
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439THE EFFICIENT PARALLEL ITERATIVE SOLUTIONOF LARGE SPARSE LINEAR SYSTEMS�Mark T. Jones and Paul E. PlassmannMathematics and Computer Science DivisionPreprint MCS-P314-0692June 1992ABSTRACTThe development of e�cient, general-purpose software for the iterative solutionof sparse linear systems on a parallel MIMD computer requires an interestingcombination of expertise. Parallel graph heuristics, convergence analysis, and basiclinear algebra implementation issues must all be considered.In this paper, we discuss how we have incorporated recent results in these areasinto a general-purpose iterative solver. First, we consider two recently developedparallel graph coloring heuristics. We show how the method proposed by Luby,based on determining maximal independent sets, can be modi�ed to run in anasynchronous manner and give an expected running time bound for this modi�edheuristic. In addition, a number of graph reduction heuristics are described thatare used in our implementation to improve the individual processor performance.The e�ect of these various graph reductions on the solution of sparse triangularsystems is categorized. Finally, we discuss the performance of this solver from theperspective of two large-scale applications: a piezoelectric crystal �nite-elementmodeling problem, and a nonlinear optimization problem to determine the mini-mum energy con�guration of a three-dimensional, layered superconductor model.Key words: graph coloring heuristics, iterative methods, parallel algorithms,preconditioned conjugate gradients, sparse matricesAMS(MOS) subject classi�cations: 65F10, 65F50, 65Y05, 68R10�This paper is based on a talk presented by the second author at the IMAWorkshopon Sparse Matrix Computations: Graph Theory Issues and Algorithms, October14{18, 1991. This work was supported by the Applied Mathematical Sciencessubprogram of the O�ce of Energy Research, U.S. Department of Energy, underContract W-31-109-Eng-38.

1. Introduction. The computational kernel of many large-scale applicationsis the solution of sparse linear systems. Given the increasing performance of in-dividual processors and the dramatic recent improvements in engineering parallelmachines composed of these processors, a scalable parallel computer is an attrac-tive vehicle for solving these problems. In this paper we endorse a particularperspective: (1) we note that in many applications one is interested in solving aslarge a problem as can feasibly �t into the available memory of the machine, and(2) that the underlying geometric structure of these applications is often three-dimensional or greater. These observations, and a simple \back-of-the-envelope"calculation, lead one to conclude that a parallel direct factorization method is ingeneral not feasible for such problems, in terms of the amount of space and timerequired. This perspective motivates one to consider an approach to the iterativesolution of sparse linear systems in a manner that ensures scalable performance.In this paper we present an approach to solving such systems that satis�es theabove requirements. Central to our method is a reordering of the matrix basedon a coloring of the symmetric graph corresponding to the nonzero structure ofthe matrix, or a related graph. To determine this ordering, we use a recentlydeveloped parallel heuristic. However, if many colors are used, a straightforwardparallel implementation, as is described in [10], su�ers poor processor performanceon a high-performance processor such as the Intel i860. In this paper we presentseveral possible graph reductions that can be employed to greatly improve theperformance of an implementation on high-performance RISC processors.Consider an implementation of any of the standard general-purpose iterativemethods [7, 15]: consistently ordered SOR, SSOR accelerated by conjugate gra-dients (CG), or CG preconditioned with an incomplete matrix factorization. It isevident that the major obstacle to a scalable implementation [6] is the inversionof sparse triangular systems with a structure based on the structure of the lin-ear system. For example, the parallelism inherent in computing and applying anincomplete Cholesky preconditioner is limited by the solution of the triangular sys-tems generated by the incomplete Cholesky factors [20]. It was noted by Schreiberand Tang [19] that if the nonzero structure of the triangular factors is identicalto that of the original matrix, the minimum number of major parallel steps pos-sible in the solution of the triangular system is given by the chromatic numberof the symmetric adjacency graph representing those nonzeros. Thus, given thenonzero structure of a matrix A, one can generate greater parallelism by comput-ing a permutation matrix, P , based on a coloring of the symmetric graph G(A).The incomplete Cholesky factor ~L of the permuted matrix PAP T is computed,instead of the factor based on the original matrix A.In this permutation, vertices of the same color are grouped and ordered se-quentially. As a consequence, during the triangular system solves, the unknownscorresponding to these vertices can be solved for in parallel, after the updates fromprevious color groups have been performed. The result of Schreiber and Tang statesthat the minimum number of inherently sequential computational steps required1

to solve either of the triangular systems, ~Ly = b or ~LTx = y, is given by theminimum possible number of colors, or chromatic number, of the graph.For general graphs, the computation of the chromatic number is an NP-hardproblem. However, recent theoretical and experimental work has demonstratedscalable heuristics for determining coloring that are close to optimal for practicalproblems [14, 13]. In x2 we review these heuristics and demonstrate that they haveequivalent expected running times for bounded degree graphs.We note that this bound on the number of communication steps assumes thatonly vector operations are performed during the triangular systems solves. Thisassumption is equivalent to restricting oneself to a �ne-grained parallel computa-tional model, where we assign each unknown to a di�erent processor. When manyunknowns are assigned to a single processor, it is possible to reduce the number ofcommunication steps by solving non-diagonal submatrices of L on individual pro-cessors at each step. In this case, the minimum number of communication steps isgiven by a coloring of a quotient graph obtained from a partitioning of unknownsto processors.The remainder of the paper is organized as follows. In x3 we present severalpossible graph reductions, including the clique partitions that allow for the useof higher-level Basic Linear Algebra Subprograms (BLAS) in the software. Weconsider a general framework that can incorporate these ideas into e�cient trian-gular system solvers in x4. Finally, in x5 we present experimental results obtainedfor our software implementation on the Intel DELTA for problems arising in twodi�erent applications and in x6 we discuss our conclusions.2. Asynchronous Parallel Graph Coloring Heuristics. In this sectionwe consider two recently developed graph coloring heuristics suitable for asyn-chronous parallel computers. Our perspective is that if a scalable iterative solveris to be based on a matrix ordering derived from a graph coloring, then a scalableheuristic is necessary to determine this coloring. We review two parallel heuris-tics based on Monte Carlo steps for which expected running times are known: asynchronous PRAM heuristic developed by Luby [14], and a recent asynchronousheuristic presented by Jones and Plassmann [13]. The interesting aspect of theasynchronous method is that it combines aspects of sequential greedy graph color-ing heuristics with a Monte Carlo step to determine independent sets. Finally, weshow how a modi�cation can be made to Luby's maximal independent set heuristicboth to make it asynchronous and to satisfy the same running time bound obtainedfor the second heuristic.It is important to note that we do not address the problem of determininga good partitioning of the graph onto the processors. For the applications prob-lems we consider in x5, a physical partition can be used to generate a good vertexassignment to processors. When the determination of a partition is not straight-forward, a partitioning heuristic would have to be used. Some possibilities exist;for example, recent advances in the automatic partitioning of three-dimensionaldomains [21] or in spectral dissection methods [17] could be employed. However,2

the parallel graph partitioning problem deserves much additional research.First, we brie
y review the graph coloring problem. Let G = (V;E) be asymmetric graph with vertex set V , with jV j = n, and edge set E. We say thatthe function � : V ! f1; : : : ; sg is an s-coloring of G, if �(v) 6= �(w) for all edges(v;w) 2 E. We denote the minimum possible value for s, the chromatic numberof G, by �(G).The question as to whether a general graph G is s-colorable is NP-complete[5]. It is known that unless P = NP , there does not exist a polynomial ap-proximation scheme for solving the graph coloring problem [5]. In fact, the bestpolynomial time heuristic known [8] can theoretically guarantee a coloring of onlysize c (n= log n)�(G), where c is some constant.Given these pessimistic theoretical results, it is quite surprising that, for cer-tain classes of graphs, there exist a number of sequential graph coloring heuristicsthat are very e�ective in practice. For graphs arising from a number of applica-tions, it has been demonstrated that these heuristics are often able to �nd coloringsthat are within one or two of an optimal coloring [4, 10].These sequential heuristics are based a greedy heuristic that colors verticesin an order determined by a cost function. Choices for the cost function that areparticularly e�ective are the saturation degree order (choose the most constrainedvertex [3]) or the incidence degree order (choose the vertex adjacent to the max-imum number of previously colored vertices [4]). Unfortunately, these heuristicsdo not parallelize well, because they essentially represent a breadth-�rst search ofthe graph.A di�erent approach was suggested by Luby [14]. His observation was that ifone can determine a maximal independent set e�ciently in parallel, then a partitionof the vertices of the graph into maximal independent sets yields a coloring. Luby'salgorithm for determining an independent set, I, is based on the following MonteCarlo rule. Here we denote the set of vertices adjacent to vertex v by adj (v).1. For each vertex v 2 V 0 determine a distinct, random number �(v).2. v 2 I , �(v) > �(w); 8w 2 adj (v).In the Monte Carlo algorithm described by Luby [14], this initial independent setis augmented to obtain a maximal independent set. The approach is the following.After the initial independent set is found, the set of vertices adjacent to a vertex inI, the neighbor set N(I), is determined. The union of these two sets is deleted fromV 0 , the subgraph induced by this smaller set is constructed, and the Monte Carlostep is used to choose an augmenting independent set. This process is repeateduntil the candidate vertex set is empty and a maximal independent set (MIS) isobtained. The complete Monte Carlo algorithm suggested by Luby for generatingan MIS is shown in Fig. 1. In this �gure we denote by G(V 0) the subgraph of Ginduced by the vertex set V 0. Luby shows that an upper bound for the expectedtime to compute an MIS by this algorithm on a CRCWP-RAM is EO(log(n)). Thealgorithm can be adapted to a graph coloring heuristic by using it to determine asequence of distinct maximal independent sets and by coloring each MIS a di�erent3

color. Thus, this approach will solve the (� + 1) vertex coloring problem, where� is the maximum degree of G, in expected time EO((� + 1) log(n)).I ;;V 0 V ;G0 G;While G0 6= ; doChoose an independent set I 0 in G0;I I [I 0;X I 0 [N(I 0);V 0 V 0 nX;G0 G(V 0);enddoFig. 1. Luby's Monte Carlo algorithm for determining a maximal independent setA major de�ciency of this approach on currently available parallel comput-ers is that each new choice of random numbers in the MIS algorithm requiresa global synchronization of the processors. A second problem is that each newchoice of random numbers incurs a great deal of computational overhead, becausethe data structures associated with the random numbers must be recomputed.The asynchronous heuristic proposed by Jones and Plassmann [13] avoids both ofthese drawbacks. This heuristic is presented in Fig. 2. The heuristic is writtenassuming that each vertex v is assigned to a di�erent processor and the processorscommunicate by passing messages.With the asynchronous heuristic the �rst drawback (global synchronization)is eliminated by choosing the independent random numbers only at the start ofthe heuristic. With this modi�cation, the interprocessor communication can pro-ceed asynchronously once these numbers are determined. The second drawback(computational overhead) is alleviated because with this heuristic, once a proces-sor knows the values of the random numbers of the vertices to which it is adjacent,the number of messages it needs to wait for can be computed and stored. Like-wise, each processor computes only once the processors to which it needs to send amessage once its vertex is colored. Finally, note that this heuristic has more of the\
avor" of the sequential heuristic, since we choose the smallest color consistentwith the adjacent vertices previously colored.An upper bound for the expected running time of a synchronous version ofthis algorithm of EO(log(n)= log log(n)) can be obtained for graphs of boundeddegree [13]. The central idea for the proof of this bound is the observation that therunning time of the heuristic is proportional to the maximum length monotonicpath in G. A monotonic path of length t is de�ned to be a path of t verticesfv1; v2; : : : ; vtg in G such that �(v1) > �(v2) > : : : > �(vt).4

Choose �(v);n-wait = 0;send-queue = ;;For each w 2 adj(v) doSend �(v) to processor responsible for w;Receive �(w);if (�(w) > �(v)) then n-wait = n-wait +1;else send-queue send-queue [fwg;enddon-recv = 0;While (n-recv < n-wait) doReceive �(w);n-recv = n-recv +1;enddo�(v) = smallest available color consistent with thepreviously colored neighbors of v;For each w 2 send-queue doSend �(v) to processor responsible for w;enddoFig. 2. An asynchronous parallel coloring heuristicWe now show that the Luby's MIS algorithm can be modi�ed to obtain thesame bound. Consider the following modi�cation to the asynchronous coloringheuristic given in Fig. 2. Let the function
(v) equal one if v is in the independentset I, two if v is in N(I), and let it be unde�ned otherwise. We have the followingasynchronous algorithm to determine the set I.The following lemma proves the correctness of the asynchronous algorithm.Lemma 2.1. At the termination of the algorithm given in Fig. 3, the function
(v); v 2 V de�nes a maximal independent set.Proof: At the completion of the algorithm in Fig. 3,
(v) is de�ned for each v 2 V .Thus, each vertex v 2 V satis�ed one of the following based on the de�nition of
:1. v 2 I, or2. v 2 N(I).It is clear that the set I is independent, and each member of N(I) must be adjacentto a member of I. Thus, the above two conditions imply that the independent setI is maximal. 2Based on Theorem 3.3 and Corollary 3.5 given in [13], we have the followingcorollary.Corollary 2.2. For graphs of bounded degree�, the expected running time is5

Choose �(v);n-wait = 0;send-queue = ;;For each w 2 adj(v) doSend �(v) to processor responsible for w;Receive �(w);if (�(w) > �(v)) then n-wait = n-wait +1;else send-queue send-queue [fwg;enddon-recv = 0;While (n-recv < n-wait) doReceive
(w);n-recv = n-recv +1;enddoif (all the previously assigned neighbors w of vhave
(w) = 2), then
(v) = 1;else
(v) = 2;endifFor each w 2 send-queue doSend
(v) to processor responsible for w;enddoFig. 3. An asynchronous algorithm to determine a maximal independent setEO(log(n)= log log(n)) for the maximal independent set algorithm given in Fig. 3.Proof: As for the bound for the asynchronous parallel coloring heuristic, theexpected running time for the asynchronous maximal independent set algorithm isproportional to the expected length of the longest monotonic path. By Theorem 3.3and Corollary 3.5 in [13] this length is bounded by EO(log(n)= log log(n)). 2Finally, we note that this maximal independent set algorithm can be used inplace of Luby's MSI algorithm to generate a sequence of maximal independent sets,each of which can be colored a di�erent color. The running time of this coloringheuristic would again be bounded by EO(log(n)= log log(n)) because the maximumnumber of colors used is bounded by � + 1, and we have assumed the maximumdegree � of the graph is bounded.3. Graph Reductions. In this section we present several graph reductionsthat are used in our iterative solver implementation. These reductions are em-ployed in x4 to describe several possible alternatives for the solution of the trian-gular systems involving the preconditioned systems.It is often observed that the sparse systems arising in many applications havea great deal of special local structure, even if the systems are described as \un-6

structured." We have attempted to illustrate some of this local structure, and howit can be identi�ed, in the following sequence of �gures.In Fig. 4 we depict a subsection of a graph that would arise from a two-dimensional, linear, multicomponent �nite-element model with three degrees offreedom per node point. We illustrate the three degrees of freedom by the threedots at each node point; the linear elements imply that the twelve degrees offreedom sharing the four node points of each face are completely connected. In the�gure we show edges only between the nodes, these edges represent the completeinterconnection of all the vertices on each element or face.
Fig. 4. A subgraph generated by a two-dimensional, linear �nite element model with threedegrees of freedom per node point. The geometric partition shown by the dotted lines yields anassignment of the vertices in the enclosed subregion to one processor.The dashed lines in the �gure represent a geometric partitioning of the grid;we assume that the vertices in the central region are all assigned to one processor.We make several observations about the local structure of this subgraph. First,we note that the adjacency structure of the vertices at the same geometric node(i.e., the nonzero structure of the associated variables) are identical, and we callsuch vertices identical vertices. It was noted by Schreiber and Tang [19] that acoloring of the graph corresponding to the geometric nodes results in a system withsmall dense blocks, of order the number of degrees of freedom per node, along thediagonal. We note that this observation can also be used to decrease the storagerequired for indirect indexing of the matrix rows since the structures are identical.We also consider another graph reduction based on the local clique structureof the graph. In Fig. 5 the dotted lines show one possible way the vertices assignedto the shown partition and its neighbors can be partitioned into cliques. Denotesuch a partition by Q. If we associate a super vertex with each clique, the quotient7

Fig. 5. A partition of the vertices into cliquesgraph G=Q can be constructed based on the rule that there exists an edge betweentwo super vertices v and w if and only if there exists an edge between two verticesof their respective partitions in G. The quotient graph constructed by the cliquepartition shown in Fig. 5 is shown in Fig. 6.Of course the quotient graph reduction is not limited to the choice of a maxi-mal clique partition; any local partition of the subgraph assigned to a processor canbe used to generate the reduced graph. We use a clique decomposition because thesubmatrix associated with the clique is dense, thus allowing for the use of higherlevel dense linear algebra operations (BLAS) in an implementation. The aspectof the graph reduction is discussed in more detail in x4. Finally, we note that thee�cient determination of identical nodes, and a local maximal clique decomposi-tion, is straightforward. Since the adjacency structure of the vertices assigned toa processor is known locally, no interprocessor communication is required, and agreedy heuristic can be used to determine a clique partition.4. The Inversion of Triangular Systems. In this section we review theproblem of the parallel inversion of a sparse triangular system. The triangular sys-tem solution is the central problem in the parallelization of the standard iterativemethods. For example, it is involved in the application of a preconditioner derivedfrom an incomplete factorization, or in an SOR or SSOR iteration.Consider the lower triangular matrix L decomposed into the following block8

Fig. 6. The quotient graph given the clique partition shown in Fig. 5For i = 1; : : : ; � do1. Local Solve (requires no interprocessor communication):Li;iyi = bi2. Update (communication without interdependencies):bJi bJi � LJi;KiyKienddoFig. 7. A general framework for the parallel forward elimination of the lower triangularsystem Ly = bstructure. 266664 L1;1 0 0 0L2;1 L2;2 0 0... 0L�;1 L�;2 � � � L�;� 377775 :(4.1)In Fig. 7 we present a general framework for the forward elimination required tosolve the system Ly = b. By yi and bi we mean the partition of components impliedby the block partition of L given above. The index sets Ji and Ki can be anythingequivalent to the standard forward elimination algorithm. With this framework wedivide the solution in two phases. In phase 1, the diagonal block solution phase,we assume that no interprocessor communication is required. In the second phase,when the partial updates to the right hand side are performed, we include all9

the interprocessor communication, but we assume that this communication can beperformed in any order. Thus, the number of major communication step requiredin this framework is �.We classify a number of possible approaches to solving these triangular systemsbased on the choice of the diagonal blocks Li;i as follows:Pointwise colorings { Given a coloring of the graph G(A) for the incompletefactorization matrix A, we order unknowns corresponding to same coloredvertices consecutively. An implementation based on this approach andcomputational results are given in [10].Partitioned inverse { One can determine a product decomposition of L; forexample, L = �Yi=1Li ;(4.2)where the nonzero structure, S, of the product elements satisfy S(Li) =S(L�1i) [1, 2]. The inversion of L can be performed with �matrix productsonce the partitioned inverse is formed. We note that this can always donewith a pointwise coloring, where � is the number of colors used. It has beenobserved by Robert Schreiber [18] that the partitioned inverse approachcan reduce the steps in pointwise coloring approach by a factor of two.Suppose two colors are used. We write the pointwise system asL = " D1;1 0L2;1 D2;2 # ;(4.3)where D1;1 and D2;2 are diagonal. Schreiber makes the following observa-tion: L�1 = " D�11;1 0�D�12;2L2;1D�11;1 D�12;2 # ;(4.4)where the structures of L and L�1 are identical. Thus, one can group pairsof colors together and form the inverse of the combined diagonal block bya simple rescaling the o�-diagonal part.Nodewise colorings { Identify adjacent vertices with identical structure. Asdescribed in x3, such vertices often arise in �nite element models for inde-pendent degrees of freedom de�ned at the same geometric node. Let theset I identify identical nodes. A matrix ordering based on a coloring G=I,where identically colored nodes are ordered consecutively, yields a systemwhere Li;i is block diagonal, with dense blocks the size of the number ofidentical nodes at each node point. Given a geometric partition of thenodes, these dense blocks are local to a processor. In addition, the ob-servation made by Schreiber and illustrated in Equation 4.4 can be used10

to decrease the number of major communication step by a factor of twofor a nodewise coloring. The inverse formula given in Equation 4.4 withD1;1 and D2;2 block diagonal will still preserve the nonzero structure ofL, because the nonzero structure of the columns in each dense block areidentical.Quotient graph colorings derived from a local clique partition { Thisapproach is used in our implementation. The local cliques correspondto local dense diagonal blocks in Li;i. The inverses of these blocks arecomputed. Thus the local solve, step 1 in Fig. 7, can be implementedusing Level-2 BLAS. Usually the number of colors required to color thequotient graph will be smaller than the number of colors required forthe original graph. However, if fewer colors are used, recent theoreticalresults [11] indicate that the convergence of the iterative algorithm couldsu�er. This aspect is discussed more fully in x5.Quotient graph colorings derived from general local systems { Any localstructure can chosen for the diagonal systems Li;i. However, if generalsparse systems are used, the processor performance is not necessarily im-proved over a pointwise coloring. In addition, load balancing becomesmore di�cult as larger partitions are chosen.Given the above possibilities, we have chosen to implement a method basedon quotient graph colorings derived from a local clique partition. This approachenables our software to take advantage of both any identical node structure andlocal clique partitions. The former allows for a reduction in the indirect indexingrequired; the latter allows for the use of larger dense blocks and consequentiallybetter performance with the Level-2 BLAS. The software is designed so that themaximum size of the identical node sets, the maximum clique size, and maximumnumber of cliques per color can all be set by the user in case of load balancingor convergence problems. However, for the results presented in x5, no such limitswere imposed.5. Computational Results. In this section we present computational re-sults obtained on the Intel DELTA with the software we have developed. Weconsider two applications: a piezoelectric crystal modeling problem, and a three-dimensional superconductivity modeling problem. These problems are describedin more depth in [12]; we give only a brief description of them here.5.1. The piezoelectric crystal modeling problem. The �rst set of sparsesystems that we consider arise from a second-order �nite element of a piezoelectriccrystal strip oscillator. These crystals are thin strips of quartz that vibrate at a�xed frequency when an electric forcing �eld is applied to the crystal. A diagramof a strip oscillator a�xed to an aluminum substrate with epoxy is shown in Fig. 8.Second-order, 27-node �nite elements are used to model the crystal. Higher-order elements are required to accurately model high frequency vibrational modes11

Piezoelectric Quartz Crystal

Epoxy

AluminumFig. 8. Piezoelectric crystal strip oscillatorof the crystal. There are four degrees of freedom at each geometric node point:three mechanical displacements and an electric �eld potential. The solution phasehas two steps. First, the deformation of the crystal caused by thermal displacementis found. For example, if the crystal was mounted on aluminum at 25oC, it willdeform when the temperature is raised to 35oC. This requires solving a nonlinearstatic thermal stress problem. Second, to �nd the vibrational modes of interest forthe deformed crystal, we solve a linear vibration problem { a generalized eigen-problem.To solve the nonlinear static thermal stress problem, a series of linear systemsof the form Ku = f must be solved, where K represents the sti�ness matrix, urepresents the displacements, and f represents the forces due to thermal loads anddisplacement constraints. The major task here, of course, is the solution of verylarge, sparse systems of equations.To solve the linear vibration problem, we must solve a generalized eigenprob-lem of the formKx = !2Mx, whereK represents the sti�ness matrix,M representsthe mass matrix, x is a vibrational modeshape, and ! is a vibrational mode. Weuse a shifted, inverted variant of the Lanczos algorithm to solve this eigenproblem[16]. This method has been shown to be very e�cient for the parallel solution ofthe vibration problem [9]. Again, the major computational task is the solution oflarge sparse systems of linear equations.The three-dimensional �nite element grid needed to model the crystals is muchmore re�ned in the length and width directions than it is in the thickness direction.We can take advantage of this fact and partition the grid among the processors inonly the length and width directions. This approach reduces communication andmaps nicely onto the DELTA architecture. Each processor is assigned a rectangularsolid corresponding to a portion of the three-dimensional grid. Each processor isresponsible for evaluating the �nite elements in its partition and for maintainingall relevant geometric and solution data for its partition.We have solved problems consisting of over 480,000 equations with 161,150,990nonzeros on 512 processors of the Intel DELTA. Over 99 percent of the time is spent12

in solving the linear systems and evaluating the �nite elements. The solution of thelinear systems has achieved speeds of approximately 2 giga
ops on 512 processors.This speed is scalable; the individual processor performance degrades only from4.16 M
ops per processor to 3.83 M
ops per processor when one goes from 128processors to 512 processors and keeps the sub-grid size �xed.5.2. The layered superconductor modeling problem. The sparse lin-ear systems for the superconductivity problem arise in the determination of thedamped Newton step in the inner loop of an optimization algorithm. The opti-mization algorithm attempts to determine the minimizer of a free energy functionalthat is de�ned on a three-dimensional rectangular mesh with the geometric layoutdepicted in Fig. 9. The structure of the sparse linear system is determined by theHessian of free energy given a linear �nite di�erence discretization of the model.
876

543

210

Y

X

ZFig. 9. The 3-dimensional layered superconductor model partitioned in 2-dimensionsShown in the �gure are alternating layers of superconducting and insulatingmaterial. The independent variables are two vector �elds, one de�ned in the su-perconducting sheets, and the other in the insulating layer. The two �elds arecoupled in the free energy formulation. When the model is discretized a �ner de-gree of resolution is generally given to the insulating layers. For the problems ofinterest, the number of grid points necessary to represent the model in the direc-tion perpendicular to the layers (the X-axis in Fig. 9) is smaller than the numberof points required in the two directions parallel to the layers (the Y-axis and Z-axisin Fig. 9). We make use of this property and partition the grid in the Y and Zdirections. For example, in Fig. 9 the Y-Z domain is shown partitioned among 9processors.We denote the discretization in the X, Y, and Z directions by NX, NY, andNZ, respectively. As the discretization within an insulating layer, NK, varies, thesize of the local cliques changes, and therefore so does the individual processor13

performance. In Table 1 we note the e�ect of varying the layer discretizationon the i860 processor performance during the solution of the linear systems. Forthese numbers we have used 128 processors and �xed the local problem size to beroughly equivalent. The second column shows the number of identical nodes foundin the graph by the solver; the third column shows the average clique size found.The �nal column shows the average computational rate per processor during thesolution of the linear systems. Table 1The e�ect of varying the layer discretization on the processor performance in solving thelinear systemsNK I-Node Size Avg. Clique Size Avg. M
ops/Processor2 8 32.0 2.974 14 44.8 5.426 20 60.0 6.718 26 78.0 8.96In Table 2 we present results for the linear solver on three problems withdi�ering geometric con�gurations on 512 processors.Table 2Computational results obtained for three di�erent problem con�gurations on 512 processorsPROBLEM-1 PROBLEM-2 PROBLEM-3NX 24 64 20NK 8 4 2NY 80 64 150NZ 96 96 150N 6:0� 105 1:6� 106 1:8� 106NNZ 2:0� 108 1:7� 108 1:9� 108GFlops 3.25 2.55 1.38In the solution of both of these systems, the diagonal of the matrix was scaledto be one. If the incomplete factorization fails (a negative diagonal element cre-ated during the factorization), a small multiple of the identity is added to diagonal,and the factorization is restarted. This process is repeated until a successful fac-torization is obtained [15]. The average number of conjugate gradient iterationsrequired to solve one nonlinear iteration of the thermal equilibrium problem forthe crystal model to a relative accuracy of 10�7 is approximately 700. The averagenumber of conjugate gradient iterations required per nonlinear iteration for thesuperconductivity problem is approximately 250. The linear systems arising in thesuperconductivity problem are solved to a relative accuracy of 5:0�10�4. However,it should be noted that these are special linear systems: they are highly singular(more than one-�fth of the eigenvalues are zero, because of physical symmetries).14

However, they are consistent near a local minimizer because a projection of theright hand side (the gradient of the free energy function) onto the null space of thematrix is zero near the minimizer.6. Conclusions. In this paper we have presented an implementation of ageneral-purpose iterative solver for MIMD machines. The scalable performance ofthe solver is based on a reordering of the sparse system according to a graph col-oring of a reduced graph obtained from the nonzero structure of the sparse linearsystem. This approach is e�ective for any of the standard iterative methods; how-ever, the experimental results we present are for the conjugate gradient algorithmwith an incomplete matrix factorization preconditioner.We have emphasized an approach where all the manipulations required bythe solver are all done in parallel. In this spirit, we have presented two recentlydeveloped parallel heuristics for determining a graph coloring. We have shown thatthe synchronous heuristic proposed by Luby, based on determining a sequence ofmaximal independent sets, can be modi�ed to run in an asynchronous manner.Furthermore, we show that the expected running time of the modi�ed heuristic isEO(log(n)= log log(n)) for bounded degree graphs using the bounds developed forthe other coloring heuristic.A number of possible approaches toward the solution of the sparse triangularsystem solutions are classi�ed. We have chosen to use a graph reduction based ona clique partition in our implementation for two reasons: (1) to allow for the use ofhigher-level BLAS in a triangular system solver, and (2) to reduce the number ofrequired colors and the size of the quotient graph. The implementation allows theuser to specify the maximum clique size and the maximum number of cliques percolor, in case load-balancing or convergence problems arise. In the experimentalresults section we demonstrate the improvement in processor performance for largerclique sizes for the superconductivity problem. In addition, the concentration of thebasic computation in the BLAS allows for an e�cient, portable implementation.Finally, we note that recent theoretical results have shown that for a modelproblem, the convergence rate improves as the number of colors is increased [11].This possibility was investigated for the piezoelectric crystal problem, and a def-inite, but moderate, decrease in the convergence rate was found in going from apointwise coloring (� 108 colors) to a clique coloring (� 10 colors). However, theincrease in e�ciency of the implementation for the clique coloring more than o�setthe convergence di�erences.Overall, we feel that this approach represents an e�ective approach for ef-�ciently solving large, sparse linear systems on massively parallel machines. Wehave demonstrated that our implementation is able to solve general sparse systemsfrom two di�erent applications, achieving both good processor performance andconvergence properties.Acknowledgment. The second author acknowledges a number of helpful dis-cussions with Fernando Alvarado, Stanley Eisenstat, and Robert Schreiber whileattending the IMA workshop. 15

REFERENCES[1] F. L. Alvarado, A. Pothen, and R. Schreiber, Highly parallel sparse triangularsolution, Tech. Rep. CS-92-09, The Pennsylvania State University, May 1992.[2] F. L. Alvarado and R. Schreiber, Optimal parallel solution of sparse triangular sys-tems, SIAM Journal on Scienti�c and Statistical Computing, (to appear).[3] D. Br�elaz, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251{256.[4] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graphcoloring problems, SIAM Journal on Numerical Analysis, 20 (1983), pp. 187{209.[5] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, NewYork, 1979.[6] J. L. Gustafson, G. R. Montry, and R. E. Benner, Development of parallel methodsfor a 1024-processor hypercube, SIAM Journal on Scienti�c and Statistical Computing,9 (1988), pp. 609{638.[7] L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, NewYork, 1981.[8] D. S. Johnson, Worst case behavior of graph coloring algorithms, in Proceedings 5thSoutheastern Conference on Combinatorics, Graph Theory, and Computing, UtilitasMathematica Publishing, Winnipeg, 1974, pp. 513{527.[9] M. T. Jones and M. L. Patrick, The Lanczos algorithm for the generalized symmetriceigenproblem on shared-memory architectures, Preprint MCS-P182-1090, Mathematicsand Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1990.[10] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems,Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill., 1991.[11] , The e�ect of many-color orderings on the convergence of iterative methods, PreprintMCS-P292-0292, Mathematics and Computer Science Division, Argonne National Lab-oratory, Argonne, Ill., 1992.[12] , Solution of large, sparse systems of linear equations in massively parallel applications,Preprint MCS-P313-0692, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill., 1992.[13] , A parallel graph coloring heuristic, SIAM Journal on Scienti�c and Statistical Com-puting, (to appear).[14] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAMJournal on Computing, 4 (1986), pp. 1036{1053.[15] T. A. Manteuffel, An incomplete factorization technique for positive de�nite linear sys-tems, Mathematics of Computation, 34 (1980), pp. 473{497.[16] B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen, How to implementthe spectral transformation, Mathematics of Computation, 48 (1987), pp. 663{673.[17] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectorsof graphs, SIAM Journal on Matrix Analysis, 11 (1990), pp. 430{452.[18] R. Schreiber. Private communication, 1991.[19] R. Schreiber and W.-P. Tang, Vectorizing the conjugate gradient method. Unpublishedmanuscript, Department of Computer Science, Stanford University, 1982.[20] H. A. van der Vorst, High performance preconditioning, SIAM Journal on Scienti�c andStatistical Computing, 10 (1989), pp. 1174{1185.[21] S. Vavasis, Automatic domain partitioning in three dimensions, SIAM Journal on Scienti�cand Statistical Computing, 12 (1991), pp. 950{970.16

