
AUTOMATIC DIFFERENTIATIONFOR PDES { UNSATURATED FLOWCASE STUDYGeorge F. Corliss, Christian Bischof, Thomas RobeyAndreas Griewank, and Steven J. Wright SPECTRA Research InstituteMathematics and Computer Science Division 1613 University Blvd. NEArgonne National Laboratory Albuquerque, NM 87102{17109700 S. Cass Avenue, Argonne, IL 60439Argonne Preprint ANL/MCS-P311-0692Published in Advances in Computer Methods for Partial Di�erential Equations{ VII, R. Vichnevetski, D. Knight, and G. Richter, Eds., IMACS, NewBrunswick, pp. 150-156, 1992.1 IntroductionThe techniques of automatic di�erentiation [8, 10, 15] are applied to an examplepartial di�erential equation arising from the modeling of unsaturated ow. Onecommon paradigm for the numerical solution to some classes of 2-, 3-, or higher-dimensional partial di�erential equations is:1. Given a PDE and boundary conditions,2. apply �nite di�erence or �nite element approximations on some appro-priate (frequently nonuniform) grid, and3. enforce an approximate solution by solving a nonlinear system F (u) = 0for the residual by Newton's method.The dimension of the nonlinear system F (u) = 0 is proportional to the num-ber of grid points. In current algorithms, the Jacobian J required by Newton'smethod is computed by some combination of hand coding, divided di�erences,matrix coloring, and partial separability. We present a case study documentingthe steps we took in analyzing a code for unsaturated ow in porous media forthe purpose of computing J by automatic di�erentiation using ADOL{C [12],a tool for automatic di�erentiation using overloaded operators in C++. Weconclude that



� ADOL{C can be successfully applied to large, complex, existing C codes,� in this application, the fastest ADOL{C code takes twice as long as thebest �nite di�erence code,� in this application, the reverse mode takes about twice as long as theforward mode, and� signi�cant e�ciencies are possible in the linear system solver.2 Conventional Methods for Finding JIn this section, we survey briey some of the conventional methods of computingJ .Hand CodingThe best performance of algorithms is usually achieved when the analytic Ja-cobian J is hand coded. In general, this is a tedious, time consuming, anderror-prone task. In many problems, hand coding is feasible because many ofthe dependencies of F on u are linear. If the linear dependencies can be sep-arated from the nonlinear ones, hand coding of at least portions of J is madeeasier.Divided Di�erencesThe Jacobian J can be approximated by backward, centered, or forward divideddi�erences. An appropriate choice of step size is di�cult, especially when theremay be di�erences of scale between di�erent components. Hence, the accuracyof divided di�erence approximations is in doubt. A naive coding perturbing eachcomponent of u in turn is easy, but very expensive. Implementations usuallyattempt to exploit the sparsity structure which is known to be present.Matrix ColoringOne technique for exploiting the sparsity structure of J is matrix coloring [3]. Iftwo columns of J have nonzero elements only in disjoint sets of rows, then thosetwo columns can be computed simultaniously, using either divided di�erence orautomatic di�erentiation techniques. Suppose that J has the sparsity structureJf = 0BBBB@ || ~� ~� }� } 1CCCCA : Initialize S = 0BB@ 1 01 00 10 1 1CCA to yield J�S = 0BBBB@ || ~� ~� }� } 1CCCCAat roughly half the cost and storage compared to computing J directly. Thenumber of separate columns of J � S which must be computed is usually of the



order of the number of points in the stencil used to construct the �nite element orthe �nite di�erence approximation to the PDE. Hence, the chromatic number isoften independent of the grid spacing, so the cost of computing J grows linearlywith the number of grid points, instead of quadratically as suggested by thedimensions of J .Partial SeparabilityA function f : Rn ! R is called partially separable [13] if it can be expressedas a linear combination f(u) = P fi(u). Often, each fi depends on only afew of the components of u. Partially separable functions arise frequently inoptimization. In the context of PDEs, many residual functions F are partiallyseparable because they are the sum of residuals from various components of themodel. When the function F is partially separable, it is much faster to computethe smaller Jacobians of each function fi separately, and then add then together.Further savings are often possible by coloring the smaller Jacobians with fewercolors than were required for J .In many PDE applications, including the case studied here, some of functionsfi are linear. Their Jacobians are constant and may be coded analytically orcomputed once and re-used. Only the Jacobians of the nonlinear fi's must be re-computed, whether hand coding, divided di�erence approximation, or automaticdi�erentiation is used.3 Automatic Di�erentiationWe illustrate automatic di�erentiation with an example. Assume that we havethe sample program shown in Figure 1 for the computation of a function f :R2 7! R2. Here, the vector x contains the independent variables, and the vectory contains the dependent variables. The function described by this program isde�ned except at x(2) = 0 and is di�erentiable except at x(1) = 2. We can trans-form the program in Figure 1 into one for computing derivatives by associating aderivative object rt with every variable t. Assume that rt contains the deriva-tives of t with respect to the independent variables x, rt = � @t@x(1) ; @t@x(2)�T .We propagate these derivatives by using elementary di�erentiation arithmeticbased on the chain rule [8, 15] for computing the derivatives of y(1) and y(2),as shown in Figure 2. In this example, each assignment to a derivative is actuallya vector assignment of length 2.



if x(1) > 2 thena = x(1) + x(2)elsea = x(1) * x(2)endifdo i = 1, 2a = a * x(i)end doy(1) = a / x(2)y(2) = sin (x(2))Figure 1. Sample function f : x 7! yif x(1) > 2.0 thena = x(1) + x(2)ra = rx(1) + rx(2)elsea = x(1) * x(2)ra = x(2) * rx(1) + x(1) * rx(2)endifdo i = 1, 2temp = aa = a * x(i)ra = x(i) * ra + temp * rx(i)end doy(1) = a / x(2)ry(1) = 1.0 / x(2) * ra- a / (x(2) * x(2)) * rx(2)y(2) = sin (x(2))ry(2) = cos (x(2)) * rx(2)Figure 2. Augmented with derivative codeThis mode of automatic di�erentiation, where we maintain the derivativeswith respect to the independent variables, is called the forward mode of auto-matic di�erentiation. The reverse mode of automatic di�erentiation maintainsthe derivative of the �nal result with respect to intermediate quantities, usuallyreferred to as adjoints, which measure the sensitivity of the �nal result withrespect to some intermediate quantity. The reverse mode requires fewer oper-ations than the forward mode if the number of independent variables is largerthan the number of dependent variables. This is exactly the case for computing



a gradient, which can be viewed as a Jacobian matrix with only one row. Thisissue is discussed in more detail in [8, 11, 12].Wolfe observed [17], and Baur and Strassen con�rmed [1], that if care istaken in handling quantities which are common to the (rational) function andits derivatives, then the cost of evaluating a gradient with n components is asmall multiple of the cost of evaluating the underlying scalar function. Despitethe advantages of the reverse mode from the viewpoint of complexity, the im-plementation for the general case is quite complicated. It requires the ability toaccess in reverse order the instructions performed for the computation of f andthe values of their operands and results. Current tools (see [14]) achieve thisby storing a record of every computation performed. An interpreter performs abackward pass on this \tape." The resulting overhead often dominates the com-plexity advantage of the reverse mode in an actual implementation (see [5]). Wealso note that even though we showed the computation only of �rst derivatives,the automatic di�erentiation approach can easily be generalized to the com-putation of univariate Taylor series or Hessians and multivariate higher-orderderivatives [2, 9, 15].This discussion is intended to demonstrate that the principles underlyingautomatic di�erentiation are not complicated: We just associate extra compu-tations (which are entirely speci�ed on a statement-by-statement basis) with thestatements executed in the original code. As a result, a variety of implementa-tions of automatic di�erentiation have been developed over the years (see [14]for a survey).4 Unsaturated Flow ProblemWe study a two-dimensional unsaturated ow in a porous medium. Steady stateporous media ow involves an elliptic partial di�erential equation that contains aconductivity coe�ecient [6, 16]. The coe�cient is typically discontinuous acrossdi�erent materials and can vary greatly. For unsaturated ow, the conductivityis usually taken to be a function of pore pressure which introduces a nonlinearityto the problem. For materials such as tu�, the nonlinearity can become severeenough to dominate the problem as conductivity can change greatly for a smallchange in pressure. Our interest is in modeling ow in a region consisting offractured tu� with conductivities that vary by ten or more orders of magnitude,often over very short distances. The code uses a mixed �nite element approachwith a quasi-Newton iteration to handle the very high nonlinearity. The nonlin-ear equations are contained in the C function dual(x,f). Centered di�erencesare used to calculate a very sparse 1989�1989 Jacobian J . The resulting linearequation is solved by a bi-conjugate gradient algorithm.We approached the code hoping to demonstrate the superiority of the ADOL{C [12] implementation of automatic di�erentiation over the centered di�erenceapproximations used in Robey's original code. The high degree of nonlinearity



was felt to be a potential cause of inaccuracy using centered di�erences, and wehoped that automatic di�erentiation could improve accuracy and speed.The test problem considered here is a 1-D test problem exhibiting a par-ticularly simple structure. We hope to develop strategies that generalize tohigher-dimensional problems of practical interest.5 Exploitation of StructureIt is well known that J has a very regular sparse structure arising from theunderlying discretization grid (see Figure 3).J = 0BB@ B D̂ CT1 CT2DC1 0C2 1CCAFigure 3. Sparsity structure of JThe matrix B = J(0::935; 0::935) is block diagonal. The diagonal blocks are4� 4 blocks of the form � �0BB@ 4 2 1 22 4 2 11 2 4 22 1 2 4 1CCA :The matrixD = J(936::1286; 0::935) is built of 3�8 blocks along the slanted di-agonal. The slanted diagonal has slope 3/8. The matrix D̂ = J(0::935; 936::1286)is equal to DT in the limit as the nonlinear perturbation approaches zero. It isD̂ that will be our focus in computing J . The matrix C1 = J(1287::1519;0::935)has four slanted diagonals, each with slope 1/4. The upper two diagonalshave values �2, while the lower two diagonals have values +2. The matrixC2 = J(1519::1988; 0::935) has slanted diagonals with slopes 1/2 and values �1.Robey recognized that f depends only linearly on x, except for the depen-dence of f0::935 on x936::1286. That is, he coded most of the elements of J as linearfunctions of x. Only the elements of J that belong to D̂ are more complicated tocompute. In principle, the elements of D̂ could be computed analytically sincethey involve only sums and products of components of x. This was not donebecause it is too hard to recognize and code the patterns of which componentsof x impact which components of f . The 351 rows of D̂ can be computed in onlysix passes. The combination of partitioning J and coloring D̂ reduced the timerequired to approximate J from about 31 minutes to about 5.78 seconds on aSPARC 1+. This is the code that formed the basis for the further explorationsdescribed below.



6 Conversion to ADOL{CIn this section, we describe the steps involved in converting the original code togenerate J using ADOL{C. More details of the conversion can be found in [4].6.1 Step 1: Convert to C++The program unsat was �rst converted to run with the GNU G++ implemen-tation of C++. The following modi�cations were necessary:� Remove system-dependent graphics capabilities that had no signi�cance tothe mathematical problems of computing derivatives and solving a systemof linear equations.� Convert all function headers from their acceptable C formint step(x,s)double *x,*s;to a form acceptable to C++int step (double *x, double *s)In addition, some diagnostic print statements were removed, some were added,and system-dependent timing instrumentation was added. The resulting coderequired 5.78 seconds on a SPARC 1+ to evaluate the nonlinear part of theJacobian D̂.Study of the structure of D̂ suggested that it could be computed with threecolors instead of the six colors used by Robey. Using three colors reduced thetime required to compute D̂ from 5.78 seconds to 2.87 seconds (see Table 1).6.2 Step 2: Convert the Function dual to Use Type adoubleNow we were ready to explore the use of automatic di�erentiation. In theunsaturated ow code, the function to be di�erentiated is isolated in int dual(double *xv, double *r)which calls double konduct (double *xv, int elem).In dual, xv contains the independent variables, and r contains the dependentvariables. Both dual and konduct are called from several places in the code, sowe needed to leave the original functions, while providing new ones called adualand akonduct to be called from step to compute the Jacobian. In ADOL{C,independent variables, dependent variables, and any other variables requiringderivative objects must be declared as type adouble. In each function, some ofthe double variables require derivatives, while others do not.No changes of any kind were required to the body of either func-tion. However, we removed from adual code that is required to compute thevalue of f but that is not required to compute the elements of D̂, which requireonly r[0..935].



6.3 Step 3: Record the \tape"The next step was to modify the three-color �nite di�erence code in step3.c touse automatic di�erentiation instead. We followed the instructions in [12] �rstfor the forward mode of automatic di�erentiation.We removed the �nite di�erence code from step3.c as shown in Figure 4./* Nonlinear part */stepsize=1.0e-7;for (i=0;i<3;i++) {for (j=0;j<elements;j++) {deltax[j]=(fabs(xv[8*elements+3*j+i])>1.0)? stepsize*fabs(xv[8*elements+3*j+i]): stepsize;xv[8*elements+3*j+i]+=deltax[j];}k=dual(xv,r);if (k<0) return(-2);for (j=0;j<8*elements;j++) df[j]=r[j];for (j=0;j<elements;j++)xv[8*elements+3*j+i]=x[8*elements+3*j+i]-deltax[j];k=dual(xv,r);if (k<0) return(-2);/* Store Jacobian in a sparse structure. */} /* end for (i */for (i=0;i<dim;i++) xv[i]=x[i];Figure 4. Jacobian by �nite di�erencesWe added include �les:#include "adouble.h"#include "adutils.h"We replaced the �nite di�erence code with code to do the following:1. Declare variables for ADOL{C.2. Insert calls to trace on and trace off to mark the active section of thecode.3. Nominate independent variables.



4. Call adual within the active section to record the \tape". The functionvalue is computed at this point.5. Nominate dependent variables.6. Make three passes in the forward mode:1. Initialize independent and dependent derivative objects.2. Call forward.3. Extract derivatives.The derivative values computed by ADOL{C as shown in Figure 5 were ex-tracted from Depend Y and stored in the original data structure for J . Theresulting code required 5.53 seconds to evaluate D̂, or twice as long as thethree-color �nite-di�erence code.unsigned short Tape_Tag = 1;int Keep = 0;int degree = 1;double **Indep_X = new double*[dim];double **Depend_Y = new double*[dim];adouble ad_xv[dim];adouble ad_r[dim];int adual (adouble *, adouble *);for (j = 0; j < dim; j ++) {Indep_X[j] = new double[2];Depend_Y[j] = new double[2];}/* Compute right hand side vector f */f=(double *) calloc(dim,sizeof(double));if (f==NULL) return(-1);trace_on (Tape_Tag, Keep);for (i = 0; i < dim; i ++) {if ((i <= 935) || (1287 <= i)) {ad_xv[i] = x[i];}else {// Nominate independent variablesad_xv[i] <<= x[i];}}k = adual (ad_xv, ad_r);if (k<0) return(-2);



for (i = 0; i < dim; i ++) {if (i < 8*elements) {// Nominate dependent variablesad_r[i] >>= f[i];}else {f[i] = value (ad_r[i]);}}trace_off ();/* Nonlinear part */for (i = 0; i < 3; i ++) {for (j = 0; j < 351; j ++) {Indep_X[j][0] = x[8*elements+j];Indep_X[j][1] = 0.0;}for (j = 0; j < 8*elements; j ++) {Depend_Y[j][0] = 0.0;Depend_Y[j][1] = 0.0;}for (j=0;j<elements;j++) {Indep_X[3*j+i][1] = 1.0;}forward (Tape_Tag, 8*elements, 351, degree,Keep, Indep_X, Depend_Y);/* Store Jacobian in a sparse structure. */} // end for (iFigure 5. Jacobian by 3-color, forward-mode ADOL{C6.4 Reverse ModeADOL{C can also evaluate derivatives in the reverse mode. The reverse mode isusually faster than the forward mode when there are more independent variablesthan there are dependent variables. The entire Jacobian is square, but the blockD̂ that we are computing is composed of 3�8 blocks. This con�guration impliesthat the forward mode (or �nite di�erences) can be computed in three passes,while the reverse mode requires eight passes. We write three versions of stepusing the reverse mode. None of these versions was as fast as the three forwardsweeps.step6.c: Eight reverse sweeps. Similar to the three forward sweeps.



step2.c: Eight-vector reverse. The eight reverse sweeps are all performed atonce.step7.c: Eight-vector short reverse. The eight reverse sweeps are all performedat once, taking advantage (as in the three forward sweeps) of the fact thatwe do not need to di�erentiate with respect to all x, nor are we requiredto di�erentiate all dependent variables.7 ResultsTable 1 gives the timing comparisons of the various versions of step describedabove. These are the times in seconds on a SPARC 1+ required to compute D̂,the nonlinear portion of the Jacobian J . The \tape" for the three-color forwardmode evaluation was 1.5 mega-bytes long.In general, the derivatives computed by automatic di�erentiation are moreaccurate than those computed by �nite di�erences. In some applications, theimproved accuracy enables Newton's method to converge in fewer iterations.Table 1. CPU Times for Jacobian computationMethod SecondsSix-color �nite di�erences 5.78Three-color �nite di�erences 2.87Three-color forward mode 5.53Eight sweeps of reverse mode 18.78Eight-vector reverse mode 11.15Eight-vector short reverse mode 11.128 Conclusions about Automatic Di�erentiation� ADOL{C can be applied to existing C codes that are large and complicatedenough to have real scienti�c interest.� In this application, the fastest ADOL{C code takes twice as long as thebest �nite di�erence code.� In this application, the reverse mode takes about twice as long as theforward mode, while it must perform nearly three times as many sweeps(8 vs. 3).� In this application, the vector reverse is about 1/3 faster than the corre-sponding number of reverse sweeps performed separately.



� Recognizing that short vectors can be used for the independent and thedependent variables saves only an insigni�cant amount of time, but it ismore complicated to code.9 Linear Equation SolverIn truth, we have been looking at the wrong problem so far. It takes less than3 seconds to compute the nonlinear part of J , but it takes up to 430 secondsto solve the system of linear equations. The original intent was to explorethe application of ADOL{C, but we also pass along observations about linearequation solvers. The existing code stores J as a sparse matrix and solves thelinear equation to �nd the Newton step using a biconjugate gradient iterativealgorithm.One alternative is to use the general direct sparse solver. Another alternativeis to take better advantage of the structure of J , putting J into a banded formby suitable interchanges of rows and columns so that a banded solver can beused.The problems we are really interested in solving are 2-D problems. Thebands described in Section 5 do not generalize to 2-D problems. While both Band D are banded in the 2-D problem, C is not. The variation of condutivitiesis greater for 2-D problems than 1-D problems due to the increased dimensionand ow paths.The Jacobian of this problem is rank de�cient due to the form of the uxboundary conditions. The rank de�eciency is caused by not being able to specifythe pressures at the ux boundaries. The problems of real interest are notnecessarily rank de�cient. However, the rapid changes in conductivities cancause poor conditioning of the Jacobian or possibly rank de�ciency. One canhandle rank de�ciency by adding some constraints to uniquely de�ne a solution.Alternatively, one should take into account the suggestions of Griewank [7] onthe behavior of Newton's method and its variation for singular systems. Twodi�erent situations must be distinguished. In the �rst case, there is (locally) asmooth solution manifold of dimension p, and the rank of the Jacobian drops byexactly p at the solutions. In that case, Newton's method and variations havebeen observed to converge quite rapidly in terms of the residual norm, eventhough the iterates may wander up and down the solution manifold a bit. Inthe second case, when the rank drop of the Jacobian exceeds the dimension of the(largest) solution manifold, the situation is completely di�erent. For any �xedpoint iteration of the form xnew = G �xold; f(xold)� with f = 0, the algebraicsystem being solved converges from almost all starting points sublinearly if G isdi�erentiable with respect to the residual vector f . The only way to maintainat least linear convergence is to use Newton's method without bounding theinverse or to append the linear system by equations that enforce singularity.(R-sublinear convergence means that the k-th root of the k-th residual norm
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