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1 IntroductionThe term Ginzburg-Landau equations has been applied to several sets ofdi�erential equations arising in diversi�ed applications. The mathematicalproperties of the various sets, however, can di�er widely. The particularequations we are interested in here were proposed by Ginzburg and Landau[13] in 1950 to model the phenomenon of superconductivity. They are de-rived as the �rst variational equations for the minimization of a certain freeenergy functional. One of the important goals of research is the understand-ing of the behavior of solutions satisfying given boundary conditions. Theboundary conditions we shall use are the so-called quasi-periodic conditions.Because the solutions do not have simple analytical representations, nu-merical computation becomes an important tool. A nonstandard �nite-di�erence discretization has been used by researchers in lattice gauge �eldtheory, in order to preserve a discrete version of gauge invariance. A briefdiscussion of the Ginzburg-Landau theory and the discretization methodwill be given in Section 2.Numerical methods that have been tried on two-dimensional cases in-clude simulated annealing [8] and relaxation [19] [16] (which is equivalent tosolving a time-dependent version of the Ginzburg-Landau equations usinga forward Euler scheme of integration). Although these methods are easyto understand and to implement, they are not e�cient and require an enor-mous amount of computer time. Recently, Wright and Plassmann succeededin using advanced optimization and numerical linear algebra techniques toe�ciently compute the solutions. In collaboration with materials scientistsGarner, Spanbauer, Benedek, and Strandburg [12], they were able to extendtheir algorithm to tackle a three-dimensional version that models multilay-ered superconductors. A di�erent approach using �nite element methods isadopted by Du, Maxburger, and Peterson [9] [10].The more sophisticated methods require the solution of a large systemof nonlinear algebraic equations, which is accomplished with an iterativeNewton method. Within each Newton step, however, there is still a largesystem of linear equations to be solved. In the work reported in [12], thelinear system is treated with yet another iterative scheme. The purposeof this paper is to propose an alternative method for solving an importantsubsystem of the linear system. 2



Two physical quantities, both functions of position, are involved in themodeling: a complex scalar order parameter  and a real-valued vectorpotential A. The Ginzburg-Landau equations are, respectively, di�erentialequations governing the spatial variation of  and A. From the point ofview of numerical computation, the equation for  is harder to solve, andthat is our main concern in this paper.We consider the two-dimensional case and assume that the part of thesuperconductor under investigation is represented by a rectangle. As usual,the rectangle is discretized into N2 lattice points. Whether standard or non-standard �nite di�erence is used, the discretized equation for  consists of alinear part (strictly speaking, it is linear in  , but not in A), which is a �ve-point stencil on the lattice points, and a relatively simple nonlinear functionof  . The linear part, which we shall call the Ginzburg-Landau operator,can be considered as a modi�cation of the classical Laplace operator.If one assumes A to be given, for instance, from the most recent iterativestep, the equation can be solved for  by using a Newton method, providedthat one can invert the Ginzburg-Landau operator. In theory, the operatorcorresponds to a sparse matrix acting on the set of N2 unknown  valuesat all the lattice points. However, direct methods for inverting an N2 �N2matrix, even though it is sparse, are not practical for large N . Plassmannand Wright employ an iterative algorithm (nested within each Newton step)for this purpose. In theory, our approach inverts the Ginzburg-Landau op-erator directly, using an idea borrowed from the shooting method for solvingordinary di�erential equations; see, for example, [3]. We reduce the problemto the inversion of a (full) 2N � 2N matrix. The inverse Ginzburg-Landauimage of any given matrix can then be found without the explicit construc-tion of the inverse of the Ginzburg-Landau operator. For small N , themethod works beautifully. An obvious advantage of this method is that theinverse of the reduced matrix can be retained for use in subsequent Newtonsteps, whereas in using an iterative method, one has to start from scratchevery time. When N is large, however, the 2N � 2N matrix involved isextremely illconditioned, and conventional methods of inversion are inade-quate. In Section 4, we discuss how the idea of divide and conquer can beincorporated. The technique is also the same as that of domain decomposi-tion. The resulting algorithm is particularly suited for parallel computation.We also discuss how large errors can arise at boundaries between adjoiningsubdomains and what can be done to smooth them out.3



A three-dimensional model of a superconductor requires a three dimen-sional lattice withN3 points and a seven-point stencil. The sweeping methodcan also be extended to reduce the inversion of the stencil to that of a full2N2 � 2N2 matrix, instead of the inversion of a sparse N3 � N3 matrix.How the reduction can be used e�ectively will be the object of a futureinvestigation.2 The Ginzburg-Landau Model of Superconduc-tivityMany good monographs exist on the theory of superconductivity [7] [17][18]. Several recent survey articles [5] [9] [10] [15] have also been writtenwith mathematicians in mind; these should be consulted for further detailson the physics, experimental observations, and alternative models. We de-scribe here only the necessary concepts to make our mathematical problemunderstandable.Superconductivity was discovered in 1911 by Kammerlingh Onnes, whoobserved experimentally that certain metals could lose their electric resis-tance completely when cooled below a critical temperature Tc, characteris-tic of the metal. He also observed that, while at a temperature below Tc,a su�ciently large external magnetic �eld could revert the metal from thesuperconducting state to the normal state.Ginzburg and Landau in 1950 [13] explained the phenomenon as a newtype of phase transition, similar to the familiar solid-liquid or liquid-gasphase change of matter. In the case of superconductivity, no outward changein appearance is discernible, but fundamental changes do occur at the atomiclevel, in particular, from the existence to the nonexistence of superconduct-ing electrons, the so-called Cooper pairs. By drawing an analogy with thetheory of classical phase transitions, Ginzburg and Landau obtained theirfamous model. It is hypothesized that two quantities,  andA, which repre-sent the physical state of the metal, must minimize a certain functional, theHelmholtz free energy. A nonlinear term in the functional depends on thetemperature T . At T > Tc, the normal state for the metal is the minimizerfor the functional. Below Tc, the normal state is only a stationary point.A \superconducting" minimizer appears at some \distance" away from thenormal state. 4



The quantity  is a complex scalar function of position and is usuallyreferred to as the order parameter. It plays a role similar to the wave functionin quantum mechanics; the square of its absolute value, j j2, represents thelocal density of superconducting electrons. The second quantity is the real-valued three-dimensional vector magnetic potential A used in the classicaltheory of electromagnetism. The value of the magnetic �eld is given bythe Maxwell equation as h = r �A, and the supercurrent is a multiple ofr�h = r�r�A. Various other observable physical quantities such as thespeci�c heat can likewise be calculated once  and A are known. In otherwords, the electromagnetic state of the metal is determined by  and A.We shall see below, however, that the converse is not true.In the simplest situation, the Helmholtz energy consists of three parts:the condensation energy F ( ), which is a nonlinear function of the orderparameter and temperature; the kinetic energy, which represents the inter-actions between the vector potential and the order parameter; and the �eldenergy, which depends on h = r �A alone. The form of F ( ), modulo anadditive constant, was postulated by Ginzburg and Landau to beF ( ) = �(T )j j2+ 12�(T )j j4; (2:1)where the coe�cients �(T ) and �(T ) are constant throughout a homoge-neous superconductor once T is �xed. When T > Tc, �(T ) > 0, and whenT < Tc, �(T ) < 0, while for all T , �(T ) > 0. The other two energy termsare standard in classical �eld theory.The Helmholtz energy can also be written for a general inhomogeneousand anisotropic material, which is the case for the most recently discoveredhigh-Tc ceramic materials. Some of these are made up of interlacing layersof superconducting and nonsuperconducting materials, forming a stack ofJosephson junctions. The optimization procedure remains the same for suchmaterials as for the simpler homogeneous isotropic metal. The di�erence isin the numbers of variables and in the complexity of the various coe�cientsinvolved. For the purpose of simple elucidation of the computation principle,we restrict ourselves to the simpler case.Even for a homogeneous isotropic superconductor, the original form ofthe energy functional involves various physical constants such as the Planck'sconstant, the charge and mass of the electron, and the constant �. As faras the mathematics is concerned, most of these constants can be hidden5



by choosing new scales for the various axes and by scaling the quantities  and A, to result in the so-called dimensionless energy functionalG( ;A) = Z
 ��j j2+ 12 j j4+ j(r� iA) j2 + �2 jr �Aj2�d
; (2:2)where i = p�1.We use the same symbols  and A in the above formula for the func-tional, but one must bear in mind that the original quantities that corre-spond to real physical dimensions are to be recovered after a proper scaling.Now j (x)j2 signi�es the degree of superconducting activity at the loca-tion x. In particular, j (x)j= 0 means lack of superconducting current andthe point x is said be in the normal state, while j (x)j = 1 signi�es perfectsuperconductivity.The temperature T no longer appears explicitly in the condensation en-ergy portion of the functional since the coe�cients � and � have been re-duced to unity. However, the e�ect of T on � and � is manifested throughthe choice of the scaling size, which in turn a�ects the coe�cient � = �(T )in the last term.By using a di�erent choice of scaling, one can make � appear in thekinetic term (replacing (r+ iA) by (r=�+ iA)), instead of in the last term.The latter is indeed a more commonly used form of the functional; see, forexample, [9]. The form (2.2) has been used in [8]. For our purpose, (2.2)is more convenient since the constant � will not appear in the variationalequation governing  , which is the main object of our discussion in thispaper. Instead, � appears in the di�erential equation governingA; it a�ects indirectly through the coupling of the equations.For �xed T , the \constant" � is characteristic of the superconducting ma-terial. There is a critical value of �, namely, �c = 1=p2. When � < 1=p2for all T , the superconductor is said to be of Type I; all of the superconduc-tors discovered before 1965 fall into this category. An important property ofthis class of superconductor is that the magnetic �eld is expelled from theinterior of the material (the Meissner-Ochsenfeld paramagnetic property)and that the supercurrent is con�ned to a very thin layer at the boundary.This means that both  and A decay rapidly to 0 towards the interior ofthe superconductor. The solutions obtained in solving the Ginzburg-Landaumodel con�rm this phenomenon, leading to wide acceptance of the model.Such Type I superconductors are of limited practical value, however.6



In 1957, Abrikosov made a theoretical study of the Ginzburg-Landauequations for � > 1=p2 and discovered that the solutions can behave dif-ferently. When the external magnetic �eld is within an appropriate range(between the so-called Hc1 and Hc2 critical �elds), the solutions are nolonger small in the interior of the superconductor. Instead, j j varies insome periodic pattern (boundary and corner e�ects cause slight distortionsto the periodicity). Furthermore,  vanishes at points that form a lattice ofa regular pattern. At each of these points, there is no superconducting ac-tivity, but in a neighborhood of each, superconducting electrons are movingin circular paths around the point much like vortices in 
uid dynamics. Byanalogy, each such point is said to be the center of a vortex. The materialis said to be in a mixed state, since superconducting currents occur almosteverywhere in the region, the exceptions being at the vortex centers wherethe metal is (at least locally) in a normal state. Abrikosov's prediction wascon�rmed about ten years later when such Type II superconductors werediscovered experimentally. The ability of the magnetic �eld to penetrateinto the interior of Type II materials opens up the possibility of practicalapplications of superconductors. The recent discovery of high-Tc Type IIsuperconductors makes this goal even more plausible, and, as a result, thestudy of the Ginzburg-Landau equations has surged.One must bear in mind, however, that the Ginzburg-Landau theory was�rst proposed as a phenomenological model, implying that its ultimate valid-ity depends on the agreement of theoretical and experimental results. Eventhough in 1959 Gor'kov [14] was able to derive the Ginzburg-Landau modelfrom the more fundamental BCS (Bardeen, Cooper, and Schrie�er [2]) mi-croscopic theory, some idealization and approximations are adopted in thederivation. For example, the temperature is assumed to be close to Tc, andthe spatial variations of  and A are slow. Furthermore, more recent theo-ries suggest that other physical entities, such as random thermal noise andimpurity sites that occur randomly throughout the material, play some rolesin the complete description of the behavior of high-Tc superconductors. Ifthese theories are correct, the original Ginzburg-Landau model would haveto be modi�ed by including such physical entities. In the extreme situation,the model might have to be replaced by a completely new one. In any case,a critical study of the Ginzburg-Landau equations is necessary to determinewhich action is to be taken.The mathematical problem is not yet well de�ned without specifyingboundary conditions for  and A. If the domain 
 represents the entire7



piece of superconductor, the physical boundary conditions are given by thefacts that no current 
ows from the interior of the superconductor across theboundary into the ambient space and that the magnetic �eld at boundarypoints coincides with the external �eld. These boundary conditions havebeen used in various simulations; see, for example, [16] [11]. However, suchattempts to simulate an entire piece of a superconductor are not realistic.Not only is the resolution coarse, but the size of the domains is unrealis-tically small in order to limit the number of vortices. The computationaltask providing su�cient resolution to include all the vortices is beyond thecapacity of the the largest computer available.Experimental �ndings revealed a periodic pattern of vortices at some dis-tance away from the boundary. The vortices form a regular triangular (somecall it hexagonal) lattice (if one ignores some slight aberrations that can beexplained by the presence of impurities). A di�erent approach to computethe Abrikosov vortices numerically is to simulate just an interior portion ofthe superconductor. The domain 
 is chosen to give a core pattern thatcan reproduce the periodic vortex pattern by tessellation: The boundaryconditions on @
 are then of periodic type. Periodicity is imposed, however,on measurable physical quantities, such as current and magnetic �eld, butnot on  and A. This is a consequence of the fact, already alluded to, thatthe order parameter and the vector potential are not uniquely determinedby the physical state. This is an intrinsic characteristic of gauge �eld theory.Given  , and A, one can pick any real-valued function of position �(x),called a gauge, and form a new pair =  ei�(x); (2:3)A = A+r�(x): (2:4)This mapping is called a gauge transformation. One can verify that the newpair gives the same superconducting current density, the same magnetic�eld, and the same current as the original pair. Furthermore, the Helmholtzenergy computed by using both pairs is the same:G( ;A) = G( ;A): (2:5)The energy functional is said to be gauge invariant. The two pairs of po-tentials are considered to be equivalent representations of the same electro-magnetic state of the material. By varying the gauge, one obtains an entireclass of equivalent representations. 8



As a result, the requirement that measurable physical quantities be iden-tical at opposite boundaries points of 
 does not mean that  and A mustagree at the same points, but only that  and A at one boundary pointbe gauge equivalent to  and A at the other boundary point. A thoroughexplanation of the implication of this statement can be found in [10].Even after taking the gauge invariance into consideration, there is stillsome arbitrariness in choosing the boundary conditions. We follow Doria,Gubernatis, and Rainer [8] in using the so-called quasi-periodic boundaryconditions.To be more speci�c, we take 
 to be the rectangle [0; Lx]� [0; Ly] whichcontains n vortices, and assume that A = (A;B; 0) has essentially only twocomponents. The number of vortices depends on how large a core domainwe would like to take. We can also pack more vortices into a domain of agiven size by increasing the external magnetic �eld, namely, by increasingthe value of g in the following formulas. The boundary conditions are thenexpressed as  (0; y) =  (Lx; y); (2:6) (x; 0) =  (x; Ly)eigx; (2:7)A(0; y) = A(Lx; y); (2:8)A(x; 0) = A(x; Ly) + g; (2:9)B(0; y) = B(Lx; y); (2:10)B(x; 0) = B(x; Ly); (2:11)where g = 2n�Lx ; (2:12)together with the requirement that the �rst derivatives of the functionsinvolved be continuous after wrapping around across the boundary. Notethat our conditions are di�erent from those in [8], but only because we havemade a 90 degree rotation in orientation. We �nd that the computer codeis easier to write with this modi�cation.Du, Gunzburger, and Peterson in [10] used as the core domain, 
, aparallelogram formed by the centers of four vortices. The quasi-periodicboundary conditions are then imposed on opposite sides of the parallelo-gram. We shall see later that we can still treat their model by using arectangular domain. 9



We next discretize the problem for the purpose of computation. We usea uniform grid of N � N points, not including the points on the top andright-hand boundaries of the rectangle. The grid spacings are thenhx = Lx=N and hy = Ly=N (2:13)in the x and y directions, respectively. If the derivatives are approximatedby forward di�erences, the discretized Helmholtz functional takes the formGd = LxLyN2 X0@�j j2 + 12 j j4 + ���� ! �  hx + iA ����2+ ����� " �  hy + iB �����2++ �2 �����A" � Ahy � B! �Bhx �����21A ; (2.14)where we use the arrow notation to denote the value of a function at anappropriate neighboring point. Using central di�erences, we can improve theaccuracy of the approximation, but risk introducing false solutions. Anotherapproach is to discretize not the functional itself but the Ginzburg-Landauequations obtained from taking the �rst variation of the functional. We donot pursue this alternative but adopt a nonstandard discretization.A major disadvantage of using (2.14) is that the discretized form of thegauge invariance is only approximately satis�ed. Two gauge-equivalent pairsdo not necessarily yield identical values for Gd. To remedy this, gauge �eldtheorists have long been using a di�erent approximation (see [4]) for thekinetic energy term:G = LxLyN2 X0@�j j2 + 12 j j4+ ����� ! � eiAhx hx �����2 + ����� " � eiBhy hy �����2++ �2 �����A" � Ahy � B! � Bhx �����21A : (2.15)This functional is invariant under the discretized gauge transform =  ei�(x); (2:16)A = A+ �! � �hx ; (2:17)10



B = B + �" � �hy : (2:18)Taking Taylor expansions, we see that G and Gd agree up to �rst-orderterms, as max jAjhx; jBjhy ! 0. Another advantage of using (2.15) is thatthe discrete Ginzburg-Landau equations it leads to are much simpler thanthat yielded by (2.14). As long as we keep both jAjhx and jBjhy su�cientlysmall, we may as well choose G over Gd.Another device used by gauge theorists appears at �rst to be hard tojustify. The discretized vector potential A (equivalently, the functions Aand B), has been called a bond (or link) variable and is de�ned not atthe grid points, but on the bonds (the short line segments) connecting thegrid points. More precisely, the value A lives on the bond between p andp! and B lives on the bond between p and p". Rather than following thisapproach and trying to de�ne precisely what living on the bond means, we�nd that theoretically it makes no di�erence if we assume that A and B arede�ned at the lattice points. We shall see below, however, that associating Aand B with the appropriate bonds is a useful way to remember the correctcoe�cients associated with the �ve-point stencil representing the discreteGinzburg-Landau operator.Our minimization functional depends, in fact, on four real functions, thereal and imaginary parts of  , A, and B. The discrete Ginzburg-Landauequations are obtained by setting the �rst variation with respect to each ofthese to zero. Straightforward computation shows that the �rst two equa-tions can be combined into one on  :eiA hx  � 2 + e�iAhx !h2x + eiB#hy # � 2 + e�iBhy "h2y ++ �1� j j2� = 0: (2.19)The other two equations are simpler to solve from the point of view ofnumerical computation and will not be studied in this paper.The �rst two terms in (2.19) are a �ve-point stencil: a linear combina-tion of  at a point with those at its four neighbors (left, right, up, anddown). This is analogous to the standard �nite-di�erence discretization ofthe Laplacian � , except that the coe�cients involved are not the familiarf1;�2; 1g but some variable values depending on A and B. When it comesto boundary points, the �ve-point stencil in (2.19) has to be interpreted in11



light of the boundary conditions. For a point on the left boundary of 
,its left neighbor becomes the point on the right boundary on the same row,and A becomes A(:; N). There is a wraparound action involved. For apoint on the upper boundary of 
, its upper neighbor is the point on thelower boundary in the same vertical column. However, the coe�cient for theupper neighbor becomes eiBhyeigx. Similarly, the coe�cient for the \lower"neighbor of a point on the lower boundary is eiB(N;:)hye�igx.The Ginzburg-Landau equations are only necessary conditions for a pair( ;A) to minimize G. A solution to the equations may not be a globalminimizer, however. It can be a local minimizer or even an unstable saddlepoint. Nevertheless, if one is lucky enough to start with a guess close to theminimizer, a Newton method can yield a sequence of pairs converging to thedesired minimizer. Each Newton step requires solving the equationL n = �(1� j n�1j2) n�1 (2:20)for  n, together with the two other equations in A and B. We have used Lto denote the discrete Ginzburg-Landau operator, and  n�1 the computedvalue of  from the last iterative step.The approach used by Garner et al. in [12] is based on a conjugategradient technique in optimization theory, but the nature of each iterativestep is similar to that described above and involves the inversion of a linearsystem that encompasses the discrete Ginzburg-Landau operator.An e�cient method for solving (2.20) (equivalently, for inverting L) cantherefore result in a faster scheme for solving the Ginzburg-Landau model.The sweeping method we present in the next Section is devised with thisobjective in mind.Our method is equally applicable to operators obtained from discretizingother models.If we start with (2.14) instead of (2.15), we arrive at a di�erent set ofdiscrete Ginzburg-Landau equations. The one corresponding to (2.19) is  � 2 +  !h2x +  # � 2 +  "h2y � (A2 + B2) + i(A   � A !)hx + i(B# # �B ")hy+ �1� j j2� = 0: (2.21)12



The equation looks more complicated, but the linear part is still a �ve-pointstencil, connecting the current point with its four neighbors. Our sweepingmethod therefore works.We next look at the oblique model used by Du, Gunzburger, and Pe-terson [10]. The domain 
 has a horizontal edge and an adjacent edge atan angle of 60� with the former. Du et al. used the �nite element approachwhich aligns more closely with standard �nite di�erence discretization. Wecan apply the nonstandard �nite di�erence method to the oblique model.Instead of using a parallelogram grid to mimic the shape of the domain 
,we �nd it more convenient to reformulate the problem on a rectangular grid.We cut o� a triangle from the right-hand side of the parallelogram, moveit to the left to form a rectangle, and then discretize it in the usual way.We choose the grid spacings in the x and y directions appropriately so thatthe oblique edge of 
 corresponds to an oblique line through appropriategrid points. Interior points inside the grid as well as those on the left andright boundaries satisfy the same Ginzburg-Landau �ve-point stencil givenby (2.19). Those on the upper and lower boundaries, however, satisfy asimilar stencil with upper and lower neighbors replaced by points lying onthe opposite boundary determined by drawing a line parallel to the obliqueedge of 
. For this type of stencil, the upward/downward version of oursweeping algorithm is applicable.3 The Sweeping MethodIn this section, we describe the theory of the sweeping method. The methodis suitable for a general �ve-point stencil in which the coe�cient for the\right" neighbor is never zero. A modi�ed algorithm works when \right" isreplaced by \left," \up," or \down," In a simpler form, it can be used toinvert banded, almost triangular, or cyclic matrices. Let us start by usinga cyclic tridiagonal system as an example. Such systems arise in the dis-cretization of periodic boundary value problems of second-order di�erentialequations. 13



We would like to solve for the unknown vector x in the equationKx = 0BBBBB@ �a1 1 �b1�b2 �a2 1: : :: : 11 �bn �an 1CCCCCA0BBBBB@ x1x2::xn 1CCCCCA = 0BBBBB@ c1c2::cn 1CCCCCA = c: (3:1)We assume that the matrix K is nonsingular. The method works equallywell even if the entries in K below the diagonal are nonzero.We start by shooting out a \solution" with x1 = 0; x2 = 0. This \so-lution" is computed to satisfy as many equations of the system as possi-ble, while we move down the rows. From the second row, we get x3 =a2x2 + b2x1 + c2. We continue to solve for x4; � � �xn, recursively, by go-ing down the rows. As we come to the (n � 1)st row, the \solution"x = fx1; x2; � � � ; xng has already been completely determined. As we plugthe values of xn�1 and xn into the last and then the �rst rows, chances arethe two equations are not satis�ed. The errors�1 = cn + anxn + bnxn�1 (3:2)and �2 = c1 + b1xn (3:3)indicate by how much we have missed the target. In other words, x is not acorrect solution to (3.1), but rather toKx = c+ (�2; 0; � � � ; �1)0: (3:4)Next we use the linearity of the operator K to seek a correction to the\solution" by considering the homogeneous system associated with (3.1):Ky = 0: (3:5)We do a similar shooting for (3.5), with initial values y1 = 1 and y2 = 0.Again, we end up with a \solution" y having errors �11; %21 6= 0 (otherwise,K would be singular): Ly = (�21; 0; � � � ; �11)0: (3:6)14



We do one more shooting with initial values z1 = 0 and z2 = 1 and obtainthe corresponding errors �12 and �22. The two error vectors form a matrixR =  �11 �12�21 �22 ! : (3:7)We solve the 2� 2 matrix equationR �1�2 ! =  �1�2 ! (3:8)to �nd the correction needed to adjust our �rst shooting to hit the target.In fact, the linear combinationx� �1y� �2z (3:9)is now a solution of (3.1).It is easy to see how this method can, in theory at least, be extendedto handle �ve-point stencils exempli�ed by the discrete Ginzburg-Landauoperator. It can be veri�ed that the discrete Ginzburg-Landau operator is aHermitian operator on the complex vector space of dimension N �N (overN2 grid points). It is also not di�cult to see that it is a negative de�niteoperator. It is, therefore, nonsingular.We �rst sweep (shoot) the nonhomogeneous system, starting from theright edge of 
. As initial starting values, we need values of  to be givenfor apprpriate initial grid points. The most obvious choice is to let  = 0 forall points in the �rst two columns. Since each point in the second columnis related to its four neighbors by the stencil and the only one that is notknown at the moment is the right-hand neighbor, the latter can be easilydetermined by using the coe�cients of the stencil and the nonhomogeneouspart of the system of equations. The values of  on points in the thirdcolumn are, therefore, determinable. We continue this sweeping action untilthe right boundary of 
 is reached, and wrap around to the �rst two columnsto compute the errors. Note that the two columns give a total of 2N errors,to be combined to form a vector � of length 2N .Another choice of initial grid points is to take every other point in the�rst four columns in a checkerboard pattern. Every one of the remainingpoints in the second and third columns is surrounded by four initial points,and so the stencil can be used to determine  at that point.15



To compute the rectifying matrix R, we go to the homogeneous stencil.For each grid point in the two initial columns, we do a sweep with initialvalue 1 at the the chosen point and 0 elsewhere. Each sweeping yields anappropriate column in R. As before, �R�1� gives the correct initial valuesthat would give the exact solution to the system.How much computation is involved in the algorithm? The initial sweep-ing of the nonhomogeneous system requires 4N multiplications and just asmany additions. Each sweeping of the homogeneous system needs somewhatless, since on part of the columns in the left half of 
,  will be zero, andnonhomogeneous terms are not present. The total is on the order of O(N2).The main bulk of the computation is, therefore, in the inversion of R, whichis on the order of O(N3).Parallelism can be exploited in many parts of the method. In the step forgetting each new column in the sweeping, the computation for each point inthe column can be done independently of the others. Then the 2N sweepingsof the homogeneous system can be carried out in parallel.A modi�cation of the method allows the doubling of parallelism. One cansweep simultaneously in both directions on either side of the initial columns(provided that the coe�cients of the stencil are nonzero, as is the case inthe discrete Ginzburg-Landau operator). One starts with two columns atthe center of the grid and sweeps both left and right; the error vector iscomputed as the sweeping fronts wrap around and meet.One can also extend the well-known idea of multiple shooting to multiplesweeping. One starts with k sets of two initial columns spaced uniformlyapart and sweeps in both directions. There are then 2kN unknowns to besolved.The inverse of the �ve-point stencil is embedded in the inverse of R. In anumerical application in which the inverse of the operator is needed for morethan a few times, it is more worthwhile to have R�1 computed explicitly andstored. This is the case in the solution of the Ginzburg-Landau model inwhich a Newton method is necessitated by the nonlinearity. In one approach,in which the two Ginzburg-Landau equations are to be solved simultaneouslyin each Newton cycle, the vector potential A, and hence the Ginzburg-Landau operator, changes from one step to another. In other words, theinverse R�1 has to be computed for each step. In practice, however, A doesnot change much from one step to another. If one uses the quasi-Newton16



method, one can use the same R�1 for several steps before computing a newone. In another approach, the Gauss-Seidel principle is used. Each of thetwo Ginzburg-Landau equations is solved in turn, for  and A, respectively,assuming the value of the other variable as found in the last iterative step.Then the same R�1 is used many times in each of the steps involving thesolution for  .If the coe�cients of the stencil allow it, one can also start with two initialrows of grid points and sweep in the upward/downward direction.In the numerical simulation of a time-dependent version of the Ginzburg-Landau equations, it is important to be able to �nd the largest eigenvalue ofthe discrete Ginzburg-Landau operator and the associated eigenvector. In awell-known algorithm for computing the smallest eigenvalue, the inverse ofthe operator is applied to a �xed vector a large number of times. Once R�1is known, this algorithm can be applied to the Ginzburg-Landau operatorwithout di�culty.4 Partial Sweeping and Iterative AlgorithmsWe have tested the sweeping method using MATLAB and Fortran codes.In most cases, single-direction sweeping works satisfactorily for N up toabout 12, and two-direction sweeping works for N up to about 18. Beyondthis, the rectifying matrix R is so illconditioned that the inverse obtained isunreliable. As the columns are solved one by one, the test \solution" x growsexponentially, giving the matrix R very large entries. The ratio between thelargest and smallest eigenvalues of R can turn out to be extremely large.Details of the numerical experiments will be given in a forthcoming report.As an example, we used the single-direction method and the �rst twocolumns as initial columns to solve the Ginzburg-Landau operator given by(see (2.6){(2.12))A(x; 0) = 0; A(x; Ly) = 2:25717254215814; (4:1)A is linear; (4:2)B(x; y) = 0; (4:3)and n = 2; Ly = 3; N = 15: (4:4)17



The entry in R with the maximum absolute value is on the order of 7�1015,and the ratio of the largest to the smallest eigenvalue of R is on the order of1016. Indeed, any kind of numerical computation on such an illconditionedmatrix is highly unreliable. We found that even the associative law is notsatis�ed (numerically); MATLAB givesmax(abs((RO)R� R(OR)) � 7� 1016; (4:5)where O is the square matrix with all ones.The sweeping method works better for an important class of �ve-pointstencils, the Dirichlet stencils, which arise in partial sweeping algorithms dis-cussed below. These are stencils for which the �rst column of L and the lastcolumn of R are zeros. Numerical experiments can handle well such stencilswith N up to 40, by using two-direction, two-stage sweeping algorithms.The use of multi-stage algorithms will de�nitely permit larger N .Although straightforward sweeping proves to be impractical for largesystems, many ideas can be borrowed from other methods to obtain usablemodi�cations. These include the technique of divide and conquer (in theform of domain decomposition) and alternating directions. Most of theprocedures suggested below have been tried in sample cases. A thoroughinvestigation will constitute an extensive future project.In an iterative scheme, one computes a sequence of approximate solutionsxn ! x (converging to the exact solution x ):L n = cn ! c; (4:6)where L stands for the discrete Ginzburg-Landau operator or some suitable�ve-point stencil. In each step, instead of computing  n directly, we lookfor a correction � to be added to  n�1, by solvingL� = c � L n�1 = �n (4:7)as accurately as possible. This is usually achieved by using the best ap-proximate inverse for L found so far. There is the possibility that the errorintroduced in solving (4.7) may actually increase the error term �n+1 for thenext step and that the algorithm will fail to converge. Suppose this is notthe case; then the process is terminated when �n becomes su�ciently small.The method of domain decomposition implies a block decomposition ofthe matrices  n, �n, and others. The blocks need not be square, and they do18



not necessarily have equal dimensions. For instance, an N �N matrix canbe decomposed into horizontal strips of dimension m�N or square blocks ofdimension m�m, or a mixture of the two types. The idea is then to solve,for each block, only the subset of equations given by the stencil and only forthose unknowns that fall within the subdomain. Referring to equation (4.7),we are, in fact, assuming the components of � to be 0 outside the subdomainand attempt to change the values of those components inside the subdomainso as to satisfy as many equations as possible (all those that fall within thedomain). In doing so, the stencil equations at all the grid points touchingthe subdomain may be violated. We describe this process as sweeping theerrors represented by �n in the subdomain to all the adjoining grid points.The hope, of course, is that the process of sweeping does not merely movethe errors around, but reduces them through the adjustment of � inside thesubdomain.Fortunately, for operators derivable from an optimization problem, suchas the discrete Ginzburg-Landau operator, this hope is substantiated. Solv-ing the stencil in a subdomain is equivalent to minimizing the energy func-tional under the constraint that the values of the unknown function are�xed at points outside the subdomain. Hence, after sweeping each subdo-main, the functional is strictly decreased, and the total error is, in someappropriate sense, strictly decreased. It then follows that the error can onlyconverge to zero. The idea of the method is de�nitely not new. It can betraced back, for example, to the method of balayage of Poincar�e (see [6])in proving the existence of a solution to the Laplace equation. A theoret-ical proof of convergence is, of course, not a guarantee for convergence ina numerical implementation; as usual, rounding errors can cause trouble.A typical safeguard is to have the functional computed after each iterativestep and to make sure that it has really decreased.Let us also give a heuristic justi�cation for the method of partial sweep-ing. The fact that R is very illconditioned means that a slight change in theinitial guesses, assigned on the initial columns, can produce, after sweeping,huge errors in the last column. To a lesser extent, a slight change in thevalues on the two columns adjoining the left or right boundaries of a sub-domain corresponds to large errors at columns far away from the boundary,namely, those near the interior. Conversely, if one wishes to eliminate errorsappearing in the interior of a subdomain, one does not expect much adjust-ment required to those points outside the subdomain. Hence, one may aswell assume that they have �xed values when trying to reduce errors that19



occur in the interior of the subdomain. The argument, of course, fails forerrors that are still within the subdomain but near the boundary. We shalldescribe below a possible way to deal with this situation.In general, the convergence of the sequence of approximate solutions de-pends on the spectral radius of the partial operators that are being invertedand the relative errors incurred by the splitting of the operator.The sweeping algorithm described in Section 3 has to be modi�ed forpartial sweeping. Let us �rst consider a subdomain bounded on all sides bygrid points with �xed  values. The choice of sweeping direction is a matterof convenience, since all choices lead to identical results. Suppose we decideto sweep from the left. We now need only one initial column. A good choiceis the second one next to the left boundary, since we can make use of theknown values of  on the column just left of the boundary. Let m be thelength of the columns. The last column at the right-hand boundary is usedto give the error vector and the columns in the rectifying matrix R. Thesweeping process, therefore, involves m unknowns and the inversion of them �m matrix R. When compared with complete sweeping, we have fewercolumns to sweep through (and so less room for the computed numbers togrow) and signi�cantly fewer unknowns to solve for. Of course, we pay theprice by having to iterate.We can also do a two-direction sweeping, namely, inward from the leftand the right boundaries of the subdomain. This will require solving for2N unknowns, to give the initial values to be used at the �rst and thelast columns. This can be done in parallel, though. The most importantadvantage of a two-direction sweeping is its increased stability.We have also devised a two-stage sweeping in which one half of thedomain is swept �rst and then the second half is swept without residualerror in a way dependent on the outcome of the �rst sweeping. This is notan interative procedure. The idea can be easily extended to get a multi-stagesweeping.The case of a subdomain that spans the entire length or width of  ,such as a horizontal strip of size m � N , is slightly di�erent. We havea choice of sweeping horizontally (and need two initial columns), leadingto the inversion of a possibly illconditioned 2m � 2m matrix, or sweepingvertically, leading to the inversion of an N � N matrix. When N � 2m,the obvious choice is the latter. When N is much larger than m, one may20



be tempted to use horizontal sweeping to avoid the excessive computationrequired in dealing with a large N �N matrix. However, one can see with asimple example that the N�N matrix R is a banded matrix, allowing someknown iterative methods to be employed. One can, in fact, apply anotherdomain decomposition technique to the strip itself.One very attractive feature of domain decomposition is that the sub-domains can be swept independently of each other, and hence, in parallel.Thus, one iterative cycle consists of the simultaneous sweeping of all thesubdomains in one decomposition.We do not have to use the same decomposition in every cycle. In fact,this is not even advisable. After each cycle, the errors have been sweptfrom the interior of each subdomain towards the boundary. Sometimes,the resulting errors may appear to be large, especially when compared to anapproximate solution for which the errors are more or less evenly distributedamong all the grid points. As we have argued above, errors swept from deepinside a domain have a better chance of being reduced during the processthan errors that are present near the boundary. We can make use of thisobservation as we progress. The strategy we suggest is that in the nextcycle, these boundary points (or as many of them as possible) be made theinterior of the subdomains of a new decomposition.As a concrete example, we can use two alternating decompositions, the�rst a familiar checkerboard pattern of m�m square blocks (where m is afactor of N), and the second obtained by shifting the square blocks by m=2rows and m=2 columns. The half-size rectangles appearing on the top, aswell as those on the left, are to be joined with the corresponding half onthe bottom and the right respectively. Likewise, the four small squares atthe four corners are to be united as one subdomain. As another example,the �rst decomposition is made of horizontal strips of size m � N and thesecond decomposition obtained by a shifting of m=2 rows. An alternative isto choose the second decomposition using vertical strips of size N�m. Thisis an extension of the familiar method of alternating directions.The idea can be extended: We can use multiple domain decompositionwithin a single computational cycle. This strategy is proposed to overcomethe fact that partial sweeping is less e�ective for errors occurring near theboundaries of subdomains. Since the operator L is linear, one can break(4.7) up into a linear combination of similar systems, by breaking �n upinto several terms, each having nonzero entries only at the interiors of the21



subdomains of a suitable domain decomposition. All of these are then solvedin parallel (and each with a parallel partial sweeping).Since errors in the interior of a domain have a diminished e�ect on therequired adjustments at the boundary grid points, we use yet another modi-�cation of the sweeping algorithm. Instead of computing R�1 and using it todetermine the initial column, we compute matrices to give two or more inte-rior columns. The remaining columns can be �lled in by backward sweeping.We do not rely completely on backward sweeping because of its instability.When the inversion of the original stencil is used in conjunction withNewton's method, an exact inversion of the stencil is probably not necessary.Some errors are likely to arise in each Newton step anyway, so a moderatelyaccurate inversion is all that is needed for practical purposes. This meansthat a few cycles of partial sweepings are usually su�cient in each Newtoniteration.Finally, we mention the idea of multigrid. Although we have not im-plemented this directly into our sweeping algorithm, it has been used inconnection with solving the Ginzburg-Landau equations. The idea is tostart with a coarser grid discretization to obtain a �rst approximation tothe solution of the Ginzburg-Landau equation. A �ner grid is then used,and the new Newton procedure starts with an initial guess given by inter-polating the �rst approximate solution. Having a good initial guess greatlyspeeds up the convergence.Acknowledgments I thank my colleagues Paul Plassmann and SteveWright for many useful discussions and for sharing their recent work, es-pecially in making available their numerical codes. I also thank Shirin R.Bar-Sela for writing some of the MATLAB programs and performing manyof the numerical experiments. Miss Bar-Sela is a participant in the spring1992 Student Research Participation Program at Argonne National Labo-ratory and is currently an undergraduate at the University of Houston {Downtown.References[1] Abrikosov, A., On the magnetic properties of superconductors of thesecond type, Zh. Eksperim. i Teor. Fiz., 32 (1957), 1442{1452. [English22
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