitz continuous at 0. In particular,our interest focused on functions f of the type f(u) = up � uq , where 0 � q < p � 1.The case f(u) = up� 1 (0 < p � 1) is indeed covered by Theorem 1, but f(u) = up�uq(0 < q < p � 1) is not. In fact, we were unsuccessful in our attempts at extending Theorem 1to include functions of the latter type. However, observing that such functions are Lipschitzcontinuous everywhere except at 0 and decreasing near 0, we found that the moving-planemethod could again be used to prove the radial symmetry of any positive solution of theDirichlet problem for the reaction-di�usion equation (1.1) if 
 is speci�ed to be a ball. Thisis the result expressed in Theorem 2.Theorem 1 bears an interesting relationship to the celebrated result of Gidas, Ni, andNirenberg [6] quoted in the beginning of Subsection 1.2. Gidas, Ni, and Nirenberg showedthat, if 
 is a ball, then any solution of the Dirichlet problem is necessarily radially sym-metric, provided f is the sum of a function that is continuous nondecreasing and a functionthat is Lipschitz continuous on [0;1). Theorem 1 shows that, by imposing the extra condi-tion @nu = 0 in (1.3), we have forced ourselves into a situation where there is no (positive)solution unless 
 is a ball.We remark that new symmetry results for solutions of reaction-di�usion equations onnonsmooth domains have been obtained recently by Garofalo and Lewis [7] and Lewis andVogel [8].2 Maximum Principle and Boundary LemmasIn this section, we summarize the maximum principle and two boundary lemmas for ellipticdi�erential expressions in a form suitable for the subsequent analysis. Throughout thissubsection, D is an arbitrary domain (i.e., an open connected set) in RN and L denotes auniformly elliptic di�erential expression on D,Lu � aij(x)@iju+ bi(x)@iu+ c(x)u;where aij ; bi; c 2 L1(D). (We use the notation @i = @=@xi and @ij = @2=@xi@xj , togetherwith the summation convention for repeated indices.)5



Lemma 1 (Maximum Principle). Suppose that u 2 C2(D) satis�es the inequalitiesu � 0 and Lu � 0 on D. If u vanishes at some point in D, then u = 0 on D.Proof. See [9, Chap. 2, Theorem 6].Lemma 2 (Hopf Boundary Lemma). Suppose that u 2 C2(D) satis�es the inequalitiesu > 0 and Lu � 0 on D. Suppose, furthermore, that P 2 @D lies on the boundary of aball B in D. If u is continuous in D [ P and u(P ) = 0, then @�u(P ) < 0 for any outwarddirection �.Proof. See [6, Section 1.3, Lemma H] and [9, Chap. 2, Theorem 8].The derivative @�u is de�ned as the derivative in the direction � = (�1; : : : ; �N); that is,@� = �i@i. The vector � is said to point outward from D if its scalar product with n, theunit normal vector in the outward direction, is positive (�ini > 0).Lemma 3 (Serrin Boundary Lemma). Suppose that P 2 @D and that, near P , @Dconsists of two transversally intersecting C2-hypersurfaces � = 0 and � = 0, where � < 0and � < 0 in D and (aij@i�@j�)(P ) � 0.Suppose that u 2 C2(D), u > 0 and Lu � 0 on D, and u(P ) = 0.(i) If (aij@i�@j�)(P ) > 0, then @�u(P ) < 0 for any outward direction � that is transverseto the hypersurfaces � = 0 and � = 0.(ii) If (aij@i�@j�)(P ) = 0, then @�u(P ) < 0 or @2�u(P ) > 0 for any outward direction �that is transverse to the hypersurfaces � = 0 and � = 0, provided aij is twice continuouslydi�erentiable in D [ P and @t(aij@i�@j�)(P ) � 0 for any derivative in a direction t that istangent to the submanifold f� = 0g \ f� = 0g.Proof. See [6, Section 1.3, Lemma S] and [10, Lemma 2].The following lemma is a nonlinear generalization of the Hopf Boundary Lemma.Lemma 4 Let f = f1+f2, where f1 is continuous on [0;1) and nondecreasing near 0 andf2 is Lipschitz continuous on [0;1), with f(0) � 0. Suppose that u 2 C2(D) satis�es theinequalities u > 0 and �u + f(u) � 0 on D. Suppose, furthermore, that P 2 @D lies onthe boundary of a ball B in D. If u is continuous in D [ P and u = 0 on @D near P , then@�u(P ) < 0 for any outward direction �.Proof. As f1 is nondecreasing near 0, we have f1(u) � f1(0) on D near P . Furthermore,f2 is Lipschitz continuous on [0;1), so there exists a bounded function c on D such that6



f2(u)� f2(0) = cu on D. Therefore, u satis�es the di�erential inequality �u+ cu � �f(0)or, since f(0) � 0, �u + cu � 0 on D. The assertion of the lemma follows from the HopfBoundary Lemma (Lemma 2).The �nal lemma covers reaction-di�usion equations where f(0) is negative. It requiresmore smoothness of the solution u; cf. [6, Section 2.2, Lemma 2.1].Lemma 5 Let f be continuous on [0;1), with f(0) < 0. Suppose that u 2 C2(D) satis�esthe inequality u > 0 on D and that �u + f(u) = 0 on D. Suppose, furthermore, thatP 2 @D lies on the boundary of a ball B in D. If u is twice continuously di�erentiable inD [P and u = 0 on @D near P , then @�u(P ) < 0 or @2�u(P ) > 0 for any outward direction�.Proof. Because u vanishes identically on @D near P , any directional derivative in thetangent plane vanishes at P . Furthermore, as u > 0 on D, it must be the case that@nu(P ) � 0.If @nu(P ) < 0, then @�u(P ) < 0 for any outward direction �.If @nu(P ) = 0, then all directional derivatives at P are zero. Using a local coordinatesystem with the origin at P , one coordinate along the outward normal vector, and theremaining N � 1 coordinates in the tangent plane, we readily verify that �u(P ) = @2nu(P ).Since u is twice continuously di�erentiable on D [ P and u(P ) = 0, we have �u(P ) =�f(0) > 0; hence, @2nu(P ) > 0. Then also @2�u(P ) > 0 for any outward direction �.3 Proof of Theorem 1Suppose (
; u) is a classical solution of (1.3), where f satis�es the conditions of Theorem 1.According to Lemma 4, we necessarily have @nu < 0 on @
 if f(0) � 0, so it must bethe case that f(0) < 0.We use the moving-plane method for the proof of the theorem. This method, due toAlexandro� (see [11, Section VII.1]) was �rst applied by Serrin [10] to prove a symmetryresult for the constant mean-curvature equation �u = �c, c > 0, and has been used sincethen by several authors.Let T� be the hyperplaneT� = fx = (x1; : : : ; xN) 2 RN : x1 = �g; (3:1)and let S� be the re
ection operator about T�,S� : x = (x1; x2; : : : ; xN) 7! S�x = (2�� x1; x2; � � � ; xN); x 2 RN : (3:2)7



As 
 is bounded, T� and 
 are disjoint for all su�ciently large �. Let �1 be de�ned by�1 = inff� : T� \ 
 = ;g: (3:3)Without loss of generality, we may assume that the set @
 \ T�1 consists of a single point;if necessary, we rotate the coordinate system.For � < �1, � su�ciently close to �1, T� cuts a cap �� o� 
,�� = fx 2 
 : x1 > �g; � < �1: (3:4)The re
ection of �� about T� is S�(��),S�(��) = fS�x : x 2 ��g: (3:5)For all � su�ciently close to �1, S�(��) is a proper subset of 
. Let �0 be de�ned by�0 = inff� : S�(��) � 
g: (3:6)As 
 is bounded, �0 is �nite. Obviously, �0 < �1. For � = �0, either the boundary ofS�0(��0) is internally tangent to the boundary of 
 at some point P not on T�0 , or T�0 isorthogonal to the boundary of 
 at some point P on @
.For each � 2 (�0; �1), let u� be de�ned in terms of u by the expressionu�(x) = u(S�x); x 2 ��: (3:7)The following lemma plays a crucial role.Lemma 6 If u� � u on ��, then either u� > u on �� or u� = u on ��. In the formercase, @1u < 0 on 
 \ T�.Proof. Because u is a solution of (1.3), we have the identity �(u�� u) + f1(u�)� f1(u) +f2(u�) � f2(u) = 0 on ��. As f1 is nondecreasing, f1(u�) � f1(u). Furthermore, f2 isLipschitz on [0;1), so there exists a bounded function c� on ��, such that f2(u�)�f2(u) =c�(u�� u). Hence, u�� u � 0 and �(u�� u) + c�(u�� u) � 0 on ��. The �rst part of thelemma follows from the Maximum Principle (Lemma 1).Obviously, u��u = 0 on 
\T�, so the Hopf Boundary Lemma (Lemma 2) implies that�@1(u� � u) < 0 on 
 \ T�. Since �@1u� = @1u on 
 \ T�, the second part of the lemmafollows.Let � be the set � = f� 2 (�0; �1) : u�(x) > u(x); x 2 ��g: (3:8)We claim that � = (�0; �1). The proof is given in two steps; in the �rst step, we provethat � is nonempty and contains all � su�ciently close to �1; in the second step, we provethat � actually contains the entire interval (�0; �1). The proof requires that u be twicecontinuously di�erentiable in the closure of 
.8



Lemma 7 If u 2 C2(
), then there exists an " > 0 such that (�1 � "; �1) � �.Proof. Let P be the point where @
 intersects the hyperplane T�1. At P , the outwardnormal vector is oriented in the positive x1-direction.Because u vanishes on @
 near P and @1u(P ) = 0, it follows from Lemma 5 that@21u(P ) > 0. This inequality extends by continuity to a small arc �" = @
 \ B"(P ). Also,@1u = 0 on �", so integrating over x1 from �" into 
 and reducing " if necessary, we �nd that@1u < 0 in a small domain 
" = 
 \ B"(P ) near P . By choosing � in (�0; �1) su�cientlyclose to �1 we can ensure that �� and its re
ection S�(��) are entirely contained in 
".For such � we certainly have u� > u on ��, so � 2 �.Lemma 8 If u 2 C2(
), then � = (�0; �1).Proof. Suppose that there exists a monotonically decreasing sequence f�ig of values �i 2(�0; �1) that belong to � and converge to some � 2 (�0; �1). As �i 2 �, we have u�i > uon ��i , so u� � u on ��, by continuity. Since � 2 (�0; �1), we can apply Lemma 6 andconclude that u� > u on ��. This result shows that the set � is left-closed in (�0; �1).Next we prove that the set � is left-open in (�0; �1). The proof is by contradiction,where we assume that there exists a � 2 (�0; �1) that belongs to � and a monotonicallydecreasing sequence f�ig of values �i 2 (�; �1) that do not belong to �, with �i ! � asi! 1.As �i =2 �, we can �nd a point xi 2 ��i , such that u�i(xi) � u(xi). Because 
 isbounded, we can extract a convergent subsequence of fxig, say fxig itself, whose limitpoint, P say, is in the closure of ��. At P , we have u�(P ) � u(P ). We claim that no suchpoint P exists.Since � 2 �, we know that u� > u on ��, so P =2 ��.Suppose that P 2 @��n(
 \ T�). Then P 2 @
, so u(P ) = 0. On the other hand,u�(P ) = u(S�P ) > 0, because �0 < � < �1 and, therefore, S�P 2 
. Thus we �nd thatu�(P ) > u(P ). But we have already shown that u�(P ) � u(P ), so we must conclude thatP =2 @��n(
 \ T�).Suppose that P 2 
 \ T�. The line segment `i joining xi and S�ixi lies entirely in 
.Therefore, the inequality u�i(xi) � u(xi) implies that @1u(yi) � 0 at some point yi 2 `i.Now, xi ! P and S�ixi ! S�P as i! 1, and if P 2 
 \ T�, as supposed, then S�P = P .Thus, `i shrinks to the single point P and we �nd that @1u(P ) � 0. According to Lemma 6,@1u < 0 on 
 \ T�, so we must conclude that P =2 
 \ T�.The only remaining possibility is P 2 @
\T�. At such a point P , we have @21u(P ) > 0,according to Lemma 5. This inequality extends by continuity to a small domain inside
 near P , so @1u is a (strictly) increasing function of x1 there. But then it follows that@1u < 0 on a small domain inside 
 near P , since @1u = 0 on @
. However, this conclusion9



contradicts the assumption that there exists a sequence f(�i; xi)g with �i 2 (�; �1), xi 2��i � ��, and converging to (�; P ), where u�i(xi) = u(S�ixi) � u(xi). We must thereforeconclude that P =2 @
 \ T�.Thus, we have exhausted all the possibilities and conclude that no such point P exists.The assumption that there exists a � 2 (�0; �1) that belongs to � and a monotonicallydecreasing sequence f�ig of values �i 2 (�; �1) that do not belong to �, with �i ! � asi! 1, is untenable. Hence, � is left-open in (�0; �1).According to Lemma 7, the set � contains an interval (�1 � "; �1) with " > 0. Since �is both left-open and left-closed in (�0; �1), it must be the case that � = (�0; �1).Next, we investigate what happens at � = �0. We recall that, at � = �0, either theboundary of S�0(��0) is internally tangent to @
 at some point not on T�0, or T�0 isorthogonal to @
.Lemma 9 If u 2 C2(
), then 
 is symmetric about T�0 and u�0 = u on ��0.Proof. By Lemma 8, � = (�0; �1), so u� > u on �� for all � 2 (�0; �1). Then u�0 � u on��0 , by continuity. The same arguments as in Lemma 6 yield the inequality �(u�0 � u) +c�0(u�0 � u) � 0 on ��0 , where c�0 is bounded, so it follows from the Maximum Principle(Lemma 1) that either u�0 > u on ��0 or u�0 = u on ��0 . We claim that the former caseis impossible.If the boundary of S�0(��0) is internally tangent to @
 at some point S�0P , thenu�0(P ) = u(P ). The boundary of ��0 is smooth near P , so if u�0 > u on ��0 , we canapply the Hopf Boundary Lemma (Lemma 2) and conclude that @1(u�0 � u)(P ) < 0. But@1u�0(P ) and @1u(P ) are both zero, because the normal derivative of u vanishes on @
, sowe have a contradiction.On the other hand, if T�0 is orthogonal to @
 and P is a point of @
 \ T�0, we canapply the Serrin Boundary Lemma (Lemma 3) at P . Near such a point P , @��0 consistsof two orthogonally intersecting hypersurfaces �(x) = �0 � x1 = 0 and �(x) = 0. A simplecomputation shows that we are in case (ii) of Lemma 3. Because u and u�0 coincide on T�0 ,any directional derivative of u�0 � u in the hyperplane T�0 is zero. Moreover, u = 0 on @
,so any directional derivative in the tangent plane to @
 at P is also zero. Consequently,@�(u�0 � u)(P ) = 0 for any outward direction �. If u�0 > u on ��0 , then it follows fromthe Serrin Boundary Lemma (Lemma 3) that @2�(u�0 �u)(P ) > 0 for any outward direction� that is transverse to @
 and T�0. In particular, taking � = (�1=p2; 0; : : : ; 0; 1=p2), we�nd (�@1 + @N )2(u�0 � u)(P ) > 0. But @21u�0(P ) = @21u(P ) and @2Nu�0(P ) = @2Nu(P ),while @1@Nu�0(P ) = �@1@Nu(P ), so the inequality reduces to @1@Nu(P ) > 0. However,since both u and @nu are identically zero on @
, the only second-order derivative that doesnot vanish at P is @2nu; in fact, @2nu(P ) = �f(0). At P , the normal vector is in the linearmanifold spanned by x2; : : : ; xN , so it must be the case that @1@Nu(P ) = 0. Again, we havearrived at a contradiction. 10



We therefore conclude that u�0 = u on ��0 .Now, if the union of ��0 , S�(��0), and 
\T�0 were a proper subset of 
, then a part of@S�0(��0)n(
\T�0) would be in 
. But then we would have a contradiction, as u vanisheson @S�0(��0)n(
\ T�0). Hence, 
 is the union of ��0 , S�(��0), and 
 \ T�0 .Conclusion of the Proof. If (
; u) is a classical solution of (1.3) and u 2 C2(
), thenLemma 9 applies, so 
 is symmetric about the hyperplane T�0 and u�0 = u on ��0 . More-over, u� > u and @1u < 0 on �� for all � 2 (�0; �1).The free boundary problem (1.3) is rotationally invariant, so the positive x1-directionis not privileged in any way. Therefore, 
 is symmetric in every direction|that is, 
 is aball, because it is connected|and the gradient of u in any radial direction is negative, asclaimed.4 Proof of Theorem 2Throughout this section 
 denotes the ball of radius R (R �xed) centered at the origin,
 = BR(0); R > 0: (4:1)The proof of Theorem 2 is also based on the moving-plane method; in the notation of Eqs.(3.3) and (3.6), we have �0 = 0; �1 = R: (4:2)Suppose u is a classical solution of the Dirichlet problem (1.8), where f satis�es the condi-tions of Theorem 2. For each � 2 (�0; �1), u de�nes a function u� on �� as in (3.7),u�(x) = u(S�x); x 2 ��: (4:3)Lemma 10 If u� � u on ��, then either u� > u on �� or u� = u on ��. In the formercase, @1u < 0 on 
 \ T�.Proof. The proof is similar to the proof of Lemma 6. Because u is a solution of (1.8),we have the identity �(u� � u) + f(u�) � f(u) = 0 on ��. As u > 0 on �� and f islocally Lipschitz on (0;1), there exists a locally bounded function c� on ��, such thatf(u�)� f(u) = c�(u�� u). Hence, u� � u � 0 and �(u�� u) + c�(u�� u) = 0 on ��. The�rst part of the lemma follows from the Maximum Principle (Lemma 1). The second partof the lemma follows from the Hopf Boundary Lemma (Lemma 2).We de�ne the set � as in (3.8),� = f� 2 (�0; �1) : u�(x) > u(x); x 2 ��g : (4:4)As before, our objective is to show that � = (�0; �1).11



Lemma 11 There exists an " > 0 such that (�1 � "; �1) � �.Proof. We prove the lemma by contradiction, assuming that in every domain �� there isa point y where u�(y) � u(y), no matter how close � is to �1.Let P be the point where @
 intersects the hyperplane T�1. Let c = supfjf2(u) �f2(v)j=ju� vjg : u; v 2 [0;1)g. We choose � > 0 su�ciently small that the �rst (positive)eigenvalue �1(
�) of the Dirichlet problem for �� on 
� = 
\B�(P ) satis�es the inequality�1(
�) > c. Such a choice is always possible, as �1 is a decreasing function of j
�j and�1(
�) ! 1 as j
�j ! 0. We restrict the discussion to values of � su�ciently close to �1that �� and its re
ection S�(��) are both entirely contained in 
�.First, we assume that in every domain �� there is a point y where u�(y) < u(y). Becauseu = 0 on @
 and u > 0 on 
, it is certainly true that u� � u on @��n(
�\T�). Furthermore,u� = u on 
� \ T�, so u� � u on @��. But then there exists a neighborhood N of y, whichis entirely contained in ��, such that u� < u on N and u� = u on @N .Now, f1 is nonincreasing near 0 and u vanishes on @
, so for � su�ciently close to �1we certainly have f1(u�) � f1(u) on N . Furthermore, f2(u)� f2(u�) � c(u� u�) on N , so�(u�u�)+c(u�u�) � 0 on N . Multiplying both sides of this inequality by u�u�, which ispositive on N , integrating over N , and using the inequality (�v; v)� ��1(N)(v; v), where�1(N) is the �rst (positive) eigenvalue for the Dirichlet problem for �� on N , we �nd that�1(N) � c. But now we have a contradiction, as �1(N) > �1(
�) and � was chosen in sucha way as to ensure that �1(
�) > c.On ��, both u and u� are positive. Since f is locally Lipschitz continuous on (0;1), wecan invoke the Maximum Principle (Lemma 1) to rule out the possibility that u�(y) = u(y).Thus we conclude that u� > u on �� for all � su�ciently close to �1.Lemma 12 � = (�0; �1).Proof. As in the proof of Lemma 8, we show that � is left-closed in (�0; �1). The next taskis to show that � is left-open in (�0; �1). The proof is similar to the proof in Lemma 8 andis based on an argument by contradiction, but it di�ers in a critical detail. The proof ofLemma 8 depends on Lemma 5, which holds only if f(0) < 0, and in the current situationthe existence of a classical solution of (1.8) does not imply anything about the sign of f(0).To prove by contradiction that � is left-open in (�0; �1), we assume that there exists apoint � 2 (�0; �1) belonging to � and a monotonically decreasing sequence f�ig of points �inot belonging to �, such that �i ! � as i! 1. The assumption implies that there existsa sequence of points fxig, xi 2 ��i , where u�i(xi) � u(xi). The sequence fxig converges toa point P in the closure of ��, where u�(P ) � u(P ).The same arguments as in the proof of Lemma 8 can be used to show that P does notbelong to �� or to @��n(
\T�) or to 
\T�. To rule out the remaining possibility, namely,12



that P belongs to @
 \ T�, we need a di�erent argument, as the proof of Lemma 8 relieson Lemma 5.The argument is partially similar to the argument used in the proof of Lemma 11. First,we restrict the discussion to a small subdomain D� of �� near P . Speci�cally, we take D�to be the intersection of �� with a cylinder C�, which extends to the right of T� (i.e., inthe half-space x1 � �), whose axis passes through P and runs parallel to the x1-axis, andwhose radius � is �xed such that the �rst (positive) eigenvalue of the Dirichlet problem for�� on D� satis�es the inequality �1(D�) > c.Suppose that, in every neighborhood of P inside ��, there is a point y where u�(y) <u(y). Then there certainly is such a point y in D�. Now, consider the values of u� and uon the boundary @D� of D�.The boundary @D� consists of three hypersurfaces: one (labeled S1) on the boundary@
 of 
, one (labeled S2) on the surface of the circular cylinder C�, and one (labeled S3)on the hyperplane T�. Because u = 0 on @
 and u > 0 on 
, it is certainly the case thatu� � u on S1. Also, because @1u < 0 on 
 \ T�, we have u� > u on S2; if necessary, wereduce �, so C� intersects @
 su�ciently close to T�. Finally, u� = u on T� and thereforeon S3. Thus, we see that u� � u on @D�.But then there is a neighborhood N of y, which is entirely contained in D�, such thatu� < u on N and u� = u on @N .Now, we complete the proof as in Lemma 11 by showing that �1(N) � c, and thusarrive at a contradiction. Using the Maximum Principle (Lemma 1), we then rule out thepossibility that u�(y) = u(y). Hence, we conclude that u� > u on D�.However, this conclusion contradicts the assumption that there exists a sequence f(�i; xi)gwith �i 2 (�; �1), xi 2 ��i � ��, and converging to (�; P ), where u�i(xi) � u(xi). We musttherefore conclude that P =2 @
 \ T�.Again, we have exhausted all the possibilities and conclude that no point P with thestated properties exists. Therefore, � must be left-open in (�0; �1).Being simultaneously nonempty near �1, left-open and left-closed in (�0; �1), � must bethe entire interval (�0; �1).Conclusion of the Proof. According to Lemma 12, � = (�0; �1). That is, u� > u and@1u < 0 on �� for every � 2 (�0; �1). Letting � tend to �0, we �nd u(S�0x) � u(x) for allx 2 ��0 and @1u � 0 on 
 \ T�0.But the boundary value problem (1.8) is rotationally invariant, so the positive x1-direction is not privileged in any way. Therefore, u is radially symmetric and @u=@r < 0for �0 < r < �1. 13



Remark. At this point, it is clear why, in Theorem 2, we needed to assume from thestart that 
 is a ball. The di�culty is in the proof of the symmetry of 
 about T�0. Here,the proof of Lemma 9 relies on the fact that f is Lipschitz continuous at 0. In the case ofTheorem 2, an identity of the type f(u�)� f(u) = c�(u�� u) ceases to hold when both u�and u vanish. Consequently, we cannot apply the Hopf Boundary Lemma and thus rule outthe possibility that the boundary of S�0(��0) is internally tangent to @
. This problem is,in fact, related to the lack of uniqueness of the solution of an initial value problem of thetype u0 = f(u), u(0) = 0, where the forcing term f is not Lipschitz at 0.References[1] H. G. Kaper, Man Kam Kwong, Yi Li, On the Positive Solutions of the Free-BoundaryProblem for Emden-Fowler Type Equations, in: Partial Di�erential Equations withMinimal Smoothness and Applications, B. Dahlberg et al. (eds.), IMA Volumes inMathematics and Its Applications, Vol. 42, Springer-Verlag, New York (1992), 000-000.[2] G. Miller, V. Faber, and A. B. White, Jr., Finding Plasma Equilibria with MagneticIslands, J. Computational Physics 79 (1988), 417{435.[3] H. G. Kaper and Man Kam Kwong, Free Boundary Problems for Emden-Fowler Equa-tions, Di�erential and Integral Equations 3 (1990), 353{362.[4] H. G. Kaper and Man KamKwong,Uniqueness of Non-Negative Solutions of SemilinearElliptic Equations, in: Nonlinear Di�usion Equations and Their Equilibrium States, II,Wei-Ming Ni, L. A. Peletier, and J. Serrin (eds.), MSRI Conf. Proc., Springer-Verlag,New York (1988), 1{17.[5] L. A. Peletier and J. Serrin, Uniqueness of Non-Negative Solutions of Semilinear Equa-tions in Rn, J. Di�. Eq. 61 (1986), 380{397.[6] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and Related Properties via theMaximum Principle, Comm. Math. Phys. 68 (1979), 209{243.[7] N. Garofalo and J. Lewis, A Symmetry Result Related to Some Overdetermined Bound-ary Value Problems, Amer. J. Math. 111 (1989), 9{33.[8] J. Lewis and A. Vogel, On Some Almost Everywhere Symmetry Theorems, preprint(1991).[9] M. Protter and H. Weinberger, Maximum Principles in Di�erential Equations,Prentice-Hall, Englewood Cli�s, N.J. (1967).[10] J. Serrin, A Symmetry Problem in Potential Theory, Arch. Rational Mech. Anal. 43,(1971), 304{318.[11] H. Hopf, Di�erential Geometry in the Large, Lecture Notes in Mathematics, Vol.1000, Springer-Verlag, New York (1956).14


