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Abstract

The Ginzburg-Landau equations we study arise in the modeling of
superconductivity. One widely used method of discretizing the equa-
tions together with the associated periodic boundary conditions, in the
case of a rectangle of dimension 2, leads to a five-point stencil. Solving
the system means inverting a sparse matrix of dimension N2, where N
is the number of grid points on each side of the rectangle. We propose
a method that is similar to the shooting technique in the numerical
solution of ordinary differential equations. For small N, the method
requires inverting a full matrix of dimension 2N. When N is large, an
iterative procedure combining partial sweeping and the technique of
divide and conquer (domain decomposition) is appropriate.
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1 Introduction

The term Ginzburg-Landau equations has been applied to several sets of
differential equations arising in diversified applications. The mathematical
properties of the various sets, however, can differ widely. The particular
equations we are interested in here were proposed by Ginzburg and Landau
[13] in 1950 to model the phenomenon of superconductivity. They are de-
rived as the first variational equations for the minimization of a certain free
energy functional. One of the important goals of research is the understand-
ing of the behavior of solutions satisfying given boundary conditions. The
boundary conditions we shall use are the so-called quasi-periodic conditions.

Because the solutions do not have simple analytical representations, nu-
merical computation becomes an important tool. A nonstandard finite-
difference discretization has been used by researchers in lattice gauge field
theory, in order to preserve a discrete version of gauge invariance. A brief
discussion of the Ginzburg-Landau theory and the discretization method
will be given in Section 2.

Numerical methods that have been tried on two-dimensional cases in-
clude simulated annealing [8] and relaxation [19] [16] (which is equivalent to
solving a time-dependent version of the Ginzburg-Landau equations using
a forward Euler scheme of integration). Although these methods are easy
to understand and to implement, they are not efficient and require an enor-
mous amount of computer time. Recently, Wright and Plassmann succeeded
in using advanced optimization and numerical linear algebra techniques to
efficiently compute the solutions. In collaboration with materials scientists
Garner, Spanbauer, Benedek, and Strandburg [12], they were able to extend
their algorithm to tackle a three-dimensional version that models multilay-
ered superconductors. A different approach using finite element methods is
adopted by Du, Maxburger, and Peterson [9] [10].

The more sophisticated methods require the solution of a large system
of nonlinear algebraic equations, which is accomplished with an iterative
Newton method. Within each Newton step, however, there is still a large
system of linear equations to be solved. In the work reported in [12], the
linear system is treated with yet another iterative scheme. The purpose
of this paper is to propose an alternative method for solving an important
subsystem of the linear system.



Two physical quantities, both functions of position, are involved in the
modeling: a complex scalar order parameter i and a real-valued vector
potential A. The Ginzburg-Landau equations are, respectively, differential
equations governing the spatial variation of 4 and A. From the point of
view of numerical computation, the equation for 1 is harder to solve, and
that is our main concern in this paper.

We consider the two-dimensional case and assume that the part of the
superconductor under investigation is represented by a rectangle. As usual,
the rectangle is discretized into N2 lattice points. Whether standard or non-
standard finite difference is used, the discretized equation for + consists of a
linear part (strictly speaking, it is linear in %, but not in A), which is a five-
point stencil on the lattice points, and a relatively simple nonlinear function
of 1. The linear part, which we shall call the Ginzburg-Landau operator,
can be considered as a modification of the classical Laplace operator.

If one assumes A to be given, for instance, from the most recent iterative
step, the equation can be solved for 1/ by using a Newton method, provided
that one can invert the Ginzburg-Landau operator. In theory, the operator
corresponds to a sparse matrix acting on the set of N? unknown 1 values
at all the lattice points. However, direct methods for inverting an N? x N2
matrix, even though it is sparse, are not practical for large N. Plassmann
and Wright employ an iterative algorithm (nested within each Newton step)
for this purpose. In theory, our approach inverts the Ginzburg-Landau op-
erator directly, using an idea borrowed from the shooting method for solving
ordinary differential equations; see, for example, [3]. We reduce the problem
to the inversion of a (full) 2N X 2N matrix. The inverse Ginzburg-Landau
image of any given matrix can then be found without the explicit construc-
tion of the inverse of the Ginzburg-Landau operator. For small N, the
method works beautifully. An obvious advantage of this method is that the
inverse of the reduced matrix can be retained for use in subsequent Newton
steps, whereas in using an iterative method, one has to start from scratch
every time. When N is large, however, the 2N x 2N matrix involved is
extremely illconditioned, and conventional methods of inversion are inade-
quate. In Section 4, we discuss how the idea of divide and conquer can be
incorporated. The technique is also the same as that of domain decomposi-
tion. The resulting algorithm is particularly suited for parallel computation.
We also discuss how large errors can arise at boundaries between adjoining
subdomains and what can be done to smooth them out.



A three-dimensional model of a superconductor requires a three dimen-
sional lattice with N3 points and a seven-point stencil. The sweeping method
can also be extended to reduce the inversion of the stencil to that of a full
2N? x 2N? matrix, instead of the inversion of a sparse N® x N? matrix.
How the reduction can be used effectively will be the object of a future
investigation.

2 The Ginzburg-Landau Model of Superconduc-
tivity

Many good monographs exist on the theory of superconductivity [7] [17]
[18]. Several recent survey articles [5] [9] [10] [15] have also been written
with mathematicians in mind; these should be consulted for further details
on the physics, experimental observations, and alternative models. We de-
scribe here only the necessary concepts to make our mathematical problem
understandable.

Superconductivity was discovered in 1911 by Kammerlingh Onnes, who
observed experimentally that certain metals could lose their electric resis-
tance completely when cooled below a critical temperature T,, characteris-
tic of the metal. He also observed that, while at a temperature below T,
a sufficiently large external magnetic field could revert the metal from the
superconducting state to the normal state.

Ginzburg and Landau in 1950 [13] explained the phenomenon as a new
type of phase transition, similar to the familiar solid-liquid or liquid-gas
phase change of matter. In the case of superconductivity, no outward change
in appearance is discernible, but fundamental changes do occur at the atomic
level, in particular, from the existence to the nonexistence of superconduct-
ing electrons, the so-called Cooper pairs. By drawing an analogy with the
theory of classical phase transitions, Ginzburg and Landau obtained their
famous model. It is hypothesized that two quantities, 1» and A, which repre-
sent the physical state of the metal, must minimize a certain functional, the
Helmholtz free energy. A nonlinear term in the functional depends on the
temperature 7. At T > T., the normal state for the metal is the minimizer
for the functional. Below T., the normal state is only a stationary point.
A “superconducting” minimizer appears at some “distance” away from the
normal state.



The quantity # is a complex scalar function of position and is usually
referred to as the order parameter. It plays a role similar to the wave function
in quantum mechanics; the square of its absolute value, |1|?, represents the
local density of superconducting electrons. The second quantity is the real-
valued three-dimensional vector magnetic potential A used in the classical
theory of electromagnetism. The value of the magnetic field is given by
the Maxwell equation as h = V x A, and the supercurrent is a multiple of
Vxh=VxVxA. Various other observable physical quantities such as the
specific heat can likewise be calculated once % and A are known. In other
words, the electromagnetic state of the metal is determined by 7 and A.
We shall see below, however, that the converse is not true.

In the simplest situation, the Helmholtz energy consists of three parts:
the condensation energy F(v), which is a nonlinear function of the order
parameter and temperature; the kinetic energy, which represents the inter-
actions between the vector potential and the order parameter; and the field
energy, which depends on h = V x A alone. The form of F(1), modulo an
additive constant, was postulated by Ginzburg and Landau to be

F() = a(T)f + 55T, (2.1

where the coefficients a(7") and §(T") are constant throughout a homoge-
neous superconductor once 7' is fixed. When 7" > T.., o(T") > 0, and when
T < T., o(T) < 0, while for all T, (1) > 0. The other two energy terms
are standard in classical field theory.

The Helmholtz energy can also be written for a general inhomogeneous
and anisotropic material, which is the case for the most recently discovered
high-T. ceramic materials. Some of these are made up of interlacing layers
of superconducting and nonsuperconducting materials, forming a stack of
Josephson junctions. The optimization procedure remains the same for such
materials as for the simpler homogeneous isotropic metal. The difference is
in the numbers of variables and in the complexity of the various coefficients
involved. For the purpose of simple elucidation of the computation principle,
we restrict ourselves to the simpler case.

Even for a homogeneous isotropic superconductor, the original form of
the energy functional involves various physical constants such as the Planck’s
constant, the charge and mass of the electron, and the constant 7. As far
as the mathematics is concerned, most of these constants can be hidden



by choosing new scales for the various axes and by scaling the quantities
and A, to result in the so-called dimensionless energy functional

Gl &) = [ (=16 + lult + (V= i) 0F + 6|V x AP d0, (22)

where ¢ = /—1.

We use the same symbols ¢ and A in the above formula for the func-
tional, but one must bear in mind that the original quantities that corre-
spond to real physical dimensions are to be recovered after a proper scaling.
Now |¢(x)|? signifies the degree of superconducting activity at the loca-
tion z. In particular, [¢(z)| = 0 means lack of superconducting current and
the point  is said be in the normal state, while |¢(2)| = 1 signifies perfect
superconductivity.

The temperature T no longer appears explicitly in the condensation en-
ergy portion of the functional since the coefficients a and 3 have been re-
duced to unity. However, the effect of T on & and 3 is manifested through
the choice of the scaling size, which in turn affects the coefficient xk = x(T')
in the last term.

By using a different choice of scaling, one can make k appear in the
kinetic term (replacing (V+iA) by (V/k+1A)), instead of in the last term.
The latter is indeed a more commonly used form of the functional; see, for
example, [9]. The form (2.2) has been used in [8]. For our purpose, (2.2)
is more convenient since the constant x will not appear in the variational
equation governing 1, which is the main object of our discussion in this
paper. Instead, kK appears in the differential equation governing A it affects
1 indirectly through the coupling of the equations.

For fixed T, the “constant”  is characteristic of the superconducting ma-
terial. There is a critical value of x, namely, k. = 1//2. When & < 1/4/2
for all T, the superconductor is said to be of Type I; all of the superconduc-
tors discovered before 1965 fall into this category. An important property of
this class of superconductor is that the magnetic field is expelled from the
interior of the material (the Meissner-Ochsenfeld paramagnetic property)
and that the supercurrent is confined to a very thin layer at the boundary.
This means that both 4 and A decay rapidly to 0 towards the interior of
the superconductor. The solutions obtained in solving the Ginzburg-Landau
model confirm this phenomenon, leading to wide acceptance of the model.
Such Type I superconductors are of limited practical value, however.



In 1957, Abrikosov made a theoretical study of the Ginzburg-Landau
equations for x > 1/v/2 and discovered that the solutions can behave dif-
ferently. When the external magnetic field is within an appropriate range
(between the so-called H. and H.; critical fields), the solutions are no
longer small in the interior of the superconductor. Instead, [¢| varies in
some periodic pattern (boundary and corner effects cause slight distortions
to the periodicity). Furthermore, ¥ vanishes at points that form a lattice of
a regular pattern. At each of these points, there is no superconducting ac-
tivity, but in a neighborhood of each, superconducting electrons are moving
in circular paths around the point much like vortices in fluid dynamics. By
analogy, each such point is said to be the center of a vortex. The material
is said to be in a mixed state, since superconducting currents occur almost
everywhere in the region, the exceptions being at the vortex centers where
the metal is (at least locally) in a normal state. Abrikosov’s prediction was
confirmed about ten years later when such Type II superconductors were
discovered experimentally. The ability of the magnetic field to penetrate
into the interior of Type II materials opens up the possibility of practical
applications of superconductors. The recent discovery of high-T,. Type II
superconductors makes this goal even more plausible, and, as a result, the
study of the Ginzburg-Landau equations has surged.

One must bear in mind, however, that the Ginzburg-Landau theory was
first proposed as a phenomenological model, implying that its ultimate valid-
ity depends on the agreement of theoretical and experimental results. Fven
though in 1959 Gor’kov [14] was able to derive the Ginzburg-Landau model
from the more fundamental BCS (Bardeen, Cooper, and Schrieffer [2]) mi-
croscopic theory, some idealization and approximations are adopted in the
derivation. For example, the temperature is assumed to be close to T, and
the spatial variations of i» and A are slow. Furthermore, more recent theo-
ries suggest that other physical entities, such as random thermal noise and
impurity sites that occur randomly throughout the material, play some roles
in the complete description of the behavior of high-T,. superconductors. If
these theories are correct, the original Ginzburg-Landau model would have
to be modified by including such physical entities. In the extreme situation,
the model might have to be replaced by a completely new one. In any case,
a critical study of the Ginzburg-Landau equations is necessary to determine
which action is to be taken.

The mathematical problem is not yet well defined without specifying
boundary conditions for ¥ and A. If the domain € represents the entire



piece of superconductor, the physical boundary conditions are given by the
facts that no current flows from the interior of the superconductor across the
boundary into the ambient space and that the magnetic field at boundary
points coincides with the external field. These boundary conditions have
been used in various simulations; see, for example, [16] [11]. However, such
attempts to simulate an entire piece of a superconductor are not realistic.
Not only is the resolution coarse, but the size of the domains is unrealis-
tically small in order to limit the number of vortices. The computational
task providing sufficient resolution to include all the vortices is beyond the
capacity of the the largest computer available.

Experimental findings revealed a periodic pattern of vortices at some dis-
tance away from the boundary. The vortices form a regular triangular (some
call it hexagonal) lattice (if one ignores some slight aberrations that can be
explained by the presence of impurities). A different approach to compute
the Abrikosov vortices numerically is to simulate just an interior portion of
the superconductor. The domain € is chosen to give a core pattern that
can reproduce the periodic vortex pattern by tessellation: The boundary
conditions on J€) are then of periodic type. Periodicity is imposed, however,
on measurable physical quantities, such as current and magnetic field, but
not on ¥ and A. This is a consequence of the fact, already alluded to, that
the order parameter and the vector potential are not uniquely determined
by the physical state. This is an intrinsic characteristic of gauge field theory.

Given 1, and A, one can pick any real-valued function of position x(z),
called a gauge, and form a new pair

& = e, (2.3)

A=A+ Vy(a). (2.4)

This mapping is called a gauge transformation. One can verify that the new
pair gives the same superconducting current density, the same magnetic
field, and the same current as the original pair. Furthermore, the Helmholtz
energy computed by using both pairs is the same:

G(Y,A) = G(¥, A). (2.5)

The energy functional is said to be gauge invariant. The two pairs of po-
tentials are considered to be equivalent representations of the same electro-
magnetic state of the material. By varying the gauge, one obtains an entire
class of equivalent representations.



As aresult, the requirement that measurable physical quantities be iden-
tical at opposite boundaries points of £ does not mean that ¢ and A must
agree at the same points, but only that ¢ and A at one boundary point
be gauge equivalent to ¢¥» and A at the other boundary point. A thorough
explanation of the implication of this statement can be found in [10].

Even after taking the gauge invariance into consideration, there is still
some arbitrariness in choosing the boundary conditions. We follow Doria,
Gubernatis, and Rainer [8] in using the so-called quasi-periodic boundary
conditions.

To be more specific, we take © to be the rectangle [0, L] X [0, L,] which
contains n vortices, and assume that A = (A, B,0) has essentially only two
components. The number of vortices depends on how large a core domain
we would like to take. We can also pack more vortices into a domain of a
given size by increasing the external magnetic field, namely, by increasing
the value of g in the following formulas. The boundary conditions are then
expressed as

(0,y) = ¥(Lasy), (2.6)

b(@,0) = d(a, Ly)e'", (2.7)

A(0,y) = A(Le, y) (2.8)

A(z,0)= A(z, Ly) + ¢, (2.9)

B0, ) = B(L.y) (2.10)

B(z,0) = B(x, Ly), (2.11)

where onm

9="7 (2.12)

together with the requirement that the first derivatives of the functions
involved be continuous after wrapping around across the boundary. Note
that our conditions are different from those in [8], but only because we have
made a 90 degree rotation in orientation. We find that the computer code
is easier to write with this modification.

Du, Gunzburger, and Peterson in [10] used as the core domain, €2, a
parallelogram formed by the centers of four vortices. The quasi-periodic
boundary conditions are then imposed on opposite sides of the parallelo-
gram. We shall see later that we can still treat their model by using a
rectangular domain.



We next discretize the problem for the purpose of computation. We use
a uniform grid of ¥ x N points, not including the points on the top and
right-hand boundaries of the rectangle. The grid spacings are then

hy =Ly/N and hy,=L,/N (2.13)
in the = and y directions, respectively. If the derivatives are approximated
by forward differences, the discretized Helmholtz functional takes the form

2
_I_

L.L - — )
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Y
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where we use the arrow notation to denote the value of a function at an

2
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appropriate neighboring point. Using central differences, we can improve the
accuracy of the approximation, but risk introducing false solutions. Another
approach is to discretize not the functional itself but the Ginzburg-Landau
equations obtained from taking the first variation of the functional. We do
not pursue this alternative but adopt a nonstandard discretization.

A major disadvantage of using (2.14) is that the discretized form of the
gauge invariance is only approximately satisfied. Two gauge-equivalent pairs
do not necessarily yield identical values for GG4. To remedy this, gauge field
theorists have long been using a different approximation (see [4]) for the
kinetic energy term:

2
_I_

L,L 1 = — el
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2
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¢T _ eiBhﬂb
hl/

) : (2.15)

This functional is invariant under the discretized gauge transform

,|Al—A B~™-B

hy ha

+ K

T = e, (2.16)
Z:A+Xh_x, (2.17)
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hy
Taking Taylor expansions, we see that G and Gy agree up to first-order
terms, as max |A|h,, |Blh, — 0. Another advantage of using (2.15) is that
the discrete Ginzburg-Landau equations it leads to are much simpler than
that yielded by (2.14). As long as we keep both |A|h, and |B|h, sufficiently
small, we may as well choose G' over Gj.

B=B+

(2.18)

Another device used by gauge theorists appears at first to be hard to
justify. The discretized vector potential A (equivalently, the functions A
and B), has been called a bond (or link) variable and is defined not at
the grid points, but on the bonds (the short line segments) connecting the
grid points. More precisely, the value A lives on the bond between p and
p~ and B lives on the bond between p and p!. Rather than following this
approach and trying to define precisely what living on the bond means, we
find that theoretically it makes no difference if we assume that A and B are
defined at the lattice points. We shall see below, however, that associating A
and B with the appropriate bonds is a useful way to remember the correct
coeflicients associated with the five-point stencil representing the discrete
Ginzburg-Landau operator.

Our minimization functional depends, in fact, on four real functions, the
real and imaginary parts of ¢, A, and B. The discrete Ginzburg-Landau
equations are obtained by setting the first variation with respect to each of
these to zero. Straightforward computation shows that the first two equa-
tions can be combined into one on :

eiA*hEQW— _ 2¢ + €_iAh$¢_> eiBlhy¢l _ 2¢ + e—iBhy¢T
+ +
h2 h2

- (2,19

The other two equations are simpler to solve from the point of view of
numerical computation and will not be studied in this paper.

The first two terms in (2.19) are a five-point stencil: a linear combina-
tion of ¢ at a point with those at its four neighbors (left, right, up, and
down). This is analogous to the standard finite-difference discretization of
the Laplacian Az, except that the coefficients involved are not the familiar
{1, -2, 1} but some variable values depending on A and B. When it comes
to boundary points, the five-point stencil in (2.19) has to be interpreted in

11



light of the boundary conditions. For a point on the left boundary of Q.
its left neighbor becomes the point on the right boundary on the same row,
and A~ becomes A(:, N). There is a wraparound action involved. For a
point on the upper boundary of . its upper neighbor is the point on the
lower boundary in the same vertical column. However, the coefficient for the
upper neighbor becomes e*B"v 9%, Similarly, the coefficient for the “lower”
neighbor of a point on the lower boundary is e BN )hy g—iga

The Ginzburg-Landau equations are only necessary conditions for a pair
(1, A) to minimize G. A solution to the equations may not be a global
minimizer, however. It can be a local minimizer or even an unstable saddle
point. Nevertheless, if one is lucky enough to start with a guess close to the
minimizer, a Newton method can yield a sequence of pairs converging to the
desired minimizer. Fach Newton step requires solving the equation

Ly = —(1 = [¢n-1]*)tu (2.20)

for 1,,, together with the two other equations in A and B. We have used L
to denote the discrete Ginzburg-Landau operator, and v,,_; the computed
value of ¥ from the last iterative step.

The approach used by Garner et al. in [12] is based on a conjugate
gradient technique in optimization theory, but the nature of each iterative
step is similar to that described above and involves the inversion of a linear
system that encompasses the discrete Ginzburg-Landau operator.

An efficient method for solving (2.20) (equivalently, for inverting L) can
therefore result in a faster scheme for solving the Ginzburg-Landau model.
The sweeping method we present in the next Section is devised with this
objective in mind.

Our method is equally applicable to operators obtained from discretizing
other models.

If we start with (2.14) instead of (2.15), we arrive at a different set of
discrete Ginzburg-Landau equations. The one corresponding to (2.19) is

¢*—2¢+¢*+¢1—2¢+¢T

h% h?/ - (A2 + B2)¢
_I_i(/f_?ﬁ(_ — Ay™) 4 i(Bly! — Byl)
I Ty
+(1-1pP) v =0. (2.21)
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The equation looks more complicated, but the linear part is still a five-point
stencil, connecting the current point with its four neighbors. Our sweeping
method therefore works.

We next look at the oblique model used by Du, Gunzburger, and Pe-
terson [10]. The domain € has a horizontal edge and an adjacent edge at
an angle of 60° with the former. Du et al. used the finite element approach
which aligns more closely with standard finite difference discretization. We
can apply the nonstandard finite difference method to the oblique model.
Instead of using a parallelogram grid to mimic the shape of the domain 2,
we find it more convenient to reformulate the problem on a rectangular grid.
We cut off a triangle from the right-hand side of the parallelogram, move
it to the left to form a rectangle, and then discretize it in the usual way.
We choose the grid spacings in the z and y directions appropriately so that
the oblique edge of 2 corresponds to an oblique line through appropriate
grid points. Interior points inside the grid as well as those on the left and
right boundaries satisfy the same Ginzburg-Landau five-point stencil given
by (2.19). Those on the upper and lower boundaries, however, satisfy a
similar stencil with upper and lower neighbors replaced by points lying on
the opposite boundary determined by drawing a line parallel to the oblique
edge of Q. For this type of stencil, the upward/downward version of our
sweeping algorithm is applicable.

3 The Sweeping Method

In this section, we describe the theory of the sweeping method. The method
is suitable for a general five-point stencil in which the coefficient for the
“right” neighbor is never zero. A modified algorithm works when “right” is
replaced by “left,” “up,” or “down,” In a simpler form, it can be used to
invert banded, almost triangular, or cyclic matrices. Let us start by using
a cyclic tridiagonal system as an example. Such systems arise in the dis-
cretization of periodic boundary value problems of second-order differential
equations.

13



We would like to solve for the unknown vector x in the equation

—aq 1 —bl 1 (4]
—b2 —ay 1 9 C9
Kx = e . = . =e (3.1
1
1 -b, —a, T Cn

We assume that the matrix K is nonsingular. The method works equally
well even if the entries in K below the diagonal are nonzero.

We start by shooting out a “solution” with #; = 0,Z3 = 0. This “so-
lution” is computed to satisfy as many equations of the system as possi-
ble, while we move down the rows. From the second row, we get T3 =
2Ty + boTy + c2. We continue to solve for Zy,---T,, recursively, by go-
ing down the rows. As we come to the (n — 1)st row, the “solution”
X = {%y,T2, -+, T, } has already been completely determined. As we plug
the values of T,,_1 and T, into the last and then the first rows, chances are
the two equations are not satisfied. The errors

€1 = ¢y + 4Ty + bnfn—l (32)

and

€ = C1 + blfn (33)

indicate by how much we have missed the target. In other words, X is not a
correct solution to (3.1), but rather to

Kx=c+(e,0,--+,¢1)". (3.4)

Next we use the linearity of the operator K to seek a correction to the
“solution” by considering the homogeneous system associated with (3.1):

Ky =0. (3.5)

We do a similar shooting for (3.5), with initial values ; = 1 and 7, = 0.
Again, we end up with a “solution” ¥ having errors p11, 021 # 0 (otherwise,
K would be singular):

Ly = (p21,0,---, p11)". (3.6)

14



We do one more shooting with initial values Z; = 0 and Z3 = 1 and obtain
the corresponding errors pi5 and pgg. The two error vectors form a matrix

R = ( P11 P12 ) ‘ (3.7)

P21 P22

We solve the 2 x 2 matrix equation

oo )=(2) o

to find the correction needed to adjust our first shooting to hit the target.
In fact, the linear combination

X — a1y — a3z (3.9)
is now a solution of (3.1).

It is easy to see how this method can, in theory at least, be extended
to handle five-point stencils exemplified by the discrete Ginzburg-Landau
operator. It can be verified that the discrete Ginzburg-Landau operator is a
Hermitian operator on the complex vector space of dimension N x N (over
N? grid points). It is also not difficult to see that it is a negative definite
operator. It is, therefore, nonsingular.

We first sweep (shoot) the nonhomogeneous system, starting from the
right edge of 2. As initial starting values, we need values of ¥ to be given
for apprpriate initial grid points. The most obvious choice is to let ¥ = 0 for
all points in the first two columns. Since each point in the second column
is related to its four neighbors by the stencil and the only one that is not
known at the moment is the right-hand neighbor, the latter can be easily
determined by using the coefficients of the stencil and the nonhomogeneous
part of the system of equations. The values of % on points in the third
column are, therefore, determinable. We continue this sweeping action until
the right boundary of Q is reached, and wrap around to the first two columns
to compute the errors. Note that the two columns give a total of 2V errors,
to be combined to form a vector € of length 2V.

Another choice of initial grid points is to take every other point in the
first four columns in a checkerboard pattern. Every one of the remaining
points in the second and third columns is surrounded by four initial points,
and so the stencil can be used to determine % at that point.

15



To compute the rectifying matrix R, we go to the homogeneous stencil.
For each grid point in the two initial columns, we do a sweep with initial
value 1 at the the chosen point and 0 elsewhere. Fach sweeping yields an
appropriate column in R. As before, — R™1e gives the correct initial values
that would give the exact solution to the system.

How much computation is involved in the algorithm? The initial sweep-
ing of the nonhomogeneous system requires 4 N multiplications and just as
many additions. Fach sweeping of the homogeneous system needs somewhat
less, since on part of the columns in the left half of €, ¢ will be zero, and
nonhomogeneous terms are not present. The total is on the order of O(N?).

The main bulk of the computation is, therefore, in the inversion of R, which
is on the order of O(N?).

Parallelism can be exploited in many parts of the method. In the step for
getting each new column in the sweeping, the computation for each point in
the column can be done independently of the others. Then the 2N sweepings
of the homogeneous system can be carried out in parallel.

A modification of the method allows the doubling of parallelism. One can
sweep simultaneously in both directions on either side of the initial columns
(provided that the coefficients of the stencil are nonzero, as is the case in
the discrete Ginzburg-Landau operator). One starts with two columns at
the center of the grid and sweeps both left and right; the error vector is
computed as the sweeping fronts wrap around and meet.

One can also extend the well-known idea of multiple shooting to multiple
sweeping. One starts with k& sets of two initial columns spaced uniformly
apart and sweeps in both directions. There are then 2k/V unknowns to be
solved.

The inverse of the five-point stencil is embedded in the inverse of R. In a
numerical application in which the inverse of the operator is needed for more
than a few times, it is more worthwhile to have R~! computed explicitly and
stored. This is the case in the solution of the Ginzburg-Landau model in
which a Newton method is necessitated by the nonlinearity. In one approach,
in which the two Ginzburg-Landau equations are to be solved simultaneously
in each Newton cycle, the vector potential A, and hence the Ginzburg-
Landau operator, changes from one step to another. In other words, the
inverse R~! has to be computed for each step. In practice, however, A does
not change much from one step to another. If one uses the quasi-Newton
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method, one can use the same R~ for several steps before computing a new
one. In another approach, the Gauss-Seidel principle is used. Each of the
two Ginzburg-Landau equations is solved in turn, for 4> and A, respectively,
assuming the value of the other variable as found in the last iterative step.
Then the same R~! is used many times in each of the steps involving the
solution for .

If the coefficients of the stencil allow it, one can also start with two initial
rows of grid points and sweep in the upward/downward direction.

In the numerical simulation of a time-dependent version of the Ginzburg-
Landau equations, it is important to be able to find the largest eigenvalue of
the discrete Ginzburg-Landau operator and the associated eigenvector. In a
well-known algorithm for computing the smallest eigenvalue, the inverse of
the operator is applied to a fixed vector a large number of times. Once R~}
is known, this algorithm can be applied to the Ginzburg-Landau operator
without difficulty.

4 Partial Sweeping and Iterative Algorithms

We have tested the sweeping method using MATLAB and Fortran codes.
In most cases, single-direction sweeping works satisfactorily for N up to
about 12, and two-direction sweeping works for N up to about 18. Beyond
this, the rectifying matrix R is so illconditioned that the inverse obtained is
unreliable. As the columns are solved one by one, the test “solution” X grows
exponentially, giving the matrix R very large entries. The ratio between the
largest and smallest eigenvalues of R can turn out to be extremely large.
Details of the numerical experiments will be given in a forthcoming report.

As an example, we used the single-direction method and the first two
columns as initial columns to solve the Ginzburg-Landau operator given by
(see (2.6)(2.12))

A(2,0)=0, A(w, L,) = 2.25717254215814, (4.1)
A is linear, (4.2)
B(z,y) =0, (4.3)
and
n=2 1L,=3, N=15 (4.4)



The entry in R with the maximum absolute value is on the order of 7 x 10,
and the ratio of the largest to the smallest eigenvalue of R is on the order of
106, Indeed, any kind of numerical computation on such an illconditioned

matrix is highly unreliable. We found that even the associative law is not
satisfied (numerically); MATLAB gives

max(abs((RO)R — R(OR)) ~ 7 x 10'°, (4.5)
where O is the square matrix with all ones.

The sweeping method works better for an important class of five-point
stencils, the Dirichlet stencils, which arise in partial sweeping algorithms dis-
cussed below. These are stencils for which the first column of L and the last
column of R are zeros. Numerical experiments can handle well such stencils
with N up to 40, by using two-direction, two-stage sweeping algorithms.
The use of multi-stage algorithms will definitely permit larger N.

Although straightforward sweeping proves to be impractical for large
systems, many ideas can be borrowed from other methods to obtain usable
modifications. These include the technique of divide and conquer (in the
form of domain decomposition) and alternating directions. Most of the
procedures suggested below have been tried in sample cases. A thorough
investigation will constitute an extensive future project.

In an iterative scheme, one computes a sequence of approximate solutions
X, — X (converging to the exact solution x ):

Ly, = ¢, — ¢, (4.6)

where L stands for the discrete Ginzburg-Landau operator or some suitable
five-point stencil. In each step, instead of computing v, directly, we look
for a correction ¢ to be added to 4,,_1, by solving

Lé =~ Loy = By (4.7)

as accurately as possible. This is usually achieved by using the best ap-
proximate inverse for L found so far. There is the possibility that the error
introduced in solving (4.7) may actually increase the error term /3,41 for the
next step and that the algorithm will fail to converge. Suppose this is not
the case; then the process is terminated when 3,, becomes sufficiently small.

The method of domain decomposition implies a block decomposition of
the matrices v, 3,, and others. The blocks need not be square, and they do
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not necessarily have equal dimensions. For instance, an N x N matrix can
be decomposed into horizontal strips of dimension m x N or square blocks of
dimension m X m, or a mixture of the two types. The idea is then to solve,
for each block, only the subset of equations given by the stencil and only for
those unknowns that fall within the subdomain. Referring to equation (4.7),
we are, in fact, assuming the components of é to be 0 outside the subdomain
and attempt to change the values of those components inside the subdomain
so as to satisfy as many equations as possible (all those that fall within the
domain). In doing so, the stencil equations at all the grid points touching
the subdomain may be violated. We describe this process as sweeping the
errors represented by 3, in the subdomain to all the adjoining grid points.
The hope, of course, is that the process of sweeping does not merely move
the errors around, but reduces them through the adjustment of ¢ inside the
subdomain.

Fortunately, for operators derivable from an optimization problem, such
as the discrete Ginzburg-Landau operator, this hope is substantiated. Solv-
ing the stencil in a subdomain is equivalent to minimizing the energy func-
tional under the constraint that the values of the unknown function are
fixed at points outside the subdomain. Hence, after sweeping each subdo-
main, the functional is strictly decreased, and the total error is, in some
appropriate sense, strictly decreased. It then follows that the error can only
converge to zero. The idea of the method is definitely not new. It can be
traced back, for example, to the method of balayage of Poincaré (see [6])
in proving the existence of a solution to the Laplace equation. A theoret-
ical proof of convergence is, of course, not a guarantee for convergence in
a numerical implementation; as usual, rounding errors can cause trouble.
A typical safeguard is to have the functional computed after each iterative
step and to make sure that it has really decreased.

Let us also give a heuristic justification for the method of partial sweep-
ing. The fact that R is very illconditioned means that a slight change in the
initial guesses, assigned on the initial columns, can produce, after sweeping,
huge errors in the last column. To a lesser extent, a slight change in the
values on the two columns adjoining the left or right boundaries of a sub-
domain corresponds to large errors at columns far away from the boundary,
namely, those near the interior. Conversely, if one wishes to eliminate errors
appearing in the interior of a subdomain, one does not expect much adjust-
ment required to those points outside the subdomain. Hence, one may as
well assume that they have fixed values when trying to reduce errors that
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occur in the interior of the subdomain. The argument, of course, fails for
errors that are still within the subdomain but near the boundary. We shall
describe below a possible way to deal with this situation.

In general, the convergence of the sequence of approximate solutions de-
pends on the spectral radius of the partial operators that are being inverted
and the relative errors incurred by the splitting of the operator.

The sweeping algorithm described in Section 3 has to be modified for
partial sweeping. Let us first consider a subdomain bounded on all sides by
grid points with fixed 1 values. The choice of sweeping direction is a matter
of convenience, since all choices lead to identical results. Suppose we decide
to sweep from the left. We now need only one initial column. A good choice
is the second one next to the left boundary, since we can make use of the
known values of % on the column just left of the boundary. Let m be the
length of the columns. The last column at the right-hand boundary is used
to give the error vector and the columns in the rectifying matrix R. The
sweeping process, therefore, involves m unknowns and the inversion of the
m X m matrix B. When compared with complete sweeping, we have fewer
columns to sweep through (and so less room for the computed numbers to
grow) and significantly fewer unknowns to solve for. Of course, we pay the
price by having to iterate.

We can also do a two-direction sweeping, namely, inward from the left
and the right boundaries of the subdomain. This will require solving for
2N unknowns, to give the initial values to be used at the first and the
last columns. This can be done in parallel, though. The most important
advantage of a two-direction sweeping is its increased stability.

We have also devised a two-stage sweeping in which one half of the
domain is swept first and then the second half is swept without residual
error in a way dependent on the outcome of the first sweeping. This is not
an interative procedure. The idea can be easily extended to get a multi-stage
sweeping.

The case of a subdomain that spans the entire length or width of 1,
such as a horizontal strip of size m x N, is slightly different. We have
a choice of sweeping horizontally (and need two initial columns), leading
to the inversion of a possibly illconditioned 2m x 2m matrix, or sweeping
vertically, leading to the inversion of an N x N matrix. When N < 2m,
the obvious choice is the latter. When N is much larger than m, one may
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be tempted to use horizontal sweeping to avoid the excessive computation
required in dealing with a large N x N matrix. However, one can see with a
simple example that the N x N matrix R is a banded matrix, allowing some
known iterative methods to be employed. One can, in fact, apply another
domain decomposition technique to the strip itself.

One very attractive feature of domain decomposition is that the sub-
domains can be swept independently of each other, and hence, in parallel.
Thus, one iterative cycle consists of the simultaneous sweeping of all the
subdomains in one decomposition.

We do not have to use the same decomposition in every cycle. In fact,
this is not even advisable. After each cycle, the errors have been swept
from the interior of each subdomain towards the boundary. Sometimes,
the resulting errors may appear to be large, especially when compared to an
approximate solution for which the errors are more or less evenly distributed
among all the grid points. As we have argued above, errors swept from deep
inside a domain have a better chance of being reduced during the process
than errors that are present near the boundary. We can make use of this
observation as we progress. The strategy we suggest is that in the next
cycle, these boundary points (or as many of them as possible) be made the
interior of the subdomains of a new decomposition.

As a concrete example, we can use two alternating decompositions, the
first a familiar checkerboard pattern of m X m square blocks (where m is a
factor of V), and the second obtained by shifting the square blocks by m/2
rows and m/2 columns. The half-size rectangles appearing on the top, as
well as those on the left, are to be joined with the corresponding half on
the bottom and the right respectively. Likewise, the four small squares at
the four corners are to be united as one subdomain. As another example,
the first decomposition is made of horizontal strips of size m x N and the
second decomposition obtained by a shifting of m/2 rows. An alternative is
to choose the second decomposition using vertical strips of size N x m. This
is an extension of the familiar method of alternating directions.

The idea can be extended: We can use multiple domain decomposition
within a single computational cycle. This strategy is proposed to overcome
the fact that partial sweeping is less effective for errors occurring near the
boundaries of subdomains. Since the operator L is linear, one can break
(4.7) up into a linear combination of similar systems, by breaking 3, up
into several terms, each having nonzero entries only at the interiors of the
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subdomains of a suitable domain decomposition. All of these are then solved
in parallel (and each with a parallel partial sweeping).

Since errors in the interior of a domain have a diminished effect on the
required adjustments at the boundary grid points, we use yet another modi-
fication of the sweeping algorithm. Instead of computing R~! and using it to
determine the initial column, we compute matrices to give two or more inte-
rior columns. The remaining columns can be filled in by backward sweeping.
We do not rely completely on backward sweeping because of its instability.

When the inversion of the original stencil is used in conjunction with
Newton’s method, an exact inversion of the stencil is probably not necessary.
Some errors are likely to arise in each Newton step anyway, so a moderately
accurate inversion is all that is needed for practical purposes. This means
that a few cycles of partial sweepings are usually sufficient in each Newton
iteration.

Finally, we mention the idea of multigrid. Although we have not im-
plemented this directly into our sweeping algorithm, it has been used in
connection with solving the Ginzburg-Landau equations. The idea is to
start with a coarser grid discretization to obtain a first approximation to
the solution of the Ginzburg-Landau equation. A finer grid is then used,
and the new Newton procedure starts with an initial guess given by inter-
polating the first approximate solution. Having a good initial guess greatly
speeds up the convergence.
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