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ABSTRACT

The development of algorithms and software for the solution of large-scale optimization
problems has been the main motivation behind the research on the identification properties
of optimization algorithms. The aim of an identification result for a linearly constrained
problem is to show that if the sequence generated by an optimization algorithm converges to
a stationary point, then there is a nontrivial face F' of the feasible set such that after a finite
number of iterations, the iterates enter and remain in the face F. This paper develops the
identification properties of linearly constrained optimization algorithms without any non-
degeneracy or linear independence assumptions. The main result shows that the projected
gradient converges to zero if and only if the iterates enter and remain in the face exposed
by the negative gradient. This result generalizes results of Burke and Moré obtained for

nondegenerate cases.



EXPOSING CONSTRAINTS

James V. Burke* and Jorge J. Moré

1 Introduction

The development of algorithms and software for the solution of large-scale constrained

optimization problems,

min{ f(z): 2 € Q}, (1.1)

has been the main motivation behind the research on the identification properties of opti-
mization algorithms. Much of this research has been done under the assumption that the
set () is a general convex set and that the stationary points of the optimization problem
(1.1) are nondegenerate. In this work we show that it is possible to develop the identifica-
tion properties of linearly constrained optimization algorithms without any nondegeneracy
or linear independence assumptions.

The aim of an identification result is to show that if {z;} is a sequence in € that
converges to a stationary point z*, then there is an index kg > 0 and a nontrivial face
F(z*) of @ with 23 € F(2*) for all k& > kg. These results are of importance because they
show that eventually the behavior of the algorithm is determined by the properties of f on
the face F(z*). For recent work on the identification properties of optimization algorithms
see, for example, Conn, Gould, and Toint [7]. Dunn [11], Wright [24], Burke [3], Burke,
Moré, and Toraldo [5], Lescrenier [17], Wright [25], and Kelley and Sachs [16].

In linearly constrained problems an identification result can also be expressed in terms

of the indices of the active constraints. For example, if {2 has the specific representation
Q={zeR":(¢j,z) >6;, 1 <j<m}, (1.2)
for some vectors ¢; € R"™ and scalars ¢;, then all faces I of () are of the form
F={2eQ:(c;,x)=10¢;, j€ AF)}

for some index set A(F'). Thus, identification results can be given in terms of an index set
that defines the face F'(2*). In this paper we obtain results in terms of the face structure
of €; results in terms of index sets of active constraints are direct consequences of these
results.

An important consequence of the assumption that the stationary point z* is nondegen-

erate is that F'(z*) is the unique face of £ that contains z* in the relative interior. Thus, it
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follows that zj € ri {F(a*)} for all k > ko, where ri{-} denotes the relative interior. One of
the main difficulties in extending identification results to the degenerate case is that there
may be no face F(z*) such that x; € ri {F(2*)} for all k sufficiently large. However, we
show that there is a face F(2*) such that z; € F(2*) for all k sufficiently large.

The approach in this paper is reminiscent of the approach of Burke and Moré [4]. In
particular, the approach depends on the concept of an exposed face, and on the facial
geometry of a convex set 2. These results are developed in Sections 2 and 3. The definition
of an exposed face and several important properties of exposed faces are presented in Section
2, while Section 3 contains a key result on the existence of a partition of R™ based on the
face structure of 2.

The main result of this paper appears in Section 4. This result is a characterization of
the identification properties of a sequence {z} in terms of the projected gradient and the
face E[—-V f(z*)] of Q exposed by =V f(z*). If f:R" — R is continuously differentiable
on the polyhedral set Q, and {z;} is a sequence in § that converges to a stationary point
2* of (1.1), then we show that

klgl(r)lo Prizy [=Vf(zg)] =0 (1.3)
if and only if there is a kg > 0 such that
zp € E[-V f(a*)], k> ko. (1.4)

This result has important ramifications because optimization algorithms for linearly con-
strained problems tend to satisfy (1.3). This can be seen by noting that if the polyhedral
set © has the representation (1.2), then the projected gradient is

Pry [V (@)= =Vfe)+ D A,
jeA(x)
where A(z) is the set of active constraints at 2 € , and A; is a nonnegative estimate (a
precise definition is given in Section 6) of the Lagrange multiplier for the i-th constraint.
The identification property (1.4) can be expressed in terms of Lagrange multipliers at

the solution because we show that E[—V f(2*)] is defined in terms of the active set by
PEB[-Vf(eY)] e (i€ A) N >0} CA@), e

where A¥ is the Lagrange multiplier for the i-th constraint. This result depends on the
choice of Lagrange multipliers.

The identification property (1.4) has an equivalent formulation that is clearly indepen-
dent of the choice of Lagrange multipliers. Section 5 shows that it is possible to define a
set of strictly binding constraints B} at a stationary point z* independent of the choice of

Lagrange multipliers, and that

v € B-V[(x)] <« BiCAlx), ze.



This leads, in particular, to a version of the results of Section 4 in terms of 5.

Section 4 also contains a discussion of the connection of these result to the identification
results of Burke and Moré [4], and to the convergence results for the class of trust region
methods for bound constrained optimization problems proposed by Conn, Gould, and Toint
[7,8]. The connection between these results and the class of trust region methods for general
linearly constrained methods analyzed by Moré [18] and Burke, Moré, and Toraldo [5] will
be reported in a later paper.

We end the paper with two applications of these identification results. Section 6 ex-
amines the influence of degeneracy on the standard second-order suffliciency conditions. In
particular, we show that if ™ is degenerate, a satisfactory convergence analysis can be ob-
tained if we assume that V2 f(2*) is positive definite on the affine hull of E[—V f(z*)] — z*.
Section 7 examines the implication of the identification results to the GPCG algorithm of
Moré and Toraldo [19]. In particular, we show that the convergence condition of the GPCG

algorithm is satisfied in a finite number of iterations even when the solution is degenerate.

2 Exposed Faces

The geometric approach to the identification properties of optimization algorithms requires
an understanding of the face structure of a convex set Q. In this section we provide some
of the necessary results and background from convex analysis.

Recall that the affine hull aff {Q} of a convex set © in R”™ is the smallest affine set that
contains €2, and the relative interior ri(§2) of Q is the interior of  relative to aff {Q2}. In
all cases we assume that €2 is not empty.

A nonempty subset F' of a convex set €2 is a face of € if every convex subset of ) whose
relative interior meets F' is contained in F. Thus, if 2 and y are in  and Az + (1 — A)y lies
in F for some A in (0,1), then both z and y must belong to F. A basic result on the face
structure of a convex set is that the relative interiors of the faces of € form a partition of

Q. For future reference, we state this result formally.

Theorem 2.1 If F is the collection of all faces of the convex set §, then the collection
{ri(F): FeF}

s a partition of 2.

This result can be found, for example, in Rockafellar [22, Theorem 18.2]. Note that this
result shows that every point @ € § can be associated with a unique face F(z) of @ such
that = € i (F).

We are concerned with faces of Q that are exposed by a given vector d in R"™. A

nonempty subset F' of a convex set  is exposed by a vector d € R"™ if }' = F(d), where

E(d) = argmax{(d,z):z € Q}



Figure 2.1: Convex set defined by (2.1)

for some inner product (-,-) of R". A computation shows that £(d) is a face whenever E(d)
is not empty.
Every face of a polyhedron is exposed (see, for example, Theorem 2.4.12 of Stoer and

Witzgall [23]), but this is not the case for general convex sets. For example, in the convex

set () defined by
o={66)-1sesa-tosasi), (2.1)

the point (1,0) is a face of £ that is not exposed by any vector. This can be seen clearly in
Figure 2.1.
The concept of an exposed face is closely related to the concept of a normal cone. For

a convex set €, the normal cone at z in  is defined by
N(z)={ueR": (u,y—x) <0, y€Q}.

The tangent cone T'(x) is the dual of the normal cone. Thus v € T'(x) if and only if (v, u) < 0
for all w € N(z). The tangent cone T'(z) can also be defined as the closure of all vectors
v € R™ such that  + av € Q for all @ > 0 sufficiently small.

Exposed faces and normal cones are related by the observation that z € F(d) if and
only if d € N(z). We make use of this observation throughout this section.

The concept of an exposed face is also related to the standard first-order optimality
conditions for problem (1.1). Recall that the standard first order conditions for a stationary

point z* of problem (1.1) are that
(Vf(a™),z—2") >0, z € Q.
In terms of normal cones, this is equivalent to requiring that
=V f(z*) € N(z").

The following result shows the connection between stationary points and exposed faces.



Lemma 2.2 If Q in R™ is a closed convez set, then z* is a stationary point for problem

(1.1) if and only if 2* € E[-V f(z¥)].

The proof of this result is a direct consequence of the observation that z € F(d) if and
only if d € N(x).

Lemma 2.2 shows that any stationary point z* belongs to the exposed face E[—V f(z*)].
The stationary point 2* may belong to other faces of €, but in Section 4 we show that
optimization algorithms tend to generate sequences {x} with zp € E[-V f(2*)] for all k
sufficiently large. In this section we develop part of the necessary machinery for this result.

We extend the concept of normal and tangent cones at a point & € € by defining a
normal cone N(F') and a tangent cone T'(F') for each F' € F by

N(F)= N(z), T(F)=T(z), reri(F).

This definition relies on the result of Burke and Moré [4] that normal and tangent cones
are independent of z € 11 (F) for any F € F.

The intersection of an arbitrary collection of faces is easily shown to be a face, but the
union of faces is not necessarily a face. On the other hand, the following result shows that
the union of all faces F' € F such that d € N(F') is the face exposed by d.

Lemma 2.3 If Q in R" is a closed convex set, then

Edy= |J F
FeF(d)

for any d € R™, where F(d) is the collection of faces F' € F such that d € N(F).

Proof. Assume first that 2 € F(d). Then d € N(z), and since Theorem 2.1 guarantees
that @ € ri (F') for some F' € F, we have d € N(z) = N(F'). This shows that

Ed)yc |J F
rel(d)
We complete the proof by showing that if ' € F(d) then F' C F(d). Assume that 2 € F for
some F' € F(d). We can choose a sequence {z} with a; € ri (F') such that {x}} converges
to x. Since zy € 1i(F') and d € N(F'), we have d € N(zy), and hence, 2 € E(d). Since the
exposed face F(d) is closed and {x}} converges to 2, we obtain that z € F(d) as desired.
[

The proof of Lemma 2.3 yields the stronger result that {ri(#) : ' € F(d)} is a partition
of FE(d). This result, however, is not needed in this paper.

Lemma 2.3 also shows that if d € N(F') for some F' € F, then F' C E(d). For a
general convex set 2, it is difficult to characterize the vectors d € N(}') that expose a face
F. On the other hand, the following result of Burke [3, Theorem 4.1] provides a complete

characterization for polyhedral €.



Theorem 2.4 Let 2 be a polyhedral set in R™.
If © € Q, then x € ri{F(d)} if and only if d € ri{N(2)}.
If F € F, then ' = E(d) if and only if d € ri{N(F)}.

Burke [3] proved only the first claim in Theorem 2.4, but it is not difficult to show that
both claims are equivalent.

Theorem 2.4 fails if € is a general convex set. For example, if 2 is the set in Figure
2.1, and F' = {(1,0)}, then F'is not exposed by d = (1,0), but d € ri{N(F")}. Moreover,
if = FE(d)for d =(0,1), then d exposes F, but d ¢ ri{N(F")}. This example shows that
the assumption of polyhedrality is required in Theorem A.1 of Burke [3].

The above example also shows that a face may not be exposed by a vector d € ri {N(F)}.
In the remainder of this section we show that F'is exposed by a vector d € ri{N(F)} if F
is a quasi-polyhedral face. This result is of interest because it leads to a connection with
the identification results of Burke and Moré [4] for general convex sets. However, note that
the remainder of this section is not needed for the main results in this paper.

Burke and Moré [4] defined quasi-polyhedral faces in terms of the lineality of the tangent
cone T'(z). Recall that for a cone K in IR", the lineality lin { K} of the cone K is the largest
subspace contained in K. Hence, lin {K'} = K N (—K).

Definition. A face F' of a convex set ) is quasi-polyhedral if
aff {F} = 2 +1in {T(2)},  a€ri(F).

The convex set € in Figure (2.1) can be used to illustrate the difference between exposed
faces and quasi-polyhedral faces. This set has an infinite number of faces, but the only face
that is not exposed by a vector d € ri{N(F)} is F' = {(0,1)}. Also note that © has six
quasi-polyhedral faces and that these faces are exposed by any vector d € ri {N(F)}.
Burke and Moré [4] show that the lineality of the tangent cone is the orthogonal com-

plement of the normal cone, that is,
lin {7(2)} = N(2)*,

where the orthogonal complement S* of a set § is the subspace of vectors v such that
(v,w) = 0 for all w € 5. This implies that

lin {T(2)}* = aff {N(z)}.
These results lead to the decomposition
T(x) =lin {T(2)} ® lin {T(2)}* N T(z) (2.2)

of the tangent cone. This result is valid if 7'(z) is replaced by a general convex cone K.
See, for example, Stoer and Witzgall [23, Theorem 2.10.5].



Theorem 2.5 A quasi-polyhedral face I of a convex set §) is exposed by any d € ri {N(}")}.
Proof. The bulk of the proof consists of proving that if 2 € €, then
E(d)=Qn[z+1in{T(x)}], deri{N(z)}. (2.3)

Given this result, we complete the proof by noting that F' = Q N aff { F'} for any face of €,
and thus
F=Qn[z+lin{T(z)}], zeri{l},

for a quasi-polyhedral face. Hence (2.3) yields that F' = E(d)if d € ri{N(2)} = ri{N(F)}.
We now prove that (2.3) holds; we first show that @ N [z + lin {7(2)}] is a subset of
E(d). Choose any y in QN [z +lin {T(z)}]. Then y — x € lin {T(x)} = N(x)t, and since
d € N(z), we obtain that (d,y — x) = 0. Since y € Q, this implies that y € F(d).
We now show that F(d) is a subset of QN [z +1in{7'(z)}]. Choose any y in F(d). Then
y € Q, and thus y — 2 € T(z). The decomposition (2.2) of the tangent cone 7'(z) shows

that we can write
y—a =v1+ vy, vy €lin {T(z)}, vy €lin{T(x)}* NnT(z).

If we show that vy = 0, then y — 2 = vy € lin{T(2)} as desired. We first show that
(d,v2) = 0. Note that (d,y — z) = 0 because both y and z belong to E(d), and that
(d,v1) = 0 because d € N(z) and vy € lin {T(2)} = N(z)*. Hence, (d,vs) = 0.

We claim that vy = 0 since d € i {N(2)}, vy € lin {T(2)}* = aff {N ()}, and (d, vy) = 0.
The proof of this claim is not difficult. Since d € ri{N(z)} and v; € aff {N(2)}, we obtain
that d + evy € N(2) for € > 0 sufficiently small. We now use that v, € T'(z) to obtain that
(d + evg,v3) < 0. Since (d,vy) = 0, this implies that v, = 0, as desired. W

3 Face Geometry

The main result of this section is a partition of R”™ in terms of the face structure of a convex
set. We then use this result to extend Lemma 3.3 of Burke and Moré [4]. As we shall see,
this extension is crucial to the results on exposing constraints.

Our development requires a few basic properties of projection operators. The projection
P :IR" — Q into a closed convex set ) is defined by

P(a) = argmin {[ly — #|| : y € Q) ,

where || - || is an inner-product norm. This definition implies that the projection operator

P can be characterized in terms of the inner product (-,-) by requiring that

(0 - Pla)y— P(2) <0,  ye.



In terms of normal cones, this characterization requires that
x — P(z) € N[P(2)] (3.1)
In particular, note that this characterization implies that
Pz + 2) ==, r e, z&N(z). (3.2)
We extend this result by proving that
Pz 4 2z)=ua, reF, zeN(F) (3.3)

for any face F' € F. We prove (3.3) by noting that if {z;} is a sequence in 1i(F") that
converges to z, then z € N(F) = N(zy), and thus (3.2) implies that P(zy + z) = 2. The
result now follows from the continuity of the projection operator.

We now present two decompositions of R™ in terms of the face structure of a convex

set. The first decomposition extends a result of Goffin [15] for polyhedral .

Theorem 3.1 If Q is a closed convex set in IR™, then the collection
{ri(F)+ N{F}: F € F}

forms a partition of R™.

Proof. Let 2 € R", and note that = P(2) 4 [z — P(2)]. Certainly P(z) € ri(F) for some
F € F, and thus the characterization (3.1) of the projection operator implies that

x— P(x) € N[P(x)]= N(F).
Hence, z = P(2) + [¢ — P(z)] belongs to ri (F) + N(}'), and thus

R" = | J [fi(F)+ N(F)].
FeF

We now show that this decomposition of R"™ is a partition. Assume that z; € ri(F;) and
zi € N(F;) satisfy z1 + 21 = 22 + 22 for some Fy and Fy in F. Then (3.2) implies that

1 IP($1+21)IP($2—|—22)I$2.
Thus, ri(Fy) Nri(Fy) # 0. Since the relative interiors of the faces of Q form a partition of
2, we must have F| = F; as desired.

Theorem 3.1 suggests that it may be possible to decompose IR™ in terms of sets of the
form F+ri{N(F)}. We now show that this is possible provided € is polyhedral. The proof
is similar to that of Theorem 3.1, but depends heavily on Theorem 2.4.



Theorem 3.2 If Q is a polyhedral set in R"™, then the collection
{F+r1i{N(F)}: FeF}
forms a partition of R™.

Proof. If we define F' = E[az — P(2)], then Theorem 2.4 shows that @ — P(z) € ri {N(F)}.
Moreover, since z — P(2) € N[P(z)], we obtain that P(z) € Elz — P(z)] = F. Hence,

= Plz)+ [z - Plz) € F+ri{N(F)}.

This proves that
R*= | J [F+{N)}].
FeF
We now prove that this decomposition of IR"™ is a partition. Assume that z; € F; and
zi € i{N(F})} satisfy @1 + 21 = 22 + 22 for some Fy and Fy in F. Then (3.2) implies that

$1IP($1+21)IP($2—|—22)I$2.

Thus, z1 = 2z3. Since z; € ri{N(F})}, Theorem 2.4 shows that F; = F(z;), and thus z; = 2,
implies that Fi = F5 as desired. W

Theorem 3.2 does not hold for general convex sets 2. For example, if € is the convex
set shown in Figure 2.1, then any point of the form (0,£) with £ > 1 does not belong to
a set of the form F' + ri{N(F)} for }' € F. On the other hand, Theorem 3.1 shows that
(0,&) with £ > 1 must belong to a set of the form ri (#')+ N{}F'}; a computation shows that
F={(0,1)}.

We proved Theorems 3.1 and 3.2 because of the interest in partitions of R™ in terms of
the faces of a convex set. In the remainder of this section, however, we only need to know
that if € is polyhedral then the collection {F + N(F) : F' € F} covers R". Clearly, both
Theorems 3.1 and 3.2 yield this result.

In the proof of the lemma below we make use of the result that if € is polyhedral then
Q has a finite number of faces. This result can be found, for example, in Rockafellar [22,
Theorem 19.1]. We also need to know that if € is closed and convex, then any face of Q is
closed. For this result, see Stoer and Witzgall [23, Theorem 3.6.6].

Lemma 3.3 Assume that Q is a polyhedral set in R™. Ifx € Q and d € N(z), then
r+deint{K(d)},

where
K= | [F+NF),
FeF(d)
and F(d) is defined in Lemma 2.3.



Proof. The first step in the proof is to show that if F' € F, then F'+ N(F') is closed. The
definition of a normal cone shows that N(F') is closed, and since € is closed, each face F
is closed. Now let {y;} be a sequence in F' 4+ N(F) that converges, and let y, = i + 2,
where 2, € F and 2z, € N(F'). Since (3.3) implies that

= Py + 21) = Plyg),

and {yr} converges, it follows that {x;} converges. Moreover, since y, = x + zx, the
sequence {z;} also converges. We now use that z; € F and 2z, € N(F'), to conclude that
{21} converges to some z € F'and {z,} converges to some z € N(F'). Hence, {yx} converges
toz 4+ zin F' 4+ N(F). This shows that F'+ N(F) is closed.

The next step in the proof is technical; we need to show that x + d does not belong to
the set

)= U [F+NE).
F¢F(d)

Theorem 3.1 shows that 2 + d € F'+ N(F') for some F' € F. Let y € F' and 2 € N(F) be
such that z +d = y + z. Then (3.3) implies that

v=Platd)=Ply+z) =y,

and thus d = z € N(F). Hence, F' € F(d). This shows that = + d ¢ L(d) as desired.

We have shown that F'+ N(F) is closed for each F' € F. Since € is polyhedral, there
is a finite number of faces, and thus L(d) is closed. Moreover, since z + d ¢ L(d), there is
an open set U such that 2 +d € U and U N L(d) = (). Now note that Theorem 3.1 implies
that K(d)U L(d) = R", and thus U C K(d). Hence,

r+de U Cint{K(d)},
as desired. H

Lemmas 2.1 and 3.3 are the ingredients needed to prove the main result of this section.

Theorem 3.4 Let Q be a polyhedral set in R". Assume that {z)} and {dy} are sequences
in R™ with z, € Q@ and d, € N(ay). If {xk} converges to 2* and {d} converges to d*, then
x € E(d*) for all k sufficiently large.

Proof. Lemma 3.3 implies that 2* + d* € int{K(d*)} so that zj 4+ dy € K(d*) for all k
sufficiently large. Since dy € N(zy),

T = P(wk + dk) S P[I((d*)]
by virtue of (3.2). Now note that (3.3) and Lemma 2.1 imply that

PIK(d*)] C ) PIF+N(F); = U F}=E@d),
FeF(d*) FeF(d*)

10



and thus z € E(d*) for all k sufficiently large. B

Burke and Moré [4] proved a similar result for general Q by assuming that a* € ri {F'}
for a quasi-polyhedral face F" and d* € ri{N(F')}. The assumption that d* € ri{N(F)}is a
nondegeneracy assumption that is avoided in Theorem 3.4 by assuming that € is polyhedral.

Theorem 3.4 fails if  is a general closed convex set even if we assume that 2™ € ri {F'}
for a quasi-polyhedral face F. For example, consider the set ) shown in Figure 2.1. The
sequence {x} defined by

oy = (sin(%),cos(%))

belongs to Q for k > 1, and dy, = 23 € N(xy). However, {di} converges to d* = (0,1), and
E(d*) ={(0,1)}. Thus, z; ¢ E(d*) for any k > 1.

4 Exposing Constraints

Previous results on the identification properties of algorithms in the neighborhood of a
stationary point either assumed linear independence of the active constraint normals or

nondegeneracy of the stationary point. In this section we avoid these restrictions.

Definition. Given a convex set {2, a stationary point z* is nondegenerate if
- Vf(a")eri{N(z")}. (4.1)

This nondegeneracy condition is due to Dunn [10]. An advantage of this definition is that
it does not make any linear independence assumptions on the constraints. Also note that
Burke and Moré [4] proved that if Q is polyhedral, then 2* is nondegenerate if and only
if there is a set of positive Lagrange multipliers. This result implies that this definition of
nondegeneracy can be viewed as a generalization of the standard strict complementarity
condition.

The main result of this section is an extension of the following identification result of
Burke and Moré [4]. For this result recall that F'(x) is the unique face of € that contains

in the relative interior.

Theorem 4.1 Let f: R"™ — R be continuously differentiable on the closed, convex set 1.
If {x1} is a sequence in Q that converges to a nondegenerate stationary point * of (1.1),
then

Jim Prig,) (=¥ F(re)] = 0 (42)

if and only if there is a kg > 0 such that

ap €i{F(2")}, k> ko.

11



An advantage of Theorem 4.1 is that it is independent of the representation of (.
For applications, however, it is necessary to express Theorem 4.1 in terms of a specific
representation of ). Note, in particular, that if € is the polyhedral set defined by the set
of linear constraints

Q={zeR":(¢j,z) >6;, 1 <j<m}, (4.3)

for some vectors ¢; € R™ and scalars ¢;, then Calamai and Moré [6] proved that the

projected gradient that appears in (4.2) can be expressed in the familiar form
Pry [V (@) ==V @)+ > Necj, (4.4)

where the set of active constraints is defined by

A(z) ={j: (cj,z) = é;},

and A; for j € A(z) solves the bound constrained linear least squares problem

min HVf(w) — Z /\]‘C]‘H A >0
jeA(x)
Also note that representation (4.4) of the projected gradient is unique even if the active
constraints ¢; with j € A(z) are linearly dependent.

Theorem 4.1 characterizes the limiting behavior of many algorithms with respect to the
face structure of . For example, Burke and Moré [4] prove that the sequential quadratic
programming algorithm and the gradient projection algorithm generate sequences that sat-
isfy (4.2). Consequently, if the stationary point 2* is nondegenerate, the sequences generated
by these algorithms eventually enter and remain in the relative interior of the face F(z*).
This can be extremely useful knowledge in the design of algorithms for the solution of (1.1).

Note that Theorem 4.1 gives information on the identification of the active constraints.
This is based on the observation of Burke and Moré [4] that

ri{F(2™)} ={ex € Q:{c;,2) =05, j € A(z™), (¢c;,2)>8;, j¢ A(z™)}.

Thus, Theorem 4.1 shows that if {z;} is a sequence in Q that converges to a nondegenerate
stationary point z* of (1.1), then the sequence { Pr(,,) [~V f(2x)]} converges to zero if and
only if there is a kg > 0 such that

Alzy) = A(z*), k> ko

The following example of Stephen Wright shows that this result fails in degenerate cases.
Example. Define f:R?> — R by

f(&.6) = % (5% + Mfg)
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for some p > 1, and define Q@ C R? by

Q= {(51752) eR?: & > PP, & > —52}-

Note that f is a strictly convex quadratic and that z* = 0 is the global minimizer in Q. A

computation shows that the steepest descent iterates are generated by

&1 __p-l T3NS
2 N e\ & )

This implies, in particular, that all the iterates are feasible and that

e _

5gk+2) - 5gk)

Hence, every other iterate of the steepest descent method lies in the same ray from the
origin. Thus, if the initial iterate satisfies either the constraint & = p2?&; or the constraint
& = =&, the iterates of the steepest descent method oscillate between the two constraints
that define Q. Since these iterates are feasible, the steepest descent iterates coincide with

the gradient projection iterates. This implies that in this example,

Alzrpr) # Alzy),  Alzy) # A(@7), k= ko

Of course, in this case 2™ is degenerate because V f(z*) = 0.

We now consider the case when z* is degenerate and show that the nondegeneracy

assumption in Theorem 4.1 can be dropped if we replace ri {F(2*)} by E[-V f(z™)].

Theorem 4.2 Let f: R" — R be continuously differentiable on the polyhedral set 2, and

assume that {zy} is a sequence in Q that converges to a stationary point * of (1.1). Then
Jim P, [=V f(zr)] = 0
if and only if there is a kg > 0 such that
zp € E[-V f(a¥)], k> ko.

Proof. The proof depends on the Moreau decomposition (see, for example, Lemma 2.2 of
Zarantonello [26]) and Theorem 3.4. The Moreau decomposition of —V f shows that

~Vf(2E) = = Prioy [V (@) + Py =V F(zr)]-

In particular,

=V f(2r) = = Prie,y [=V(ap)] + di,

13



where dj € N(zg). Hence, if the sequence {Pr(,,)[—V f(21)]} converges to zero, then
{dy} converges to —V f(2*), and thus Theorem 3.4 shows that z; € E[-V f(2*)] for all k
sufficiently large.

Conversely, assume that 2, € E[—V f(2*)] for all k sufficiently large. Since 2 € E(d) if
and only if d € N(z), we have that there is a kg > 0 such that —V f(2*) € N(z}) for all

k > kg. Since the Moreau decomposition implies that

| P =9 £(@n)]| = min {1V f(2r) + d] : d € N(ap)}

we obtain that
| Pree =V 1)) UV FGs) = V7))
This yields the desired result. H
In the remainder of this section we examine various consequences of Theorem 4.2. We

first use Burke’s result (Theorem 2.4) to show that Theorem 4.2 is an extension of Theorem
4.1 for polyhedral €.

Theorem 4.3 If Q is a polyhedral set, then x™ is a nondegenerate stationary point for

problem (1.1) if and only if 2* € ri{ F[-V f(2™)]}.

Proof. This result is a direct consequence of Theorem 2.4. W

We can show that Theorem 4.2 is an extension of Theorem 4.1 by noting that if 2*

is a nondegenerate stationary point for problem (1.1), then Theorem 4.3 shows that z* is
in ri {E[-V f(z*)]}, and thus any @ € E[-V f(2*)] sufficiently close to z* also belongs to

ri{ B[V f(z")]}.
We now show that if the polyhedral set € has the specific representation (4.3), then the

face E[—V f(z*)] can be expressed in terms of the positive Lagrange multipliers at z*.
Theorem 4.4 If Q) is the polyhedral set in R™ defined by (4.3) and

Vi )= > X, A5 >0, (4.5)
ieA(z*)

for some stationary point x* of problem (1.1), then
E[-Vf@")] = {v € Q:{ej;a)=6;, A7 >0}.

Proof. Note that

(VI ),z)= > Mea)> > A
jeA(z*) jeA(z*)

for any @ € Q. Thus, (V f(2*),2) is minimized only when (¢;,z) = é; for \¥ > 0. B

14



If the active constraint normals are linearly dependent then there is an infinite set of

Lagrange multipliers that satisfy (4.5). Nevertheless, Theorem 4.4 shows that the set
{x € Q:fcj,m) =085, A} > 0}
is independent of the choice of Lagrange multipliers.

Theorem 4.5 Let f: R"™ — R be continuously differentiable on the polyhedral set € defined
by (4.3). Assume that x* is a stationary point of (1.1) and that the Lagrange multipliers X
satisfy (4.5). If {zk} is a sequence in § that converges to z*, then

Jim Pr,) [V f(a)] = 0 (4.6)
if and only if there is a kg > 0 such that
{i e A(2™): A7 > 0} C A(zp), k> ko. (4.7)

Proof. Theorem 4.4 shows that
r e E[-Vf(z*)] <= {teAl): A >0}C Az), z€Q.
Thus, the result is a direct consequence of Theorem 4.2. W

This result has immediate applications to several algorithms. For example, Calamai and
Moré [6] show that the gradient projection method generates sequences that satisfy (4.6).
Hence, Theorem 4.5 implies that if the sequence {z;} generated by the gradient projection
method converges to 2*, then (4.7) holds.

Closely related convergence results for the gradient projection method are due to Bert-
sekas [1, 2], Gafni and Bertsekas [12, 13], and Dunn [9]. However, in these papers it is not
shown that (4.6) holds; instead, it is shown that any limit point of the sequence {z} is
stationary.

Theorem 4.5 also has application to the class of trust region methods for bound con-
strained optimization problems proposed by Conn, Gould, and Toint [7, 8]. For this algo-
rithm Lescrenier [17] proved that (4.7) holds. Hence, Theorem 4.5 implies that (4.6) holds.

This result is of interest because the measure

v(@; f) = | Pr =V (@) (4.8)
is a natural criterion for terminating the algorithm. This is clear from expression (4.4)
for the projected gradient. Moreover, note that v(z;-) is scale invariant in the sense that

v(iz;af) = av(z, f) for any a > 0. Other criteria, for example,
v(z; f) = ||Plz = V()] — |l
do not have this important property.
Finally, Theorem 4.5 has implications to the class of trust region methods for general

linearly constrained methods analyzed by Burke, Moré, and Toraldo [5]. These results will

be reported in a later paper.
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5 Strictly Binding Constraints

We have stressed the geometric viewpoint of Theorem 4.2 because this viewpoint leads to
results that are independent of the representation of {2. On the other hand, the viewpoint
of Theorem 4.5 is needed because it is closely related to computational issues. In this
section we show that it is possible to define a set of strictly binding constraints B; at z*,
independent of the choice of Lagrange multipliers. This leads, in particular, to a version of
Theorem 4.5 in terms of B.

We will show that the set of strictly binding constraints B} can be defined in terms of
the active set of the exposed face E[—V f(2*)].

Definition. If Q is a polyhedral set and F'is a face of €2, then
A(F) = A=), z €ri{F}

is the active set of F.

We justify this definition by showing that the active set A(x) is independent of & € ri{F'}.
Assume that © is defined by (4.3), and choose any « € ri{F'}. If y € F, then

za=z+ANy—z)€eF
for some A < 0. Hence, if i € A(z), then

Since A < 0, this implies that (¢;,y) < é;. Thus, i € A(y). We have shown that A(z) C A(y)
if z € ri{F} and y € F'. Hence, A(z) = A(y) if © and y belong to ri {F'}.
This definition of A(F) is direct and intuitive. We now establish an alternative charac-

terization of A(F'). For the proof of this result we need to know that

—deri {N(w)} — d= Z Aici, A > 0. (5.1)

This characterization of ri {N(z)} is due to Burke and Moré [4, Lemma 3.2].
Lemma 5.1 If Q is a polyhedral set, then

F={2eQ:(c,ax)=20, 1€ A(F)}
for any face F of ).

Proof. Every face of a polyhedron is exposed (see, for example, Theorem 2.4.12 of Stoer
and Witzgall [23]), and thus F' = E(—d) for some d € R". Hence, Theorem 2.4 implies

16



that —d € ri{N(F)}, and thus d € ri{N(2)} for any « € ri{F'}. We now appeal to the
characterization (5.1), and conclude that there are A; > 0 such that

d= Z Ai€i, Ai > 0.

A computation now shows that
El-dl={z € Q: (¢, z)=06;, i€ Az)}.

Since A(z) = A(F) and F' = E[—d], this establishes the result. H

This result characterizes A(F) as the set of active constraints that are essential for F.

In view of this result, it is natural to investigate the properties of the active set of the

exposed face E[—V f(z*)].

Definition. If © is a polyhedral set and z* is a stationary point of (1.1), then
B; = A(E[-Vf(27)])
is the set of strictly binding constraints at z*.

This definition requires justification because strictly binding constraints are usually

associated with positive Lagrange multipliers; the following result provides this justification.

Theorem 5.2 Let f: R™ — R be continuously differentiable on the polyhedral set € defined
by (4.3). If z* is a stationary point of (1.1) then

V™) = Z Aiej, A >0, (5.2)
ieBy

for some set of positive Lagrange multipliers \.

Proof. Theorem 2.4 implies that —V f(z*) € ri{N(F)} for }' = E[-V f(z*)]. Hence,
—V f(z*) € ri{N(z)} for any @ € ri {F'}. Since A(z) = B} for € ri {F'}, the characteriza-
tion (5.1) yields the result. H

Theorem 5.2 justifies the definition of B; as the set of strictly binding constraints.
This result is of interest because it does not make any nondegeneracy or linear inde-
pendence assumptions. Note that if z* is nondegenerate then Theorem 4.3 shows that
z* € ri{E[-V f(2*)]}, and thus B = A(z*). Hence, for nondegenerate z*, Theorem 5.2 is

a direct consequence of (5.1) and the definition of nondegeneracy.

Theorem 5.3 Let f: R"™ — R be continuously differentiable on the polyhedral set € defined
by (4.3). If «* is a stationary point of (1.1) and {\7} is any set of Lagrange multipliers,

then the following three statements are equivalent.
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1. z € E[-V f(a")].
2. {1 € A(z*): A > 0} C A(x) for z € Q.
3. By C A(z) forz € Q.

Proof. Theorem 4.4 shows that the first two statements are equivalent. The equivalence of

the first and third statements is obtained by noting that Lemma 5.1 implies that
E[-Vf@))={xe€Q:{c;,x)=08;, 1€ B5}.
|

This result shows that Theorem 4.5 can be phrased in terms of B;. Another interesting
consequence of Theorem 5.3 is obtained by choosing any « € ri { F[-V f(2*)]} in the second

statement in Theorem 5.3. This shows that
{ie A(2*): A7 >0} C B;

for any set of Lagrange multipliers {A*}. Hence, the indices in B identify a maximal set of

positive Lagrange multipliers.

6 Second-Order Sufficiency Conditions

We have shown that optimization algorithms tend to generate iterates such that
rp € E[=V f(27)]

for all k sufficiently large. Another important component in the analysis of an optimization
algorithm is to show that the iterates converge under suitable conditions. This type of result
usually requires the assumption that the iterates {1} have an isolated limit point *. This
assumption is satisfied, for example, if * is an isolated stationary point, that is, there is a
neighborhood S(z*) such that z* is the only stationary point in S(2*) N . In this section
we show that if the Hessian is positive definite in the cone generated by E[-V f(a*)] — 2™,
then the stationary point z* is isolated.

The assumption that z* is an isolated stationary point can be guaranteed by impos-
ing second-order conditions on f. The following result uses a version of the second-order

sufficiency conditions that is appropriate for problem (1.1) with a general convex set Q.

Theorem 6.1 Let f: R™ — R be continuously differentiable on a closed convex set Q) and

twice differentiable at a point * in Q. If 2™ is a stationary point of problem (1.1) and
(Vf(*),w)y=0, weT(x*), w#0 = (w,Vf(z")w)>0, (6.1)

then z* is an isolated stationary point of f.
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Theorem 6.1 is a special case of a result of Robinson [21, Theorem 2.4]. The proof of
Theorem 6.1 is not difficult in our setting. Note that if 2™ is not an isolated stationary

point, then there is a sequence {z;} of stationary points converging to *. In particular,

(Vf(z"), 2 — 2™y >0, (Vf(zg), 2™ — ) > 0. (6.2)
This implies that
(Vf(xr) = Vf(@"),2p —a7) <0. (6.3)
Hence, if w is a limit point of the sequence {w;} defined by
T — X%
Wk = 7w
2k — 2|l

then (6.2) shows that (V f(2*),w) = 0, while (6.3) shows that (w, V2 f(2*)w) < 0. Moreover,
since wy € T(2*) and ||wg|| = 1, we also have that w € T'(z*) and that ||w|| = 1. This
contradicts (6.1).

For a polyhedral €2, condition (6.1) coincides with the standard second-order sufficiency
conditions. This observation follows by noting that if € is the set defined by (4.3) and

Vi®) = >, Mg,  A>0,
ieA(*)
then

{weR":(Vf(z"),w)=0, weT(z")}=
{w € R™: (cj,w) >0, j € A(x"™), (cj,w)=0, AT > 0}.

For a general convex €, condition (6.1) has an advantage over the standard second-order
sufficiency conditions because it is independent of the representation of . On the other
hand, an example of Burke, Moré, and Toraldo [5] shows that condition (6.1) does not take
into account the curvature of 2, and thus differs from the standard second-order sufficiency
conditions.

If 2* is a nondegenerate stationary point, then (6.1) can be expressed in terms of N (z*)+
where for any set S the orthogonal complement S+ of S is the subspace of vectors v such
that (v, w) = 0 for all w € 5. Indeed, Burke, Moré,, and Toraldo [5] prove that if 2* is a

nondegenerate stationary point, then

Nt = {we T(e™) s (V(2"), w) = 0} (6.4)
These results are familiar when € is the polyhedral set defined by (4.3) because

N(z*)t ={v e R": (¢;,v) =0, j € A(z™)}.

We now show that the second-order sufficiency condition can be expressed in terms of the
exposed face F[—V f(2*)]. In this result, cone {5} is the cone spanned by the set S, that

is, the set of vectors aw for some o > 0 and w € 5.
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Theorem 6.2 Let f: R"™ — R be continuously differentiable on a polyhedral Q@ and twice
differentiable at a point x* in Q. If x* is a stationary point of problem (1.1), then

{w € T(x™) : (Vf(x"), w) = 0} = cone { E[~V f(")] - a7} (6.5)
Moreover, if
w € cone {E[-Vf(z*)]-2"}, w#0 = (w,Vf(z")w) >0, (6.6)
then z* is an isolated stationary point of f.
Proof. The result follows from Theorem 6.1 if we establish (6.5). We first show that
cone {E[~V f{(z")] - ¢*} € {w € T(a") : (V f(a*), w) = 0}.

If w € cone {E[-V f(z™)] — 2"}, then w = a(z — ™) for some z € F[-V f(2*)]. Thus, since
(Vf(z*),-) is constant on E[—V f(2*)], we obtain that (V f(2*),w) = 0. Moreover, since
x € Q, it is clear that w € T'(z*). For the reverse inclusion assume that (V f(2*),w) = 0
for some w € T'(2*). Since w € T'(2*) and  is polyhedral, 2* + aw € Q for all @ > 0
sufficiently small. Moreover, since (V f(2*),w) = 0, it follows that 2* + aw € E[-V f(z*)].
Thus, w € cone{E[-V f(2*)] — 2*} as desired. B

We have already noted that if 2* is nondegenerate, then (6.4) holds. This implies, in
particular, that

{weT(@): (Vf(z7),w) =0}

is a subspace. In view of (6.5), we have shown that if 2* is nondegenerate then the second-
order condition (6.1) reduces to the assumption that V?f(z*) is positive definite on the
subspace aff { E[-V f(2*)] — 2*}. In the context of algorithms, the fact that (6.5) is a
subspace is extremely helpful. However, the same effect can be obtained without assuming

nondegeneracy if one is willing to strengthen the second-order sufficiency condition.

Definition. Let f: R" — R be twice differentiable at 2* € Q. The strong second-order
sufficiency condition for problem (1.1) is satisfied at a stationary point z* if V2 f(2*) is
positive definite on the subspace aff{ F[-V f(2*)] — 2*}, that is,

w e aff {E[-Vf(z*)] -2}, w#0 = (w,Vf(z*)w)> 0. (6.7)

If the strong second-order sufficiency condition (6.7) holds, then the standard second-order

sufficiency condition (6.1) must also hold because
cone {E[-V f(z*)] — 2"} C aff {E[-V f(z™)] — 2™ }.

The following example shows that the converse can fail even if f is quadratic.
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Example. Let f:R? — IR be given by

J(&1,89) = €8 + 46,6 + €3,

and let Q@ C IR? be given by

QI{(fb&)GRQi& >0, 5220}-

For this problem 2* = (0,0) is the global minimum of f over Q. Note that V f(z*) = 0, and
thus E[-V f(z*)] = Q. Hence,

cone {E[-V f(z*)] — 2*} = R, aff { B[~V f(2*)] — 2%} = R~

A computation shows that the standard second-order sufficiency condition (6.1) holds at z*.
However, it is clear that the strong second-order sufficiency condition (6.7) is not satisfied

at #* because V2 f(2*) is not positive definite.

Other authors have used the term strong second-order sufficiency condition to mean that
(cjyw)y=0, \;>0, w0 = (w,V*f(z")w)>0. (6.8)

For example, Gay [14], Lescrenier [17], and Robinson [20] use this condition in their analysis
of the convergence behavior of algorithms. A disadvantage of condition (6.8) is that it
depends on the representation of Q@ and the choice of multipliers. The following example

shows that condition (6.8) is stronger than (6.7) even if f is a quadratic.
Example. Let f:R® — IR be given by
f(&1,62,83) = 63— & + &,
and let Q@ = {z € R®: (¢;,2) > 0, 1 < i < 4} be the cone with vertex at the origin, where
L =€1, Cy=e€y, C3=e€3—€1, C4=€3— €.

For this problem z* = (0,0,0) is the global minimum of f over . A computation shows
that E[—V f(2*)] = {2*}, and thus the strong second-order condition (6.7) holds. However,
condition (6.8) does not hold if we choose A5 = A} = 0.

This example shows that condition (6.8)is stronger than (6.7) for some set of multipliers.
On the other hand, the following result shows that there is a set of multipliers such that
condition (6.8) is equivalent to (6.7).

Theorem 6.3 Let f : R"™ — R be continuously differentiable on the polyhedral set € defined
by (4.3). If a* is a stationary point of (1.1), then

aff {L[-V f(2")]— 2"} ={v e R" : (¢;,v) =0, j € B},

where B is the set of strictly binding constraints defined in Section 5.
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Proof. If v € E[-V f(2*)] — 2*, then (V f(2*),v) = 0, because (V f(2*),-) is constant on
E[-V f(z*)]. Moreover, since v is a feasible direction, (¢;,v) > 0 for j € A(z*). Now recall
that Theorem 5.2 guarantees that (5.2) holds. Hence,

0= (Vf(z"),v)= Z Ai(ej,v) > 0.
ieB;
This implies that (¢;,v) = 0 when j € B;. Thus, we have shown that
E[-Vf@@")] -2 C{ve R":(¢j,v) =0, j € B}.
Hence,
Al {F[=V f(a™)] = "} C {0 € R : (e;,0) =0, j € B2} (6.9)
For the reverse inclusion choose any zg € 1i {E[-V f(z*)]}. If (¢;,v) = 0 for j € B}, then

v is a feasible direction because B} = A(zg). Hence 29 + av € Q for all a > 0 sufficiently

small. Moreover, (5.2) implies that
(Vf(a"),z 4+ av) =(Vf(a"),z).
This shows that ¢ + av € F[-V f(2*)]. We have established that
{veR™: (¢;,v) =0, j € B} C E[-Vf(z")] - zo.

Hence,

dim{v € R" : (¢;,v) =0, j€ B} <dim{E[-V f(z")]}.

Since we have already established (6.9), this completes the proof. H

7 Algorithms

Theorem 4.5 is an important tool for the convergence analysis of optimization algorithms.
In this section we examine the use of Theorem 4.5 in the GPCG algorithm of Moré and
Toraldo [19]. In particular, we show that the convergence condition of the GPCG algorithm
is satisfied in a finite number of iterations even when the solution is degenerate.

The GPCG algorithm uses a combination of the gradient projection algorithm and the

conjugate gradient algorithm to solve large-scale problems of the form
min{g(z):l <z < u}. (7.1)
The GPCG algorithm uses the conjugate gradient method to explore the active set
A(z)={i 1 x; € {li,u;}} (7.2)

defined by the current iterate. Once this exploration is completed, the gradient projection
method is used to choose a new active set. The convergence properties of algorithm GPCG

are summarized in the following result of Moré and Toraldo [19].
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Theorem 7.1 Let ¢ : R — R be a strictly convex quadratic. If {x1} is the sequence
generated by algorithm GPCG for problem (7.1), then either {z\} terminates at the solution

z* in a finite number of iterations, or {x}} converges to the solution z* of problem (7.1).

If the solution z* of problem (7.1) satisfies the nondegeneracy condition
diq(x™) # 0, i€ A(z™),
then algorithm GPCG terminates at the solution x* in a finite number of iterations.

This convergence result is not entirely satisfactory when the solution 2™ is degenerate,
because it does not show that the convergence test is satisfied in a finite number of iterations.
Given a starting point zg in the feasible region Q@ = {# € R" : [ < 2 < u} and a tolerance

T > 0, the convergence test of the GPCG algorithm requires that

IVaa(zr)|] < 7l|Va(zo)l], (7.3)
where Vqgq is defined by
@q(w) if x; € (li, uZ)
[Vag(z)]; = ¢ min{diq(2),0} if z; =1
max{0d;¢(z),0} if x; =u;

This convergence test is closely related to (4.6) because

Vag(z) = =Pr) [-V ()]

In particular, if (4.6) holds, then the convergence test (7.3) is satisfied after a finite number
of iterations. In the remainder of this section we show that (4.6) holds.
Given the current iterate xy, algorithm GPCG explores the active set defined by the

current iterate by computing an approximate minimizer of the subproblem
min{g(azp +d):d; =0, i € A(ag)}. (7.4)

Given an approximate minimizer dj of subproblem (7.4), algorithm GPCG uses a projected

search to choose a search parameter ay such that ¢(ag41) < (@), where
Trp1 = P(ay + apdy)

and P is the projection into the feasible region . Details on the projected search can be
found in the paper of Moré and Toraldo [19]. For this paper it is necessary to note only

that since the i-th coordinate is zero when i € A(xy), we obtain that

holds whenever algorithm GPCG explores the active set defined by the current iterate.
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The approximate minimizer dj of subproblem (7.4) is obtained by first noting that if
11, ...,0n, are the indices of the free variables, that is, those variables with indices outside

of A(zy), then subproblem (7.4) is equivalent to the unconstrained subproblem
min{gx(w) : w € R™*}, (7.6)

where ¢, : R™* — R is defined by qi(w) = ¢(ar + Zrw), and Zj is the matrix in R™*"7*
whose j-th column is the i;-th column of the identity matrix in R"*". Given the starting
point wg = 0 in R™*, the conjugate gradient algorithm generates a sequence of iterates
{wj;, }. The approximate solution of subproblem (7.4) is then dy = Zyw;, for some j; > 0.

If the iterate 241 generated by the conjugate gradient method appears to have identified
the active set defined by the solution, then algorithm GPCG explores this active set further.
The decision to continue the conjugate gradient method is based on the observation that if

A(z) = A(z™), then the binding set
B(z)={i:2;=1; and 9;q(z) > 0, or x; = u; and 9;q(x) < 0}

agrees with the active set A(z). Thus, if the conjugate gradient method produces an
iterate 41 such that B(zry1) = A(zg41), then algorithm GPCG continues to use the
conjugate gradient method to explore this active set. The finite termination properties of
the conjugate gradient algorithm show that at most my iterations are needed before the
conjugate gradient algorithm finds a solution of subproblem (7.4); at this point there would
be no need to explore this active set further.

Once the conjugate gradient algorithm has explored an active set, algorithm GPCG uses

the gradient projection method

Y1 = Plyr — axVa(yr)]

with yo = ) to select a new active set. The GPCG algorithm sets ;41 = y;, for some
Jx > 0. Additional details on the implementation of the gradient projection method can be
found in the paper of Moré and Toraldo [19].

We now use Theorem 4.5 to prove that (4.6) holds for the iterates generated by algorithm
GPCG. The proof consists of showing that condition (4.7) holds. For the bound constrained
problem (7.1), condition (4.7) is just that

B ={ie A(z") : diq(a™) # 0} C A(x), k> ko,
where B} is the set of strictly binding constraints at 2* defined in Section 5.

Theorem 7.2 Let ¢ : R — R be a strictly convex quadratic. If {x1} is the sequence
generated by algorithm GPCG for problem (7.1), then either {z\} terminates at the solution

x* in a finite number of iterations, or there is an index ko such that the convergence test

(7.3) is satisfied for all k > k.
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Proof. Theorem 7.1 shows that either {x;} terminates at the solution z* in a finite number
of iterations, or {x;} converges to 2*. The result follows if {z;} terminates at the solution
x*, so we assume that {z;} converges to z*. Let Kgp be the set of indices k such that
2x+1 is generated by the gradient projection method. Theorem 5.2 of Calamai and Moré
[6] shows that

Hence, Theorem 4.6 shows that
B C A(xk41)

if £ € Kgp if k is sufficiently large. Moreover, since (7.5) holds whenever the conjugate

gradient method is used to explore the current active set, we immediately obtain that
B C A(zy)

holds for all sufficiently large indices k. Hence, (4.7) holds, and thus Theorem 4.5 shows
that (4.6) holds as desired. W
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