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ABSTRACTThe development of algorithms and software for the solution of large-scale optimizationproblems has been the main motivation behind the research on the identi�cation propertiesof optimization algorithms. The aim of an identi�cation result for a linearly constrainedproblem is to show that if the sequence generated by an optimization algorithm converges toa stationary point, then there is a nontrivial face F of the feasible set such that after a �nitenumber of iterations, the iterates enter and remain in the face F . This paper develops theidenti�cation properties of linearly constrained optimization algorithms without any non-degeneracy or linear independence assumptions. The main result shows that the projectedgradient converges to zero if and only if the iterates enter and remain in the face exposedby the negative gradient. This result generalizes results of Burke and Mor�e obtained fornondegenerate cases.



EXPOSING CONSTRAINTSJames V. Burke� and Jorge J. Mor�e1 IntroductionThe development of algorithms and software for the solution of large-scale constrainedoptimization problems, minff(x) : x 2 
g; (1:1)has been the main motivation behind the research on the identi�cation properties of opti-mization algorithms. Much of this research has been done under the assumption that theset 
 is a general convex set and that the stationary points of the optimization problem(1.1) are nondegenerate. In this work we show that it is possible to develop the identi�ca-tion properties of linearly constrained optimization algorithms without any nondegeneracyor linear independence assumptions.The aim of an identi�cation result is to show that if fxkg is a sequence in 
 thatconverges to a stationary point x�, then there is an index k0 > 0 and a nontrivial faceF (x�) of 
 with xk 2 F (x�) for all k � k0. These results are of importance because theyshow that eventually the behavior of the algorithm is determined by the properties of f onthe face F (x�). For recent work on the identi�cation properties of optimization algorithmssee, for example, Conn, Gould, and Toint [7]. Dunn [11], Wright [24], Burke [3], Burke,Mor�e, and Toraldo [5], Lescrenier [17], Wright [25], and Kelley and Sachs [16].In linearly constrained problems an identi�cation result can also be expressed in termsof the indices of the active constraints. For example, if 
 has the speci�c representation
 = fx 2 IRn : hcj; xi � �j ; 1 � j � mg ; (1:2)for some vectors cj 2 IRn and scalars �j , then all faces F of 
 are of the formF = fx 2 
 : hcj; xi = �j ; j 2 A(F )gfor some index set A(F ). Thus, identi�cation results can be given in terms of an index setthat de�nes the face F (x�). In this paper we obtain results in terms of the face structureof 
; results in terms of index sets of active constraints are direct consequences of theseresults.An important consequence of the assumption that the stationary point x� is nondegen-erate is that F (x�) is the unique face of 
 that contains x� in the relative interior. Thus, itWork supported in part by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch of the U.S. Department of Energy under Contract W-31-109-Eng-38.�Permanent address: Department of Mathematics, University of Washington, Seattle, Washington 98195.Work supported in part by the National Science Foundation grant DMS-9102059.1



follows that xk 2 ri fF (x�)g for all k � k0, where ri f�g denotes the relative interior. One ofthe main di�culties in extending identi�cation results to the degenerate case is that theremay be no face F (x�) such that xk 2 ri fF (x�)g for all k su�ciently large. However, weshow that there is a face F (x�) such that xk 2 F (x�) for all k su�ciently large.The approach in this paper is reminiscent of the approach of Burke and Mor�e [4]. Inparticular, the approach depends on the concept of an exposed face, and on the facialgeometry of a convex set 
. These results are developed in Sections 2 and 3. The de�nitionof an exposed face and several important properties of exposed faces are presented in Section2, while Section 3 contains a key result on the existence of a partition of IRn based on theface structure of 
.The main result of this paper appears in Section 4. This result is a characterization ofthe identi�cation properties of a sequence fxkg in terms of the projected gradient and theface E[�rf(x�)] of 
 exposed by �rf(x�). If f : IRn ! IR is continuously di�erentiableon the polyhedral set 
, and fxkg is a sequence in 
 that converges to a stationary pointx� of (1.1), then we show that limk!1 PT (xk) [�rf(xk)] = 0 (1:3)if and only if there is a k0 > 0 such thatxk 2 E[�rf(x�)]; k � k0: (1:4)This result has important rami�cations because optimization algorithms for linearly con-strained problems tend to satisfy (1.3). This can be seen by noting that if the polyhedralset 
 has the representation (1.2), then the projected gradient isPT (x) [�rf(x)] = �rf(x) + Xj2A(x)�jcj ;where A(x) is the set of active constraints at x 2 
, and �j is a nonnegative estimate (aprecise de�nition is given in Section 6) of the Lagrange multiplier for the i-th constraint.The identi�cation property (1.4) can be expressed in terms of Lagrange multipliers atthe solution because we show that E[�rf(x�)] is de�ned in terms of the active set byx 2 E[�rf(x�)] () fi 2 A(x�) : ��i > 0g � A(x); x 2 
;where ��i is the Lagrange multiplier for the i-th constraint. This result depends on thechoice of Lagrange multipliers.The identi�cation property (1.4) has an equivalent formulation that is clearly indepen-dent of the choice of Lagrange multipliers. Section 5 shows that it is possible to de�ne aset of strictly binding constraints B�s at a stationary point x� independent of the choice ofLagrange multipliers, and thatx 2 E[�rf(x�)] () B�s � A(x); x 2 
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This leads, in particular, to a version of the results of Section 4 in terms of B�s .Section 4 also contains a discussion of the connection of these result to the identi�cationresults of Burke and Mor�e [4], and to the convergence results for the class of trust regionmethods for bound constrained optimization problems proposed by Conn, Gould, and Toint[7, 8]. The connection between these results and the class of trust region methods for generallinearly constrained methods analyzed by Mor�e [18] and Burke, Mor�e, and Toraldo [5] willbe reported in a later paper.We end the paper with two applications of these identi�cation results. Section 6 ex-amines the in
uence of degeneracy on the standard second-order su�ciency conditions. Inparticular, we show that if x� is degenerate, a satisfactory convergence analysis can be ob-tained if we assume that r2f(x�) is positive de�nite on the a�ne hull of E[�rf(x�)]� x�.Section 7 examines the implication of the identi�cation results to the GPCG algorithm ofMor�e and Toraldo [19]. In particular, we show that the convergence condition of the GPCGalgorithm is satis�ed in a �nite number of iterations even when the solution is degenerate.2 Exposed FacesThe geometric approach to the identi�cation properties of optimization algorithms requiresan understanding of the face structure of a convex set 
. In this section we provide someof the necessary results and background from convex analysis.Recall that the a�ne hull a� f
g of a convex set 
 in IRn is the smallest a�ne set thatcontains 
, and the relative interior ri (
) of 
 is the interior of 
 relative to a� f
g. Inall cases we assume that 
 is not empty.A nonempty subset F of a convex set 
 is a face of 
 if every convex subset of 
 whoserelative interior meets F is contained in F . Thus, if x and y are in 
 and �x+ (1��)y liesin F for some � in (0; 1), then both x and y must belong to F . A basic result on the facestructure of a convex set is that the relative interiors of the faces of 
 form a partition of
. For future reference, we state this result formally.Theorem 2.1 If F is the collection of all faces of the convex set 
, then the collectionfri (F ) : F 2 Fgis a partition of 
.This result can be found, for example, in Rockafellar [22, Theorem 18.2]. Note that thisresult shows that every point x 2 
 can be associated with a unique face F (x) of 
 suchthat x 2 ri (F ).We are concerned with faces of 
 that are exposed by a given vector d in IRn. Anonempty subset F of a convex set 
 is exposed by a vector d 2 IRn if F = E(d), whereE(d) = argmaxfhd; xi : x 2 
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Figure 2.1: Convex set de�ned by (2.1)for some inner product h�; �i of IRn. A computation shows that E(d) is a face whenever E(d)is not empty.Every face of a polyhedron is exposed (see, for example, Theorem 2.4.12 of Stoer andWitzgall [23]), but this is not the case for general convex sets. For example, in the convexset 
 de�ned by 
 = �(�1; �2) : �1 � �2 � (1� �21)12 ; 0 � �1 � 1� ; (2:1)the point (1; 0) is a face of 
 that is not exposed by any vector. This can be seen clearly inFigure 2.1.The concept of an exposed face is closely related to the concept of a normal cone. Fora convex set 
, the normal cone at x in 
 is de�ned byN(x) = fu 2 IRn : hu; y � xi � 0; y 2 
g :The tangent cone T (x) is the dual of the normal cone. Thus v 2 T (x) if and only if hv; ui � 0for all u 2 N(x). The tangent cone T (x) can also be de�ned as the closure of all vectorsv 2 IRn such that x+ �v 2 
 for all � > 0 su�ciently small.Exposed faces and normal cones are related by the observation that x 2 E(d) if andonly if d 2 N(x). We make use of this observation throughout this section.The concept of an exposed face is also related to the standard �rst-order optimalityconditions for problem (1.1). Recall that the standard �rst order conditions for a stationarypoint x� of problem (1.1) are thathrf(x�); x� x�i � 0; x 2 
:In terms of normal cones, this is equivalent to requiring that�rf(x�) 2 N(x�):The following result shows the connection between stationary points and exposed faces.4



Lemma 2.2 If 
 in IRn is a closed convex set, then x� is a stationary point for problem(1.1) if and only if x� 2 E[�rf(x�)].The proof of this result is a direct consequence of the observation that x 2 E(d) if andonly if d 2 N(x).Lemma 2.2 shows that any stationary point x� belongs to the exposed face E[�rf(x�)].The stationary point x� may belong to other faces of 
, but in Section 4 we show thatoptimization algorithms tend to generate sequences fxkg with xk 2 E[�rf(x�)] for all ksu�ciently large. In this section we develop part of the necessary machinery for this result.We extend the concept of normal and tangent cones at a point x 2 
 by de�ning anormal cone N(F ) and a tangent cone T (F ) for each F 2 F byN(F ) � N(x); T (F ) � T (x); x 2 ri (F ) :This de�nition relies on the result of Burke and Mor�e [4] that normal and tangent conesare independent of x 2 ri (F ) for any F 2 F .The intersection of an arbitrary collection of faces is easily shown to be a face, but theunion of faces is not necessarily a face. On the other hand, the following result shows thatthe union of all faces F 2 F such that d 2 N(F ) is the face exposed by d.Lemma 2.3 If 
 in IRn is a closed convex set, thenE(d) = [F2F(d)Ffor any d 2 IRn, where F(d) is the collection of faces F 2 F such that d 2 N(F ).Proof. Assume �rst that x 2 E(d). Then d 2 N(x), and since Theorem 2.1 guaranteesthat x 2 ri (F ) for some F 2 F , we have d 2 N(x) = N(F ). This shows thatE(d) � [F2F(d)F:We complete the proof by showing that if F 2 F(d) then F � E(d). Assume that x 2 F forsome F 2 F(d). We can choose a sequence fxkg with xk 2 ri (F ) such that fxkg convergesto x. Since xk 2 ri (F ) and d 2 N(F ), we have d 2 N(xk), and hence, xk 2 E(d). Since theexposed face E(d) is closed and fxkg converges to x, we obtain that x 2 E(d) as desired.� The proof of Lemma 2.3 yields the stronger result that fri (F ) : F 2 F(d)g is a partitionof E(d). This result, however, is not needed in this paper.Lemma 2.3 also shows that if d 2 N(F ) for some F 2 F , then F � E(d). For ageneral convex set 
, it is di�cult to characterize the vectors d 2 N(F ) that expose a faceF . On the other hand, the following result of Burke [3, Theorem 4.1] provides a completecharacterization for polyhedral 
. 5



Theorem 2.4 Let 
 be a polyhedral set in IRn.If x 2 
, then x 2 ri fE(d)g if and only if d 2 ri fN(x)g.If F 2 F, then F = E(d) if and only if d 2 ri fN(F )g.Burke [3] proved only the �rst claim in Theorem 2.4, but it is not di�cult to show thatboth claims are equivalent.Theorem 2.4 fails if 
 is a general convex set. For example, if 
 is the set in Figure2.1, and F = f(1; 0)g, then F is not exposed by d = (1; 0), but d 2 ri fN(F )g. Moreover,if F = E(d) for d = (0; 1), then d exposes F , but d =2 ri fN(F )g. This example shows thatthe assumption of polyhedrality is required in Theorem A.1 of Burke [3].The above example also shows that a face may not be exposed by a vector d 2 ri fN(F )g.In the remainder of this section we show that F is exposed by a vector d 2 ri fN(F )g if Fis a quasi-polyhedral face. This result is of interest because it leads to a connection withthe identi�cation results of Burke and Mor�e [4] for general convex sets. However, note thatthe remainder of this section is not needed for the main results in this paper.Burke and Mor�e [4] de�ned quasi-polyhedral faces in terms of the lineality of the tangentcone T (x). Recall that for a cone K in IRn, the lineality lin fKg of the cone K is the largestsubspace contained in K. Hence, lin fKg = K \ (�K).De�nition. A face F of a convex set 
 is quasi-polyhedral ifa� fFg = x+ lin fT (x)g ; x 2 ri (F ) :The convex set 
 in Figure (2.1) can be used to illustrate the di�erence between exposedfaces and quasi-polyhedral faces. This set has an in�nite number of faces, but the only facethat is not exposed by a vector d 2 ri fN(F )g is F = f(0; 1)g. Also note that 
 has sixquasi-polyhedral faces and that these faces are exposed by any vector d 2 ri fN(F )g.Burke and Mor�e [4] show that the lineality of the tangent cone is the orthogonal com-plement of the normal cone, that is,lin fT (x)g = N(x)?;where the orthogonal complement S? of a set S is the subspace of vectors v such thathv; wi = 0 for all w 2 S. This implies thatlin fT (x)g? = a� fN(x)g :These results lead to the decompositionT (x) = lin fT (x)g � lin fT (x)g? \ T (x) (2:2)of the tangent cone. This result is valid if T (x) is replaced by a general convex cone K.See, for example, Stoer and Witzgall [23, Theorem 2.10.5].6



Theorem 2.5 A quasi-polyhedral face F of a convex set 
 is exposed by any d 2 ri fN(F )g.Proof. The bulk of the proof consists of proving that if x 2 
, thenE(d) = 
 \ [x+ lin fT (x)g]; d 2 ri fN(x)g : (2:3)Given this result, we complete the proof by noting that F = 
 \ a�fFg for any face of 
,and thus F = 
 \ [x+ lin fT (x)g]; x 2 ri fFg ;for a quasi-polyhedral face. Hence (2.3) yields that F = E(d) if d 2 ri fN(x)g = ri fN(F )g.We now prove that (2.3) holds; we �rst show that 
 \ [x + lin fT (x)g] is a subset ofE(d). Choose any y in 
 \ [x + lin fT (x)g]. Then y � x 2 lin fT (x)g = N(x)?, and sinced 2 N(x), we obtain that hd; y � xi = 0. Since y 2 
, this implies that y 2 E(d).We now show that E(d) is a subset of 
\ [x+ lin fT (x)g]. Choose any y in E(d). Theny 2 
, and thus y � x 2 T (x). The decomposition (2.2) of the tangent cone T (x) showsthat we can writey � x = v1 + v2; v1 2 lin fT (x)g ; v2 2 lin fT (x)g? \ T (x):If we show that v2 = 0, then y � x = v1 2 lin fT (x)g as desired. We �rst show thathd; v2i = 0. Note that hd; y � xi = 0 because both y and x belong to E(d), and thathd; v1i = 0 because d 2 N(x) and v1 2 lin fT (x)g = N(x)?. Hence, hd; v2i = 0.We claim that v2 = 0 since d 2 ri fN(x)g, v2 2 lin fT (x)g? = a� fN(x)g, and hd; v2i = 0.The proof of this claim is not di�cult. Since d 2 ri fN(x)g and v2 2 a� fN(x)g, we obtainthat d+ �v2 2 N(x) for � > 0 su�ciently small. We now use that v2 2 T (x) to obtain thathd+ �v2; v2i � 0. Since hd; v2i = 0, this implies that v2 = 0, as desired. �3 Face GeometryThe main result of this section is a partition of IRn in terms of the face structure of a convexset. We then use this result to extend Lemma 3.3 of Burke and Mor�e [4]. As we shall see,this extension is crucial to the results on exposing constraints.Our development requires a few basic properties of projection operators. The projectionP : IRn ! 
 into a closed convex set 
 is de�ned byP (x) = argmin fky � xk : y 2 
g ;where k � k is an inner-product norm. This de�nition implies that the projection operatorP can be characterized in terms of the inner product h�; �i by requiring thathx� P (x); y � P (x)i � 0; y 2 
:7



In terms of normal cones, this characterization requires thatx� P (x) 2 N [P (x)] (3:1)In particular, note that this characterization implies thatP (x+ z) = x; x 2 
; z 2 N(x): (3:2)We extend this result by proving thatP (x + z) = x; x 2 F; z 2 N(F ) (3:3)for any face F 2 F . We prove (3.3) by noting that if fxkg is a sequence in ri (F ) thatconverges to x, then z 2 N(F ) = N(xk), and thus (3.2) implies that P (xk + z) = xk . Theresult now follows from the continuity of the projection operator.We now present two decompositions of IRn in terms of the face structure of a convexset. The �rst decomposition extends a result of Go�n [15] for polyhedral 
.Theorem 3.1 If 
 is a closed convex set in IRn, then the collectionfri (F ) +NfFg : F 2 Fgforms a partition of IRn.Proof. Let x 2 IRn, and note that x = P (x) + [x�P (x)]. Certainly P (x) 2 ri (F ) for someF 2 F , and thus the characterization (3.1) of the projection operator implies thatx� P (x) 2 N [P (x)] = N(F ):Hence, x = P (x) + [x� P (x)] belongs to ri (F ) +N(F ), and thusIRn = [F2F [ri (F ) +N(F )] :We now show that this decomposition of IRn is a partition. Assume that xi 2 ri (Fi) andzi 2 N(Fi) satisfy x1 + z1 = x2 + z2 for some F1 and F2 in F . Then (3.2) implies thatx1 = P (x1 + z1) = P (x2 + z2) = x2:Thus, ri (F1) \ ri (F2) 6= ;. Since the relative interiors of the faces of 
 form a partition of
, we must have F1 = F2 as desired. �Theorem 3.1 suggests that it may be possible to decompose IRn in terms of sets of theform F +ri fN(F )g. We now show that this is possible provided 
 is polyhedral. The proofis similar to that of Theorem 3.1, but depends heavily on Theorem 2.4.8



Theorem 3.2 If 
 is a polyhedral set in IRn, then the collectionfF + ri fN(F )g : F 2 Fgforms a partition of IRn.Proof. If we de�ne F = E[x� P (x)], then Theorem 2.4 shows that x� P (x) 2 ri fN(F )g.Moreover, since x� P (x) 2 N [P (x)], we obtain that P (x) 2 E[x� P (x)] = F . Hence,x = P (x) + [x� P (x)] 2 F + ri fN(F )g :This proves that IRn = [F2F [F + ri fN(F )g] :We now prove that this decomposition of IRn is a partition. Assume that xi 2 Fi andzi 2 ri fN(Fi)g satisfy x1 + z1 = x2 + z2 for some F1 and F2 in F . Then (3.2) implies thatx1 = P (x1 + z1) = P (x2 + z2) = x2:Thus, z1 = z2. Since zi 2 ri fN(Fi)g, Theorem 2.4 shows that Fi = E(zi), and thus z1 = z2implies that F1 = F2 as desired. �Theorem 3.2 does not hold for general convex sets 
. For example, if 
 is the convexset shown in Figure 2.1, then any point of the form (0; �) with � > 1 does not belong toa set of the form F + ri fN(F )g for F 2 F . On the other hand, Theorem 3.1 shows that(0; �) with � > 1 must belong to a set of the form ri (F )+NfFg; a computation shows thatF = f(0; 1)g.We proved Theorems 3.1 and 3.2 because of the interest in partitions of IRn in terms ofthe faces of a convex set. In the remainder of this section, however, we only need to knowthat if 
 is polyhedral then the collection fF +N(F ) : F 2 Fg covers IRn. Clearly, bothTheorems 3.1 and 3.2 yield this result.In the proof of the lemma below we make use of the result that if 
 is polyhedral then
 has a �nite number of faces. This result can be found, for example, in Rockafellar [22,Theorem 19.1]. We also need to know that if 
 is closed and convex, then any face of 
 isclosed. For this result, see Stoer and Witzgall [23, Theorem 3.6.6].Lemma 3.3 Assume that 
 is a polyhedral set in IRn. If x 2 
 and d 2 N(x), thenx + d 2 intfK(d)g;where K(d) = [F2F(d)[F +N(F )];and F(d) is de�ned in Lemma 2.3. 9



Proof. The �rst step in the proof is to show that if F 2 F , then F +N(F ) is closed. Thede�nition of a normal cone shows that N(F ) is closed, and since 
 is closed, each face Fis closed. Now let fykg be a sequence in F + N(F ) that converges, and let yk = xk + zk ,where xk 2 F and zk 2 N(F ). Since (3.3) implies thatxk = P (xk + zk) = P (yk);and fykg converges, it follows that fxkg converges. Moreover, since yk = xk + zk, thesequence fzkg also converges. We now use that xk 2 F and zk 2 N(F ), to conclude thatfxkg converges to some x 2 F and fzkg converges to some z 2 N(F ). Hence, fykg convergesto x+ z in F +N(F ). This shows that F +N(F ) is closed.The next step in the proof is technical; we need to show that x+ d does not belong tothe set L(d) = [F =2F(d)[F +N(F )]:Theorem 3.1 shows that x+ d 2 F +N(F ) for some F 2 F . Let y 2 F and z 2 N(F ) besuch that x + d = y + z. Then (3.3) implies thatx = P (x+ d) = P (y + z) = y;and thus d = z 2 N(F ). Hence, F 2 F(d). This shows that x+ d =2 L(d) as desired.We have shown that F + N(F ) is closed for each F 2 F . Since 
 is polyhedral, thereis a �nite number of faces, and thus L(d) is closed. Moreover, since x + d =2 L(d), there isan open set U such that x + d 2 U and U \ L(d) = ;. Now note that Theorem 3.1 impliesthat K(d) [ L(d) = IRn, and thus U � K(d). Hence,x+ d 2 U � intfK(d)g;as desired. �Lemmas 2.1 and 3.3 are the ingredients needed to prove the main result of this section.Theorem 3.4 Let 
 be a polyhedral set in IRn. Assume that fxkg and fdkg are sequencesin IRn with xk 2 
 and dk 2 N(xk). If fxkg converges to x� and fdkg converges to d�, thenxk 2 E(d�) for all k su�ciently large.Proof. Lemma 3.3 implies that x� + d� 2 intfK(d�)g so that xk + dk 2 K(d�) for all ksu�ciently large. Since dk 2 N(xk),xk = P (xk + dk) 2 P [K(d�)]by virtue of (3.2). Now note that (3.3) and Lemma 2.1 imply thatP [K(d�)] � 8><>: [F2F(d�)P [F +N(F )]9>=>; = 8><>: [F2F(d�)F9>=>; = E(d�);10



and thus xk 2 E(d�) for all k su�ciently large. �Burke and Mor�e [4] proved a similar result for general 
 by assuming that x� 2 ri fFgfor a quasi-polyhedral face F and d� 2 ri fN(F )g. The assumption that d� 2 ri fN(F )g is anondegeneracy assumption that is avoided in Theorem 3.4 by assuming that 
 is polyhedral.Theorem 3.4 fails if 
 is a general closed convex set even if we assume that x� 2 ri fFgfor a quasi-polyhedral face F . For example, consider the set 
 shown in Figure 2.1. Thesequence fxkg de�ned by xk = �sin(�k ); cos(�k )�belongs to 
 for k > 1, and dk = xk 2 N(xk). However, fdkg converges to d� = (0; 1), andE(d�) = f(0; 1)g. Thus, xk =2 E(d�) for any k > 1.4 Exposing ConstraintsPrevious results on the identi�cation properties of algorithms in the neighborhood of astationary point either assumed linear independence of the active constraint normals ornondegeneracy of the stationary point. In this section we avoid these restrictions.De�nition. Given a convex set 
, a stationary point x� is nondegenerate if�rf(x�) 2 ri fN(x�)g : (4:1)This nondegeneracy condition is due to Dunn [10]. An advantage of this de�nition is thatit does not make any linear independence assumptions on the constraints. Also note thatBurke and Mor�e [4] proved that if 
 is polyhedral, then x� is nondegenerate if and onlyif there is a set of positive Lagrange multipliers. This result implies that this de�nition ofnondegeneracy can be viewed as a generalization of the standard strict complementaritycondition.The main result of this section is an extension of the following identi�cation result ofBurke and Mor�e [4]. For this result recall that F (x) is the unique face of 
 that contains xin the relative interior.Theorem 4.1 Let f : IRn ! IR be continuously di�erentiable on the closed, convex set 
.If fxkg is a sequence in 
 that converges to a nondegenerate stationary point x� of (1.1),then limk!1 PT (xk) [�rf(xk)] = 0 (4:2)if and only if there is a k0 > 0 such thatxk 2 ri fF (x�)g ; k � k0:11



An advantage of Theorem 4.1 is that it is independent of the representation of 
.For applications, however, it is necessary to express Theorem 4.1 in terms of a speci�crepresentation of 
. Note, in particular, that if 
 is the polyhedral set de�ned by the setof linear constraints 
 = fx 2 IRn : hcj; xi � �j ; 1 � j � mg ; (4:3)for some vectors cj 2 IRn and scalars �j , then Calamai and Mor�e [6] proved that theprojected gradient that appears in (4.2) can be expressed in the familiar formPT (x) [�rf(x)] = �rf(x) + Xj2A(x)�jcj ; (4:4)where the set of active constraints is de�ned byA(x) � fj : hcj; xi = �jg;and �j for j 2 A(x) solves the bound constrained linear least squares problemmin8><>:


rf(x)� Xj2A(x)�jcj


 : �j � 09>=>; :Also note that representation (4.4) of the projected gradient is unique even if the activeconstraints cj with j 2 A(x) are linearly dependent.Theorem 4.1 characterizes the limiting behavior of many algorithms with respect to theface structure of 
. For example, Burke and Mor�e [4] prove that the sequential quadraticprogramming algorithm and the gradient projection algorithm generate sequences that sat-isfy (4.2). Consequently, if the stationary point x� is nondegenerate, the sequences generatedby these algorithms eventually enter and remain in the relative interior of the face F (x�).This can be extremely useful knowledge in the design of algorithms for the solution of (1.1).Note that Theorem 4.1 gives information on the identi�cation of the active constraints.This is based on the observation of Burke and Mor�e [4] thatri fF (x�)g = fx 2 
 : hcj ; xi = �j ; j 2 A(x�); hcj ; xi > �j ; j =2 A(x�)g :Thus, Theorem 4.1 shows that if fxkg is a sequence in 
 that converges to a nondegeneratestationary point x� of (1.1), then the sequence fPT (xk) [�rf(xk)]g converges to zero if andonly if there is a k0 > 0 such thatA(xk) = A(x�); k � k0:The following example of Stephen Wright shows that this result fails in degenerate cases.Example. De�ne f : IR2 ! IR byf(�1; �2) = 12 ��21 + ��22�12



for some � > 1, and de�ne 
 � IR2 by
 = n(�1; �2) 2 IR2 : �1 � �2�2; �1 � ��2o :Note that f is a strictly convex quadratic and that x� = 0 is the global minimizer in 
. Acomputation shows that the steepest descent iterates are generated by �1�2 !+ = � � 1�21 + �3�22  �2�1�22��21�2 ! :This implies, in particular, that all the iterates are feasible and that�(k+2)1�(k+2)2 = �(k)1�(k)2 :Hence, every other iterate of the steepest descent method lies in the same ray from theorigin. Thus, if the initial iterate satis�es either the constraint �1 = �2�2 or the constraint�1 = ��2, the iterates of the steepest descent method oscillate between the two constraintsthat de�ne 
. Since these iterates are feasible, the steepest descent iterates coincide withthe gradient projection iterates. This implies that in this example,A(xk+1) 6= A(xk); A(xk) 6= A(x�); k � k0:Of course, in this case x� is degenerate because rf(x�) = 0.We now consider the case when x� is degenerate and show that the nondegeneracyassumption in Theorem 4.1 can be dropped if we replace ri fF (x�)g by E[�rf(x�)].Theorem 4.2 Let f : IRn ! IR be continuously di�erentiable on the polyhedral set 
, andassume that fxkg is a sequence in 
 that converges to a stationary point x� of (1.1). Thenlimk!1PT (xk) [�rf(xk)] = 0if and only if there is a k0 > 0 such thatxk 2 E[�rf(x�)]; k � k0:Proof. The proof depends on the Moreau decomposition (see, for example, Lemma 2.2 ofZarantonello [26]) and Theorem 3.4. The Moreau decomposition of �rf shows that�rf(xk) = �PT (xk) [�rf(xk)] + PN(xk)[�rf(xk)]:In particular, �rf(xk) = �PT (xk) [�rf(xk)] + dk;13



where dk 2 N(xk). Hence, if the sequence fPT (xk) [�rf(xk)]g converges to zero, thenfdkg converges to �rf(x�), and thus Theorem 3.4 shows that xk 2 E[�rf(x�)] for all ksu�ciently large.Conversely, assume that xk 2 E[�rf(x�)] for all k su�ciently large. Since x 2 E(d) ifand only if d 2 N(x), we have that there is a k0 > 0 such that �rf(x�) 2 N(xk) for allk � k0. Since the Moreau decomposition implies that


PT (xk) [�rf(xk)]


 = min fkrf(xk) + dk : d 2 N(xk)g ;we obtain that 


PT (xk) [�rf(xk)]


 � krf(xk)� rf(x�)k:This yields the desired result. �In the remainder of this section we examine various consequences of Theorem 4.2. We�rst use Burke's result (Theorem 2.4) to show that Theorem 4.2 is an extension of Theorem4.1 for polyhedral 
.Theorem 4.3 If 
 is a polyhedral set, then x� is a nondegenerate stationary point forproblem (1.1) if and only if x� 2 ri fE[�rf(x�)]g.Proof. This result is a direct consequence of Theorem 2.4. �We can show that Theorem 4.2 is an extension of Theorem 4.1 by noting that if x�is a nondegenerate stationary point for problem (1.1), then Theorem 4.3 shows that x� isin ri fE[�rf(x�)]g, and thus any x 2 E[�rf(x�)] su�ciently close to x� also belongs tori fE[�rf(x�)]g.We now show that if the polyhedral set 
 has the speci�c representation (4.3), then theface E[�rf(x�)] can be expressed in terms of the positive Lagrange multipliers at x�.Theorem 4.4 If 
 is the polyhedral set in IRn de�ned by (4.3) andrf(x�) = Xj2A(x�)��jcj ; ��j � 0; (4:5)for some stationary point x� of problem (1.1), thenE[�rf(x�)] = nx 2 
 : hcj ; xi = �j ; ��j > 0o :Proof. Note that hrf(x�); xi = Xj2A(x�)��jhcj ; xi � Xj2A(x�)��j�jfor any x 2 
. Thus, hrf(x�); xi is minimized only when hcj ; xi = �j for ��j > 0. �14



If the active constraint normals are linearly dependent then there is an in�nite set ofLagrange multipliers that satisfy (4.5). Nevertheless, Theorem 4.4 shows that the setnx 2 
 : hcj; xi = �j ; ��j > 0ois independent of the choice of Lagrange multipliers.Theorem 4.5 Let f : IRn ! IR be continuously di�erentiable on the polyhedral set 
 de�nedby (4.3). Assume that x� is a stationary point of (1.1) and that the Lagrange multipliers ��isatisfy (4.5). If fxkg is a sequence in 
 that converges to x�, thenlimk!1 PT (xk) [�rf(xk)] = 0 (4:6)if and only if there is a k0 > 0 such thatfi 2 A(x�) : ��i > 0g � A(xk); k � k0: (4:7)Proof. Theorem 4.4 shows thatx 2 E[�rf(x�)] () fi 2 A(x�) : ��i > 0g � A(x); x 2 
:Thus, the result is a direct consequence of Theorem 4.2. �This result has immediate applications to several algorithms. For example, Calamai andMor�e [6] show that the gradient projection method generates sequences that satisfy (4.6).Hence, Theorem 4.5 implies that if the sequence fxkg generated by the gradient projectionmethod converges to x�, then (4.7) holds.Closely related convergence results for the gradient projection method are due to Bert-sekas [1, 2], Gafni and Bertsekas [12, 13], and Dunn [9]. However, in these papers it is notshown that (4.6) holds; instead, it is shown that any limit point of the sequence fxkg isstationary.Theorem 4.5 also has application to the class of trust region methods for bound con-strained optimization problems proposed by Conn, Gould, and Toint [7, 8]. For this algo-rithm Lescrenier [17] proved that (4.7) holds. Hence, Theorem 4.5 implies that (4.6) holds.This result is of interest because the measure�(x; f) = 


PT (x) [�rf(x)]


 (4:8)is a natural criterion for terminating the algorithm. This is clear from expression (4.4)for the projected gradient. Moreover, note that �(x; �) is scale invariant in the sense that�(x;�f) = ��(x; f) for any � > 0. Other criteria, for example,�(x; f) = kP [x�rf(x)]� xkdo not have this important property.Finally, Theorem 4.5 has implications to the class of trust region methods for generallinearly constrained methods analyzed by Burke, Mor�e, and Toraldo [5]. These results willbe reported in a later paper. 15



5 Strictly Binding ConstraintsWe have stressed the geometric viewpoint of Theorem 4.2 because this viewpoint leads toresults that are independent of the representation of 
. On the other hand, the viewpointof Theorem 4.5 is needed because it is closely related to computational issues. In thissection we show that it is possible to de�ne a set of strictly binding constraints B�s at x�,independent of the choice of Lagrange multipliers. This leads, in particular, to a version ofTheorem 4.5 in terms of B�s .We will show that the set of strictly binding constraints B�s can be de�ned in terms ofthe active set of the exposed face E[�rf(x�)].De�nition. If 
 is a polyhedral set and F is a face of 
, thenA (F ) = A(x); x 2 ri fFgis the active set of F .We justify this de�nition by showing that the active set A(x) is independent of x 2 ri fFg.Assume that 
 is de�ned by (4.3), and choose any x 2 ri fFg. If y 2 F , thenx� = x+ �(y � x) 2 Ffor some � < 0. Hence, if i 2 A(x), then�i � hci; x�i = (1� �)hci; xi+ �hci; yi = (1� �)�i + �hci; yi:Since � < 0, this implies that hci; yi � �i. Thus, i 2 A(y). We have shown that A(x) � A(y)if x 2 ri fFg and y 2 F . Hence, A(x) = A(y) if x and y belong to ri fFg.This de�nition of A(F ) is direct and intuitive. We now establish an alternative charac-terization of A(F ). For the proof of this result we need to know that� d 2 ri fN(x)g () d = Xi2A(x)�ici; �i > 0: (5:1)This characterization of ri fN(x)g is due to Burke and Mor�e [4, Lemma 3.2].Lemma 5.1 If 
 is a polyhedral set, thenF = fx 2 
 : hci; xi = �i; i 2 A(F )gfor any face F of 
.Proof. Every face of a polyhedron is exposed (see, for example, Theorem 2.4.12 of Stoerand Witzgall [23]), and thus F = E(�d) for some d 2 IRn. Hence, Theorem 2.4 implies16



that �d 2 ri fN(F )g, and thus d 2 ri fN(x)g for any x 2 ri fFg. We now appeal to thecharacterization (5.1), and conclude that there are �i > 0 such thatd = Xi2A(x)�ici; �i > 0:A computation now shows thatE[�d] = fx 2 
 : hci; xi = �i; i 2 A(x)g :Since A(x) = A(F ) and F = E[�d], this establishes the result. �This result characterizes A(F ) as the set of active constraints that are essential for F .In view of this result, it is natural to investigate the properties of the active set of theexposed face E[�rf(x�)].De�nition. If 
 is a polyhedral set and x� is a stationary point of (1.1), thenB�s = A�E[�rf(x�)]�is the set of strictly binding constraints at x�.This de�nition requires justi�cation because strictly binding constraints are usuallyassociated with positive Lagrange multipliers; the following result provides this justi�cation.Theorem 5.2 Let f : IRn ! IR be continuously di�erentiable on the polyhedral set 
 de�nedby (4.3). If x� is a stationary point of (1.1) thenrf(x�) = Xj2B�s ��jcj ; ��j > 0; (5:2)for some set of positive Lagrange multipliers ��i .Proof. Theorem 2.4 implies that �rf(x�) 2 ri fN(F )g for F = E[�rf(x�)]. Hence,�rf(x�) 2 ri fN(x)g for any x 2 ri fFg. Since A(x) = B�s for x 2 ri fFg, the characteriza-tion (5.1) yields the result. �Theorem 5.2 justi�es the de�nition of B�s as the set of strictly binding constraints.This result is of interest because it does not make any nondegeneracy or linear inde-pendence assumptions. Note that if x� is nondegenerate then Theorem 4.3 shows thatx� 2 ri fE[�rf(x�)]g, and thus B�s = A(x�). Hence, for nondegenerate x�, Theorem 5.2 isa direct consequence of (5.1) and the de�nition of nondegeneracy.Theorem 5.3 Let f : IRn ! IR be continuously di�erentiable on the polyhedral set 
 de�nedby (4.3). If x� is a stationary point of (1.1) and f��i g is any set of Lagrange multipliers,then the following three statements are equivalent.17



1. x 2 E[�rf(x�)].2. fi 2 A(x�) : ��i > 0g � A(x) for x 2 
.3. B�s � A(x) for x 2 
.Proof. Theorem 4.4 shows that the �rst two statements are equivalent. The equivalence ofthe �rst and third statements is obtained by noting that Lemma 5.1 implies thatE[�rf(x�)] = fx 2 
 : hci; xi = �i; i 2 B�sg :� This result shows that Theorem 4.5 can be phrased in terms of B�s . Another interestingconsequence of Theorem 5.3 is obtained by choosing any x 2 ri fE[�rf(x�)]g in the secondstatement in Theorem 5.3. This shows thatfi 2 A(x�) : ��i > 0g � B�sfor any set of Lagrange multipliers f��i g. Hence, the indices in B�s identify a maximal set ofpositive Lagrange multipliers.6 Second-Order Su�ciency ConditionsWe have shown that optimization algorithms tend to generate iterates such thatxk 2 E[�rf(x�)]for all k su�ciently large. Another important component in the analysis of an optimizationalgorithm is to show that the iterates converge under suitable conditions. This type of resultusually requires the assumption that the iterates fxkg have an isolated limit point x�. Thisassumption is satis�ed, for example, if x� is an isolated stationary point, that is, there is aneighborhood S(x�) such that x� is the only stationary point in S(x�) \ 
. In this sectionwe show that if the Hessian is positive de�nite in the cone generated by E[�rf(x�)]� x�,then the stationary point x� is isolated.The assumption that x� is an isolated stationary point can be guaranteed by impos-ing second-order conditions on f . The following result uses a version of the second-ordersu�ciency conditions that is appropriate for problem (1.1) with a general convex set 
.Theorem 6.1 Let f : IRn ! IR be continuously di�erentiable on a closed convex set 
 andtwice di�erentiable at a point x� in 
. If x� is a stationary point of problem (1.1) andhrf(x�); wi = 0; w 2 T (x�); w 6= 0 =) hw;r2f(x�)wi > 0; (6:1)then x� is an isolated stationary point of f . 18



Theorem 6.1 is a special case of a result of Robinson [21, Theorem 2.4]. The proof ofTheorem 6.1 is not di�cult in our setting. Note that if x� is not an isolated stationarypoint, then there is a sequence fxkg of stationary points converging to x�. In particular,hrf(x�); xk � x�i � 0; hrf(xk); x�� xki � 0: (6:2)This implies that hrf(xk)� rf(x�); xk � x�i � 0: (6:3)Hence, if w is a limit point of the sequence fwkg de�ned bywk = xk � x�kxk � x�k ;then (6.2) shows that hrf(x�); wi = 0; while (6.3) shows that hw;r2f(x�)wi � 0:Moreover,since wk 2 T (x�) and kwkk = 1, we also have that w 2 T (x�) and that kwk = 1. Thiscontradicts (6.1).For a polyhedral 
, condition (6.1) coincides with the standard second-order su�ciencyconditions. This observation follows by noting that if 
 is the set de�ned by (4.3) andrf(x�) = Xj2A(x�)��jcj ; ��j � 0;then fw 2 IRn : hrf(x�); wi = 0; w 2 T (x�)g =nw 2 IRn : hcj ; wi � 0; j 2 A(x�); hcj ; wi = 0; ��j > 0o :For a general convex 
, condition (6.1) has an advantage over the standard second-ordersu�ciency conditions because it is independent of the representation of 
. On the otherhand, an example of Burke, Mor�e, and Toraldo [5] shows that condition (6.1) does not takeinto account the curvature of 
, and thus di�ers from the standard second-order su�ciencyconditions.If x� is a nondegenerate stationary point, then (6.1) can be expressed in terms ofN(x�)?where for any set S the orthogonal complement S? of S is the subspace of vectors v suchthat hv; wi = 0 for all w 2 S. Indeed, Burke, Mor�e,, and Toraldo [5] prove that if x� is anondegenerate stationary point, thenN(x�)? = f w 2 T (x�) : hrf(x�); wi= 0g : (6:4)These results are familiar when 
 is the polyhedral set de�ned by (4.3) becauseN(x�)? = fv 2 IRn : hcj; vi = 0; j 2 A(x�)g:We now show that the second-order su�ciency condition can be expressed in terms of theexposed face E[�rf(x�)]. In this result, cone fSg is the cone spanned by the set S, thatis, the set of vectors �w for some � � 0 and w 2 S.19



Theorem 6.2 Let f : IRn ! IR be continuously di�erentiable on a polyhedral 
 and twicedi�erentiable at a point x� in 
. If x� is a stationary point of problem (1.1), thenfw 2 T (x�) : hrf(x�); wi = 0g = cone fE[�rf(x�)]� x�g : (6:5)Moreover, ifw 2 cone fE[�rf(x�)]� x�g ; w 6= 0 =) hw;r2f(x�)wi > 0; (6:6)then x� is an isolated stationary point of f .Proof. The result follows from Theorem 6.1 if we establish (6.5). We �rst show thatcone fE[�rf(x�)]� x�g � fw 2 T (x�) : hrf(x�); wi = 0g :If w 2 cone fE[�rf(x�)]� x�g, then w = �(x�x�) for some x 2 E[�rf(x�)]. Thus, sincehrf(x�); �i is constant on E[�rf(x�)], we obtain that hrf(x�); wi = 0. Moreover, sincex 2 
, it is clear that w 2 T (x�). For the reverse inclusion assume that hrf(x�); wi = 0for some w 2 T (x�). Since w 2 T (x�) and 
 is polyhedral, x� + �w 2 
 for all � > 0su�ciently small. Moreover, since hrf(x�); wi = 0, it follows that x� + �w 2 E[�rf(x�)].Thus, w 2 cone fE[�rf(x�)]� x�g as desired. �We have already noted that if x� is nondegenerate, then (6.4) holds. This implies, inparticular, that fw 2 T (x�) : hrf(x�); wi = 0gis a subspace. In view of (6.5), we have shown that if x� is nondegenerate then the second-order condition (6.1) reduces to the assumption that r2f(x�) is positive de�nite on thesubspace a� fE[�rf(x�)]� x�g. In the context of algorithms, the fact that (6.5) is asubspace is extremely helpful. However, the same e�ect can be obtained without assumingnondegeneracy if one is willing to strengthen the second-order su�ciency condition.De�nition. Let f : IRn ! IR be twice di�erentiable at x� 2 
. The strong second-ordersu�ciency condition for problem (1.1) is satis�ed at a stationary point x� if r2f(x�) ispositive de�nite on the subspace a�fE[�rf(x�)]� x�g, that is,w 2 a�fE[�rf(x�)]� x�g ; w 6= 0 =) hw;r2f(x�)wi > 0: (6:7)If the strong second-order su�ciency condition (6.7) holds, then the standard second-ordersu�ciency condition (6.1) must also hold becausecone fE[�rf(x�)]� x�g � a� fE[�rf(x�)]� x�g :The following example shows that the converse can fail even if f is quadratic.20



Example. Let f : IR2 ! IR be given byf(�1; �2) = �21 + 4�1�2 + �22 ;and let 
 � IR2 be given by
 = n(�1; �2) 2 IR2 : �1 � 0; �2 � 0o :For this problem x� = (0; 0) is the global minimum of f over 
. Note that rf(x�) = 0, andthus E[�rf(x�)] = 
. Hence,cone fE[�rf(x�)]� x�g = IR2+; a� fE[�rf(x�)]� x�g = IR2:A computation shows that the standard second-order su�ciency condition (6.1) holds at x�.However, it is clear that the strong second-order su�ciency condition (6.7) is not satis�edat x� because r2f(x�) is not positive de�nite.Other authors have used the term strong second-order su�ciency condition to mean thathcj ; wi = 0; ��j > 0; w 6= 0 =) hw;r2f(x�)wi > 0: (6:8)For example, Gay [14], Lescrenier [17], and Robinson [20] use this condition in their analysisof the convergence behavior of algorithms. A disadvantage of condition (6.8) is that itdepends on the representation of 
 and the choice of multipliers. The following exampleshows that condition (6.8) is stronger than (6.7) even if f is a quadratic.Example. Let f : IR3 ! IR be given byf(�1; �2; �3) = �23 � �22 + �3;and let 
 = fx 2 IR3 : hci; xi � 0; 1 � i � 4g be the cone with vertex at the origin, wherec1 = e1; c2 = e2; c3 = e3 � e1; c4 = e3 � e2:For this problem x� = (0; 0; 0) is the global minimum of f over 
. A computation showsthat E[�rf(x�)] = fx�g, and thus the strong second-order condition (6.7) holds. However,condition (6.8) does not hold if we choose ��2 = ��4 = 0.This example shows that condition (6.8) is stronger than (6.7) for some set of multipliers.On the other hand, the following result shows that there is a set of multipliers such thatcondition (6.8) is equivalent to (6.7).Theorem 6.3 Let f : IRn ! IR be continuously di�erentiable on the polyhedral set 
 de�nedby (4.3). If x� is a stationary point of (1.1), thena� fE[�rf(x�)]� x�g = fv 2 IRn : hcj ; vi = 0; j 2 B�sg ;where B�s is the set of strictly binding constraints de�ned in Section 5.21



Proof. If v 2 E[�rf(x�)]� x�, then hrf(x�); vi = 0, because hrf(x�); �i is constant onE[�rf(x�)]. Moreover, since v is a feasible direction, hcj; vi � 0 for j 2 A(x�). Now recallthat Theorem 5.2 guarantees that (5.2) holds. Hence,0 = hrf(x�); vi = Xj2B�s ��jhcj; vi � 0:This implies that hcj ; vi = 0 when j 2 B�s . Thus, we have shown thatE[�rf(x�)]� x� � fv 2 IRn : hcj ; vi = 0; j 2 B�sg :Hence, a� fE[�rf(x�)]� x�g � fv 2 IRn : hcj ; vi = 0; j 2 B�sg : (6:9)For the reverse inclusion choose any x0 2 ri fE[�rf(x�)]g. If hcj ; vi = 0 for j 2 B�s , thenv is a feasible direction because B�s = A(x0). Hence x0 + �v 2 
 for all � > 0 su�cientlysmall. Moreover, (5.2) implies thathrf(x�); x+ �vi = hrf(x�); xi:This shows that x0 + �v 2 E[�rf(x�)]. We have established thatfv 2 IRn : hcj ; vi = 0; j 2 B�sg � E[�rf(x�)]� x0:Hence, dim fv 2 IRn : hcj ; vi = 0; j 2 B�sg � dim fE[�rf(x�)]g :Since we have already established (6.9), this completes the proof. �7 AlgorithmsTheorem 4.5 is an important tool for the convergence analysis of optimization algorithms.In this section we examine the use of Theorem 4.5 in the GPCG algorithm of Mor�e andToraldo [19]. In particular, we show that the convergence condition of the GPCG algorithmis satis�ed in a �nite number of iterations even when the solution is degenerate.The GPCG algorithm uses a combination of the gradient projection algorithm and theconjugate gradient algorithm to solve large-scale problems of the formminfq(x) : l � x � ug: (7:1)The GPCG algorithm uses the conjugate gradient method to explore the active setA(x) = fi : xi 2 fli; uigg (7:2)de�ned by the current iterate. Once this exploration is completed, the gradient projectionmethod is used to choose a new active set. The convergence properties of algorithm GPCGare summarized in the following result of Mor�e and Toraldo [19].22



Theorem 7.1 Let q : IRn ! IR be a strictly convex quadratic. If fxkg is the sequencegenerated by algorithm GPCG for problem (7.1), then either fxkg terminates at the solutionx� in a �nite number of iterations, or fxkg converges to the solution x� of problem (7.1).If the solution x� of problem (7.1) satis�es the nondegeneracy condition@iq(x�) 6= 0; i 2 A(x�);then algorithm GPCG terminates at the solution x� in a �nite number of iterations.This convergence result is not entirely satisfactory when the solution x� is degenerate,because it does not show that the convergence test is satis�ed in a �nite number of iterations.Given a starting point x0 in the feasible region 
 = fx 2 IRn : l � x � ug and a tolerance� > 0, the convergence test of the GPCG algorithm requires thatkr
q(xk)k � �krq(x0)k; (7:3)where r
q is de�ned by[r
q(x)]i = 8><>: @iq(x) if xi 2 (li; ui)minf@iq(x); 0g if xi = limaxf@iq(x); 0g if xi = ui :This convergence test is closely related to (4.6) becauser
q(x) = �PT (x) [�rf(x)]:In particular, if (4.6) holds, then the convergence test (7.3) is satis�ed after a �nite numberof iterations. In the remainder of this section we show that (4.6) holds.Given the current iterate xk, algorithm GPCG explores the active set de�ned by thecurrent iterate by computing an approximate minimizer of the subproblemminfq(xk + d) : di = 0; i 2 A(xk)g: (7:4)Given an approximate minimizer dk of subproblem (7.4), algorithm GPCG uses a projectedsearch to choose a search parameter �k such that q(xk+1) < q(xk), wherexk+1 = P (xk + �kdk)and P is the projection into the feasible region 
. Details on the projected search can befound in the paper of Mor�e and Toraldo [19]. For this paper it is necessary to note onlythat since the i-th coordinate is zero when i 2 A(xk), we obtain thatA(xk) � A(xk+1) (7:5)holds whenever algorithm GPCG explores the active set de�ned by the current iterate.23



The approximate minimizer dk of subproblem (7.4) is obtained by �rst noting that ifi1; : : : ; imk are the indices of the free variables, that is, those variables with indices outsideof A(xk), then subproblem (7.4) is equivalent to the unconstrained subproblemminfqk(w) : w 2 IRmkg; (7:6)where qk : IRmk ! IR is de�ned by qk(w) � q(xk + Zkw), and Zk is the matrix in IRn�mkwhose j-th column is the ij-th column of the identity matrix in IRn�n. Given the startingpoint w0 = 0 in IRmk , the conjugate gradient algorithm generates a sequence of iteratesfwjkg. The approximate solution of subproblem (7.4) is then dk = Zkwjk for some jk � 0.If the iterate xk+1 generated by the conjugate gradient method appears to have identi�edthe active set de�ned by the solution, then algorithm GPCG explores this active set further.The decision to continue the conjugate gradient method is based on the observation that ifA(x) = A(x�), then the binding setB(x) = fi : xi = li and @iq(x) � 0; or xi = ui and @iq(x) � 0gagrees with the active set A(x). Thus, if the conjugate gradient method produces aniterate xk+1 such that B(xk+1) = A(xk+1), then algorithm GPCG continues to use theconjugate gradient method to explore this active set. The �nite termination properties ofthe conjugate gradient algorithm show that at most mk iterations are needed before theconjugate gradient algorithm �nds a solution of subproblem (7.4); at this point there wouldbe no need to explore this active set further.Once the conjugate gradient algorithm has explored an active set, algorithm GPCG usesthe gradient projection method yk+1 = P [yk � �krq(yk)]with y0 = xk to select a new active set. The GPCG algorithm sets xk+1 = yjk for somejk � 0. Additional details on the implementation of the gradient projection method can befound in the paper of Mor�e and Toraldo [19].We now use Theorem 4.5 to prove that (4.6) holds for the iterates generated by algorithmGPCG. The proof consists of showing that condition (4.7) holds. For the bound constrainedproblem (7.1), condition (4.7) is just thatB�s � fi 2 A(x�) : @iq(x�) 6= 0g � A(xk); k � k0;where B�s is the set of strictly binding constraints at x� de�ned in Section 5.Theorem 7.2 Let q : IRn ! IR be a strictly convex quadratic. If fxkg is the sequencegenerated by algorithm GPCG for problem (7.1), then either fxkg terminates at the solutionx� in a �nite number of iterations, or there is an index k0 such that the convergence test(7.3) is satis�ed for all k � k0. 24
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