ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

THE EFFICIENT PARALLEL ITERATIVE SOLUTION
OF LARGE SPARSE LINEAR SYSTEMS*

Mark T. Jones and Paul E. Plassmann

Mathematics and Computer Science Division
Preprint MCS-P314-0692
June 1992

ABSTRACT
The development of efficient, general-purpose software for the iterative solution
of sparse linear systems on a parallel MIMD computer requires an interesting
combination of expertise. Parallel graph heuristics, convergence analysis, and basic
linear algebra implementation issues must all be considered.

In this paper, we discuss how we have incorporated recent results in these areas
into a general-purpose iterative solver. First, we consider two recently developed
parallel graph coloring heuristics. We show how the method proposed by Luby,
based on determining maximal independent sets, can be modified to run in an
asynchronous manner and give an expected running time bound for this modified
heuristic. In addition, a number of graph reduction heuristics are described that
are used in our implementation to improve the individual processor performance.
The effect of these various graph reductions on the solution of sparse triangular
systems is categorized. Finally, we discuss the performance of this solver from the
perspective of two large-scale applications: a piezoelectric crystal finite-element
modeling problem, and a nonlinear optimization problem to determine the mini-
mum energy configuration of a three-dimensional, layered superconductor model.

Key words: graph coloring heuristics, iterative methods, parallel algorithms,
preconditioned conjugate gradients, sparse matrices

AMS(MOS) subject classifications: 65F10, 65F50, 65Y05, 68R10

*This paper is based on a talk presented by the second author at the IMA Workshop
on Sparse Matrix Computations: Graph Theory Issues and Algorithms, October
14-18, 1991. This work was supported by the Applied Mathematical Sciences

subprogram of the Office of Energy Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

1. Introduction. The computational kernel of many large-scale applications
is the solution of sparse linear systems. Given the increasing performance of in-
dividual processors and the dramatic recent improvements in engineering parallel
machines composed of these processors, a scalable parallel computer is an attrac-
tive vehicle for solving these problems. In this paper we endorse a particular
perspective: (1) we note that in many applications one is interested in solving as
large a problem as can feasibly fit into the available memory of the machine, and
(2) that the underlying geometric structure of these applications is often three-
dimensional or greater. These observations, and a simple “back-of-the-envelope”
calculation, lead one to conclude that a parallel direct factorization method is in
general not feasible for such problems, in terms of the amount of space and time
required. This perspective motivates one to consider an approach to the iterative
solution of sparse linear systems in a manner that ensures scalable performance.

In this paper we present an approach to solving such systems that satisfies the
above requirements. Central to our method is a reordering of the matrix based
on a coloring of the symmetric graph corresponding to the nonzero structure of
the matrix, or a related graph. To determine this ordering, we use a recently
developed parallel heuristic. However, if many colors are used, a straightforward
parallel implementation, as is described in [10], suffers poor processor performance
on a high-performance processor such as the Intel i860. In this paper we present
several possible graph reductions that can be employed to greatly improve the
performance of an implementation on high-performance RISC processors.

Consider an implementation of any of the standard general-purpose iterative
methods [7, 15]: consistently ordered SOR, SSOR accelerated by conjugate gra-
dients (CG), or CG preconditioned with an incomplete matrix factorization. It is
evident that the major obstacle to a scalable implementation [6] is the inversion
of sparse triangular systems with a structure based on the structure of the lin-
ear system. For example, the parallelism inherent in computing and applying an
incomplete Cholesky preconditioner is limited by the solution of the triangular sys-
tems generated by the incomplete Cholesky factors [20]. It was noted by Schreiber
and Tang [19] that if the nonzero structure of the triangular factors is identical
to that of the original matrix, the minimum number of major parallel steps pos-
sible in the solution of the triangular system is given by the chromatic number
of the symmetric adjacency graph representing those nonzeros. Thus, given the
nonzero structure of a matrix A, one can generate greater parallelism by comput-
ing a permutation matrix, P, based on a coloring of the symmetric graph G/(A).
The incomplete Cholesky factor L of the permuted matrix PAPT is computed,
instead of the factor based on the original matrix A.

In this permutation, vertices of the same color are grouped and ordered se-
quentially. As a consequence, during the triangular system solves, the unknowns
corresponding to these vertices can be solved for in parallel, after the updates from
previous color groups have been performed. The result of Schreiber and Tang states
that the minimum number of inherently sequential computational steps required

1

to solve either of the triangular systems, Ly = b or LTz = y, is given by the
minimum possible number of colors, or chromatic number, of the graph.

For general graphs, the computation of the chromatic number is an NP-hard
problem. However, recent theoretical and experimental work has demonstrated
scalable heuristics for determining coloring that are close to optimal for practical
problems [14, 13]. In §2 we review these heuristics and demonstrate that they have
equivalent expected running times for bounded degree graphs.

We note that this bound on the number of communication steps assumes that
only vector operations are performed during the triangular systems solves. This
assumption is equivalent to restricting oneself to a fine-grained parallel computa-
tional model, where we assign each unknown to a different processor. When many
unknowns are assigned to a single processor, it is possible to reduce the number of
communication steps by solving non-diagonal submatrices of L on individual pro-
cessors at each step. In this case, the minimum number of communication steps is
given by a coloring of a quotient graph obtained from a partitioning of unknowns
to processors.

The remainder of the paper is organized as follows. In §3 we present several
possible graph reductions, including the clique partitions that allow for the use
of higher-level Basic Linear Algebra Subprograms (BLAS) in the software. We
consider a general framework that can incorporate these ideas into efficient trian-
gular system solvers in §4. Finally, in §5 we present experimental results obtained
for our software implementation on the Intel DELTA for problems arising in two
different applications and in §6 we discuss our conclusions.

2. Asynchronous Parallel Graph Coloring Heuristics. In this section
we consider two recently developed graph coloring heuristics suitable for asyn-
chronous parallel computers. Our perspective is that if a scalable iterative solver
is to be based on a matrix ordering derived from a graph coloring, then a scalable
heuristic is necessary to determine this coloring. We review two parallel heuris-
tics based on Monte Carlo steps for which expected running times are known: a
synchronous PRAM heuristic developed by Luby [14], and a recent asynchronous
heuristic presented by Jones and Plassmann [13]. The interesting aspect of the
asynchronous method is that it combines aspects of sequential greedy graph color-
ing heuristics with a Monte Carlo step to determine independent sets. Finally, we
show how a modification can be made to Luby’s maximal independent set heuristic
both to make it asynchronous and to satisfy the same running time bound obtained
for the second heuristic.

It is important to note that we do not address the problem of determining
a good partitioning of the graph onto the processors. For the applications prob-
lems we consider in §5, a physical partition can be used to generate a good vertex
assignment to processors. When the determination of a partition is not straight-
forward, a partitioning heuristic would have to be used. Some possibilities exist;
for example, recent advances in the automatic partitioning of three-dimensional
domains [21] or in spectral dissection methods [17] could be employed. However,

2

the parallel graph partitioning problem deserves much additional research.

First, we briefly review the graph coloring problem. Let G = (V| FE) be a
symmetric graph with vertex set V, with |V| = n, and edge set £. We say that
the function o : V' — {1,...,s} is an s-coloring of G, if o(v) # o(w) for all edges
(v,w) € E. We denote the minimum possible value for s, the chromatic number
of G, by x(G).

The question as to whether a general graph G is s-colorable is NP-complete
[5]. It is known that unless P = NP, there does not exist a polynomial ap-
proximation scheme for solving the graph coloring problem [5]. In fact, the best
polynomial time heuristic known [8] can theoretically guarantee a coloring of only
size ¢(n/logn) x(G), where ¢ is some constant.

Given these pessimistic theoretical results, it is quite surprising that, for cer-
tain classes of graphs, there exist a number of sequential graph coloring heuristics
that are very effective in practice. For graphs arising from a number of applica-
tions, it has been demonstrated that these heuristics are often able to find colorings
that are within one or two of an optimal coloring [4, 10].

These sequential heuristics are based a greedy heuristic that colors vertices
in an order determined by a cost function. Choices for the cost function that are
particularly effective are the saturation degree order (choose the most constrained
vertex [3]) or the incidence degree order (choose the vertex adjacent to the max-
imum number of previously colored vertices [4]). Unfortunately, these heuristics
do not parallelize well, because they essentially represent a breadth-first search of
the graph.

A different approach was suggested by Luby [14]. His observation was that if
one can determine a maximal independent set efficiently in parallel, then a partition
of the vertices of the graph into maximal independent sets yields a coloring. Luby’s
algorithm for determining an independent set, I, is based on the following Monte
Carlo rule. Here we denote the set of vertices adjacent to vertex v by adj(v).

1. For each vertex v € V' determine a distinct, random number p(v).
22.vel & p(v) > plw), Yw € adj(v).

In the Monte Carlo algorithm described by Luby [14], this initial independent set
is augmented to obtain a maximal independent set. The approach is the following.
After the initial independent set is found, the set of vertices adjacent to a vertex in
I, the neighbor set N([), is determined. The union of these two sets is deleted from
V', the subgraph induced by this smaller set is constructed, and the Monte Carlo
step is used to choose an augmenting independent set. This process is repeated
until the candidate vertex set is empty and a maximal independent set (MIS) is
obtained. The complete Monte Carlo algorithm suggested by Luby for generating
an MIS is shown in Fig. 1. In this figure we denote by G(V') the subgraph of G
induced by the vertex set V'. Luby shows that an upper bound for the expected
time to compute an MIS by this algorithm on a CRCW P-RAM is FO(log(n)). The
algorithm can be adapted to a graph coloring heuristic by using it to determine a
sequence of distinct maximal independent sets and by coloring each MIS a different
3

color. Thus, this approach will solve the (A + 1) vertex coloring problem, where
A is the maximum degree of (&, in expected time EO((A + 1)log(n)).

I« {;
ViV,
G — G
While ¢’ # () do
Choose an independent set I in G
I—1Ul
X — I'UNU";
Vi VX
G — GV
enddo

Fia. 1. Luby’s Monte Carlo algorithm for determining a mazimal independent set

A major deficiency of this approach on currently available parallel comput-
ers is that each new choice of random numbers in the MIS algorithm requires
a global synchronization of the processors. A second problem is that each new
choice of random numbers incurs a great deal of computational overhead, because
the data structures associated with the random numbers must be recomputed.
The asynchronous heuristic proposed by Jones and Plassmann [13] avoids both of
these drawbacks. This heuristic is presented in Fig. 2. The heuristic is written
assuming that each vertex v is assigned to a different processor and the processors
communicate by passing messages.

With the asynchronous heuristic the first drawback (global synchronization)
is eliminated by choosing the independent random numbers only at the start of
the heuristic. With this modification, the interprocessor communication can pro-
ceed asynchronously once these numbers are determined. The second drawback
(computational overhead) is alleviated because with this heuristic, once a proces-
sor knows the values of the random numbers of the vertices to which it is adjacent,
the number of messages it needs to wait for can be computed and stored. Like-
wise, each processor computes only once the processors to which it needs to send a
message once its vertex is colored. Finally, note that this heuristic has more of the
“flavor” of the sequential heuristic, since we choose the smallest color consistent
with the adjacent vertices previously colored.

An upper bound for the expected running time of a synchronous version of
this algorithm of FO(log(n)/loglog(n)) can be obtained for graphs of bounded
degree [13]. The central idea for the proof of this bound is the observation that the
running time of the heuristic is proportional to the maximum length monotonic
path in GG. A monotonic path of length t is defined to be a path of ¢t vertices
{v1,v2,..., v} in G such that p(vy) > p(va) > ... > p(vy).

4

Choose p(v);
n-wait = 0;
send-queue = (;
For each w € adj(v) do
Send p(v) to processor responsible for w;
Receive p(w);
if (p(w) > p(v)) then n-wait = n-wait + 1;
else send-queue «— send-queue U {w};
enddo
n-recv = 0;
While (n-recv < n-wait) do
Receive o(w);
n-recv = n-recv + 1;
enddo
o(v) = smallest available color consistent with the
previously colored neighbors of v;
For each w € send-queue do
Send o(v) to processor responsible for w;

enddo

Fig. 2. An asynchronous parallel coloring heuristic

We now show that the Luby’s MIS algorithm can be modified to obtain the
same bound. Consider the following modification to the asynchronous coloring
heuristic given in Fig. 2. Let the function v(v) equal one if v is in the independent
set [, two if v is in N([), and let it be undefined otherwise. We have the following
asynchronous algorithm to determine the set I.

The following lemma proves the correctness of the asynchronous algorithm.

LEMMA 2.1. At the termination of the algorithm given in Fig. 3, the function
y(v),v € V defines a maximal independent set.

Proof: At the completion of the algorithm in Fig. 3, v(v) is defined for each v € V.
Thus, each vertex v € V satisfied one of the following based on the definition of +:
l.vel, or
2. ve N(I).
It is clear that the set [is independent, and each member of N (/) must be adjacent
to a member of 1. Thus, the above two conditions imply that the independent set
[is maximal. O

Based on Theorem 3.3 and Corollary 3.5 given in [13], we have the following
corollary.

COROLLARY 2.2. For graphs of bounded degree A, the expected running time s

5

Choose p(v);
n-wait = 0;
send-queue = (;
For each w € adj(v) do
Send p(v) to processor responsible for w;
Receive p(w);
if (p(w) > p(v)) then n-wait = n-wait + 1;
else send-queue «— send-queue U {w};
enddo
n-recv = 0;
While (n-recv < n-wait) do
Receive ~(w);
n-recv = n-recv + 1;
enddo
if (all the previously assigned neighbors w of v
have v(w) = 2), then ~(v) = 1;
else v(v) = 2;
endif
For each w € send-queue do
Send ~(v) to processor responsible for w;

enddo

Fia. 3. An asynchronous algorithm to determine a mazimal independent set

EO(log(n)/loglog(n)) for the maximal independent set algorithm given in Fig. 3.

Proof: As for the bound for the asynchronous parallel coloring heuristic, the
expected running time for the asynchronous maximal independent set algorithm is
proportional to the expected length of the longest monotonic path. By Theorem 3.3
and Corollary 3.5 in [13] this length is bounded by EO(log(n)/loglog(n)). O
Finally, we note that this maximal independent set algorithm can be used in
place of Luby’s MSI algorithm to generate a sequence of maximal independent sets,
each of which can be colored a different color. The running time of this coloring
heuristic would again be bounded by EFO(log(n)/loglog(n)) because the maximum
number of colors used is bounded by A + 1, and we have assumed the maximum

degree A of the graph is bounded.

3. Graph Reductions. In this section we present several graph reductions
that are used in our iterative solver implementation. These reductions are em-
ployed in §4 to describe several possible alternatives for the solution of the trian-
gular systems involving the preconditioned systems.

It is often observed that the sparse systems arising in many applications have
a great deal of special local structure, even if the systems are described as “un-

6

structured.” We have attempted to illustrate some of this local structure, and how
it can be identified, in the following sequence of figures.

In Fig. 4 we depict a subsection of a graph that would arise from a two-
dimensional, linear, multicomponent finite-element model with three degrees of
freedom per node point. We illustrate the three degrees of freedom by the three
dots at each node point; the linear elements imply that the twelve degrees of
freedom sharing the four node points of each face are completely connected. In the
figure we show edges only between the nodes, these edges represent the complete
interconnection of all the vertices on each element or face.

: \@/
S

Fic. 4. A subgraph generated by a two-dimensional, linear finite element model with three
degrees of freedom per node point. The geometric partition shown by the dotted lines yields an
assignment of the vertices in the enclosed subregion to one processor.

The dashed lines in the figure represent a geometric partitioning of the grid;
we assume that the vertices in the central region are all assigned to one processor.
We make several observations about the local structure of this subgraph. First,
we note that the adjacency structure of the vertices at the same geometric node
(i.e., the nonzero structure of the associated variables) are identical, and we call
such vertices identical vertices. 1t was noted by Schreiber and Tang [19] that a
coloring of the graph corresponding to the geometric nodes results in a system with
small dense blocks, of order the number of degrees of freedom per node, along the
diagonal. We note that this observation can also be used to decrease the storage
required for indirect indexing of the matrix rows since the structures are identical.

We also consider another graph reduction based on the local clique structure
of the graph. In Fig. 5 the dotted lines show one possible way the vertices assigned
to the shown partition and its neighbors can be partitioned into cliques. Denote
such a partition by (). If we associate a super vertex with each clique, the quotient

7

P8 0 8 8 8

@9 @9

@e9

Fia. 5. A partition of the vertices into cliques

graph /() can be constructed based on the rule that there exists an edge between
two super vertices v and w if and only if there exists an edge between two vertices
of their respective partitions in . The quotient graph constructed by the clique
partition shown in Fig. 5 is shown in Fig. 6.

Of course the quotient graph reduction is not limited to the choice of a maxi-
mal clique partition; any local partition of the subgraph assigned to a processor can
be used to generate the reduced graph. We use a clique decomposition because the
submatrix associated with the clique is dense, thus allowing for the use of higher
level dense linear algebra operations (BLAS) in an implementation. The aspect
of the graph reduction is discussed in more detail in §4. Finally, we note that the
efficient determination of identical nodes, and a local maximal clique decomposi-
tion, is straightforward. Since the adjacency structure of the vertices assigned to
a processor is known locally, no interprocessor communication is required, and a
greedy heuristic can be used to determine a clique partition.

4. The Inversion of Triangular Systems. In this section we review the
problem of the parallel inversion of a sparse triangular system. The triangular sys-
tem solution is the central problem in the parallelization of the standard iterative
methods. For example, it is involved in the application of a preconditioner derived
from an incomplete factorization, or in an SOR or SSOR iteration.

Consider the lower triangular matrix L decomposed into the following block

Fia. 6. The quotient graph giwen the clique partition shown in Fig. §

For:=1,...,y do
1. Local Solve (requires no interprocessor communication):
Liy; = b
2. Update (communication without interdependencies):
by, < by, — L, k.Yk,
enddo

Fia. 7. A general framework for the parallel forward elimination of the lower triangular
system Ly = b

structure.
Ll,l 0 0 0
(4‘1) L‘271 L%g 0 0
: : . 0
LXJ Lx72 e Lx7><

In Fig. 7 we present a general framework for the forward elimination required to
solve the system Ly = b. By y; and b; we mean the partition of components implied
by the block partition of L given above. The index sets J; and K; can be anything
equivalent to the standard forward elimination algorithm. With this framework we
divide the solution in two phases. In phase 1, the diagonal block solution phase,
we assume that no interprocessor communication is required. In the second phase,
when the partial updates to the right hand side are performed, we include all

9

the interprocessor communication, but we assume that this communication can be
performed in any order. Thus, the number of major communication step required
in this framework is y.

We classify a number of possible approaches to solving these triangular systems
based on the choice of the diagonal blocks L;; as follows:

Pointwise colorings — Given a coloring of the graph G/(A) for the incomplete
factorization matrix A, we order unknowns corresponding to same colored
vertices consecutively. An implementation based on this approach and
computational results are given in [10].

Partitioned inverse — One can determine a product decomposition of L; for
example,

(4.2) L=]IL:.

where the nonzero structure, S, of the product elements satisfy S(L;) =
S(L7*) [1,2]. The inversion of L can be performed with & matrix products
once the partitioned inverse is formed. We note that this can always done
with a pointwise coloring, where « is the number of colors used. It has been
observed by Robert Schreiber [18] that the partitioned inverse approach
can reduce the steps in pointwise coloring approach by a factor of two.
Suppose two colors are used. We write the pointwise system as

Dy 0
4.3 L= ’
(43) [Lyy Dy]
where Dy 1 and D; 5 are diagonal. Schreiber makes the following observa-
tion:
D7d 0
4.4 Lt = 1.1 ,
Y l —DaalaaDiy Dy]

where the structures of L and L™! are identical. Thus, one can group pairs
of colors together and form the inverse of the combined diagonal block by
a simple rescaling the off-diagonal part.

Nodewise colorings — Identify adjacent vertices with identical structure. As
described in §3, such vertices often arise in finite element models for inde-
pendent degrees of freedom defined at the same geometric node. Let the
set [identify identical nodes. A matrix ordering based on a coloring G/1,
where identically colored nodes are ordered consecutively, yields a system
where L;; is block diagonal, with dense blocks the size of the number of
identical nodes at each node point. Given a geometric partition of the
nodes, these dense blocks are local to a processor. In addition, the ob-
servation made by Schreiber and illustrated in Equation 4.4 can be used

10

to decrease the number of major communication step by a factor of two
for a nodewise coloring. The inverse formula given in Equation 4.4 with
Dy, and Dy 5 block diagonal will still preserve the nonzero structure of
L, because the nonzero structure of the columns in each dense block are
identical.

Quotient graph colorings derived from a local clique partition — This
approach is used in our implementation. The local cliques correspond
to local dense diagonal blocks in L;;. The inverses of these blocks are
computed. Thus the local solve, step 1 in Fig. 7, can be implemented
using Level-2 BLLAS. Usually the number of colors required to color the
quotient graph will be smaller than the number of colors required for
the original graph. However, if fewer colors are used, recent theoretical
results [11] indicate that the convergence of the iterative algorithm could
suffer. This aspect is discussed more fully in §5.

Quotient graph colorings derived from general local systems — Any local
structure can chosen for the diagonal systems L;;. However, if general
sparse systems are used, the processor performance is not necessarily im-
proved over a pointwise coloring. In addition, load balancing becomes
more difficult as larger partitions are chosen.

Given the above possibilities, we have chosen to implement a method based
on quotient graph colorings derived from a local clique partition. This approach
enables our software to take advantage of both any identical node structure and
local clique partitions. The former allows for a reduction in the indirect indexing
required; the latter allows for the use of larger dense blocks and consequentially
better performance with the Level-2 BLAS. The software is designed so that the
maximum size of the identical node sets, the maximum clique size, and maximum
number of cliques per color can all be set by the user in case of load balancing
or convergence problems. However, for the results presented in §5, no such limits
were imposed.

5. Computational Results. In this section we present computational re-
sults obtained on the Intel DELTA with the software we have developed. We
consider two applications: a piezoelectric crystal modeling problem, and a three-
dimensional superconductivity modeling problem. These problems are described
in more depth in [12]; we give only a brief description of them here.

5.1. The piezoelectric crystal modeling problem. The first set of sparse
systems that we consider arise from a second-order finite element of a piezoelectric
crystal strip oscillator. These crystals are thin strips of quartz that vibrate at a
fixed frequency when an electric forcing field is applied to the crystal. A diagram
of a strip oscillator affixed to an aluminum substrate with epoxy is shown in Fig. 8.

Second-order, 27-node finite elements are used to model the crystal. Higher-
order elements are required to accurately model high frequency vibrational modes

11

Piezoelectric Quartz Crystal

Epoxy

Aluminum

Fia. 8. Piezoelectric crystal strip oscillator

of the crystal. There are four degrees of freedom at each geometric node point:
three mechanical displacements and an electric field potential. The solution phase
has two steps. First, the deformation of the crystal caused by thermal displacement
is found. For example, if the crystal was mounted on aluminum at 25°C, it will
deform when the temperature is raised to 35°C. This requires solving a nonlinear
static thermal stress problem. Second, to find the vibrational modes of interest for
the deformed crystal, we solve a linear vibration problem — a generalized eigen-
problem.

To solve the nonlinear static thermal stress problem, a series of linear systems
of the form Ku = f must be solved, where K represents the stiffness matrix, u
represents the displacements, and f represents the forces due to thermal loads and
displacement constraints. The major task here, of course, is the solution of very
large, sparse systems of equations.

To solve the linear vibration problem, we must solve a generalized eigenprob-
lem of the form Kz = w? Mz, where K represents the stiffness matrix, M represents
the mass matrix, = is a vibrational modeshape, and w is a vibrational mode. We
use a shifted, inverted variant of the Lanczos algorithm to solve this eigenproblem
[16]. This method has been shown to be very efficient for the parallel solution of
the vibration problem [9]. Again, the major computational task is the solution of
large sparse systems of linear equations.

The three-dimensional finite element grid needed to model the crystals is much
more refined in the length and width directions than it is in the thickness direction.
We can take advantage of this fact and partition the grid among the processors in
only the length and width directions. This approach reduces communication and
maps nicely onto the DELTA architecture. Each processor is assigned a rectangular
solid corresponding to a portion of the three-dimensional grid. Each processor is
responsible for evaluating the finite elements in its partition and for maintaining
all relevant geometric and solution data for its partition.

We have solved problems consisting of over 480,000 equations with 161,150,990
nonzeros on H12 processors of the Intel DELTA. Over 99 percent of the time is spent

12

in solving the linear systems and evaluating the finite elements. The solution of the
linear systems has achieved speeds of approximately 2 gigaflops on 512 processors.
This speed is scalable; the individual processor performance degrades only from
4.16 Mflops per processor to 3.83 Mflops per processor when one goes from 128
processors to 512 processors and keeps the sub-grid size fixed.

5.2. The layered superconductor modeling problem. The sparse lin-
ear systems for the superconductivity problem arise in the determination of the
damped Newton step in the inner loop of an optimization algorithm. The opti-
mization algorithm attempts to determine the minimizer of a free energy functional
that is defined on a three-dimensional rectangular mesh with the geometric layout
depicted in Fig. 9. The structure of the sparse linear system is determined by the
Hessian of free energy given a linear finite difference discretization of the model.

Fia. 9. The 3-dimensional layered superconductor model partitioned in 2-dimensions

Shown in the figure are alternating layers of superconducting and insulating
material. The independent variables are two vector fields, one defined in the su-
perconducting sheets, and the other in the insulating layer. The two fields are
coupled in the free energy formulation. When the model is discretized a finer de-
gree of resolution is generally given to the insulating layers. For the problems of
interest, the number of grid points necessary to represent the model in the direc-
tion perpendicular to the layers (the X-axis in Fig. 9) is smaller than the number
of points required in the two directions parallel to the layers (the Y-axis and Z-axis
in Fig. 9). We make use of this property and partition the grid in the Y and Z
directions. For example, in Fig. 9 the Y-Z domain is shown partitioned among 9
processors.

We denote the discretization in the X, Y, and 7 directions by NX, NY, and
N7, respectively. As the discretization within an insulating layer, NK, varies, the
size of the local cliques changes, and therefore so does the individual processor

13

performance. In Table 1 we note the effect of varying the layer discretization
on the 1860 processor performance during the solution of the linear systems. For
these numbers we have used 128 processors and fixed the local problem size to be
roughly equivalent. The second column shows the number of identical nodes found
in the graph by the solver; the third column shows the average clique size found.
The final column shows the average computational rate per processor during the
solution of the linear systems.

TABLE 1
The effect of varying the layer discretization on the processor performance in solving the
linear systems

‘ NK ‘ [-Node Size ‘ Avg. Clique Size ‘ Avg. Mflops/Processor

2 8 32.0 2.97
4 14 44.8 5.42
6 20 60.0 6.71
8 26 78.0 8.96

In Table 2 we present results for the linear solver on three problems with
differing geometric configurations on 512 processors.

TABLE 2
Computational results obtained for three different problem configurations on 512 processors

| PROBLEM-1 | PROBLEM-2 | PROBLEM-3

NX 24 64 20
NK 8 4 2
NY 80 64 150
N7 96 96 150
N 6.0 x 10° 1.6 x 10° 1.8 x 10°
NNZ 2.0 x 108 1.7 x 10® 1.9 x 10®
GFlops 3.25 2.55 1.38

In the solution of both of these systems, the diagonal of the matrix was scaled
to be one. If the incomplete factorization fails (a negative diagonal element cre-
ated during the factorization), a small multiple of the identity is added to diagonal,
and the factorization is restarted. This process is repeated until a successtul fac-
torization is obtained [15]. The average number of conjugate gradient iterations
required to solve one nonlinear iteration of the thermal equilibrium problem for
the crystal model to a relative accuracy of 10~7 is approximately 700. The average
number of conjugate gradient iterations required per nonlinear iteration for the
superconductivity problem is approximately 250. The linear systems arising in the
superconductivity problem are solved to a relative accuracy of 5.0 x 10™*. However,
it should be noted that these are special linear systems: they are highly singular
(more than one-fifth of the eigenvalues are zero, because of physical symmetries).

14

However, they are consistent near a local minimizer because a projection of the
right hand side (the gradient of the free energy function) onto the null space of the
matrix is zero near the minimizer.

6. Conclusions. In this paper we have presented an implementation of a
general-purpose iterative solver for MIMD machines. The scalable performance of
the solver is based on a reordering of the sparse system according to a graph col-
oring of a reduced graph obtained from the nonzero structure of the sparse linear
system. This approach is effective for any of the standard iterative methods; how-
ever, the experimental results we present are for the conjugate gradient algorithm
with an incomplete matrix factorization preconditioner.

We have emphasized an approach where all the manipulations required by
the solver are all done in parallel. In this spirit, we have presented two recently
developed parallel heuristics for determining a graph coloring. We have shown that
the synchronous heuristic proposed by Luby, based on determining a sequence of
maximal independent sets, can be modified to run in an asynchronous manner.
Furthermore, we show that the expected running time of the modified heuristic is
FEO(log(n)/loglog(n)) for bounded degree graphs using the bounds developed for
the other coloring heuristic.

A number of possible approaches toward the solution of the sparse triangular
system solutions are classified. We have chosen to use a graph reduction based on
a clique partition in our implementation for two reasons: (1) to allow for the use of
higher-level BLLAS in a triangular system solver, and (2) to reduce the number of
required colors and the size of the quotient graph. The implementation allows the
user to specify the maximum clique size and the maximum number of cliques per
color, in case load-balancing or convergence problems arise. In the experimental
results section we demonstrate the improvement in processor performance for larger
clique sizes for the superconductivity problem. In addition, the concentration of the
basic computation in the BLAS allows for an efficient, portable implementation.

Finally, we note that recent theoretical results have shown that for a model
problem, the convergence rate improves as the number of colors is increased [11].
This possibility was investigated for the piezoelectric crystal problem, and a def-
inite, but moderate, decrease in the convergence rate was found in going from a
pointwise coloring (/& 108 colors) to a clique coloring (~ 10 colors). However, the
increase in efficiency of the implementation for the clique coloring more than offset
the convergence differences.

Overall, we feel that this approach represents an effective approach for ef-
ficiently solving large, sparse linear systems on massively parallel machines. We
have demonstrated that our implementation is able to solve general sparse systems
from two different applications, achieving both good processor performance and
convergence properties.

Acknowledgment. The second author acknowledges a number of helpful dis-

cussions with Fernando Alvarado, Stanley Eisenstat, and Robert Schreiber while
attending the IMA workshop.
15

REFERENCES

[1] F. L. ArvaAraDpo, A. POTHEN, AND R. SCHREIBER, Highly parallel sparse triangular
solution, Tech. Rep. CS-92-09, The Pennsylvania State University, May 1992.

[2] F. L. ALvARADO AND R. SCHREIBER, Optimal parallel solution of sparse triangular sys-
tems, STAM Journal on Scientific and Statistical Computing, (to appear).

[3] D. BRELAZ, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251
256.

[4] T. F. CoLEMAN aAND J. J. MORE, FEstimation of sparse Jacobian matrices and graph
coloring problems, SITAM Journal on Numerical Analysis, 20 (1983), pp. 187-209.

[65] M. R. GAREY AND D. S. JoHuNsoN, Computers and Intractability, W. H. Freeman, New
York, 1979.

[6] J. L. GusTaFsoN, G. R. MoNTRY, AND R. E. BENNER, Development of parallel methods
for a 1024-processor hypercube, STAM Journal on Scientific and Statistical Computing,
9 (1988), pp. 609-638.

[7] L. A. HAGEMAN AND D. M. Youna, Applied Tterative Methods, Academic Press, New
York, 1981.

[8] D. S. JoHuNsON, Worst case behavior of graph coloring algorithms, in Proceedings 5th
Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas
Mathematica Publishing, Winnipeg, 1974, pp. 513-527.

[9] M. T. JonEs AND M. L. PaTRICK, The Lanczos algorithm for the generalized symmelric
etgenproblem on shared-memory architectures, Preprint MCS-P182-1090, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, I11., 1990.

[10] M. T. JoNEs AND P. E. PLASSMANN, Scalable iterative solution of sparse linear systems,
Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill.; 1991.

[11] ——, The effect of many-color orderings on the convergence of iterative methods, Preprint
MCS-P292-0292, Mathematics and Computer Science Division, Argonne National Lab-
oratory, Argonne, Ill.; 1992.

[12] ——, Solution of large, sparse systems of linear equations in massively parallel applications,
Preprint MCS-P313-0692, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill.; 1992.

[13] ——, A parallel graph coloring heuristic, STAM Journal on Scientific and Statistical Com-
puting, (to appear).

[14] M. LuBy, A simple parallel algorithm for the mazimal independent set problem, SIAM
Journal on Computing, 4 (1986), pp. 1036-1053.

[15] T. A. MANTEUFFEL, An incomplele factorization technique for positive definite linear sys-
tems, Mathematics of Computation, 34 (1980), pp. 473-497.

[16] B. NoUR-OMID, B. N. PARLETT, T. ERICSSON, AND P. S. JENSEN, How to implement
the spectral transformation, Mathematics of Computation, 48 (1987), pp. 663-673.

A. PorHEN, H. SiMON, AND K.-P. Liou, Partitioning sparse matrices with eigenvectors
of graphs, STAM Journal on Matrix Analysis, 11 (1990), pp. 430-452.

[18] R. SCHREIBER. Private communication, 1991.

R. SCHREIBER AND W .-P. TANG, Vectorizing the conjugate gradient method. Unpublished

manuscript, Department of Computer Science, Stanford University, 1982.

[20] H. A. vAN DER VORST, High performance preconditioning, SIAM Journal on Scientific and
Statistical Computing, 10 (1989), pp. 1174-1185.

[21] S. Vavasis, Automatic domain partitioning in three dimensions, STAM Journal on Scientific
and Statistical Computing, 12 (1991), pp. 950-970.

[17]

16

