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Abstract

This article is concerned with symmetry properties of the solutions of the reaction-
diffusion equation Au + f(u) = 0 in a bounded connected domain Q in RY (N =
2,3,...). Of especial interest are nonlinear source terms f of the type f(u) = uf — u?
with 0 < ¢ < p < 1. Two results are presented.

The first result concerns the solution of a free boundary problem, where the domain
2 is unknown and u and its normal derivative J,u are required to vanish on the bound-
ary 09 of Q. It is shown that, if f is the sum of a continuous nondecreasing function
and a Lipschitz continuous function on [0, 20), then the free boundary problem does not
have a positive solution unless €2 is a ball; in this case, any positive solution is radially
symmetric around the center of the ball and decreasing with the radial distance from
the center.

The second result concerns the solution of the Dirichlet problem on a ball in RV,
when the nonlinear source term f is continuous, but not necessarily Lipschitz continuous
at 0. Tt is shown that, if f is the sum of a locally Lipschitz continuous function on (0, o0)
that is nonincreasing near 0 and a function that is Lipschitz continuous on [0, c0), then
any positive solution u is radially symmetric around the center of the ball and decreasing
with the radial distance from the center.
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1 Statement of the Problem

In this article we present two symmetry results for positive solutions of the reaction-diffusion
equation

Au+ f(u)y=0, z€Q, (1.1)

where Q is a bounded connected domain in RY (N = 2,3,...). In the first problem, Q
is not specified, but both u and its normal derivative d,u are required to vanish on the
boundary 99 of Q. In the second, Q is a ball in RY, and u is required to vanish on the
boundary of the ball.

The first problem would clearly be overdetermined if  were specified. However, as { is
left unspecified, the extra degree of freedom may be enough to allow for a solution—which,
in this case, consists of the pair (Q,u). We refer to this problem as the free boundary
problem. Of particular interest is the question whether a solution of the free boundary
problem, if it exists, has any symmetry properties.

The second problem is a standard boundary value problem with Dirichlet data. We
refer to it as the Dirichlet problem. The question here is whether a solution w is radially
symmetric if f is continuous, but not necessarily Lipschitz continuous at the origin.

These problems are discussed in more detail in the following subsections. Our results
are presented in Theorems 1 and 2 below. Section 2 contains some preliminary material for
the proofs of these theorems; the proofs are given in Sections 3 and 4. This article extends
and generalizes our earlier communication [1].

1.1 Free Boundary Problem

In a recent discussion of some computational problems in plasma physics, Miller et al. [2]
proposed an interesting free boundary problem for reaction-diffusion equations. The phys-
ical problem, which concerns the existence of equilibrium configurations with magnetic
islands in a Tokamak fusion device, can be posed as a free boundary problem for the partial
differential equation

Au4++vVu—-1=0, z€Q, (1.2)

where Q is a bounded connected domain in RN (N = 2,3,...). The function u must
be positive throughout Q. and u and its normal derivative d,u must vanish on 9. The
expression y/u — 1 in the differential equation (1.2) is the simplest form the source term can
take; another typical expression is u? — u?, where 0 < g < p < 1. Therefore, the general
form of the free boundary problem is

Au+ f(u) =0, x €8,

u(z) >0, z € Q, (1.3)
w(z) =0, Ou(z) =0, z €09,

where the domain Q C R is unspecified and f is a nonlinear function that is defined and
continuous on [0, 00), but generally not Lipschitz continuous at 0.



In [3], Kaper and Kwong investigated the free boundary problem for the radially symmet-
ric case, assuming that Q is a ball of (unknown) radius R centered at the origin, where the so-
lution u depends only on the distance r = || from the origin. They proved that, for a broad
class of functions f, there exists a pair (R,u) with B > 0 and u € C*((0, R)) n C'([0, R]),
such that

u”+¥u’+f(u):0, 0<r<R;
u(7‘)>07 0 <r< R;
u'(0) =0,

w(R)=10, v'(R)=0.

Specifically, they showed that the existence of (R, u) follows if f and its integral F,

(1.4)

Flu) = —/Ou F(s) ds, (1.5)

satisfy the following conditions:

(F1) f is continuous on [0, 00) and locally Lipschitz continuous on (0, 00).

(F2) There exists a § > 0, such that F(u) > 0for 0 < u < 3, F(3) =0, and f(u) > 0 for
u > 3.

(F3) With 3 as in (F2), [ F~12(u) du < .

(F4) liminf,_ f(u) > 0.
The solution of (1.4) is unique if f satisfies the additional condition
(F5) With g as in (F2), u— f(u)/(u— () is nonincreasing for u > 3.

The uniqueness follows immediately from an earlier result of Kaper and Kwong [4], which
is itself an extension of an earlier result of Peletier and Serrin [5]. The conditions (F1)
through (F5) are satisfied for functions f of the type f(u) = u? — u? for most, but not all,
values of p and ¢ in the range 0 < g < p < 1.

In this article we turn again to the original problem (1.3) and address the issue whether
a classical solution (€, u), if it exists, is necessarily radially symmetric. Numerical results
presented for the case N = 2 in [2] seem to indicate that the implication is false if f(u) =
Vu — 1; the function u in [2, Fig. 6] is clearly not radially symmetric.

We prove the following theorem.

Theorem 1 If f is such that
Fu) = fu(w) + falw), (1.6)

where f1 is continuous and nondecreasing and fy is Lipschitz continuous on [0,00), then
any classical solution (2, u) of the free boundary problem (1.3) that satisfies the condition



u € C%(Q) is necessarily radially symmetric—that is, Q is an open ball in RN, Q = Bg(xo)
say, and w is radially symmetric about the center xq of the ball. Furthermore,

du
E<0, 0<7‘I|$—$0|<R. (17)

The conditions of the theorem, together with the conditions (F1) through (F5) above,
guarantee that the free boundary problem (1.3) has one and only one classical solution
(2, u) and that this solution is necessarily radially symmetric.

The conditions of Theorem 1 are satisfied, for example, if f(u) = u?—1, where 0 < p < 1.
(Take fi(u) = w? and fa(u) = —1.) They are not satisfied, however, if f(u) = u? — uf,
where 0 < g < p < 1.

The proof of Theorem 1 is given in Section 3.

1.2 Dirichlet Problem

Our second result is for the Dirichlet problem for the reaction-diffusion equation (1.1)in a
ball of radius R (R > 0) in RN (N = 2,3,...). Without loss of generality, we may assume
that the ball is centered at the origin, so & = Br(0).

According to the celebrated result of Gidas, Ni, and Nirenberg [6, Section 1.1, Theo-
rem 1, and Section 2.3, Remark 1], any classical solution of the Dirichlet problem,

Au+ f(u)=0, 2 € Bgr(0),
u(z) >0, x € Br(0), (1.8)
u(z) =0, x € 0BR(0),

is necessarily radially symmetric about the origin if f is the sum of a function that is contin-
uous and nondecreasing and a function that is Lipschitz continuous on [0, c0); furthermore,
du/0r < 0 for 0 < r < R. If such a decomposition of f is not possible, then it is an open
problem whether classical solutions of (1.8), if they exist, are indeed radially symmetric.
Actually, the examples given in [6, Section 2.4] show that these cases could be very delicate.

We prove the following theorem.

Theorem 2 If f is such that
Fu) = fu(w) + falw), (1.9)

where fi is continuous on [0, 00), locally Lipschitz continuous on (0,00), and nonincreasing
near 0, and fy is Lipschitz continuous on [0,00), then any classical solution u of (1.8) is
necessarily radially symmetric about 0. Furthermore,

%<0, 0<r=|z| <R. (1.10)



The theorem covers the case f(u) = uP — u?, where 0 < ¢ < p < 1, as f is decreasing on

[0, (q/p)*/P=9)).

The proof of Theorem 2 is given in Section 4.

1.3 Discussion

The following discussion clarifies the relationship between Theorems 1 and 2.

The central question of interest to us was whether the existence of a positive solution
(2, u) of the free boundary problem (1.3) implies its radial symmetry when the nonlinear
source term f is continuous, but not necessarily Lipschitz continuous at 0. In particular,
our interest focused on functions f of the type f(u) = uP — u?, where 0 < ¢ < p < 1.

The case f(u) = u? —1 (0 < p < 1)is indeed covered by Theorem 1, but f(u) = u? — u?
(0 < g < p<1)isnot. In fact, we were unsuccessful in our attempts at extending Theorem 1
to include functions of the latter type. However, observing that such functions are Lipschitz
continuous everywhere except at 0 and decreasing near 0, we found that the moving-plane
method could again be used to prove the radial symmetry of any positive solution of the
Dirichlet problem for the reaction-diffusion equation (1.1) if € is specified to be a ball. This
is the result expressed in Theorem 2.

Theorem 1 bears an interesting relationship to the celebrated result of Gidas, Ni, and
Nirenberg [6] quoted in the beginning of Subsection 1.2. Gidas, Ni, and Nirenberg showed
that, if © is a ball, then any solution of the Dirichlet problem is necessarily radially sym-
metric, provided f is the sum of a function that is continuous nondecreasing and a function
that is Lipschitz continuous on [0, 00). Theorem 1 shows that, by imposing the extra condi-
tion 0,u = 0in (1.3), we have forced ourselves into a situation where there is no (positive)
solution unless §2 is a ball.

We remark that new symmetry results for solutions of reaction-diffusion equations on
nonsmooth domains have been obtained recently by Garofalo and Lewis [7] and Lewis and

Vogel [8].

2 Maximum Principle and Boundary Lemmas

In this section, we summarize the maximum principle and two boundary lemmas for elliptic
differential expressions in a form suitable for the subsequent analysis. Throughout this
subsection, D is an arbitrary domain (i.e., an open connected set) in R" and L denotes a
uniformly elliptic differential expression on D,

Lu = a"(2)0;u + b'(2)0;u + ¢(x)u,

where a*, %, c € L>°(D). (We use the notation 9; = 9/dx; and di; = 0*/0x,;0x, together
with the summation convention for repeated indices.)



Lemma 1 (Maximum Principle). Suppose that u € C?*(D) satisfies the inequalities
w> 0 and Lu <0 on D. If u vanishes at some point in D, then u =0 on D.

Proof. See [9, Chap. 2, Theorem 6]. 1

Lemma 2 (Hopf Boundary Lemma). Suppose that u € C*(D) satisfies the inequalities
w >0 and Lu < 0 on D. Suppose, furthermore, that P € 0D lies on the boundary of a
ball B in D. If u is continuous in D U P and uw(P) =0, then d,u(P) < 0 for any outward
direction v.

Proof. See [6, Section 1.3, Lemma H] and [9, Chap. 2, Theorem 8]. 1

The derivative d,u is defined as the derivative in the direction v = (v1,...,vN); that is,
0, = 1;0;. The vector v is said to point outward from D if its scalar product with n, the
unit normal vector in the outward direction, is positive (v;n; > 0).

Lemma 3 (Serrin Boundary Lemma). Suppose that P € 0D and that, near P, 0D
consists of two transversally intersecting C*-hypersurfaces p = 0 and o = 0, where p < 0
and o < 0 in D and (a"0;p0;0)(P) > 0.

Suppose that w € C*(D), u > 0 and Lu <0 on D, and u(P) = 0.

(i) If (a¥0;p0;0)(P) > 0, then d,u(P) < 0 for any outward direction v that is transverse
to the hypersurfaces p =0 and o = 0.

(ii) If (a¥0;p8;0)(P) = 0, then 0,u(P) < 0 or 02u(P) > 0 for any outward direction v
that is transverse to the hypersurfaces p = 0 and 0 = 0, provided a¥ is twice continuously
differentiable in D U P and 0y(a* d;pd;a)(P) > 0 for any derivative in a direction t that is
tangent to the submanifold {p = 0} N {o = 0}.

Proof. See [6, Section 1.3, Lemma S] and [10, Lemma 2]. 1

The following lemma is a nonlinear generalization of the Hopf Boundary Lemma.

Lemma 4 Let f = fi+ f2, where fi1 is continuous on [0, 00) and nondecreasing near 0 and
fa is Lipschitz continuous on [0,00), with f(0) > 0. Suppose that u € C?*(D) satisfies the
inequalities w > 0 and Au + f(u) < 0 on D. Suppose, furthermore, that P € 0D lies on
the boundary of a ball B in D. If u is continuous in DU P and v = 0 on 0D near P, then
d,u(P) < 0 for any outward direction v.

Proof. As f; is nondecreasing near 0, we have fi(u) > f1(0) on D near P. Furthermore,
f2 is Lipschitz continuous on [0,00), so there exists a bounded function ¢ on D such that



fa(u) — f2(0) = cu on D. Therefore, u satisfies the differential inequality Au+ cu < —f(0)
or, since f(0) > 0, Au+ cu < 0 on D. The assertion of the lemma follows from the Hopf
Boundary Lemma (Lemma 2). 1

The final lemma covers reaction-diffusion equations where f(0) is negative. It requires
more smoothness of the solution wu; cf. [6, Section 2.2, Lemma 2.1].

Lemma 5 Let f be continuous on [0,00), with f(0) < 0. Suppose that u € C*(D) satisfies
the inequality w > 0 on D and that Au + f(u) = 0 on D. Suppose, furthermore, that
P € 9D lies on the boundary of a ball B in D. If u is twice continuously differentiable in
DUP and w =0 on dD near P, then d,u(P) < 0 or d2u(P) > 0 for any outward direction
v.

Proof. Because u vanishes identically on 0D near P, any directional derivative in the
tangent plane vanishes at P. Furthermore, as v > 0 on D, it must be the case that

dpu(P) <0.
If 0,u(P) < 0, then J,u(P) < 0 for any outward direction v.

If 0,u(P) = 0, then all directional derivatives at P are zero. Using a local coordinate
system with the origin at P, one coordinate along the outward normal vector, and the
remaining N — 1 coordinates in the tangent plane, we readily verify that Au(P) = 82u(P).
Since u is twice continuously differentiable on D U P and u(P) = 0, we have Au(P) =
—f(0) > 0; hence, d2u(P) > 0. Then also §2u(P) > 0 for any outward direction v. 1

3 Proof of Theorem 1

Suppose (2, u) is a classical solution of (1.3), where f satisfies the conditions of Theorem 1.

According to Lemma 4, we necessarily have d,u < 0 on 09 if f(0) > 0, so it must be
the case that f(0) < 0.

We use the moving-plane method for the proof of the theorem. This method, due to
Alexandroff (see [11, Section VII.1]) was first applied by Serrin [10] to prove a symmetry
result for the constant mean-curvature equation Au = —¢, ¢ > 0, and has been used since
then by several authors.

Let T be the hyperplane
Ty ={z = (21,...,2en) € RN 12y = A}, (3.1)
and let 5 be the reflection operator about T},

Syve oz =(21,22,...,2N) — Sha = (2N — 21,22, -, TN), zeRVN. (3.2)



As Q is bounded, T and  are disjoint for all sufficiently large A. Let Ay be defined by
A = inf{A: Ty N Q = 0}. (3.3)

Without loss of generality, we may assume that the set 9@ N T\, consists of a single point;
if necessary, we rotate the coordinate system.

For A < Ay, A sufficiently close to Ay, T cuts a cap 3y off Q,
Sh={z e Qx> A}, A< A (3.4)
The reflection of ¥y about T is S\ (X,),
SAXy) =Sz e Xy} (3.5)
For all A sufficiently close to A1, Sy(Xy) is a proper subset of €. Let A\g be defined by
Ao = 1inf{A: S\(X)) C Q}. (3.6)

As Q is bounded, Ag is finite. Obviously, Ag < A;. For A = Ag, either the boundary of
Sy (X)) is internally tangent to the boundary of € at some point P not on 1), or 1), is
orthogonal to the boundary of £ at some point P on 9€2.

For each X € (Ao, A1), let uy be defined in terms of u by the expression
up(z) = u(Sre), z€X). (3.7)

The following lemma plays a crucial role.

Lemma 6 If uy > u on X\, then either uy > u on X\ or uy = u on Y. In the former
case, hu < 0 on QN T,

Proof. Because u is a solution of (1.3), we have the identity A(uy —u)+ fi(uy) — fi(uw) +
foluy) — fa(u) = 0 on Xy. As fi is nondecreasing, fi(uy) > fi(u). Furthermore, f; is
Lipschitz on [0, 00), so there exists a bounded function ¢y on ¥y, such that fo(uy)— fo(u) =
ex(uy —u). Hence, uy —u >0 and A(uy —u)+ ex(uy —u) < 0on Xy. The first part of the
lemma follows from the Maximum Principle (Lemma 1).

Obviously, uy —u = 0 on QN7T)y, so the Hopf Boundary Lemma (Lemma 2) implies that
—01(uy —u) < 0on QNT\. Since —01uy = d1u on 2 N Ty, the second part of the lemma
follows. 1

Let A be the set
A={Xe (Ao, A1) un(z) > u(z),z € Xy} (3.8)

We claim that A = (Ao, A1). The proof is given in two steps; in the first step, we prove
that A is nonempty and contains all A sufficiently close to Aq; in the second step, we prove
that A actually contains the entire interval (Ag,A1). The proof requires that u be twice
continuously differentiable in the closure of €.



Lemma 7 If u € C*(Q), then there exists an ¢ > 0 such that (A — e, ;) C A.

Proof. Let P be the point where 0 intersects the hyperplane Ty,. At P, the outward
normal vector is oriented in the positive zq-direction.

Because w vanishes on 9dQ near P and 0ju(P) = 0, it follows from Lemma 5 that
d?u(P) > 0. This inequality extends by continuity to a small arc . = 9Q N B.(P). Also,
O1u = 0 on I',, so integrating over 21 from I', into © and reducing ¢ if necessary, we find that
d1u < 0 in a small domain Q. = QN B.(P) near P. By choosing A in (Ag, A1) sufficiently
close to Ay we can ensure that ¥, and its reflection S\(X)) are entirely contained in £..
For such A we certainly have uy > v on ¥y,s0 A € A. 1

Lemma 8 Ifu € C*Q), then A = (Ao, \1).

Proof. Suppose that there exists a monotonically decreasing sequence {\'} of values \! €
(Mo, A1) that belong to A and converge to some A € (Mg, A1). As A* € A, we have uyi > u
on Yyi, s0 uy > w on X, by continuity. Since A € (Ag, A1), we can apply Lemma 6 and
conclude that uy > u on Y¥y. This result shows that the set A is left-closed in (Ag, A1).

Next we prove that the set A is left-open in (Mg, A1). The proof is by contradiction,
where we assume that there exists a A € (Ag, A1) that belongs to A and a monotonically
decreasing sequence {A'} of values A\* € (A, A1) that do not belong to A, with A' — X\ as
1 — 0.

As X' ¢ A, we can find a point a' € ¥y, such that uyi(2?) < u(a'). Because Q is
bounded, we can extract a convergent subsequence of {z'}, say {z'} itself, whose limit
point, P say, is in the closure of ¥y. At P, we have uy(P) < u(P). We claim that no such
point P exists.

Since A € A, we know that uy > u on Xy, so P ¢ X,.

Suppose that P € d¥,\\(2 N T)\). Then P € 9Q, so u(P) = 0. On the other hand,
ux(P) = u(S\P) > 0, because \g < A < Ay and, therefore, Sy P € . Thus we find that
ux(P) > u(P). But we have already shown that u)(P) < u(P), so we must conclude that
P §§ 82/\\(9 N T/\)

Suppose that P € QN Ty. The line segment {; joining z' and S\iz® lies entlrely in 2.
Therefore, the inequality uyi(z ") < u(2?) implies that dyu(y’) > 0 at some point y' € (,.
Now, 2 — P and Syiz' — S\ P as ¢ — oo, and if P € QN T, as supposed, then Sy P = P.
Thus, ¢; shrinks to the single point P and we find that dyu(P) > 0. According to Lemma 6,
diu < 0on QNT\, so we must conclude that P ¢ QN T).

The only remaining possibility is P € QN Ty. At such a point P, we have d7u(P) > 0,
according to Lemma 5. This inequality extends by continuity to a small domain inside
Q near P, so 0yu is a (strictly) increasing function of 2; there. But then it follows that
O1u < 0 on a small domain inside Q near P, since dyu = 0 on 9. However, this conclusion



contradicts the assumption that there exists a sequence {(A',z*)} with A" € (), \y), @' €
Yy C Xy, and converging to (A, P), where uyi(2') = u(Syiz') < u(z'). We must therefore
conclude that P ¢ 0QNT).

Thus, we have exhausted all the possibilities and conclude that no such point P exists.
The assumption that there exists a A € (Ag, A1) that belongs to A and a monotonically
decreasing sequence {A'} of values A' € (A, A\;) that do not belong to A, with A\ — X as
i — 00, is untenable. Hence, A is left-open in (Ag, A1).

According to Lemma 7, the set A contains an interval (A — e, A1) with ¢ > 0. Since A
is both left-open and left-closed in (Ag, A1), it must be the case that A = (Ag, A1). 1

Next, we investigate what happens at A = Ag. We recall that, at A = Ag, either the
boundary of Sy (X),) is internally tangent to 0 at some point not on T\, or T, is
orthogonal to 0f2.

Lemma 9 If u € C*Q), then Q is symmetric about Ty, and uy, = u on %,.

Proof. By Lemma 8, A = (Ag, A1), so uy > won Xy for all A € (Ag, A1). Then uy, > u on
Yy, by continuity. The same arguments as in Lemma 6 yield the inequality A(uy, — u) +
exo(ur, —u) < 0on Xy, where ¢y, is bounded, so it follows from the Maximum Principle
(Lemma 1) that either uy, > w on Xy, or uy, = v on X),. We claim that the former case
is impossible.

If the boundary of 5),(X),) is internally tangent to JQ at some point Sy, P, then
ux,(P) = uw(P). The boundary of X,, is smooth near P, so if uy, > u on X,,, we can
apply the Hopf Boundary Lemma (Lemma 2) and conclude that 9 (uy, — u)(P) < 0. But
O1uy,(P) and 0yu(P) are both zero, because the normal derivative of u vanishes on 9, so
we have a contradiction.

On the other hand, if 7), is orthogonal to Q2 and P is a point of 9Q N T),, we can
apply the Serrin Boundary Lemma (Lemma 3) at P. Near such a point P, 0%, consists
of two orthogonally intersecting hypersurfaces p(z) = Ao — 21 = 0 and o(z) = 0. A simple
computation shows that we are in case (ii) of Lemma 3. Because u and u), coincide on T),
any directional derivative of uy, — u in the hyperplane T, is zero. Moreover, v = 0 on 02,
so any directional derivative in the tangent plane to 9} at P is also zero. Consequently,
dy(uy, — u)(P) = 0 for any outward direction v. If uy, > u on X,,, then it follows from
the Serrin Boundary Lemma (Lemma 3) that 92(uy, — u)(P) > 0 for any outward direction
v that is transverse to 0Q and T\,. In particular, taking v = (—=1/v/2,0,...,0,1/v/2), we
find (=1 + In)*(upr, — w)(P) > 0. But dfuy,(P) = d7u(P) and 9% uy,(P) = dZu(P),
while d10nuy,(P) = —010nu(P), so the inequality reduces to d;0nu(P) > 0. However,
since both u and 0,u are identically zero on 012, the only second-order derivative that does
not vanish at P is 02u; in fact, 02u(P) = —f(0). At P, the normal vector is in the linear
manifold spanned by 23, ..., 2N, so it must be the case that dydnu(P) = 0. Again, we have
arrived at a contradiction.

10



We therefore conclude that uy, = u on X,,.

Now, if the union of ¥y, S\(X),), and QN7T), were a proper subset of 2, then a part of
05 (X )\ (QNT,) would be in Q. But then we would have a contradiction, as u vanishes
on 95y, (X )\(QN Ty, ). Hence, Q is the union of Xy, Sx\(X),), and QN T),. 1

Conclusion of the Proof. If (,u) is a classical solution of (1.3) and u € C?*(Q), then
Lemma 9 applies, so { is symmetric about the hyperplane 7, and u), = v on X,,. More-
over, uy > u and dyu < 0 on Xy for all A € (Ag, A\1).

The free boundary problem (1.3) is rotationally invariant, so the positive z1-direction
is not privileged in any way. Therefore, 2 is symmetric in every direction—that is, Q is a
ball, because it is connected—and the gradient of » in any radial direction is negative, as
claimed. 1

4 Proof of Theorem 2

Throughout this section Q denotes the ball of radius R (R fixed) centered at the origin,
Q= Br(0), R>0. (4.1)

The proof of Theorem 2 is also based on the moving-plane method; in the notation of Egs.
(3.3) and (3.6), we have
=0, A =R (4.2)

Suppose u is a classical solution of the Dirichlet problem (1.8), where f satisfies the condi-
tions of Theorem 2. For each A € (Ag, A1), u defines a function uy on ¥y asin (3.7),

up(z) = u(Sre), z€X). (4.3)

Lemma 10 If uy > u on Xy, then either uy > u on X\ or uy = u on Xy. In the former
case, hu < 0 on QN T,

Proof. The proof is similar to the proof of Lemma 6. Because u is a solution of (1.8),
we have the identity A(uy — u) + f(uy) — f(w) = 0 on ¥y. Asu > 0 on Xy and f is
locally Lipschitz on (0,00), there exists a locally bounded function ¢y on X, such that
fluy) — f(u) = ex(uy — u). Hence, uy —u > 0 and A(uy —u)+ cx(uy —u) =0 on Xy. The
first part of the lemma follows from the Maximum Principle (Lemma 1). The second part
of the lemma follows from the Hopf Boundary Lemma (Lemma 2). 1

We define the set A as in (3.8),
A={re (Ao, A1) un(z) > u(x),x € Xy} (4.4)
As before, our objective is to show that A = (Ag, A1).

11



Lemma 11 There exists an ¢ > 0 such that (A —e, A1) C A.

Proof. We prove the lemma by contradiction, assuming that in every domain X there is
a point y where u)(y) < u(y), no matter how close A is to Ay.

Let P be the point where 0§ intersects the hyperplane Ty,. Let ¢ = sup{|fa(u) —
f(v)|/lu—2]}:u,v € [0,00)}. We choose np > 0 sufficiently small that the first (positive)
eigenvalue 11 (£, ) of the Dirichlet problem for —A on Q, = QN B, (P) satisfies the inequality
p1(€,) > ¢. Such a choice is always possible, as pq is a decreasing function of [, and
p1(€Q,) — o0 as |2, — 0. We restrict the discussion to values of A sufficiently close to Ay
that ¥ and its reflection 5\(X)) are both entirely contained in €.

First, we assume that in every domain ¥ there is a point y where u)(y) < u(y). Because
w=0on0Qand u > 0on €, it is certainly true that uy > won 0X)\\(2,,NT)). Furthermore,
uy = won Q, N7, souy > uon dX,. But then there exists a neighborhood N of y, which
is entirely contained in X, such that uy < v on N and u) = v on ON.

Now, fi is nonincreasing near 0 and u vanishes on 9, so for A sufficiently close to Ay
we certainly have fi(uy) > fi(u) on N. Furthermore, fo(u) — fa(uy) < e(u—uy) on N, so
A(u—uy)+c(u—uy) > 0on N. Multiplying both sides of this inequality by w—wuy, which is
positive on N, integrating over N, and using the inequality (Av,v) < —p1(N)(v,v), where
p1(N) is the first (positive) eigenvalue for the Dirichlet problem for —A on N, we find that
p1(N) < c. But now we have a contradiction, as pq(N) > p1(€;,) and 7 was chosen in such
a way as to ensure that uq(€,) > c.

On X, both u and u) are positive. Since f is locally Lipschitz continuous on (0, c0), we
can invoke the Maximum Principle (Lemma 1) to rule out the possibility that ux(y) = u(y).
Thus we conclude that uy > u on Xy for all A sufficiently close to Aq. 1

Lemma 12 A = (A, A\1).

Proof. As in the proof of Lemma 8, we show that A is left-closed in (Ag, A1). The next task
is to show that A is left-open in (Ao, A1). The proof is similar to the proof in Lemma 8 and
is based on an argument by contradiction, but it differs in a critical detail. The proof of
Lemma 8 depends on Lemma 5, which holds only if f(0) < 0, and in the current situation
the existence of a classical solution of (1.8) does not imply anything about the sign of f(0).

To prove by contradiction that A is left-open in (Ag, A1), we assume that there exists a
point A € (Ao, A1) belonging to A and a monotonically decreasing sequence {\'} of points !
not belonging to A, such that A\* — X as i — co. The assumption implies that there exists
a sequence of points {z'}, 2! € ¥\i, where uyi(z') < u(z'). The sequence {z'} converges to
a point P in the closure of ¥, where uy(P) < u(P).

The same arguments as in the proof of Lemma 8 can be used to show that P does not
belong to ¥ or to X\\(2NTy) or to QN Ty. To rule out the remaining possibility, namely,
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that P belongs to Q2 N Ty, we need a different argument, as the proof of Lemma 8 relies
on Lemma 5.

The argument is partially similar to the argument used in the proof of Lemma 11. First,
we restrict the discussion to a small subdomain D, of ¥\ near P. Specifically, we take D,
to be the intersection of ¥\ with a cylinder ), which extends to the right of T (i.e., in
the half-space 21 > \), whose axis passes through P and runs parallel to the z;-axis, and
whose radius 7 is fixed such that the first (positive) eigenvalue of the Dirichlet problem for
—A on D, satisfies the inequality pq(D,) > c.

Suppose that, in every neighborhood of P inside ¥y, there is a point y where ux(y) <
u(y). Then there certainly is such a point y in D,. Now, consider the values of u) and u
on the boundary 0D, of D,,.

The boundary 9D, consists of three hypersurfaces: one (labeled S7) on the boundary
dQ of Q, one (labeled S3) on the surface of the circular cylinder (), and one (labeled 53)
on the hyperplane T. Because v = 0 on 92 and u > 0 on €2, it is certainly the case that
uy > u on Si. Also, because 01u < 0 on QN T, we have uy > u on Sy; if necessary, we
reduce 7, so (), intersects 9 sufficiently close to T)\. Finally, uy = v on T and therefore
on 53. Thus, we see that uy > v on dD,,.

But then there is a neighborhood N of y, which is entirely contained in D,, such that
uy < uwon N and uy = v on ON.

Now, we complete the proof as in Lemma 11 by showing that u1(N) < ¢, and thus
arrive at a contradiction. Using the Maximum Principle (Lemma 1), we then rule out the
possibility that uy(y) = u(y). Hence, we conclude that uy > u on D,,.

However, this conclusion contradicts the assumption that there exists a sequence {(\, z7)}
with A* € (A, A1), 2 € ¥yi C X\, and converging to (A, P), where uyi(2") < u(z'). We must
therefore conclude that P ¢ 0QNT).

Again, we have exhausted all the possibilities and conclude that no point P with the
stated properties exists. Therefore, A must be left-open in (Ag, A1).

Being simultaneously nonempty near Ay, left-open and left-closed in (Ag, A1), A must be
the entire interval (Ag, A1). |

Conclusion of the Proof. According to Lemma 12, A = (Ag, A1). That is, uy > u and
d1u < 0 on X for every A € (Ag, A1). Letting A tend to Ag, we find u(Sy,2) > u(x) for all
z € Xy, and Oyu <0on QNT,.

But the boundary value problem (1.8) is rotationally invariant, so the positive z;-
direction is not privileged in any way. Therefore, u is radially symmetric and du/dr < 0
for \g<r < A1, 1

13



Remark. At this point, it is clear why, in Theorem 2, we needed to assume from the
start that 2 is a ball. The difficulty is in the proof of the symmetry of Q about 7),. Here,
the proof of Lemma 9 relies on the fact that f is Lipschitz continuous at 0. In the case of
Theorem 2, an identity of the type f(uy) — f(u) = ex(uy — u) ceases to hold when both wu)
and u vanish. Consequently, we cannot apply the Hopf Boundary Lemma and thus rule out
the possibility that the boundary of 5,,(X,,) is internally tangent to 992. This problem is,
in fact, related to the lack of uniqueness of the solution of an initial value problem of the
type v’ = f(u), u(0) = 0, where the forcing term f is not Lipschitz at 0.
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