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Abstract

We present a general-purpose parallel iterative
solver for large, sparse systems of linear equations.
This solver is used in two applications, a piezoelectric
crystal vibration problem and a superconductor model,
that could be solved only on the largest available mas-
swely parallel machine. Results obtained on the Intel
DELTA show computational rates of up to 3.25 gi-
gaflops for these applications.

1 Overview

The computational kernel of many large-scale ap-
plications [9, 10], and in particular the two applica-
tions we discuss in this paper, is the repeated solution
of large, sparse linear systems. The focus of our pa-
per is the scalable solution of such sparse systems. As
part of two separate efforts, we have implemented two
massively parallel scientific applications: computation
of the vortex configurations of type-II superconduc-
tors, and modeling of vibrational modes of piezoelec-
tric crystal strip oscillators. The solution of sparse
linear systems is the dominant computation of each of
these applications and also the most difficult portion of
each application to parallelize. We have designed and
implemented scalable parallel algorithms for solving
sparse linear systems that allow each of these appli-
cations to efficiently utilize scalable architectures such
as the Intel DELTA.

The sparse linear algebra algorithms and software
that we have designed are general purpose; they can
be used for both structured and unstructured prob-
lems. The software can solve symmetric sparse prob-
lems with an arbitrary sparsity structure. The basic
iterative method we use is the conjugate gradient algo-

rithm preconditioned by an incomplete matrix factor-
ization. A new, parallel multicoloring heuristic is em-
ployed to reorder the linear systems to obtain scalable
performance [11]. Our algorithms have demonstrated
scalable performance over a wide range of problems on
the Intel iPSC/860 and the Intel DELTA [7]. In ad-
dition, we have achieved computational rates of up to
3.25 gigaflops on the Intel DELTA computer for sparse
problems arising from the two applications considered.

We emphasize three important aspects of the per-
formance results reported in this paper. First, the
sparse iterative methods we have employed are the
best general-purpose serial algorithms for these prob-
lems. Through the development of new techniques, we
have made these previously unparallelizable serial al-
gorithms scalable. Higher computational rates could
be achieved by using an inferior iterative method at
the expense of much greater total solution time. Sec-
ond, these scalable methods are independent of any
specific matrix structure; higher computational rates
could be achieved by using an implementation that is
sparsity structure specific for each application. Third,
we note that only effective flops are included in the
computational rates we have reported, namely, only
those flops that would take place in a good serial im-
plementation.

Software portability has been a major consideration
in the design of our scalable linear algebra libraries.
We encapsulate the communication in a few subrou-
tines and utilize macros to interface to a number of
different message-passing packages. We use the Level
2 and 3 dense BLAS in the computationally inten-
sive portions of the code. We are able to make use of
the higher-level BLAS by extracting common nonzero
structures and local clique structures from these sparse
systems using graph techniques. These techniques are

described briefly in §2. The high-level dense BLAS en-



able us to achieve excellent performance on the high-
performance RISC chips that are utilized in most mas-
sively parallel machines.

We demonstrate the general applicability of our
software through its use in two very different applica-
tions. The matrix sparsity structures, condition num-
bers, and eigenvalue distributions of the linear systems
that arise in these two applications are radically dif-
ferent.

The first application involves the computation of
the equilibrium vortex structure and configurations
for three-dimensional, layered type-1I superconduc-
tors. The physical configuration of these systems are
modeled by computing the minimum energy solution
to a generalization of the Ginzburg-Landau free en-
ergy given by the Lawrence-Doniach model. By us-
ing large-scale optimization techniques, we can suc-
cessfully compute solutions to these models for com-
plex vortex structures. Because solutions are desired
for arbitrary applied magnetic fields and the material
1s nonisotropic, a complete three-dimensional model
is required. The resulting problems are very compu-
tationally demanding, often requiring the solution of
nonlinear systems with 107 independent variables. In
this collaborative project with the Materials Science
Division at Argonne, the computed solutions are being
used to develop a more complete understanding of vor-
tex behavior and, therefore, enable the development of
higher-temperature superconductors. Sustained com-
putational rates of over 3 gigaflops for the entire ap-
plication have been achieved on the Intel DELTA. For
one problem instance, we have found improvements of
over a factor of 100 in the total execution time when
compared to the same problem run on the CRAY-2. In
addition, the ability to run significantly larger prob-
lems on the Intel DELTA allows for the solution of
much more accurate three-dimensional superconduc-
tor models.

The second application, a collaborative project be-
tween Argonne and Motorola, involves the modeling
of the vibrational modes of piezoelectric crystal strip
oscillators. Piezoelectric crystals are crucial to the
performance of almost every product Motorola manu-
factures; they are the critical component of almost all
oscillatory circuits. These crystals must be designed
to vibrate in a particular mode shape at a specific fre-
quency over a wide range of temperatures. To meet
these demanding design goals, engineers would like to
be able to accurately model the behavior of the crys-
tals in a timely fashion from their desktop workstation.
A special high-order finite element formulation devel-
oped by engineers at Motorola and Argonne is used to

model the electrical and mechanical characteristics of
the crystals. Because we are interested in a particular
subset of modes near the middle of the eigenspectrum,
we must use a very refined mesh, making this a very
computationally demanding problem. Accurate mod-
eling of these vibrational modes requires the solution
of sparse matrices with more than 10% nonzeros. By
utilizing the Intel DELTA at a sustained computa-
tion rate of approximately 2 gigaflops, we have solved
problems in a little over a hour that engineers at Mo-
torola had previously abandoned as computationally
intractable.

Both the sparse linear algebra codes and the appli-
cation codes operate in a non trivial environment. The
codes themselves are complex; the linear algebra soft-
ware constitutes over 10,000 lines, as does each of the
application codes. They must operate in a portable
fashion; we routinely run the codes on networks of
workstations, the BBN TC2000, the Intel iPSC/860,
and the Intel DELTA. Each of the codes interfaces to
a number of graphics packages such as AVS or the
Doré system. In addition, the crystal code 1s capable
of sending data from the parallel machine that it run-
ning on a socket connection to a graphics workstation
for instantaneous display.

In §2 we discuss the scalable sparse linear algebra li-
braries. In §3 and §4 we describe the two applications,
the superconductor vortex configuration problem and
the vibrational mode problem for piezoelectric strip
oscillators. Finally, in §5 we present the performance
results for these two applications on the Intel DELTA.

2 Scalable Iterative Methods for the
Solution of Sparse Linear Systems

In this section we briefly discuss the algorithms
used in the scalable libraries for solving sparse lin-
ear systems. The iterative solver uses an incomplete
matrix factorization as a preconditioner for the conju-
gate gradient algorithm [12]. This is a general-purpose
preconditioner that performs well for many problems,
including the sparse problems arising in the applica-
tions with which we are concerned. In fact, examples
of the linear systems that arise in these problems can-
not be efficiently solved with a simple local precondi-
tioner. An important advantage of this approach is
that it can be used for structured and unstructured
problems.

The traditional serial approach to generate incom-
plete factors employs a “natural” ordering of the vari-
ables. Unfortunately, a scalable parallel implemen-



tation of this approach is impossible because the de-
pendencies in the solution of triangular systems make
this computation inherently sequential. However, a
reordering of the preconditioning matrix based on a
graph coloring does allow for its scalable solution. The
reordered triangular system solution is scalable be-
cause the number of sequential communication steps
is proportional to the chromatic number of the graph,
which is essentially a function of the local graph struc-
ture and independent of the size of the graph. In Fig-
ure 1 we give an example of a multicoloring ordering
for a regular grid that requires four colors.

Figure 1: The adjacency graph corresponding to a
nine-point stencil requires four colors. An ordering
of the variables of the corresponding linear system al-
lows a triangular system of the same structure to be
solved in four major parallel steps. One step for the
unknowns corresponding to each color, followed by in-
terprocessor communication to update the right-hand
side.
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We have demonstrated that this technique is effec-
tive for unstructured problems [7]. These algorithms
have exhibited scalable performance for a range of
structured and unstructured finite element and finite
difference problems. We have also developed and im-
plemented a scalable graph coloring heuristic based on

finding a sequence of independent sets [11]. Thus, this
approach is not dependent on the a priori knowledge
of a coloring. In addition, we note that recent theo-
retical results have shown that one does not see the
dramatic increase the number of iterations required
for convergence with “many color” orderings that one
sees with the red/black ordering for model problems
[8]. These results corroborate our experimental con-
vergence results for the sparse problems for these two
applications.

It is not sufficient to achieve scalable performance;
one must also achieve good computation rates on each
node. For RISC chips such as the 1860, the best
performance 1s obtained by algorithms that exhibit
good data locality and minimize indirect addressing.
A standard implementation of a sparse matrix times
vector multiplication does not exhibit good data lo-
cality and uses a large amount of indirect addressing.
To improve locality and minimize indirect addressing,
one can take advantage of the special local structure
inherent to many of these multicomponent problems.
For example, large, dense cliques exist in these graphs
and can be easily recognized. In all of the sparse op-
erations that we perform, operations involving these
cliques can utilize dense level 2 and 3 BLAS. In ad-
dition, many rows of the sparse matrix have identical
structure, but differing nonzero values. By exploiting
this structure, we can significantly reduce the amount
of indirect addressing. We note that these ideas have
been used with dramatic effect in direct sparse factor-
ization for several years. In §5 we demonstrate the im-
provement in processor efficiencies obtained for these
systems.

3 Computation of Equilibrium Vortex
Configurations for 3-Dimensional
Layered Type-II Superconductors

The recent discovery of new, high-temperature su-
perconductors has resulted in a tremendous interest
in the modeling and understanding of layered type-
IT superconducting systems. Characteristic of type-I1
superconductors is their ability to remain supercon-
ducting in a so-called mixed state. In the mixed state,
which exists between a lower and upper critical applied
magnetic field denoted by H.; and H.s, respectively,
these materials allow magnetic flux lines to penetrate
the bulk of the material. This phenomenon is possi-
ble because of the formation of compensating vortex
currents around these magnetic flux lines which shield
the remaining superconducting regions from the effect



of the magnetic field. This physical property of type-
IT superconductors is very different from the original
type-I variety, which are superconducting only at very
low temperatures and are characterized by the expul-
sion of any applied magnetic field from the bulk of the
material (the well-known Meissner effect).

An understanding of and predictive capability for
the vortex structure and configurations of vortices in
type-II superconductors are crucial to the develop-
ment of desired physical properties for these materials.
As a phenomenological model, the Ginzburg-Landau
theory has been very successful in the prediction of the
vortex structure and configurations for type-II super-
conductors. Unfortunately, analytic solutions to this
model are known only for a few special cases. There-
fore, the development of effective computational meth-
ods for solving this model are essential to its use in a
predictive capacity.

In this section we briefly introduce the problem
formulation and discuss a number of numerical op-
timization algorithms that have been attempted. The
most successful of these algorithms is a damped, in-
exact Newton method. The main computational task
in the Newton method is the approximate solution of
a sparse linear system. We also discuss the program
complexity and the I/O and graphics requirements of
the implementation. In §5 we present experimental
results obtained on the Intel DELTA for several rep-
resentative problems.

3.1 Problem Formulation

The Ginzburg-Landau (GL) model is based on the
observation that the local free energy of a supercon-
ductor is adequately represented by the first few terms
of its functional expansion in terms of a (complex-
valued) order parameter. When the effects of an ap-
plied magnetic field are included in the model, one
obtains an expression for the free energy that depends
on the order parameter, its spatial gradient, and a set
of vector potentials that describe the magnetic field
within the superconducting material. Although the
effects of mass anisotropy can be accounted for in
the Ginzburg-Landau model, it is often not suitable
for modeling materials with alternating insulating-
superconducting layers, in which the order parameter
may vary discontinuously in the direction normal to
the layers. An extension of the GL. model by Lawrence
and Doniach (LD) does allow for variation of this type
in the order parameter, and hence is more appropriate
for layered materials. The LD model is used to obtain
the results presented in this paper.

Figure 2: The three-dimensional layered model parti-
tioned in two dimensions

AN

The free-energy functional is defined on a three-
dimensional rectangular mesh with the geometric lay-
out depicted in Figure 2. Shown are the alternating
layers of superconducting and insulating material con-
sidered by the Lawrence-Doniach model. When the
model is discretized, a finer degree of resolution is
generally given to the insulating layers. The complex
order parameter is defined within the superconduct-
ing layers, and the vector potential is defined within
the insulating layers. The number of magnetic flux
quanta and the angle of the applied magnetic field are
enforced by the imposition of quasi-periodic boundary
conditions on the model. For the problems of inter-
est, the number of grid points necessary to represent
the model in the direction perpendicular to the layers
(the X axis in Figure 2) is smaller than the number
of points required in the two directions parallel to the
layers (the Y axis and Z axis in Figure 2). We make
use of this property and partition the grid in the Y
and Z directions. For example, in Figure 2 the Y-Z
domain is shown partitioned among nine processors.

We obtain numerical solutions for the order param-
eter and vector potential by applying finite-difference
discretization techniques to the free-energy expression
for the LD model and then using large-scale optimiza-
tion techniques to solve the resulting discrete problem.
The solution of this problem yields an approximation
to the equilibrium superconducting electron distribu-
tion that actually minimizes the free energy.

The order parameter and vector potential data re-
quired to evaluate the function, gradient, and Hes-
sian on the local grid assigned to a processor includes
both the local grid points and nonlocal, adjacent grid
points. In our implementation, the interprocessor
communication required to obtain these nonlocal val-
ues is managed by the BlockComm communication
package, developed by William Gropp [5].



3.2 Optimization Techniques

The original attempts at determining a minimizer
of the Ginzburg-Landau free-energy functional were
done by Doria et al. [2] for a homogeneous (non-
layered) two-dimensional model. They used a Monte-
Carlo simulated annealing algorithm and were able
to obtain solutions only for small grid sizes with at
most two vortices per unit cell. These calculations re-
quired millions of iterations and many hours of Cray
time; eventually they were forced to resort to using
the simpler London model to try to make the prob-
lem tractable. The simulated annealing method is
most suitable for problems in which many local min-
ima (i.e., metastable configurations) are present and
for which derivatives of the function are difficult to
obtain. When these conditions do not hold, local op-
timization methods are more appropriate.

A second group, Wang and Hu, made this observa-
tion and used a first-order technique: a steepest de-
scent algorithm with fixed step size [14]. With this
method they were able to obtain solutions, for the
homogeneous model, for which the gradient norm was
reduced to no less than 107> on two-dimensional grids
of size up to 200 x 200.

More sophisticated techniques were introduced by
Garner et al. [4] with greatly improved results.
Among these methods were three classes of optimiza-
tion methods: nonlinear conjugate gradient, limited-
memory quasi-Newton, and modified Newton meth-
ods. Even though they require only the same kind of
derivative information as the steepest descent method
(that is, first derivatives), these algorithms have much
better convergence properties. Typically, the first-
order methods, limited-memory quasi-Newton, and
nonlinear conjugate gradients require several thou-
sand iterations to reduced the gradient norm to 10~7.
Unfortunately, a good local minimizer is not always
obtained by the first-order methods. The inexact
Newton method, a second-order method developed by
Plassmann and Wright, is much more robust. This
method usually requires fewer than 20 iterations and
can reduce the gradient norm to less than 10712, How-
ever, this method requires the approximate solution of
a large, sparse linear system at each iteration.

Thus, the only two viable optimization methods
are an efficient first-order method (we have found the
limited memory BFGS, or L-BFGS, method to be
the most effective) and the inexact, damped Newton
method. For the present problem, the storage require-
ment for the inexact Newton method is comparable to
that of L-BFGS and depends on problem configura-
tion. However, each iteration of the damped Newton

method requires much more work than an iteration of
L-BFGS, but of course many fewer iterations are re-
quired (typically, the iteration count is less than 25,
as opposed to many thousands for L-BFGS).

3.3 Complexity of the Implementation

The complete implementation for the superconduc-
tivity application is a very large and complex program.
More than 13,000 lines of Fortran and C are involved,
not including the sparse linear algebra code or the
BlockComm code used for the interprocessor commu-
nication required for the function and gradient evalu-
ation. The code to analytically evaluate the Hessian
involves more than 6,000 lines of Fortran.

On the Intel DELTA parallel /O to the concur-
rent file system (CFS) is used to collect order pa-
rameter and vector potential data from the proces-
sors for graphical analysis. Each processor is respon-
sible for writing out its partition of the data set to the
appropriate place on the CFS. Currently, both AVS
and XDataSlice (from NCSA) are used to analyze the
three-dimensional data.

4 Modeling Vibrational Modes of

Piezoelectric Crystals

Piezoelectric crystals are an important component
in electronic appliances such as computers, cellular
phones, and pagers. To be useful, these crystals must
resonate in a particular vibrational mode at a speci-
fied frequency over a wide range of temperatures. Two
major barriers prevent the accurate and timely mod-
eling of these crystals. First, existing finite-element
software packages (e.g., NASTRAN) are unable to ac-
curately model the physical properties of piezoelectric
systems. Second, the computational requirements of
these problems are so large that engineers have con-
sidered their solution to be intractable on current se-
quential computers.

Extensive collaboration between Argonne National
Laboratory and Motorola has resulted in the devel-
opment of algorithms and software to overcome these
two barriers. We have developed a new finite-element
formulation of this problem that is capable of accu-
rately modeling crystal behavior. To satisfy the com-
putational requirements of the problem, we have de-
veloped scalable algorithms and software to harness
the cost-efficient power of the Intel DELTA.



4.1 Problem Formulation

The piezoelectric crystals that are currently the
focus of our modeling effort are “strip” oscillators.
These crystals are thin strips of quartz that vibrate
at a fixed frequency when an electric current i1s ap-
plied to the crystal. A diagram of a strip oscillator
affixed to an aluminum substrate with epoxy is shown
in Figure 3.

Figure 3: Strip oscillator
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The quartz crystal is anisotropic; that is, the crys-
tal is cut at an angle that i1s not necessarily parallel to
any of its axes. The vibration frequency of the crystal
that we are primarily interested in is the fundamen-
tal thickness-shear mode. In this mode, the primary
displacement is along the longest axis of the crystal
and 1s concentrated in the center of the crystal. The
fundamental thickness-shear mode is near the middle
of the eigenspectrum of the crystal, making it diffi-
cult to isolate. There may be several eigenmodes near
the fundamental thickness-shear mode. Because these
modes may interfere with the operation of the crystal,
we are also interested in them.

We use the finite element method to model the crys-
tal. An efficient 27-node brick element was developed
at Argonne and Motorola to accurately model these
anisotropic crystals [1]. A second-order Lagrangian
polynomial is used to interpolate the mechanical and
electric field potential; second-order interpolation is
necessary to accurately model the thickness-shear
mode. A large displacement formulation is used to
include nonlinear geometric effects that result from a
combination of thermal loads and displacement con-
straints. Because we are interested in eigenmodes in
the middle of the eigenspectrum, we must use a large
number of elements to accurately model the behavior
of the crystal.

The solution phase has two steps. First, we find
the deformation of the crystal due to thermal displace-

ment. For example, if the crystal was mounted on alu-
minum at 25C, it will deform when the temperature
is increased to 35C. This requires solving a nonlinear
static thermal stress problem. Second, we find the
vibrational modes of interest for the deformed crys-
tal. This requires solving a linear vibration problem,;
a generalized eigenproblem.

To solve the nonlinear static thermal stress prob-
lem, we must solve a series of linear systems of the
form Ku = f, where K represents the stiffness ma-
trix, u represents the displacements, and f represents
the forces resulting from thermal loads and displace-
ment constraints. The major task here, of course, is
the solution of very large sparse systems of equations.

To solve the linear vibration problem, we must solve
a generalized eigenproblem of the form Kz = w?Mz,
where K represents the stiffness matrix, M represents
the mass matrix, x 1s a vibrational mode shape, and
w 1s a vibrational mode. We use a shifted, inverted
variant of the Lanczos algorithm to solve this eigen-
problem [13]. This method has been shown to be very
efficient for the parallel solution of the vibration prob-
lem [6]. Again, the major computational task is the
solution of large sparse systems of linear equations.

The key to accurately modeling these crystals is our
new, second-order finite element. The key to timely
solution is the scalable solution of large, sparse sys-
tems of linear equations.

4.2 Parallel Implementation

The three-dimensional finite element grid needed to
model the crystals is much more refined in the length
and width directions than it is in the thickness direc-
tion. We can take advantage of this fact and partition
the grid among the processors in only the length and
width directions. This approach reduces communica-
tion and maps nicely onto the DELTA architecture.
Each processor is assigned a rectangular solid corre-
sponding to a portion of the grid. Each processor is
responsible for evaluating the finite elements in 1ts par-
tition and for maintaining all relevant geometric and
solution data for that partition. The code for these
activities is over 8,000 lines. All aspects of this code
have been implemented in a scalable fashion.

We collect geometric information, thermal displace-
ments, and vibrational modes and mode shapes on the
CFS, the concurrent file system on the Intel DELTA
and Intel iPSC/860. Each processor is responsible for
writing out its portion of data corresponding to the
surface of the crystal to the appropriate place on the
CFS. The data is written in a form that can be post-
processed by either the portable AVS graphics system



or the Doré graphics system on the Stardent Titan ma-
chine. The graphics systems are used to display ther-
mal displacements, and electric field potentials and to
animate vibrational mode shapes.

5 Performance on the Intel DELTA

First, we present experimental results for the super-
conductivity problem obtained on the Intel DELTA for
three representative problem sets. In Tables 1 and 2
we give the relevant parameters for these problems.
NX, NY, and NZ are the number of grid points used
in the X, Y, and Z directions, respectively. NK is the
discretization used within a layer for the vector poten-
tial; thus, the number of layers is given by NX/NK.
The number of vortices per unit cell induced by the
quasi-periodic boundary is given by VORNUM. The
number of independent variables is given by N, and the
number of nonzeros in the Hessian is given by NNZ.

Timings for the L-BFGS method and the damped,
inexact Newton method described in §3 are given in
Tables 1 and 2. Shown are the number of iterations
required, the norm of the gradient at termination, and
the sustained computational rate for the inexact New-
ton method. For comparison, we have included the L-
BFGS running time for PROBLEM-3 on a CRAY-2.

PROBLEM-1 is representative of a problem where
the resolution of the vector potential within the in-
sulating layers is important. This resolution is re-
quired when the vortex coherence length is small rel-
ative to the interlayer spacing. For problems where
coarser resolution of the layers can be allowed, as in
PROBLEM-2 and PROBLEM-3, larger numbers of
layers (NX/NK) can be investigated. PROBLEM-2
and PROBLEM-3 differ in their geometric shape, the
angle of the applied magnetic field, and the number of
vortices used.

The difficulty of the problem solution greatly in-
creases as the number of vortices and the problem size
is increased. For the problems in Tables 1 and 2, L-
BFGS was at best able to obtain approximate solu-
tions; for all these problems L-BFGS was not able to
determine a solution that satisfied the convergence cri-
teria, and thus was not always physically meaningful.
For the results next to the symbol (**) the line search
was unable to satisfy the Wolfe conditions, and for the
results next the symbol (*) the maximum number of
L-BFGS iterations was exceeded. In general, L-BFGS
is unable to adequately solve problems for which VOR-
NUM is greater than two, whereas the inexact Newton
code has been able to obtain solutions for hundreds of

vortices per unit cell. Thus, to obtain accurate solu-
tions large problems or for problems involving larger
numbers of vortices, the inexact Newton method must
be used. Finally, in comparison with the performance
of L-BFGS on the CRAY-2, we note that an improve-
ment of approximately 95 times was obtained on the
Intel DELTA for PROBLEM-3 [3], or an improvement
of more than a 100 times when compared to the inex-
act Newton method.

Table 1: Problem set description

| [ PROBLEM-1 | PROBLEM-2

NX 24 64
NK 8 4
NY 80 64
NZ 96 96
VORNUM 4 4
N 6.0 x 10° 1.6 x 10°
NNZ 2.0 x 108 1.7 x 108
LBFGS (DELTA) | 45.5 min. (**) | 613 min. (*)
L-BFEGS (||g[]) 1.2x 1078(x*) [ 5.0 x 1077 (%)
L-BFGS (iters.) 14,664 (**) 10,000 (*)
Newton (DELTA) 39.4 min. 43.2 min.
Newton ([|¢|]) 3.0 x 10712 1.0 x 10~ 1!
Newton (iters.) 22 27
Newton (Gflops) 3.25 2.55

We emphasize that all the symbolic computation
required to reorder the linear systems is done in par-
allel. The parallel coloring heuristic used 1s described
in [11], and the clique reduction algorithm is described
in [10]. Note that the coloring is not done for the orig-
inal graph but, rather, for the quotient graph obtained
by modding out by the identical node structure and
the local cliques. For example, in PROBLEM-3 the
original graph size is 1.8 x 10°, and the size of the
clique graph is 7.3 x 10*. Thus, the size of the graph
colored (the clique graph) is actually quite modest.
The time required to determine the clique graph on
the DELTA for PROBLEM-3 is 3.359 seconds, and
the time required to color the clique graph is 0.059
seconds. These operations are done only once, since
the matrix structure does not change between itera-
tions; also these times are negligible with respect to
the total solution times. Other characteristics of the
clique graph for PROBLEM-3 are that the average
degree of the graph is 105 and the number of colors
required by the parallel heuristic is 11.



Table 2: Problem set description (continued)

| [ PROBLEM-3 |
NX 20
NK 2
NY 150
NZ 150
VORNUM 1
N 1.8 x 10°
NNZ 1.9 x 108
L BFGS (CRAY-2) ~ 40 Lr.
L-BFGS (DELTA) | 25.3 min. ()
LBFGS (4] 1.0x 107° ()
L-BFGS (iters.) 3,100 (*)
Newton (DELTA) 22.1 min.
Newton (||g]|) 1.0 x 10712
Newton (iters.) 17
Newton (Gflops) 1.38

In Table 3 we note the effect of varying the layer
discretization on the 1860 processor performance dur-
ing the solution of the linear systems. For these num-
bers we have used 128 processors and fixed the local
problem size to be roughly equivalent. The second
column shows the number of identical nodes found in
the graph by the solver; the third column shows the
average clique size found. The final column shows the
average computational rate per processor during the
solution of the linear systems.

Table 3: Effect of varying the layer discretization on
the processor performance in solving the linear sys-
tems

NK | I-node | Avg. clique | Avg. Mflops/
size size processor

2 8 32.0 2.97

4 14 44.8 5.42

6 20 60.0 6.71

8 26 78.0 8.96

The model has been used to extract detailed in-
formation about the three-dimensional vortex struc-
ture. The advent of massively parallel computers and
the development of efficient computational algorithms
have made this first “computational” glimpse into a
layered, type-II superconductor possible.

For example, in Figure 4 we show isosurfaces of the

Figure 4: View parallel to the layers of the vortex
structure in the layered three-dimensional model

magnetic field magnitude for a system near H.o. This
solution was obtained by using the inexact, damped
Newton method. The external magnetic field is ap-
plied at an angle fixed by the pseudo-periodic bound-
ary conditions imposed on the model. This view is
taken parallel to the layers of the material; we can
see the vortices tilted with respect to the layers. One
can observe the “pinching” of the vortices as the mag-
netic field isosurfaces pass through the superconduct-
ing sheets and then spread out again in the insulat-
ing layers. In addition, one can see the characteristic
“staircase” structure of the vortices that has been ob-
served experimentally when the applied magnetic field
1s tilted.

It is energetically favorable for a vortex to remain
parallel to a superconducting layer. As a consequence,
there can be a difference between the vortex angle in
the bulk of the material and the angle of the applied
field. If the angle of the applied field is close to being
parallel to the layers, a “vortex locking” phenomenon
has been predicted and can be observed computation-
ally with this model.

We now present results for the piezoelectric crys-
tal application on the Intel DELTA. We have solved
problems consisting of over 480,000 equations with
161,150,990 nonzeros on 512 processors of the Intel
DELTA. Over 99 percent of the time is spent in solv-
ing the linear systems and evaluating the finite ele-
ments. The solution of the linear systems has achieved
speeds of approximately 2 gigaflops on 512 processors.



This speed is scalable; the individual processor per-
formance degrades only from 4.16 megaflops per pro-
cessor to 3.83 megaflops per processor when one goes
from 128 processors to 512 processors and keeps the
subgrid size fixed. This performance is particularly
impressive given that we are using a general sparse
matrix solver. The evaluation of the finite elements
achieves over 6 gigaflops on 512 processors, this speed
is completely scalable as the evaluation can take place
independently on each processor. The overall code
achieves a speed of approximately 2 gigaflops on 512
processors. Thus, in little over an hour of wall-clock
time, we can now solve problems that engineers at
Motorola deemed intractable.

The vibrational mode of interest to engineers at
Motorola i1s the fundamental thickness-shear mode of
the crystal. This mode is characterized by vibration
primarily along the long axis of the crystal and occurs
at 4.2 Mhz. This frequency is significantly higher than
the fundamental vibrational mode of the crystal. We
wish to vary both temperature and mounting meth-
ods and observe the changes in the vibration modes
near 4.2 MHz. However, 1t is important to identify all
other nearby modes, generally those modes within a
few KHz. For example, the action of a nearby exten-
sional mode, a spurious mode characterized by oppos-
ing motions along the face of the crystal, can interfere
with the performance of the crystal. It has recently
become possible to compare our computational data
with experimental laser interferometry data generated
at Motorola. This comparison shows agreement be-
tween the surface dispacements between model and
experiment for both the fundamental thickness-shear
mode and nearby spurious vibrational modes.
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