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Abstract

We consider an interior point algorithm for convex programming in which the steps
are generated by using a primal-dual affine scaling technique. A “local” variant of
the algorithm is shown to have superlinear convergence with g-order up to (but not
including) 2. The technique is embedded in a potential reduction algorithm and the
resulting method is shown to be globally and superlinearly convergent. An important
feature of the convergence analysis is its use of a novel strict interiority condition, which
generalizes the usual conical neighborhood of the central path.

1 Introduction

In the past two years, we have seen the appearance of several papers dealing with the
construction of primal-dual interior-point algorithms for linear programs (LP) and linear
complementarity problems (LCP) which are superlinearly or quadratically convergent. For
LP, these works include McShane [7], Mehrotra [8], Tsuchiya [10], Ye [11], Ye et al. [13] and
Zhang et al. [14, 16]. For LCP, we cite Ji et al. [3, 4], Kojima et al. [5, 6], Ye and Anstreicher
[12] and Zhang et al. [17]. For more details on the historic development of superlinearly
or quadratically convergent primal-dual interior-point algorithms, we refer the reader to the
introduction section of Ye and Anstreicher [12].

In this paper, we discuss superlinearly convergent primal-dual affine scaling methods for
solving the convex programming problem

H&in flz), Ax = b, x>0, (1)

*This research was supported by the National Science Foundation (NSF) under Grant No. DDM-9109404
and the Applied Mathematical Sciences subprogram of the Office of Energy Research, U. S. Department of
Energy, under Contract W-31-109-Eng-38.

TDepartment of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona 85721.

tArgonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.



where x € R", A € R™*", b € R™ and f : R” — R is convex and smooth in a sense to be
defined below. We assume that the feasible set {z | Ax = b, = > 0} is nonempty and that
m < n. The Wolfe dual problem for (1) can be stated as

max fx) =2V f(x) + by, Vf(x)— ATy > 0. (2)

It is well known that if & solves (1), then there is y € R™ such that (z,y) solves (2)
and, moreover, the optimal values of the primal and dual objective functions are identical.
Introducing a slack vector s by

s = Vf(l’) - ATy7

we deduce that the following conditions must be satisfied by the primal and dual solutions:

5 = Vf(z)- Ay, (3a)
Az = b, (3b)
r > 0, (3c)
5 > 0, (3d)
#'s = 0. (3e)

In the subsequent discussion, we say that a point (x,y,s) is “feasible” if it satisfies the
equations (3a)—(3d), and “strictly feasible” if (3a)—(3d) are satisfied with + > 0 and s > 0.

Interior point algorithms for the linear and quadratic versions of (1), and the related
complementarity problems, have usually required all iterates to belong to a neighborhood of
the central path defined by either

M(B) = {(:zj,y,s) feasible | || X Se — (:L’TS/n)eHz < 5}

or
Noy(B) = {(:zj,y,s) feasible | x;s; > B(xTs/n), Vi=1,.. .,n},

where
X = diag(xy, 22, ..., 20), S = diag(s1, 82, -, Sn), e=(1,1,...,1)7,

and [ is a constant in (0, 1). For example, the predictor-corrector algorithms of Ye et al. [13]
for linear programming and Ji, Potra and Huang [3] and Ye and Anstreicher [12] for linear
complementarity problems use neighborhoods of the form A7, while the linear programming
algorithm of Zhang and Tapia [15] uses Ny. In this paper, we use a different neighborhood
defined with respect to two parameters 6 > 0 and 1 > 0 in the following way:

N(é,n) = {(:zj,y,s) feasible | als <1, a5 > n(a’s)'™™, Vi=1,... ,n}. (4)

For analytical purposes, this neighborhood has the advantage over N; and A5 that local
convergence of g-order arbitrarily close to 2 can be obtained without expanding A as the
solution is approached. In the papers by Ye [11] and Ye and Anstreicher [12], it is necessary
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to expand the neighborhood WN;(8) during the final stages in order to obtain rapid local
convergence.

The basic algorithm we describe in this paper calculates search directions by using a
primal-dual affine scaling technique. This technique is equivalent to finding a Newton di-
rection for the system of nonlinear equations formed by (3a), (3b) and the complementarity
condition X Se = (. Because of this connection to Newton’s method, it is immediately clear
that such an algorithm would be quadratically convergent if it is started sufficiently close to
a nondegenerate solution and if it is allowed to take full steps. In our local analysis, we show
that we can ensure that each iterate lies in the neighborhood N (§,7) without jeopardizing
fast local convergence properties. Moreover, we also show that superlinear convergence can
be obtained under certain assumptions which allow the possibility of problem (1) to have
multiple solutions! Membership of N (6,7) is enforced by taking a step length « less than
one along the affine scaling direction and by “bending” the search path for s in a way to be
described in the next section. We show that it is easy to choose an « to ensure that both
continued membership of NV'(§,n) and fast local convergence apply. By a suitable choice of
parameters, the q-order of the local convergence can lie anywhere in the range (1,2).

To make the algorithm converge globally from any strictly feasible starting point, we em-
bed the affine scaling technique into the potential reduction algorithm discussed in Monteiro
[9]. The search direction is calculated as before, but now we choose the step size so that the
Tanabe-Todd-Ye potential function

b,(z,5) = qlogaTs — > log x;s;. (5)

=1

(where ¢ > n) is reduced at every iteration according to the Armijo rule, a requirement that
is often used in unconstrained optimization algorithms. The actual amount of reduction
must be at least a small multiple of the “predicted” reduction obtained from a first order
model of ¢, around the current point. Rules for making an initial guess of the step size and
for reducing the step size when it fails the Armijo test are also given.

Finally, we also show that if ¢ is chosen from the range (n,n + 1/4), we can define an
algorithm for which both our global and local convergence theories hold. That is, the method
is both globally and superlinearly convergent.

The remainder of the paper is laid out as follows: In Section 2, we start by stating our
main assumptions. These are, for the most part, standard. The exception is Assumption 5,
and the bulk of the section is taken up with proving that this assumption holds in a variety
of familiar circumstances, including the cases of nondegeneracy, weak sharp minima, and
quadratic objective functions.

In Section 3, we state the linear system of equations that must be solved to obtain the
search directions. We then derive bounds on the components of these search directions, in
terms of the duality gap z7s and the parameters § and 5 that define the neighborhood A .
The local convergence theory for our primal-dual affine scaling algorithm appears in Section
4. We show that if the algorithm is started from a point at which z7s is sufficiently small,
and which is not too close to the boundary, superlinear convergence of the duality gap to zero



can be obtained. Section 5 contains the global convergence theory. We outline the globally
convergent algorithm presented in Monteiro [9] and show that if some iterate K satisfies
the initial point conditions for the locally convergent algorithm, superlinear convergence
also occurs. Finally, we prove that for appropriate choices of ¢ in ¢,, namely for every
q € (n,n 4 1/4), these conditions for superlinear convergence are guaranteed to be satisfied
by some iterate. As a consequence, we obtain superlinearly convergent algorithms based
on the potential function (5). Since the step sizes of the algorithm are selected by means
of Armijo rule applied to the potential function (5), there is no reason to believe that the
iterates remain in a neighborhood of the form N;(3) or N3(3). The neighborhood N(6,7)
plays a crucial role: we are able to show that the iterates (generated via Armijo rule) remain
within a certain N'(§,n) and that one-step superlinear convergence can be obtained.

The following notational conventions are used in the remainder of the paper: Unless
otherwise specified, ||.|| denotes the the Euclidean norm. We denote the open ball with
center # € R™ and radius ¢ > 0 by

Bla,e) = fu e R" | Ju—af < o.

When 2 and y are two vectors in IR"™, the notation [x,y] denotes the set of vectors on the
line joining = and y.

For a general vector z € R™ and index set J C {1,...,n}, z; denotes the vector made
up of components z; for i € J. If M € R and I,J C {1,...,n} then M;; denotes the
submatrix consisting of elements M;; for which ¢ € I and 7 € J. The matrix M;, refers to
the submatrix M;; for which J = {1,... n}. Similarly, M ; denotes the submatrix M;; in
which I ={1,...,m} If D € R™" is diagonal, then Dg denotes the diagonal matrix whose
diagonal entries are D;; for © € B.

We say that (J, L) is a partition of {1,...,n}if JUL={1,....,n} and JN L = 0.

Finally, we define some problem-dependent notation: For e € [0, o0o], let
F. 2 {(,y,5) feasible |27s < .

Clearly, Fy is just the set of all primal-dual solutions of (1),(2) and F., is the set of all

primal-dual feasible points. We also define a projection operator II by Il(x,y, 2) 2 and,
with a slight abuse of notation,

X, 2 1(F)

for € € [0,00]. Note that Xy is the solution set for (1). The operator P : R" — IR" defines
projection into Xy, that is

AN .
P(z) = arg min |y — =

2 Assumptions

In this section, we state all the assumptions on problem (1) that will be needed in our devel-
opment. We then show that certain well-studied cases are special cases of these assumptions.
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We start by stating all our major assumptions. In this work, we adopt the convention of
explicitly stating the assumptions needed in the statement of each result. The main results
of the paper will require all the assumptions below to hold.

Assumption 1 (Differentiability and Convexity of f.) The function f is conver over the
set {x | Az = b, x > 0} and twice continuously differentiable in a neighborhood of this set.

Assumption 2 (Local Lipschitz continuity of the Hessian.) For every x € {z | Az = b, x >
0}, there exists a neighborhood J(x) of x and a positive constant C, such that for all =",
v? € J(x) we have

IV2f () = VEf ()] < Collt — 27]].

Assumption 3 The set of strictly feasible solutions of (3a)—(3d) is non-empty and a strictly
Jeasible solution (2°,y°, s°) is given.

Assumption 4 (Existence of a strictly complementary solution.) There exist a partition

(B,N) of {1,...,n} and a solution (x*,y*,s*) of (3) such that % > 0 and s§ > 0.
Assumption 5 There exvists a constant L > 0 such thal
|V i) = Vf(2) = V2 f(@)(P(2) = 2)| < L(z"s)%,  Y(w,y,)€F. (6)
Since the left hand side of (6) is uniformly zero when f is quadratic, we can immediately
note the following result.
Lemma 2.1 If f is linear or quadratic, then Assumption 5 holds.

In Lemmas 2.6 and 2.7 below, we show that Assumption 5 also holds in other well-studied
situations.

Boundedness of the set Fy, and therefore of the neighborhood N(8,7), is an immediate
consequence of the following lemma:

Lemma 2.2 Suppose that Assumptions 1 and 3 hold. Then there exists a constant C; > 0
such that if (x,y,s) € Fy then

Ch fore=1,....n,
Ch fore=1,...,n.

Proof. Consider the strictly feasible point (2°,3° s") as in Assumption 3. By the con-
vexity of f, we can easily show that (z — 2°)(s — s°) > 0. Hence

2T g0 + :L'OTS < zTls + :L'OTSO <1+ :L'OTSO.
This implies that
z < (14 :L'OTSO)/SQ (7)

[

s < (1+ :I;OTSO)/:I;Q (8)

[
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for every ¢ = 1,...,n. The result now follows by setting

1+ :L'OTSO
Cl — T,
where 7 is the smallest component of (2°,s"). [
Lemma 2.3 Suppose that Assumptions 1 and 3 hold and assume that there exist constants
€ >0 and L, > 0 such that

|V£(P(2)) = V(@) = V2 f(@)(P(z) = 2)| < L(a"s),  V(ey,s)e B (9)
Then Assumption 5 holds.

Proof. 1f € > 1 then Assumption 5 obviously holds with . = L.. Assume then that e < 1
and consider the following set

U= {(x,y,s) feasible | 27s < land 2s > ¢}.
Using Lemma 2.2, it is easy to see that I/ is compact. Hence,

a= swp [VHP() = Vi) = V() (Pla) - o)

(z,y,s)EU
is finite. It is now easy to see that Assumption 5 is satisfied with L 2 max(Le,a/e). [

Lemma 2.4 Suppose that Assumptions 1 and 2 hold. Then for every compact subset K C
{x | Az = b,z > 0}, there exists a constant C = C(K) > 0 such that
IV?f(ah) = VEf()] < Cllat =27, Va',2® €K, (10)

Proof. For x € K, consider the constant C,, and the neighborhood [J () of  as in Assump-
tion 2. Since J () is a neighborhood of x, there exists e(x) > 0 such that B(z,2¢(x)) C J ().

By the compactness of K, there exist z!,...,27 € K such that
K C B(@'e(z")) U...U B(z?,¢(z")). (11)

Let w = sup{||[V2f(2)]| | # € K} < o0, € = min{e(z'),...,e(z?)} and Cpax = max{Cp,...,Ci}.
We will show that €' = max{Cpax, 2w/e} satisfies the requirement of the lemma. Indeed,
let z',2% € K be given. There are two cases to consider. In the first case, assume that
|zt — 2%|] < e. By (11), there exists an [ € {1,...,p} such that ' € B(z',¢(z")). Hence,
22 € B(7',2¢(7")) since ||zt — 2% < ¢ < ¢(z'). Hence, it follows that z',2? € J(z'). By
Assumption 2, we have

IV2f(2h) = V2f(@?)]] < Calla’ — 2?|| < Cfla’ =27
For the second case, assume that ||z' — ?|| > e. Then we have

IV2f(a') = V2 f(a?)]| < 2w < Ce < O’ — 27

Hence, the lemma follows. [
Using Lemmas 2.3 and 2.4, we can now give a general condition which guarantees the
validity of Assumption 5.



Lemma 2.5 Suppose that Assumptions 1, 2 and 3 hold. Assume that there exists constants
€ >0 and v > 0 such that the following implication holds:

(2,y,5) € Fe = |lx — P(a)|| < v(a's). (12)
Then Assumption 5 holds.

Proof. We may assume without loss of generality that ¢ < 1. Lemma 2.2 implies that &}
is bounded, and hence that the sets Xy and A, are also bounded. Since these two sets are
also closed, they are compact. Hence, the set defined as

K=J{lr,2]| v € Xeandz € Ay}

is also compact. By lemma 2.4, there exists C' > 0 such that (10) holds. Hence, for every
(x,y,s) € F., we obtain

|VF(P() = V() = V2 f(2)(P(z) - o)

< oy [[77@) = ¥24(0)] (Pe) -
< Clg —a|[|P(z) - =]l

< ClP(e) - «ff

< Cv¥(ats),

where the second inequality is due to the fact that both x and & are in K and the last
inequality is due to implication (12). Therefore, the assumptions of Lemma 2.3 are satisfied
and, as a consequence, Assumption 5 holds. [

Two important situations in which the implication (12) holds are stated in the next two
lemmas.

Lemma 2.6 Suppose that Assumptions 1, 2 and 3 hold. Then Assumption 5 holds if problem
(1) has a weak sharp minimum in the sense of Burke and Ferris [1], that is, if there exists
a constant A > 0 such that

|z = P(z)|| < A[f(z) = f(P(x))],
forall x € {x | Az = b, x > 0}.
Proof. For every feasible (z,y,s), we have
le = P(2)|l < A[f(2) = f(P(x))] < A(z"s)

which shows that the implication (12) holds with € = co and v = A. [

The other important case which guarantees the validity of implication (12), and hence
of Assumption 5, requires that the solution of problem (1) be nondegenerate. We now make
precise the notion of nondegeneracy of a solution of problem (1).
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Definition 1 A solution (,y,s) of problem (1) is called nondegenerate if the following
conditions are satisfied:

a) (x,y,8) is a strictly complementary solution, that is, there exvists a partition 0
Y, 8) i trictly pl tary solution, that is, th sts a partition (B, N
{1,...,n} such that xg > 0 and sy > 0;

(b) The matriz A defined as

i | 4B An
A:[O ]]

has linearly independent columns;
(¢) V2f(z) is nonsingular in the null space of A.

We observe that the rows of A are the gradients of the constraints of problem (1) which
are active at the solution z. Clearly, a nondegenerate solution must be unique. We are now
ready to state the second case under which Assumption 5 holds.

Lemma 2.7 Suppose that Assumptions 1, 2 and 3 hold and assume that problem (1) has
the unique nondegenerate solution (z,y,s). Then Assumption 5 holds.

Proof. Consider the function F': R™ x R™ x R™ — IR™ x R™ x IR™ defined by

XSe
Ax —b
=Vf(x) + Aty + s

Fz,y,s) = (13)

Using the assumption that (z,y, ) is a nondegenerate solution, one can easily show that
VF(z,y,s) is nonsingular. To simplify notation, let w = (x,y,s) and w = (z,y,5). The
differentiability of /' at w implies that we can write

F(w) = F(w) 4+ VF(w)(w — w) + ||w — o||r(w — w), (14)

where limjp—or(h) = 0. Define M = (IVF(w)||)~*. Then there exists £ > 0 such that
|r(w — w)|| < M/2 for every w € B(w,&). Hence, for every w € B(w,§) we obtain using
(14) that

[£(w) = F(w)|| = [[VEF(@)(w — )| = [[r(w —w)| [ — ]
> Mllw—wo| —[jr(w—w)| |w — o (15)
M _
> 7”71)—71)”,

where the last inequality is due to the fact that ||r(w — w)|| < M/2. Using the definition
(13) of F and choosing w = (x,y, s) to be feasible, we obtain

1F(w) = F(w)l| = || Fx.y,5) = F(z,5,5)| = | XSe]| < a's. (16)
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Using (15) and (16), we obtain
T—T W — W 71 (w w T s,

for every w € B(w,&). If F; C B(w, ), then the assumptions of Lemma 2.5 hold with e = 1
and v = 2/M, so we are done. Otherwise, consider the set F\ B(w,¢). Clearly, 27s > 0 for
all (z,y,s) € Fi\B(w,§). Because of Lemma 2.2, the set F1\ B(w, £) is compact, and hence
there exists € > 0 such that

xTS > €, \Vl(l’,y,s) S FI\B(wvf)

This implies that F, € B(w, ), and hence that implication (12) holds with v = 2/M. By
Lemma 2.5, Assumption 5 must hold. [

3 Technical Results

In this section, we briefly review how the primal-dual affine scaling search direction is com-
puted from a given strictly feasible point (z,y,s). The remainder of the section is taken up
with finding bounds on the components of the search direction vectors for points (z,y,s)
lying in the neighborhood N(6,7), where § and n are fixed a priori.

We start by describing how the primal-dual affine scaling search direction is computed.
Given a strictly feasible point (z,y, s), we obtain the primal-dual affine scaling search direc-
tion (Axz, Ay, As) by applying one step of Newton’s method to the nonlinear system defined
by (3a), (3b) and the equation XSe = 0. Hence (Az, Ay, As) can be obtained by solving

the linear system

SAzr 4+ XAs = —5Xe, (18a)
AAx = 0, (18b)
~V2f(x) Az + ATAy + As = 0. (18¢)

The remaining of the section is devoted to finding bounds on the components of the search
direction (Axz, Ay, As). The main result of this section is stated in Theorem 3.8 which in
turn is obtained by combining the results of Lemmas 3.3 and 3.7. We start by stating a
simple result that is used in a number of places in this section.

Lemma 3.1 Suppose Assumption 1 holds. Then if (Ax, Ay, As) satisfies relations (18b)
and (18c) then AzTAs > 0.

Proof. The proof follows immediately from the convexity of f(x). [
We can now state some simple results concerning bounds on certain components of x,

Az, s, and As.



Lemma 3.2 Under Assumptions 1 and 4, if (x,y,s) is feasible then there exists a constant
r > 0 such that

. < (xTs)/r, Vi€ N, (19)
si < (aTs)/r, Vi € B. (20)

Proof. Consider the strictly complementary solution (xz*,y*, s*) as in Assumption 4.
Using convexity of f, we obtain

0<(x— x*)T(S —s") = 2ls — g ls — 2T

where the last equality is due to the fact that 2*7s* = 0. Hence, 2*7s < 2Ts which implies
that

s; < (z7s) /a3, Vi € B.
Similarly, we can show that

x; < (z7s)/s5, Vi€ N.

The result now follows by setting r to be the smallest component of (2%, sy ). [
Lemma 3.3 Suppose that Assumptions | and 4 hold and, for some 6 > 0 and n € (0,1], let

(x,y,5) € N(8,n) be given. Let (Ax, Ay, As) denote the solution of (18). Then there exists
r > 0 such that

(xTS)l_(1/2)5

|Az;| < Y , VieN, (21)
(xTS)l_(1/2)5 .
|ASZ| ~ 7“77—1/27 V1 € B, (22)
si > ryplats), Vi e N, (23)
;> rplats)e, Vi € B. 24
n

Proof. Defining D = X'/25-1/2 and using relation (18a), we obtain
D7'Az + DAs = —(5X) %,
Taking the square of the norm of both sides of the above relation, we obtain
|D7 ' Az|]? + ||DAs||?> 4+ 2427 As = 2T,

and since by Lemma 3.1 AzTAs > 0, this relation implies

D7 Az < (aTs)V2 (25)
DA < (T (26)

Since (z,y,s) € N(8,7), we have
zisi > n(xs), Vi=1,...,n. (27)
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Using relations (25), (19) and (27), we obtain

2T\ /? +Ts 1 1/2 (xTS)l—(6/2)
w525 (52) ()" -2
iSi n(as) ri

for every ¢ € N. This yields (21). Relation (22) follows similarly with the aid of (26), (20)
and (27). To show (23), observe that relations (27) and (19) imply

n(a’s)!*

p— ry(a’s)’,

Si Z
for every ¢ € N. Hence (23) follows. Similarly, (24) follows with the aid of (27) and (20). =

Providing upper bounds for the remaining components of the search directions, namely
Azp and Asy, is more difficult. This part of the development is based on the approach
which appears in the paper of Ye and Anstreicher [12].

We start with the following lemma of Ye and Anstreicher [12, Lemma 3.4].

Lemma 3.4 Let M € RP*? be a positive semi-definite matriz and assume that (J, L) form
a partition of {1,...,p}. Then,

My; My \ ME, ME,
oM ) (5 ) "

As a consequence of the above result, we obtain

Lemma 3.5 Let Q € R™*" be a positive semi-definite matriz and let A € R™*" be arbitrary.
Let (B, N) form an arbitrary partition of {1,...,n}. Define

Qs —A%s QN Qs Az Qs
U1 = A.B 0 AN 5 U2 = —A.B 0 —AN . (29)
0 0 I 0 0 -1

Then, R(Uy) = R(Uz).
Proof. First observe that the matrix
Qs —Alz Qsy
M=| Ap 0 AN (30)
Qve —Aly Qwwn

is positive semi-definite since it can be obtained by a symmetric permutation of the positive
semi-definite matrix
Q —A"
: 1
( A 0 (31)
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The lemma now follows from Lemma 3.4 applied to the matrix M and the partition (.J, L)
of {1,...,m+ n} for which

My = ( Ops —Aj ) : (32)

[
Using the above result, we next prove a lemma that is similar to Lemma 3.5 of Ye and
Anstreicher [12]. In fact, the two results are identical if the function f(x) is quadratic.

Lemma 3.6 Suppose that Assumption 4 holds. Let (x,y,s) be a strictly feasible point
and let D = XY2572 Let (Ax, Ay, As) denote the solution of (18). Then (u,v,w) =
(Azp, Asn, Ay) solves the problem

[in g1 D5"ull* + 31 Dwoll” + g, (33)
subject to
Apu = —AnAzy,
—QBBU—I-A.TBU) = QBNAJ}N—ASB, (34)
—Qnpu+ A w+v = QnyAxy,
where

Q=Vf(z), g=-Vf(@)+Vf(x)+Vf(z)(z—a),

and & is any primal solution of (1).

Proof. ;From relations (18b) and (18c) it follows immediately that (u,v,w) = (Axpg, Asy, Ay)
is feasible with respect to the constraints (34). The result follows once we verify that
(u,v,w) = (Axp, Asy, Ay) satisfies the KKT conditions for the above problem, namely:

9B + D5’ Axp Aly —Qks —Qks
0 eR 0 Apg An = R(Uz), (35)
DJQVASN 0 0 I

where Uy is the matrix defined in Lemma 3.5. Indeed, using equation (18a), it is easily seen
that

D7?Az = —(s + As), (36)
D?*As = —(z + Az). (37)

Let (y, z) denote a pair which together with the solution # satisfies (3). Using the fact that

both (x,y,s) and (z,y, z) satisfy (3a)—(3b) and that (Ax, Ay, As) satisfy relations (18b) and
(18¢), one can easily show that

Alz + Ax —2) =0, (38)

—Qr+Ar—2)+ ATy + Ay — )+ (s + As —5) = g. (39)
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Since nx = 0, sg = 0 and using relations (36) and (39), we obtain

g8+ Dg’Axpg = gp— (sp+ Asp)
= g — (s + Asp — 3p)
= —Qp.(r+ Az —7) + Ay + Ay —7) (40)
= —Q@pplep+ Azp — ) — Qpn(aen + Azy)
+ Al (y + Ay — 7).

Also, from (37) and (38) it follows that

DJQVASN = —(J}N—I-AJ}N), (41)
0 = —A.B(J}B—I-AJ}B—i’B)—A.N(J}N—I-AJ}N). (42)

Using relations (40), (41) and (42), we obtain

( gB —|— DézAl‘B

0 ) € R(Uy). (43)
DJQVASN

where U; is the matrix defined in Lemma 3.5. Relation (35) now follows from the fact that
R(U1) = R(Usy) in view of Lemma 3.5. n

Lemma 3.7 Suppose that Assumptions 1, 3, 4, and 5 hold, and that (z,y,s) € N(é,n) for
some 6 >0 and n € (0,1]. Then there exists a constant Cy > 0 independent of 6 and n such
that

C

[Azg]l < US—Z(sz)l‘(?’”)‘i (44)
Cy T \1-(3/2)é

IAsnll = 255 s) : (45)

Proof. Tt is well known that since (34) is a consistent set of equalities, there is a triple
(u,v,w) which satisfies (34) and is bounded above by a constant times the norm of the right

hand side of (34). Therefore,
[(a, v, 0)|| < Csf|(Azy, Asp)l], (46)
for some constant C3 > 0 independent of § and 5. Define Ky = max(||Dg||, || Dx']]). Then,

|Azp + Dpgsll® + || Asy||?

< ||[Dg|?||D5*Axg + Dpgs||* + | DN? | Py Asy||?
. - (47)
< K?[||D5' Awg + Dpgsl|* + | Dy Asyl|?]

< K2 [||D5'a + Dpgs|® + | Dol?] .
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where the third inequality follows from the fact that (Axp, Asy, Ay) is an optimal solution
for problem (33)-(34). Relation (47) can be rewritten as

H( e el ()

ASN DNT)

Define Ky = max(||Dg"||,|[D~]]). Then, using the triangle inequality twice in the above
relation and relations (46), (21) and (22), we obtain

Azp ; Dyt 0 ] Dpgp D%
<
Qo= A0 o 0%
R . Az 2
< K KaCs | { + 1105l llgsll ¢ + |1 D5]" 5] (48)
5B
(aTs)1=/2)
< K1 KoCav/n ——— + 2K7gs.
T

[t remains to estimate Ky, Ky and ||gg|| in the above relation. First, we estimate K;. Observe
that since (z,y,s) € N(6,7n), relation (27) holds. Using (27), the definition of D and Lemma

2.2, we obtain

€B | ;8;

2
HD H - HXB lH = maX{ } < C_(x 3) (1+6)

n

Similarly, we have

2 1 s? 012 T 146
HDNH—HXNSWH—HMX{Z }<—;@>@*+>

EN | 2;8;
Hence,
(2
K < —l(sz)_(1+5). (49)
n

We now estimate K. Using (27), the definition of D and Lemma 3.2, we obtain

2 T 2 T N\1-6
N A PR e
1D = 15" Sl = mge{ 1} < S0P ()

TSy nr

Similarly, we have

2 T 2 T N6
D3]] = | Xn S| = maxd 2§ < L8/ (@ o)™
iEN | ;8 n(x S)1—|—6 nrz
Hence,
T \1=6
K< (x 7;)2 0



Next, we estimate ||gg||. We can assume that the primal solution & of Lemma 3.6 is equal
to P(x). Using & = P(x) in the definition of ¢ and Assumption 5, we obtain

lgall < llgll = | = VA(P(2)) + V() + V[ (2)(P(x) — 2)|| < L(z"s)*. (51)

Substituting the estimates (49), (50) and (51) into expression (48), we obtain

/2 T \1=6\ 1/2 T 1/2)6
Azrp Ct 7 —(146) ' (z"s) (x 5) ~/2)
G| = (Semareen) () vaet

7 nr?

+2 (6;72(:1;%) <1+5>) (L(="5)?)

T (3/2)é
(:1; 8)3/2 [\/_CICS—I—ZCQLUI/Q(:L' 3)5/21.

U r?

Since z7s < 1 and 5 € (0, 1], we can bound the bracketed term by a constant ('y independent
of n and 6. We thus obtain

AJ}B

ASN

which is the desired result. m

(xTS)l_(3/2)6

Y

3/2

We can now merge the results of Lemmas 3.3 and 3.7 to obtain the following theorem.

Theorem 3.8 Suppose that Assumptions 1, 3, 4, and 5 hold, and that (z,y,s) € N(6,7n)
for some 6 > 0 and n € (0,1]. Then there exists a constant Cy independent of 6 and n such
that

C

ac < Semgpenm,
n

HASH < %(Q}TS)I_(S/Q)&
n

4 A locally convergent algorithm

In this section, we discuss a basic primal-dual affine scaling algorithm based on the step
calculation (18) and show that rapid local convergence can be obtained for certain choices of
the step lengths. In the next section, this algorithm is embedded in the globally convergent
potential reduction algorithm of Monteiro [9].

In describing the algorithm, we first show how the step calculated in (18) can be used to
move from one iterate to the next. In general, we cannot simply move along the direction
(Az, Ay, As) from the current point (x,y, s), since this may lead to a new point that violates

15



the condition (3a). Instead, we take a “curved” step in the s component and make the
transition

(x,y,s) = (@ + aAx,y + oAy, s(a)),
where
s(a) = Vf(z 4+ aAz) — AT(y + aAy). (52)

The algorithm proceeds as follows:

Algorithm PDA
initially: choose (2°,4°, s°) strictly feasible

for k=1,2,...
Find (Az*, Ay*, As*) by solving (18) with (z,y,s) = (2%, y*, s*);

Choose ap > 0 such that (z* + apAz* y* + ar Ay, s%(ar))
is strictly feasible;

Set (a+, o+, 541) = (¥ 4+ Ack, gt + a Ay*, s*(ay)

end for

The following neighborhood will play an important role in the subsequent development.
Let p>0,6>0,n € (0,1] and v > 0 be given and define

No(6,m,7) = {2, y,5) € N (6,m) | (a75)' 77/ (697) < 1/} (53)
The proof of the following lemma is straightforward and is left to the reader.

Lemma 4.1 Assume that p > ¢ >0, 6 >0 and n € (0,1]. Then

(x7s)' 7 gt < (aTs)' TP P, Ve e N(6,n), (54)
and

No(6,m,7) S NG(6,m,7), Yy > 0. (55)

Lemma 4.2 Suppose that all Assumptions 1-5 hold and let (x,y,s) € Ni(6,n,7) be given,

where 6 > 0, n € (0,1], and v > 6. Then, there exist a constant Cs independent of 6, n and
v such that for all o € [0,1],

J(2T5)2-38 .
|(z; + aAz;)si(a) — (1 — a)a;s;| < Csa Vi=1,...,n, (56)

n?
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and
xTS)2—36

‘(:1; + aAz)Ts(a) — (1 — a)xTS‘ < 71050(2(7

773 (57)

Proof. We first note that (57) follows immediately from (56). Using relations (52), (3a)
and (18c¢), we obtain
s(a) = Vf(z+aAz)— ATy —aATAy
= Vf(zx+aAz)— (Vf(z)—s)—a(Vf(z)Az — As)
= s+ alAs+ [Vf(z+alAx)—Vf(z)— onZf(:I;)A:I;] (58)
1
= s+ alAs+ a/ [sz(x + talAx) — sz(:zj)]A:I; dt
0
= s+ aAs+ aR(x,aAz)Ax
where .
R(x,Az) & / [V2f(z + tAz) — V2f(2)] dt. (59)
0
Relations (58) and (18a) imply
(2 + aAz)si(a) = (2 + alz;) [s; + aAs; + a{R(z,aAz)Az} ]
= (1 —a)zs; + o*Az;As; + a(z; + aAz;) {R(z, alAz)Az},,
so that
|(z: + aAz;)si(a) — (1 — a)x;s] (60)
60
< o?|Az;Asi| + of(zi + aAz)| | {R(z, aAz) Az}, |.

We will now estimate each of the quantities which appears in the right hand side of (60).
Regardless of whether ¢ € B or ¢ € N, we have from Lemmas 3.3 and 3.7 that

xTS)l_(l/z)(S 02 (xTS)l_(S/z)(S < %(xTS)Q_Q(S

(
|A$2ASZ| S rnl/z 773/2 =~ 772 ’

(61)
where
Ce = Cyfr. (62)

Relation (55) with p = 4 and ¢ = 3/2 and the assumption that (x,y,s) € Ny(é,n,7) imply
that (2,y,s) € N3/z(6,m,7). Hence, (2Ts)1=72) 132 < §/~ < 1 in view of (53) and the
assumption that v > 6. Using this inequality, Lemma 2.2 and Theorem 3.8, we obtain

2 Ts)1=(35/2)

U3/2

2+ alas] < [ei] + [Ai] < O + Oy <+ (63)

Consider now the set

KE2{zeR"|Ar=0b,0<2; <Cy+Cy, Vi=1,....n}

17



Clearly, K is a compact subset of {z | Ax = b, @ > 0}. Hence, by Lemma 2.4 there exists a
constant ' > 0 such that

IV2f(2h) = VEf(@®)] < Cllat = 27|, Va'la® e K.
Using this last relation and Theorem 3.8, we obtain

[{R(z, aAe)Ae};| < [|R(z, alz)||[[Az]]

< (W IVAH (2 + tadz) = V2 ()] dt) | Az o
< affaz?
< oSl
Substituting relations (61), (63) and (64) into (60), we obtain
[(2; + alAzy)si(a) — (1 — a)a;s;]
< 2% (2T5)P7% o (O + Oy) (a%5E 2282 N
< @2 ETE L (aTs) + (Cy+ Ca)(CCE/2)} o
< @ (G + (O + C)(CCE/2))
Relation (56) now follows if we let
Cs = Cs + (C1 4+ Cu)(CC3 /2). (66)
| ]

In Lemma 4.3, we show that the property of belonging to the set Ny(6,n,7) is “inherita-
ble” when ~ is sufficiently large; that is, we can take a substantial step with parameter ay
from the current iterate (z*,y*, s*) and remain within Ny(8,7,7).

Lemma 4.3 Suppose that 6 € (0,1/4) and n € (0,1] are given and that Assumptions 1-5
hold. Then there exists a constant 4 > 1 independent of 6 and n that satisfies the following
implication. If v > 7 and (z,y,s) € Ni(6,n,7) then (z + aAx,y + aAy,s(a)) € Ni(é,17,7)
for all

YT 146
o & [0,1 — 5—774( 8)1 4 ] . (67)
Moreover, we have that
T 4 T
(x 4+ alAx) s(a) < (1 —« (1 — 5)) xts, Ya € [0,1]. (68)
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Proof. Consider the constant C5 as in the statement of Lemma 4.2 and define
¥ = max{l,(2n + 1)C5)}. (69)

We will show that 7 fulfills the requirements of the lemma. Indeed, let v > 4 and (x,y, s) €
Ni(8,m,7) be given. Note that (69) implies that 4 > 1. Our first task is to show that the
range of « values such that

(x; + alx;)si(a) > 7 [(:1; + ozA:z;)Ts(oz)] B ) (70)
for all 2 = 1,2,...,n, includes the interval in (67). By relations (56) and (27), we have
T \2-36
(x; + aAx;)si(a) > (1 —a)ws; — C%ozZ%
n
T \2-36
> (1 (T - ettt ()
n
T \1-45
> n(xts)* [1 ~a (1 po, )] :
n
for all @ € [0,1]. Similarly, from relation (57), we obtain
T T (27s)! 7%
(x4 alAz) s(a) <a's |l —a 1—nC5T , Vo € [0, 1]. (72)

Relation (55) with p = 4 and ¢ = 3 and the assumption that (x,y,s) € Ni(8,n,7) imply
that (z,y,s) € N3(8,n,7). Hence, using (53) we obtain

(27s)' > < 6 /. (73)

We now use the fact that for all 6 € (0,1) and v > —1, (1 + u)‘S < 1 4 éu. Using this
inequality, (72), (73) and the fact that nC56/~ < 1, we find that

n [(:1; + ozA:z;)Ts(oz)] e

< p(ats)t*e [1 —« (1 — nC57(xTS)31_35)] [1 — b« (1 — nC%LTS)l_M)]

n n°

(11)
< 77(:1;T3)1+6 [1 — Oé(l -+ 5) (1 — ncsﬁl’_T;;LM) + Sa2 (1 . nC5£9”—Tf7;LM)2]
< 77(:1;T5)1+6 [1 —a(l+9) (1 — nCS(l’T;#;_M) + 5@2] ‘

The inequality (70) will hold if the right-hand side of (74) is smaller than or equal to the
right-hand side of (71). In other words, we want « to be chosen so that

77(:1;T5)1+5 [1 —a(l+9) (1 — nC5M) + 5@2]

773

< p(ats)tHe [1 —« (1 + C%M)] :

n
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This is equivalent to
T \1-38 T \1-48
(1+6) (1 - nC%%) ~ba > (1 + 05%) ,
U U
that is,
1 T (\1-38 T \1-48

To show that (z + aAz,y + aAy, s(a)) € N(§,n) for every a satisfying (67), it is sufficient
to show that the right hand side of (75) is greater than or equal to 1 — (y/én*)(2Ts)!=%%.

Indeed, we have
T (\1-38 T \1-48
fosalpo e

i
1 (27s)1=% (2T5)1=%
Z 5{5— (1—|—5)n05 773 _CS 774
1 T . \1—-46
> 5 {(5 — % [05 + 2nC577(:1;T5)5]}
YT 146
= 11— 5—774(1‘ s)' 7,

where the last inequality follows from the fact that n(27s)® < 1, ¥ > 4 and relation (69).
We have thus shown that (70) holds for every « satisfying (67). The validity of relation (68)
guarantees that (z + aAx,y + oAy, s(a)) € Ny(8,1,7) for all « satisfying (67). Therefore,
to complete the proof of the lemma, it is sufficient to show that (68) holds. Indeed, using
(72), (73) and (69), we obtain

2Ts)1-3
(x + ozA:z;)Ts(oz) < 27s ll —a+ ozn0573]
n
1)
< 2Ts ll—oz—l—ozno5 ]
~
1)
< als (1—@(1——)),
2
for every a € [0, 1]. [

The following lemma will be useful later in the selection of the step sizes ay. for algorithm

PDA.

Lemma 4.4 Suppose that Assumptions 1-5 hold and let 6 € (0,1/4), n € (0,1] and v > ¥
be given, where 5 is the constant specified in Lemma 4.3. Let (z,y,s) € Na(6,n,7) be given.
Consider the solution (Ax, Ay, As) of (18) and define & as

a=sup{a>0]z+alAzx>0,s+alAs > 0}. (76)
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Then,

A (T \1-46
oz—1|§5—774(:1; s) .

Proof. ;From the definition of &, it is easy to show that
&~ = max(—X'Az, —SAs). (77)

It follows from relations (23), (24), (62) and (54) with p = 4 and ¢ = 5/2, and Lemma 3.7

that
. . T N1—(3/2)6/,,3/2
maX{maX (|A$Z|) ,max (—|ASZ|)} < CQ(x S) /77

i€B T ieN \ s ry(aTs)®

CG(xTS)l_(5/2)5
P

06($T8)1_46

= 7

IA

(78)

By (69) and (66), we have Cs < C5 < 7/(2n 4+ 1) < 4/2. Using this fact in (78), together
with 6 < 1 and (=,y,s) € Ni(8,n,7), we find that

{ (|A:1;Z|) (|A52|)} Co(zTs)t=1
max { max ,max | —— < -
ieB T iEN S; nt

a(as) 0 % (79)
;From (18a), we have that
Ari (AS 1  yio1n
T; 8
Using this relation and (79), we obtain
Ay < Bl < 2 TP <L VieN, .
A5—7+1‘§%§2g74(ﬂ3)1—45§%, Vie B. )
iFrom (79) and (80) it follows that
max(— X 'Az, —S7'As) = max(— Xy Azy, —S5' Asp). (81)
Using (80) again and this last relation, we obtain
a1 < 2(;74(95%)1—45 < % (82)
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Hence,

since & < 2 due to (82). n

Finally we show that, given (strong) assumptions on the starting point for Algorithm

k

PDA, a sequence of iterates for which the duality gap 2F s converges superlinearly to zero

can be generated.

Theorem 4.5 Suppose that the Assumptions 1-5 hold and let 6 € (0,1/4) be given. Let 5
be the constant as in the statement of Lemma 4.3. Assume that a constant v > ~ and a
strictly feasible solution (2°,y°,s%) satisfy

9 1/4
m}nx?s? > (%) (:L'OTSO) 5/4, (83)
d
v A 20\ or g\ (1-15)/4
n 2 <?) () <1. (84)

Then the following statements hold.
(i) If (z°,y°, %) is used as the starting point for Algorithm PDA and the sequence of step

sizes {ay} satisfies

A 0 T & 1-46
akEJk:[O,l—(S—?fl(x s ] Vk=1,2,... (85)
then

(2%,y", %) € Nu(6,m,2y), Yk >0.

(ii) Let 6 be an arbitrary constant satisfying 6 € (0,1 — 48). If the sequence of step sizes
{ap} is defined as

1 &
Q) = max (§’1 —0 (:z:kTsk) ) G, vk >0, (86)
where 14 9
oT o\ ~\' 7 v
g = X S = 1 87
(") - (87)
and &y s any number satisfying
A V(T T
ozk—1|§5—n4(:1; 3) ) (88)

then, ap € Ji for all k > 0 and the sequence of duality gaps corresponding to {xy, yx, si.}
eventually converges g-superlinearly to zero according to

5
AT w3l T 04 (89)
9
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Proof. We first show (i). In view of Lemma 4.3, it is sufficient to show that {x, yo, s0} €
Ni(8,1,27). Indeed, relation (84) implies that 20750 < 1 and

(@001 6ty = 1/(27).

Moreover, using (83) and (84), we obtain

959 > (2—7)1/4(:1;0T50)5/4
1 —_ 5

T
_ n(xo 80)1+6,

Hence, {0, 4o, 50} € Ny(6.7.27).
We now show (ii), starting with a proof that a; € Jj for all £ > 0. Indeed, using relation
(88) and the fact that (z*,y*, s*) € Ny(8,7,27v), and in particular that

(" sF) 1 (5t) < 1/(27), (90)

we obtain

IA
—
|
E
TN
S
kol
~
W
kol
S—’
—
i
>

(92)

Together, (91) and (92) imply that ay € Ji. Before showing that (89) holds, we show that

okt sk converges at least g-linearly to zero. Indeed, by (90) and (88), we have

O T

A 1
« -
k — 3

Lo =

Qap >
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Using this inequality together with (68) and ¢ € (0,1/4), we obtain

1 41

as required. We now show that (89) holds. Because of the g-superlinear convergence property,
we can choose an integer K such that

o(z"sH <2/3, Wk > K. (94)
In view of (86), this implies that
ar=(1—o(* ") &, VE> K. (95)

iFrom relations (88), (95) and (72), it follows that

ET k\1-36
T T s
PP gL <kt gk [1 — Qg (1 — nC57( ) ) <

PE
7 BT ky1-38
T Gk [1 _ (1 _ O_(kaSk)é) (1 _ 5%74(ka31§)1—45) (1 _ ncs%)] 7

for all £ > K. Using (69), (87), relation (54) with p =4 and ¢ = 3, and (94), we have that

T T
L T N O P |
nC5 773 Sg 774 §§($ S ) Sg
Hence,
-\ 3
xk-|—1TSk-|—1 < (kaSk) [1 . (1 (kaSk)é) ]
< (ka k) [30‘(1’kT8k)g—|- 3( k Sk)?)g]
< (343) ol s,
for every k > K. Hence, (89) holds. [

A number of choices for &, that insures the validity of (88) are possible. The simplest
is to set &y = 1 but, from Lemma 4.4, we see that choosing &y according to (76) is another
possibility. A third possibility is to choose

Q= sup {oz | (2% + 0Az", s%(0)) > 0 for all 0 € [0, 0] },

which can be shown, by a technique similar to that used in Lemma 4.4, to satisfy (88).
However, this last choice is not attractive since &y is not easily computable.
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5 A globally and superlinearly convergent potential
reduction algorithm

In this section we embed the locally convergent algorithm of the previous section in the
potential reduction algorithm of Monteiro [9].

We start by outlining a version of the algorithm in [9] in which the centering parameter
(namely, the parameter o in the notation of [9]) is chosen to be zero. The directions so
obtained are referred to as primal-dual affine scaling directions. For simplicity of exposition,
we fix certain parameters in his algorithm to numerical values. The algorithm makes use of
the Tanabe-Todd-Ye potential function:

dy(x,8) = qlogaTs — > logasi (96)

=1
where ¢ > n.

Algorithm PDPR

initially: choose fixed constants > 1 and p € (0,1) and let (22,4, s°) be a
strictly feasible point;

for k=1,2,...
Find (Az*, Ay*, As*) by solving (18) with (z,y,s) = (2%, y*, s*);
Set 7, = Oy where 0, > 1/3 and

ar = max{a | xp + Az > 0,5, + aAs, > 0}; (97)

Define o, = f7™# 13, where my is the smallest non-negative integer for which

2F 4 g Ak >0, Sk(ﬂ_mkm) > 0,

and

do(2¥ + BT AL S5 (B Ty)) (98)
kok —m A AN
< ¢q($ s S )—I_ :u(ﬂ ka)v¢q($ s S ) Ask )
Set (&1, 5541, 541) = (o 4 @ Aak, g + ap gt 5 (o))

end for
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Some comments are in order. First, there is nothing special with the constant 1/3 which
gives a lower bound for 6. In fact, any positive constant could be used in place of 1/3.
Second, «ay, defined in (97) is well-defined in the sense that the maximum of the set exists.
This can be shown as follows. By relation (18a), it follows that AL A = — kT sk <
0. Hence, some component of either Az* or As* must be negative. Thus, the maximum in
(97) is finite.

The following global convergence theorem can be proved as a consequence of the results
presented in Monteiro [9].

Theorem 5.1 In Algorithm PDPR,

. T
lim 2% sF =0,

k—o0
and the sequence {(x*,y*, s*)} has at least one limit point. If (z,y,5) is one such limit point
then & solves the primal problem (1), while (Z,y) solves the corresponding dual problem (2).

The theorem above guarantees that Algorithm PDPR converges globally from any feasible
starting point. To prove local superlinear convergence of Algorithm PDPR, we need the
assumption stated below that some iterate (2, ™ s%) of the algorithm satisfies a condition
similar to (83) and (84). In the final result of this section, we show that this assumption can
be dispensed with for certain values of ¢.

Assumption 6 For fived constants v > 7 and 6 € (0,1/4), assume that an integer K > 0
is known for which the iterate (2%, y* ) of Algorithm PDPR satisfies

— 2N\NVE e (54
minzF % > (%) (J}BTSB) , and (99)

N4 (1-46)/4
o= 2] (@) <

- (100)

It Assumption 6 holds then the following rule for selecting the sequence of initial step
sizes can be employed:

1 ;
T 2 hax (§’1 — o (:z:kTsk) ) Qg (101)

where § € (0,1 — 48) and

| any value, if k < K;
7= { - k> K (102)
with 5
o2 5_7;74 _ (xKTSK)—(l—M)‘

Superlinear convergence follows from the results of Section 4 if we can show that ap = 7
for all k sufficiently large. That is, the relation (98) must be satisfied with mj = 0 for all
sufficiently large k. We have the following result:
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Theorem 5.2 Suppose that Assumptions 1-6 hold. Assume that the sequence of initial trial
step sizes is chosen as described in the previous paragraph. Then Algorithm PDPR converges
superlinearly with g-order at least 1 4 6.

Proof. First, we observe that if (z*,y*, s*) € A'(8,1,2v) then Lemma 4.4 and Theorem
4.5(i1) imply that the initial k-th step size satisfies 7, € Ji. Since ay, < 73, we also have that
ay € Jp. Lemma 4.3 then implies that (2! ¢! s*1) € A(6,5,27). Since (2, y",s5) €
N(8,7m,27), the above argument implies that (2%, y* s*) € N(8,7,27), for all k > K. As
mentioned in the discussion above, superlinear convergence with q-order at least 146 follows
as a consequence of Theorem 4.5(ii) once we show that 7, satisfies the following relation
AzF ]

a4 ) — 6o, ) £ | 3 (103

for every k sufficiently large. Indeed, from Theorem 5.1, we know that 2" T sk 5 0 as k tends
to oo, that is Algorithm PDPR converges globally. Therefore, we can choose Ky > K such
that

o() I Rz K.

[ONR N W)

and so

1 5 '
71 = max (§’1 —0 (:z:kTsk) ) o = (1 — a(:z;kTsk)é) ay, Vk > K. (104)

Moreover, it follows from (104) and Lemma 4.4 that

T 1.5 T b8\ |«
‘Tk — (1 — O'(J}k Sk)é)‘ = (1 — O'(J}k 3’“)5) G — 1
< ag — 1|
Yo kT ky1-46
< 5—774(1' s")
< g(kaSk)S‘
Hence, we obtain that
3 = 1 =
(1 — §U($kTSk)6) <7, < (1 — §U($kTSk)6) ) (105)

In the remainder of the proof, we drop the superscript and subscript & for the sake of clarity.
The right hand side of (103) is easy to evaluate. Indeed, from (18a) and the fact that by
(105), 7 < 1, we have




_ ”T{xz (TA:E_I_J;TAS)_Z[AJ;Z'_I_A&]}

i=1 Zi S
= —ut(g—n)
> —plg—n).

We now evaluate the left hand side of (103). ;jFrom (57) it follows that

(x + ozA:z;)Ts(oz) ($T8)1_36

e <1l—a+nCs T Vo € [0, 1]. (106)
Moreover, it follows from (56) that for i =1,...,n
ritalAx;)s; (o > 05 zT5)2—36
- T (107)
( T )1 —46
> 1—0(—05 I 5 \V/OéE[O,l],

- n

where the last inequality is due to the fact that x;s; > n(z1s)'*°. Using (106), (107) and
the definition of ¢, given in (96), we obtain

¢y + @Az, s(a)) = ¢q(x, 5)

(x + ozA:z;)Ts(oz) n (x; + alAx;)
= ¢l -3 1
9708 [ xTs ; 8 ;8
T \1-3§ yi-t
< qlogll—a—l—ncg,(x °) ] Zlog[l—oz—C%x ]
=1 77
B nC5(:1;T5)1_35
= (¢g—n)log(l —a)+ qlog [l—l— (0= a)

for all @ € [0,1]. Setting o = 74 in the above relation and using (105), we obtain
dg(x + T7Az, 8(7)) — ¢y, 3)
< (g n)log[So(aTs)

—nlog [1 —

nCS(xTS)l—Sé—S

n(o/2)

+ qlog [1 +
—nlog [1 —

Consider each of the three terms in this expression. Since 2"l sk 0 and § € (0,1 —46), we
have for k sufficiently large that

(4= n)log [ (")’




nCS(xTS)l—Sé—S g—n
CS(xTS)l—M—S g—n
B e It

Hence, for k sufficiently large,

k
et + A () = ) < (g = < Vet | R0

[

We now address two important issues in the implementation of Algorithm PDPR, namely,

the choice of 4 greater than the (unknown) constant 7, and the availability of an index K

such that the conditions (99) and (100) are satisfied. We address the latter issue first. Given

any v > 0, we show that a K satisfying the two conditions of Assumption 6 is always

available provided that the parameter ¢ that defines the potential function ¢, lies in the
range (n,n + 1/4).

Theorem 5.3 Let v > 0 and 6 € (0,1/4) be given and assume that ¢ € (n,n +1/4). Then
there exists an integer K such that both (99) and (100) hold.

Proof. For convenience, we define the quantity v = ¢ — n so that v € (0,1/4). Since the
potential function ¢, decreases at each iteration, we have

dy(2", 55) < (20, 5%) 2 M.

Now, for any ¢ € {1,2,...,n}, we have

(1+v)log sk log % s¥
< M—(n—1)log P > log xfsf
J#
< M—(n—1)log (:L'kTsk — xfsf) +> log xfsf
J#
< M—(n—1)log(n—1)
2 M.
Hence
k gk _
log T = —M
(+"5")
— 14v
— xfsf > e M (:z:kTsk)
27 1/4 T 5/4 _ 5 1/4 T 11—1/4
k_k KTk M kT k
= ;s = [5] ( ) € % (:1; s )



Hence (99) will be satisfied for k = K if we have

oM li] v (:L‘KTSK) v=1/4 >1

2y
Since 25 5% 0 by Theorem 5.1, this last condition, and hence (99), is guaranteed to hold
for any sufficiently large choice of K. By increasing K if necessary, we can also ensure that
(100) is also satisfied. Hence, the result follows. [

In the remainder of the paper, we assume that ¢ € (n,n + 1/4).

The remaining issue is the choice of a constant . In order for the theory of sections 4
and 5 to hold, we require that v > %, where the constant 7, which depends on the problem
data but not on ¢, is not known. Our strategy is similar to one that has been suggested for
the choice of penalty parameter in the nonsmooth penalty function approach for constrained
optimization (see Fletcher [2]); namely, to embed Algorithm PDPR in an outer loop in which
~ is successively increased until a suitable value is found. We formalize this procedure as
follows:

Algorithm G-PDPR
initially:  Choose fixed constants 3 > 1, 6 € (0,1), 6 € (0,(1 —6)/4), u € (0,1)
and ~o > 6;
Let (29,9, s%) be a strictly feasible point;
for (=0,1,...
Phase 1:

Apply Algorithm PDPR with v = v/, defining the initial steps 7
by (101), with oy arbitrary;

terminate Phase 1 at the first iterate £ = K, for which (99) and (100)
hold with K = K.

Phase 2:
Set o — (xIQTSIQ)—(l—46);
Set n = (27/5)1/4(l,K[TSIQ)(l—46)/4;
Continue Algorithm PDPR with o, = o;

terminate Phase 2 if any of the following three conditions is violated
by the current iterate (z*, y*, s%):
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(2" + me Ak + Ay, sF (1)) € N (6,1, 29); (108)

6 1] £ g (109)
31 146
(l‘k + TkAJ}k)TSk(Tk) < ja (:L'kTsk)( ) ) (110)

Set vppq «— 10y, and ¢ «— (4 1;

end for

The increase factor of 10 for v can of course be replaced by any constant that exceeds 1.
Note that Algorithm G-PDPR is a special case of Algorithm PDPR, in which we define the
choice of initial step size in a somewhat elaborate way. Note also that the choices of 6 and
§ guarantee that § € (0,1/4) and that & € (0,1 — 46).

The following result guarantees global and superlinear convergence of Algorithm G-

PDPR.

Theorem 5.4 Suppose that ¢ € (n,n+1/4) and that Assumptions 1-5 hold. Then Algorithm
G-PDPR converges converges globally and superlinearly with g-order at least 1 + ¢

Proof. As noted above, Algorithm G-PDPR is simply a special case of Algorithm PDPR,
and so global convergence follows as a consequence of Theorem 5.1.

To prove local convergence properties, we show first that the number of “outer loops” in
Algorithm G-PDPR is finite. Let us assume for contradiction that this is not true. Then
there must be a loop index ¢ for which 7, > %4. Theorem 5.3 implies that Phase 1 of loop
{ terminates, while Lemma 4.4 and Theorem 4.5 ensure that conditions (108), (109), and
(110) are not violated on any subsequent iteration. This means that Phase 2 of loop ¢ does
not terminate, giving a contradiction.

Now consider the final loop of Algorithm G-PDPR. Since all the conditions (108), (109)
and (110) are satisfied for every k sufficiently large, it is clear from (110) that superlinear
convergence with Q-order at least (1 + §) is obtained if we can show that a; = 7, for all
k sufficiently large. The proof that this holds is identical to that of Theorem 5.2. We need
to observe that (105) can be obtained by using relation (109), while the relations (106) and
(107) follow from Lemma 4.2 and (108).

[

6 Conclusions and discussion

We have described an algorithm for general convex programming problems that converges
globally and superlinearly under fairly weak assumptions. An interesting feature of the global
convergence framework is that the choice of ¢ for the potential function does not depend on
6. Since smaller values of ¢ —n are typically (and, for some algorithms, rigorously) associated
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with slower convergence, the choices of ¢ we have described in Section 5 are preferable to
the more obvious choice ¢ = n 4 6, which would have made for simpler analysis.

The analysis can be generalized in at least two ways. First, a centering parameter can
be introduced into the step calculation (18). Equation (18a) can be replaced by

SEFAZF + XFASF = —SFXFe 4+ Uk(kask)/n,

where oy, € [0,0], 0 € [0,1). The second term on the right hand side serves to bias the step
towards the central path, and is a common feature of most interior point algorithms. The
global convergence analysis in Monteiro [9] still holds when o is chosen in this way, while
our local convergence analysis still goes through provided that o approaches zero sufficiently
rapidly (that is, like some power of (:L'kTsk)) during the latter stages of the algorithm.

A second possible generalization is to functions whose Hessian satisfies a Holder continuity
condition

IV2f(ah) = VEf(?)]| < Cafla’ — 2*|”
(where v € (0,1]) in place of the Lipschitz continuity condition in Assumption 2. In this

case, it is still possible to design an algorithm with global and superlinear convergence. The
g-order for the convergence of the duality gap to zero may lie in the range [1,1 + 7).
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