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where x 2 IRn, A 2 IRm�n, b 2 IRm and f : IRn ! IR is convex and smooth in a sense to bede�ned below. We assume that the feasible set fx j Ax = b; x � 0g is nonempty and thatm < n. The Wolfe dual problem for (1) can be stated asmaxx;y f(x) � xTrf(x) + bTy; rf(x)�ATy � 0: (2)It is well known that if �x solves (1), then there is �y 2 IRm such that (�x; �y) solves (2)and, moreover, the optimal values of the primal and dual objective functions are identical.Introducing a slack vector s by s = rf(x)�ATy;we deduce that the following conditions must be satis�ed by the primal and dual solutions:�s = rf(�x)�AT �y; (3a)A�x = b; (3b)�x � 0; (3c)�s � 0; (3d)�xT �s = 0: (3e)In the subsequent discussion, we say that a point (x; y; s) is \feasible" if it satis�es theequations (3a){(3d), and \strictly feasible" if (3a){(3d) are satis�ed with x > 0 and s > 0.Interior point algorithms for the linear and quadratic versions of (1), and the relatedcomplementarity problems, have usually required all iterates to belong to a neighborhood ofthe central path de�ned by eitherN1(�) = n(x; y; s) feasible j kXSe� (xTs=n)ek2 � �oor N2(�) = n(x; y; s) feasible j xisi � �(xTs=n); 8i = 1; : : : ; no ;where X = diag(x1; x2; : : : ; xn); S = diag(s1; s2; : : : ; sn); e = (1; 1; : : : ; 1)T ;and � is a constant in (0; 1). For example, the predictor-corrector algorithms of Ye et al. [13]for linear programming and Ji, Potra and Huang [3] and Ye and Anstreicher [12] for linearcomplementarity problems use neighborhoods of the form N1, while the linear programmingalgorithm of Zhang and Tapia [15] uses N2. In this paper, we use a di�erent neighborhoodde�ned with respect to two parameters � > 0 and � > 0 in the following way:N (�; �) = n(x; y; s) feasible j xTs � 1; xisi � �(xTs)1+�; 8i = 1; : : : ; no : (4)For analytical purposes, this neighborhood has the advantage over N1 and N2 that localconvergence of q-order arbitrarily close to 2 can be obtained without expanding N as thesolution is approached. In the papers by Ye [11] and Ye and Anstreicher [12], it is necessary2



to expand the neighborhood N1(�) during the �nal stages in order to obtain rapid localconvergence.The basic algorithm we describe in this paper calculates search directions by using aprimal-dual a�ne scaling technique. This technique is equivalent to �nding a Newton di-rection for the system of nonlinear equations formed by (3a), (3b) and the complementaritycondition XSe = 0. Because of this connection to Newton's method, it is immediately clearthat such an algorithm would be quadratically convergent if it is started su�ciently close toa nondegenerate solution and if it is allowed to take full steps. In our local analysis, we showthat we can ensure that each iterate lies in the neighborhood N (�; �) without jeopardizingfast local convergence properties. Moreover, we also show that superlinear convergence canbe obtained under certain assumptions which allow the possibility of problem (1) to havemultiple solutions! Membership of N (�; �) is enforced by taking a step length � less thanone along the a�ne scaling direction and by \bending" the search path for s in a way to bedescribed in the next section. We show that it is easy to choose an � to ensure that bothcontinued membership of N (�; �) and fast local convergence apply. By a suitable choice ofparameters, the q-order of the local convergence can lie anywhere in the range (1; 2).To make the algorithm converge globally from any strictly feasible starting point, we em-bed the a�ne scaling technique into the potential reduction algorithm discussed in Monteiro[9]. The search direction is calculated as before, but now we choose the step size so that theTanabe-Todd-Ye potential function�q(x; s) = q log xTs� nXi=1 log xisi: (5)(where q > n) is reduced at every iteration according to the Armijo rule, a requirement thatis often used in unconstrained optimization algorithms. The actual amount of reductionmust be at least a small multiple of the \predicted" reduction obtained from a �rst ordermodel of �q around the current point. Rules for making an initial guess of the step size andfor reducing the step size when it fails the Armijo test are also given.Finally, we also show that if q is chosen from the range (n; n + 1=4), we can de�ne analgorithm for which both our global and local convergence theories hold. That is, the methodis both globally and superlinearly convergent.The remainder of the paper is laid out as follows: In Section 2, we start by stating ourmain assumptions. These are, for the most part, standard. The exception is Assumption 5,and the bulk of the section is taken up with proving that this assumption holds in a varietyof familiar circumstances, including the cases of nondegeneracy, weak sharp minima, andquadratic objective functions.In Section 3, we state the linear system of equations that must be solved to obtain thesearch directions. We then derive bounds on the components of these search directions, interms of the duality gap xTs and the parameters � and � that de�ne the neighborhood N .The local convergence theory for our primal-dual a�ne scaling algorithm appears in Section4. We show that if the algorithm is started from a point at which xT s is su�ciently small,and which is not too close to the boundary, superlinear convergence of the duality gap to zero3



can be obtained. Section 5 contains the global convergence theory. We outline the globallyconvergent algorithm presented in Monteiro [9] and show that if some iterate K satis�esthe initial point conditions for the locally convergent algorithm, superlinear convergencealso occurs. Finally, we prove that for appropriate choices of q in �q, namely for everyq 2 (n; n+ 1=4), these conditions for superlinear convergence are guaranteed to be satis�edby some iterate. As a consequence, we obtain superlinearly convergent algorithms basedon the potential function (5). Since the step sizes of the algorithm are selected by meansof Armijo rule applied to the potential function (5), there is no reason to believe that theiterates remain in a neighborhood of the form N1(�) or N2(�). The neighborhood N (�; �)plays a crucial role: we are able to show that the iterates (generated via Armijo rule) remainwithin a certain N (�; �) and that one-step superlinear convergence can be obtained.The following notational conventions are used in the remainder of the paper: Unlessotherwise speci�ed, k:k denotes the the Euclidean norm. We denote the open ball withcenter x 2 IRn and radius � > 0 byB(x; �) � fu 2 IRn j ku� xk < �g:When x and y are two vectors in IRn, the notation [x; y] denotes the set of vectors on theline joining x and y.For a general vector z 2 IRn and index set J � f1; : : : ; ng, zJ denotes the vector madeup of components zi for i 2 J . If M 2 IRn�n and I; J � f1; : : : ; ng then MIJ denotes thesubmatrix consisting of elements Mij for which i 2 I and j 2 J . The matrix MI: refers tothe submatrix MIJ for which J = f1; : : : ; ng. Similarly, M:J denotes the submatrix MIJ inwhich I = f1; : : : ;mg If D 2 IRn�n is diagonal, then DB denotes the diagonal matrix whosediagonal entries are Dii for i 2 B.We say that (J;L) is a partition of f1; : : : ; ng if J [ L = f1; : : : ; ng and J \ L = ;.Finally, we de�ne some problem-dependent notation: For � 2 [0;1], letF� 4= f(x; y; s) feasible j xTs � �g:Clearly, F0 is just the set of all primal-dual solutions of (1),(2) and F1 is the set of allprimal-dual feasible points. We also de�ne a projection operator � by �(x; y; z) 4= x and,with a slight abuse of notation, X� 4= �(F�)for � 2 [0;1]. Note that X0 is the solution set for (1). The operator P : IRn ! IRn de�nesprojection into X0, that is P (x) 4= arg miny2X0 ky � xk:2 AssumptionsIn this section, we state all the assumptions on problem (1) that will be needed in our devel-opment. We then show that certain well-studied cases are special cases of these assumptions.4



We start by stating all our major assumptions. In this work, we adopt the convention ofexplicitly stating the assumptions needed in the statement of each result. The main resultsof the paper will require all the assumptions below to hold.Assumption 1 (Di�erentiability and Convexity of f .) The function f is convex over theset fx j Ax = b; x � 0g and twice continuously di�erentiable in a neighborhood of this set.Assumption 2 (Local Lipschitz continuity of the Hessian.) For every x 2 fx j Ax = b; x �0g, there exists a neighborhood J (x) of x and a positive constant Cx such that for all x1,x2 2 J (x) we have kr2f(x1)�r2f(x2)k � Cxkx1 � x2k:Assumption 3 The set of strictly feasible solutions of (3a){(3d) is non-empty and a strictlyfeasible solution (x0; y0; s0) is given.Assumption 4 (Existence of a strictly complementary solution.) There exist a partition(B;N) of f1; : : : ; ng and a solution (x�; y�; s�) of (3) such that x�B > 0 and s�N > 0.Assumption 5 There exists a constant L > 0 such thatrf(P (x))�rf(x)�r2f(x)(P (x)� x) � L(xT s)2; 8(x; y; s) 2 F1: (6)Since the left hand side of (6) is uniformly zero when f is quadratic, we can immediatelynote the following result.Lemma 2.1 If f is linear or quadratic, then Assumption 5 holds.In Lemmas 2.6 and 2.7 below, we show that Assumption 5 also holds in other well-studiedsituations.Boundedness of the set F1, and therefore of the neighborhood N (�; �), is an immediateconsequence of the following lemma:Lemma 2.2 Suppose that Assumptions 1 and 3 hold. Then there exists a constant C1 > 0such that if (x; y; s) 2 F1 thenxi � C1 for i = 1; : : : ; n;si � C1 for i = 1; : : : ; n:Proof. Consider the strictly feasible point (x0; y0; s0) as in Assumption 3. By the con-vexity of f , we can easily show that (x� x0)T (s� s0) � 0. HencexTs0 + x0T s � xTs+ x0Ts0 � 1 + x0T s0:This implies that xi � (1 + x0Ts0)=s0i ; (7)si � (1 + x0Ts0)=x0i ; (8)5



for every i = 1; : : : ; n. The result now follows by settingC1 = 1 + x0T s0r0 ;where r0 is the smallest component of (x0; s0).Lemma 2.3 Suppose that Assumptions 1 and 3 hold and assume that there exist constants� > 0 and L� > 0 such thatrf(P (x))�rf(x)�r2f(x)(P (x)� x) � L�(xTs)2; 8(x; y; s) 2 F�: (9)Then Assumption 5 holds.Proof. If � � 1 then Assumption 5 obviously holds with L = L�. Assume then that � < 1and consider the following setU 4= f(x; y; s) feasible j xTs � 1 and xTs � �g:Using Lemma 2.2, it is easy to see that U is compact. Hence,a � sup(x;y;s)2U rf(P (x))�rf(x)�r2f(x)(P (x)� x)is �nite. It is now easy to see that Assumption 5 is satis�ed with L 4= max(L�; a=�).Lemma 2.4 Suppose that Assumptions 1 and 2 hold. Then for every compact subset K �fx j Ax = b; x � 0g, there exists a constant C = C(K) > 0 such thatkr2f(x1)�r2f(x2)k � Ckx1 � x2k; 8x1; x2 2 K: (10)Proof. For x 2 K, consider the constant Cx and the neighborhood J (x) of x as in Assump-tion 2. Since J (x) is a neighborhood of x, there exists �(x) > 0 such that B(x; 2�(x)) � J (x).By the compactness of K, there exist �x1; : : : ; �xp 2 K such thatK � B(�x1; �(�x1)) [ : : : [ B(�xp; �(�xp)): (11)Let ! � supfkr2f(x)k j x 2 Kg <1, � � minf�(�x1); : : : ; �(�xp)g and Cmax � maxfC�x1; : : : ; C�xpg.We will show that C � maxfCmax; 2w=�g satis�es the requirement of the lemma. Indeed,let x1; x2 2 K be given. There are two cases to consider. In the �rst case, assume thatkx1 � x2k < �. By (11), there exists an l 2 f1; : : : ; pg such that x1 2 B(�xl; �(�xl)). Hence,x2 2 B(�xl; 2�(�xl)) since kx1 � x2k < � � �(�xl). Hence, it follows that x1; x2 2 J (�xl). ByAssumption 2, we havekr2f(x1)�r2f(x2)k � C�xlkx1 � x2k � Ckx1 � x2k:For the second case, assume that kx1 � x2k � �. Then we havekr2f(x1)�r2f(x2)k � 2w � C� � Ckx1� x2k:Hence, the lemma follows.Using Lemmas 2.3 and 2.4, we can now give a general condition which guarantees thevalidity of Assumption 5. 6



Lemma 2.5 Suppose that Assumptions 1, 2 and 3 hold. Assume that there exists constants� > 0 and � > 0 such that the following implication holds:(x; y; s) 2 F� =) kx� P (x)k � �(xT s): (12)Then Assumption 5 holds.Proof. We may assume without loss of generality that � � 1. Lemma 2.2 implies that X1is bounded, and hence that the sets X0 and X� are also bounded. Since these two sets arealso closed, they are compact. Hence, the set de�ned asK � [ f[x; �x] j x 2 X� and �x 2 X0gis also compact. By lemma 2.4, there exists C > 0 such that (10) holds. Hence, for every(x; y; s) 2 F�, we obtainrf(P (x))�rf(x)�r2f(x)(P (x)� x)� max~x2[x;P (x)]hr2f(~x)�r2f(x)i [P (x)� x]� Ck~x� xk kP (x)� xk� CkP (x)� xk2� C�2(xTs)2;where the second inequality is due to the fact that both x and ~x are in K and the lastinequality is due to implication (12). Therefore, the assumptions of Lemma 2.3 are satis�edand, as a consequence, Assumption 5 holds.Two important situations in which the implication (12) holds are stated in the next twolemmas.Lemma 2.6 Suppose that Assumptions 1, 2 and 3 hold. Then Assumption 5 holds if problem(1) has a weak sharp minimum in the sense of Burke and Ferris [1], that is, if there existsa constant � > 0 such that kx� P (x)k � � [f(x)� f(P (x))] ;for all x 2 fx j Ax = b; x � 0g.Proof. For every feasible (x; y; s), we havekx� P (x)k � � [f(x)� f(P (x))] � �(xTs)which shows that the implication (12) holds with � =1 and � = �.The other important case which guarantees the validity of implication (12), and henceof Assumption 5, requires that the solution of problem (1) be nondegenerate. We now makeprecise the notion of nondegeneracy of a solution of problem (1).7



De�nition 1 A solution (�x; �y; �s) of problem (1) is called nondegenerate if the followingconditions are satis�ed:(a) (�x; �y; �s) is a strictly complementary solution, that is, there exists a partition (B;N) off1; : : : ; ng such that �xB > 0 and �sN > 0;(b) The matrix �A de�ned as �A � " AB AN0 I #has linearly independent columns;(c) r2f(�x) is nonsingular in the null space of �A.We observe that the rows of �A are the gradients of the constraints of problem (1) whichare active at the solution �x. Clearly, a nondegenerate solution must be unique. We are nowready to state the second case under which Assumption 5 holds.Lemma 2.7 Suppose that Assumptions 1, 2 and 3 hold and assume that problem (1) hasthe unique nondegenerate solution (�x; �y; �s). Then Assumption 5 holds.Proof. Consider the function F : IRn � IRm � IRn ! IRn � IRm � IRn de�ned byF (x; y; s) = 264 XSeAx� b�rf(x) +ATy + s 375 : (13)Using the assumption that (�x; �y; �s) is a nondegenerate solution, one can easily show thatrF (�x; �y; �s) is nonsingular. To simplify notation, let w = (x; y; s) and �w = (�x; �y; �s). Thedi�erentiability of F at �w implies that we can writeF (w) = F ( �w) +rF ( �w)(w � �w) + kw � �wkr(w � �w); (14)where limkhk!0 r(h) = 0. De�ne M 4= (krF ( �w)k)�1. Then there exists � > 0 such thatkr(w � �w)k � M=2 for every w 2 B( �w; �). Hence, for every w 2 B( �w; �) we obtain using(14) that kF (w)� F ( �w)k � krF ( �w)(w � �w)k � kr(w � �w)k kw � �wk� Mkw � �wk � kr(w � �w)k kw � �wk (15)� M2 kw � �wk;where the last inequality is due to the fact that kr(w � �w)k � M=2. Using the de�nition(13) of F and choosing w = (x; y; s) to be feasible, we obtainkF (w)� F ( �w)k = kF (x; y; s)� F (�x; �y; �s)k = kXSek � xTs: (16)8



Using (15) and (16), we obtainkx� �xk � kw � �wk � 2M kF (w)� F ( �w)k � 2MxTs; (17)for every w 2 B( �w; �). If F1 � B( �w; �), then the assumptions of Lemma 2.5 hold with � = 1and � = 2=M , so we are done. Otherwise, consider the set F1nB( �w; �). Clearly, xTs > 0 forall (x; y; s) 2 F1nB( �w; �). Because of Lemma 2.2, the set F1nB( �w; �) is compact, and hencethere exists � > 0 such thatxTs > �; 8(x; y; s) 2 F1nB( �w; �):This implies that F� � B( �w; �), and hence that implication (12) holds with � = 2=M . ByLemma 2.5, Assumption 5 must hold.3 Technical ResultsIn this section, we briey review how the primal-dual a�ne scaling search direction is com-puted from a given strictly feasible point (x; y; s). The remainder of the section is taken upwith �nding bounds on the components of the search direction vectors for points (x; y; s)lying in the neighborhood N (�; �), where � and � are �xed a priori.We start by describing how the primal-dual a�ne scaling search direction is computed.Given a strictly feasible point (x; y; s), we obtain the primal-dual a�ne scaling search direc-tion (�x;�y;�s) by applying one step of Newton's method to the nonlinear system de�nedby (3a), (3b) and the equation XSe = 0. Hence (�x;�y;�s) can be obtained by solvingthe linear system S�x+X�s = �SXe; (18a)A�x = 0; (18b)�r2f(x)�x+AT�y +�s = 0: (18c)The remaining of the section is devoted to �nding bounds on the components of the searchdirection (�x;�y;�s). The main result of this section is stated in Theorem 3.8 which inturn is obtained by combining the results of Lemmas 3.3 and 3.7. We start by stating asimple result that is used in a number of places in this section.Lemma 3.1 Suppose Assumption 1 holds. Then if (�x;�y;�s) satis�es relations (18b)and (18c) then �xT�s � 0.Proof. The proof follows immediately from the convexity of f(x).We can now state some simple results concerning bounds on certain components of x,�x, s, and �s. 9



Lemma 3.2 Under Assumptions 1 and 4, if (x; y; s) is feasible then there exists a constantr > 0 such that xi � (xTs)=r; 8i 2 N; (19)si � (xTs)=r; 8i 2 B: (20)Proof. Consider the strictly complementary solution (x�; y�; s�) as in Assumption 4.Using convexity of f , we obtain0 � (x� x�)T (s� s�) = xT s� x�Ts� xTs�where the last equality is due to the fact that x�Ts� = 0. Hence, x�T s � xTs which impliesthat si � (xTs)=x�i ; 8i 2 B:Similarly, we can show that xi � (xTs)=s�i ; 8i 2 N:The result now follows by setting r to be the smallest component of (x�B; s�N).Lemma 3.3 Suppose that Assumptions 1 and 4 hold and, for some � > 0 and � 2 (0; 1], let(x; y; s) 2 N (�; �) be given. Let (�x;�y;�s) denote the solution of (18). Then there existsr > 0 such that j�xij � (xTs)1�(1=2)�r�1=2 ; 8i 2 N; (21)j�sij � (xTs)1�(1=2)�r�1=2 ; 8i 2 B; (22)si � r�(xTs)�; 8i 2 N; (23)xi � r�(xTs)�; 8i 2 B: (24)Proof. De�ning D = X1=2S�1=2 and using relation (18a), we obtainD�1�x+D�s = �(SX)1=2e:Taking the square of the norm of both sides of the above relation, we obtainkD�1�xk2 + kD�sk2 + 2�xT�s = xTs;and since by Lemma 3.1 �xT�s � 0, this relation implieskD�1�xk � (xTs)1=2; (25)kD�sk � (xTs)1=2: (26)Since (x; y; s) 2 N (�; �), we havexisi � �(xTs)1+�; 8i = 1; : : : ; n: (27)10



Using relations (25), (19) and (27), we obtainj�xij � xi  xTsxisi!1=2 �  xTsr ! 1�(xTs)�!1=2 = (xTs)1�(�=2)r�1=2 ;for every i 2 N . This yields (21). Relation (22) follows similarly with the aid of (26), (20)and (27). To show (23), observe that relations (27) and (19) implysi � �(xTs)1+�xi � r�(xTs)�;for every i 2 N . Hence (23) follows. Similarly, (24) follows with the aid of (27) and (20).Providing upper bounds for the remaining components of the search directions, namely�xB and �sN , is more di�cult. This part of the development is based on the approachwhich appears in the paper of Ye and Anstreicher [12].We start with the following lemma of Ye and Anstreicher [12, Lemma 3.4].Lemma 3.4 Let M 2 IRp�p be a positive semi-de�nite matrix and assume that (J;L) forma partition of f1; : : : ; pg. Then,R MJJ MJL0 I ! = R MTJJ MTLJ0 �I ! : (28)As a consequence of the above result, we obtainLemma 3.5 Let Q 2 IRn�n be a positive semi-de�nite matrix and let A 2 IRm�n be arbitrary.Let (B;N) form an arbitrary partition of f1; : : : ; ng. De�neU1 � 0B@ QBB �AT:B QBNA:B 0 A:N0 0 I 1CA ; U2 � 0B@ QTBB AT:B QTNB�A:B 0 �A:N0 0 �I 1CA : (29)Then, R(U1) = R(U2).Proof. First observe that the matrixM � 0B@ QBB �AT:B QBNA:B 0 A:NQNB �AT:N QNN 1CA (30)is positive semi-de�nite since it can be obtained by a symmetric permutation of the positivesemi-de�nite matrix  Q �ATA 0 ! : (31)11



The lemma now follows from Lemma 3.4 applied to the matrix M and the partition (J;L)of f1; : : : ;m+ ng for which MJJ =  QBB �AT:BA:B 0 ! : (32)Using the above result, we next prove a lemma that is similar to Lemma 3.5 of Ye andAnstreicher [12]. In fact, the two results are identical if the function f(x) is quadratic.Lemma 3.6 Suppose that Assumption 4 holds. Let (x; y; s) be a strictly feasible pointand let D � X1=2S�1=2. Let (�x;�y;�s) denote the solution of (18). Then (u; v; w) =(�xB;�sN ;�y) solves the problemmin(u;v;w) 12kD�1B uk2 + 12kDNvk2 + gTBu; (33)subject to A:Bu = �A:N�xN ;�QBBu+AT:Bw = QBN�xN ��sB; (34)�QNBu+AT:Nw + v = QNN�xN ;where Q = r2f(x); g = �rf(�x) +rf(x) +r2f(x)(�x� x);and �x is any primal solution of (1).Proof. >From relations (18b) and (18c) it follows immediately that (u; v; w) = (�xB;�sN ;�y)is feasible with respect to the constraints (34). The result follows once we verify that(u; v; w) = (�xB;�sN ;�y) satis�es the KKT conditions for the above problem, namely:0B@ gB +D�2B �xB0D2N�sN 1CA 2 R0B@ AT:B �QTBB �QTNB0 A:B A:N0 0 I 1CA = R(U2); (35)where U2 is the matrix de�ned in Lemma 3.5. Indeed, using equation (18a), it is easily seenthat D�2�x = �(s+�s); (36)D2�s = �(x+�x): (37)Let (�y; �z) denote a pair which together with the solution �x satis�es (3). Using the fact thatboth (x; y; s) and (�x; �y; �z) satisfy (3a){(3b) and that (�x;�y;�s) satisfy relations (18b) and(18c), one can easily show that A(x+�x� �x) = 0; (38)�Q(x+�x� �x) +AT (y +�y � �y) + (s+�s� �s) = g: (39)12



Since �xN = 0, �sB = 0 and using relations (36) and (39), we obtaingB +D�2B �xB = gB � (sB +�sB)= gB � (sB +�sB � �sB)= �QB:(x+�x� �x) +AT:B(y +�y � �y) (40)= �QBB(xB +�xB � �xB)�QBN(xN +�xN)+AT:B(y +�y � �y):Also, from (37) and (38) it follows thatD2N�sN = �(xN +�xN); (41)0 = �A:B(xB +�xB � �xB)�A:N(xN +�xN): (42)Using relations (40), (41) and (42), we obtain0B@ gB +D�2B �xB0D2N�sN 1CA 2 R(U1): (43)where U1 is the matrix de�ned in Lemma 3.5. Relation (35) now follows from the fact thatR(U1) = R(U2) in view of Lemma 3.5.Lemma 3.7 Suppose that Assumptions 1, 3, 4, and 5 hold, and that (x; y; s) 2 N (�; �) forsome � > 0 and � 2 (0; 1]. Then there exists a constant C2 > 0 independent of � and � suchthat k�xBk � C2�3=2(xT s)1�(3=2)�; (44)k�sNk � C2�3=2(xT s)1�(3=2)�: (45)Proof. It is well known that since (34) is a consistent set of equalities, there is a triple(�u; �v; �w) which satis�es (34) and is bounded above by a constant times the norm of the righthand side of (34). Therefore, k(�u; �v; �w)k � C3k(�xN ;�sB)k; (46)for some constant C3 > 0 independent of � and �. De�ne K1 � max(kDBk; kD�1N k). Then,k�xB +D2BgBk2 + k�sNk2� kDBk2 kD�1B �xB +DBgBk2 + kD�1N k2 kDN�sNk2� K21 h kD�1B �xB +DBgBk2 + kDN�sNk2i� K21 h kD�1B �u+DBgBk2 + kDN �vk2i ; (47)13



where the third inequality follows from the fact that (�xB;�sN ;�y) is an optimal solutionfor problem (33)-(34). Relation (47) can be rewritten as �xB +D2BgB�sN ! � K1  D�1B �u+DBgBDN �v ! :De�ne K2 � max(kD�1B k; kDNk). Then, using the triangle inequality twice in the aboverelation and relations (46), (21) and (22), we obtain �xB�sN! � K1 (" D�1B 00 DN #  �u�v!+  DBgB0 !) +  D2BgB0 !� K1 (K2C3  �xN�sB!+ kDBk kgBk) + kDBk2kgBk (48)� K1K2C3pn (xTs)1�(�=2)r�1=2 + 2K21kgBk:It remains to estimateK1,K2 and kgBk in the above relation. First, we estimateK1. Observethat since (x; y; s) 2 N (�; �), relation (27) holds. Using (27), the de�nition of D and Lemma2.2, we obtain kD2Bk = kXBS�1B k = maxi2B ( x2ixisi) � C21� (xTs)�(1+�):Similarly, we have kD�2N k = kX�1N SNk = maxi2N ( s2ixisi) � C21� (xTs)�(1+�):Hence, K21 � C21� (xT s)�(1+�): (49)We now estimate K2. Using (27), the de�nition of D and Lemma 3.2, we obtainkD�2B k = kX�1B SBk = maxi2B ( s2ixisi) � (xTs=r)2�(xTs)1+� = (xT s)1���r2 :Similarly, we havekD2Nk = kXNS�1N k = maxi2N ( x2ixisi) � (xTs=r)2�(xTs)1+� = (xTs)1���r2 :Hence, K22 � (xTs)1���r2 : (50)14



Next, we estimate kgBk. We can assume that the primal solution �x of Lemma 3.6 is equalto P (x). Using �x = P (x) in the de�nition of g and Assumption 5, we obtainkgBk � kgk = k �rf(P (x)) +rf(x) +r2f(x)(P (x)� x)k � L(xT s)2: (51)Substituting the estimates (49), (50) and (51) into expression (48), we obtain �xB�sN! �  C21� (xTs)�(1+�)!1=2 (xTs)1���r2 !1=2pnC3 (xTs)1�(1=2)�r�1=2+2 C21� (xTs)�(1+�)!�L(xTs)2�= (xTs)1�(3=2)��3=2 "pnC1C3r2 + 2C21L�1=2(xTs)�=2# :Since xTs � 1 and � 2 (0; 1], we can bound the bracketed term by a constant C2 independentof � and �. We thus obtain  �xB�sN! � C2�3=2(xT s)1�(3=2)�;which is the desired result.We can now merge the results of Lemmas 3.3 and 3.7 to obtain the following theorem.Theorem 3.8 Suppose that Assumptions 1, 3, 4, and 5 hold, and that (x; y; s) 2 N (�; �)for some � > 0 and � 2 (0; 1]. Then there exists a constant C4 independent of � and � suchthat k�xk � C4�3=2 (xTs)1�(3=2)�;k�sk � C4�3=2 (xTs)1�(3=2)�:4 A locally convergent algorithmIn this section, we discuss a basic primal-dual a�ne scaling algorithm based on the stepcalculation (18) and show that rapid local convergence can be obtained for certain choices ofthe step lengths. In the next section, this algorithm is embedded in the globally convergentpotential reduction algorithm of Monteiro [9].In describing the algorithm, we �rst show how the step calculated in (18) can be used tomove from one iterate to the next. In general, we cannot simply move along the direction(�x;�y;�s) from the current point (x; y; s), since this may lead to a new point that violates15



the condition (3a). Instead, we take a \curved" step in the s component and make thetransition (x; y; s)! (x+ ��x; y + ��y; s(�));where s(�) = rf(x+ ��x)�AT (y + ��y): (52)The algorithm proceeds as follows:Algorithm PDAinitially: choose (x0; y0; s0) strictly feasiblefor k = 1; 2; : : :Find (�xk;�yk;�sk) by solving (18) with (x; y; s) = (xk; yk; sk);Choose �k > 0 such that (xk + �k�xk; yk + �k�yk; sk(�k))is strictly feasible;Set (xk+1; yk+1; sk+1) = (xk + �k�xk; yk + �k�yk; sk(�k));end forThe following neighborhood will play an important role in the subsequent development.Let p > 0, � > 0, � 2 (0; 1] and  > 0 be given and de�neNp(�; �; ) � f(x; y; s) 2 N (�; �) j (xTs)1�p�=(��p) � 1=g: (53)The proof of the following lemma is straightforward and is left to the reader.Lemma 4.1 Assume that p > q > 0, � > 0 and � 2 (0; 1]. Then(xTs)1�q�=�q � (xT s)1�p�=�p; 8x 2 N (�; �); (54)and Np(�; �; ) � Nq(�; �; ); 8 > 0: (55)Lemma 4.2 Suppose that all Assumptions 1{5 hold and let (x; y; s) 2 N4(�; �; ) be given,where � > 0, � 2 (0; 1], and  � �. Then, there exist a constant C5 independent of �, � and such that for all � 2 [0; 1],j(xi + ��xi)si(�)� (1 � �)xisij � C5�2 (xT s)2�3��3 ; 8i = 1; : : : ; n; (56)16



and ���(x+ ��x)Ts(�) � (1� �)xTs��� � nC5�2 (xT s)2�3��3 : (57)Proof. We �rst note that (57) follows immediately from (56). Using relations (52), (3a)and (18c), we obtains(�) = rf(x+ ��x)�ATy � �AT�y= rf(x+ ��x)� (rf(x)� s)� �(r2f(x)�x��s)= s+ ��s+ [rf(x+ ��x)�rf(x)� �r2f(x)�x] (58)= s+ ��s+ � Z 10 [r2f(x+ t��x)�r2f(x)]�x dt= s+ ��s+ �R(x; ��x)�xwhere R(x;�x) 4= Z 10 [r2f(x+ t�x)�r2f(x)] dt: (59)Relations (58) and (18a) imply(xi + ��xi)si(�) = (xi + ��xi) [si + ��si + � fR(x; ��x)�xgi]= (1� �)xisi + �2�xi�si + �(xi + ��xi) fR(x; ��x)�xgi ;so that j(xi + ��xi)si(�) � (1 � �)xisij� �2j�xi�sij+ �j(xi + ��xi)j j fR(x; ��x)�xgi j: (60)We will now estimate each of the quantities which appears in the right hand side of (60).Regardless of whether i 2 B or i 2 N , we have from Lemmas 3.3 and 3.7 thatj�xi�sij � (xTs)1�(1=2)�r�1=2 C2�3=2(xT s)1�(3=2)� � C6�2 (xTs)2�2�; (61)where C6 � C2=r: (62)Relation (55) with p = 4 and q = 3=2 and the assumption that (x; y; s) 2 N4(�; �; ) implythat (x; y; s) 2 N3=2(�; �; ). Hence, (xTs)1�(3�=2)=�3=2 � �= � 1 in view of (53) and theassumption that  � �. Using this inequality, Lemma 2.2 and Theorem 3.8, we obtainjxi + ��xij � jxij+ j�xij � C1 + C4 (xTs)1�(3�=2)�3=2 � C1 + C4: (63)Consider now the setK 4= fx 2 IRn j Ax = b; 0 � xi � C1 + C4; 8i = 1; : : : ; ng:17



Clearly, K is a compact subset of fx j Ax = b; x � 0g. Hence, by Lemma 2.4 there exists aconstant C > 0 such thatkr2f(x1)�r2f(x2)k � Ckx1 � x2k; 8x1; x2 2 K:Using this last relation and Theorem 3.8, we obtainj fR(x; ��x)�xgi j � kR(x; ��x)k k�xk� �R 10 kr2f(x+ t��x)�r2f(x)k dt� k�xk� �C2 k�xk2� �CC242 (xT s)2�3��3 : (64)Substituting relations (61), (63) and (64) into (60), we obtainj(xi + ��xi)si(�)� (1 � �)xisij� �2C6�2 (xTs)2�2� + � (C1 + C4) ��CC242 (xT s)2�3��3 �� �2 (xT s)2�3��3 nC6�(xTs)� + (C1 + C4)(CC24=2)o� �2 (xT s)2�3��3 fC6 + (C1 + C4)(CC24=2)g : (65)Relation (56) now follows if we letC5 � C6 + (C1 + C4)(CC24=2): (66)In Lemma 4.3, we show that the property of belonging to the set N4(�; �; ) is \inherita-ble" when  is su�ciently large; that is, we can take a substantial step with parameter �kfrom the current iterate (xk; yk; sk) and remain within N4(�; �; ).Lemma 4.3 Suppose that � 2 (0; 1=4) and � 2 (0; 1] are given and that Assumptions 1{5hold. Then there exists a constant � � 1 independent of � and � that satis�es the followingimplication. If  � � and (x; y; s) 2 N4(�; �; ) then (x+ ��x; y + ��y; s(�)) 2 N4(�; �; )for all � 2 "0; 1 � ��4 (xTs)1�4�# : (67)Moreover, we have that(x+ ��x)T s(�) �  1 � � 1� �2!! xTs; 8� 2 [0; 1]: (68)18



Proof. Consider the constant C5 as in the statement of Lemma 4.2 and de�ne� � maxf1; (2n + 1)C5)g: (69)We will show that � ful�lls the requirements of the lemma. Indeed, let  � � and (x; y; s) 2N4(�; �; ) be given. Note that (69) implies that  � 1. Our �rst task is to show that therange of � values such that(xi + ��xi)si(�) � � h(x+ ��x)T s(�)i1+� ; (70)for all i = 1; 2; : : : ; n, includes the interval in (67). By relations (56) and (27), we have(xi + ��xi)si(�) � (1� �)xisi � C5�2 (xTs)2�3��3� (1� �)�(xTs)1+� � C5�2 (xTs)2�3��3 (71)� �(xTs)1+� "1 � � 1 + C5 (xTs)1�4��4 !# :for all � 2 [0; 1]. Similarly, from relation (57), we obtain(x+ ��x)T s(�) � xTs "1� � 1� nC5 (xTs)1�3��3 !# ; 8� 2 [0; 1]: (72)Relation (55) with p = 4 and q = 3 and the assumption that (x; y; s) 2 N4(�; �; ) implythat (x; y; s) 2 N3(�; �; ). Hence, using (53) we obtain(xTs)1�3�=�3 � �=: (73)We now use the fact that for all � 2 (0; 1) and u � �1, (1 + u)� � 1 + �u. Using thisinequality, (72), (73) and the fact that nC5�= � 1, we �nd that� h(x+ ��x)Ts(�)i1+�� �(xTs)1+� h1 � � �1 � nC5 (xT s)1�3��3 �i h1� �� �1� nC5 (xT s)1�3��3 �i� �(xTs)1+� �1� �(1 + �) �1 � nC5 (xT s)1�3��3 �+ ��2 �1 � nC5 (xT s)1�3��3 �2�� �(xTs)1+� h1 � �(1 + �) �1 � nC5 (xT s)1�3��3 �+ ��2i : (74)The inequality (70) will hold if the right-hand side of (74) is smaller than or equal to theright-hand side of (71). In other words, we want � to be chosen so that�(xTs)1+� h1 � �(1 + �) �1 � nC5 (xT s)1�3��3 �+ ��2i� �(xTs)1+� h1� � �1 + C5 (xT s)1�4��4 �i :19



This is equivalent to(1 + �) 1 � nC5 (xT s)1�3��3 !� �� �  1 + C5 (xTs)1�4��4 ! ;that is, � � 1� ((1 + �) "1� nC5 (xTs)1�3��3 #� "1 + C5 (xTs)1�4��4 #) (75)To show that (x+ ��x; y + ��y; s(�)) 2 N (�; �) for every � satisfying (67), it is su�cientto show that the right hand side of (75) is greater than or equal to 1 � (=��4)(xTs)1�4�.Indeed, we have 1� ((1 + �) "1 � nC5 (xTs)1�3��3 #� "1 + C5 (xT s)1�4��4 #)� 1� (� � (1 + �)nC5 (xT s)1�3��3 � C5 (xTs)1�4��4 )� 1� (� � (xTs)1�4��4 hC5 + 2nC5�(xTs)�i)� 1 � ��4 (xTs)1�4�;where the last inequality follows from the fact that �(xTs)� � 1,  � � and relation (69).We have thus shown that (70) holds for every � satisfying (67). The validity of relation (68)guarantees that (x + ��x; y + ��y; s(�)) 2 N4(�; �; ) for all � satisfying (67). Therefore,to complete the proof of the lemma, it is su�cient to show that (68) holds. Indeed, using(72), (73) and (69), we obtain(x+ ��x)Ts(�) � xTs "1� � + �nC5 (xTs)1�3��3 #� xTs "1� � + �nC5� #� xTs 1 � � 1 � �2!! ;for every � 2 [0; 1].The following lemma will be useful later in the selection of the step sizes �k for algorithmPDA.Lemma 4.4 Suppose that Assumptions 1{5 hold and let � 2 (0; 1=4), � 2 (0; 1] and  � �be given, where � is the constant speci�ed in Lemma 4.3. Let (x; y; s) 2 N4(�; �; ) be given.Consider the solution (�x;�y;�s) of (18) and de�ne �̂ as�̂ = supf� � 0 j x+ ��x � 0; s+ ��s � 0g: (76)20



Then, j�̂ � 1j � ��4 (xTs)1�4�:Proof. >From the de�nition of �̂, it is easy to show that�̂�1 = max(�X�1�x;�S�1�s): (77)It follows from relations (23), (24), (62) and (54) with p = 4 and q = 5=2, and Lemma 3.7that max(maxi2B  j�xijxi ! ;maxi2N  j�sijsi !) � C2(xTs)1�(3=2)�=�3=2r�(xT s)�� C6(xTs)1�(5=2)��5=2 (78)� C6(xTs)1�4��4 :By (69) and (66), we have C6 � C5 � �=(2n + 1) � =2. Using this fact in (78), togetherwith � < 1 and (x; y; s) 2 N4(�; �; ), we �nd thatmax(maxi2B  j�xijxi ! ;maxi2N  j�sijsi !) � C6(xTs)1�4��4� 2��4 (xTs)1�4� � 12 : (79)>From (18a), we have that �xixi + �sisi = �1; 8i = 1; : : : ; n:Using this relation and (79), we obtain����xixi + 1��� � j�sijsi � 2��4 (xT s)1�4� � 12; 8i 2 N;����sisi + 1��� � j�xijxi � 2��4 (xT s)1�4� � 12; 8i 2 B: (80)>From (79) and (80) it follows thatmax(�X�1�x;�S�1�s) = max(�X�1N �xN ;�S�1B �sB): (81)Using (80) again and this last relation, we obtainj�̂�1 � 1j � 2��4 (xTs)1�4� � 12 : (82)21



Hence, j�̂� 1j � �̂ 2��4 (xT s)1�4� � ��4 (xTs)1�4�;since �̂ � 2 due to (82).Finally we show that, given (strong) assumptions on the starting point for AlgorithmPDA, a sequence of iterates for which the duality gap xkT sk converges superlinearly to zerocan be generated.Theorem 4.5 Suppose that the Assumptions 1{5 hold and let � 2 (0; 1=4) be given. Let �be the constant as in the statement of Lemma 4.3. Assume that a constant  � � and astrictly feasible solution (x0; y0; s0) satisfymini x0i s0i � �2� �1=4 �x0Ts0�5=4 ; (83)and � 4= �2� �1=4 �x0T s0�(1�4�)=4 � 1: (84)Then the following statements hold.(i) If (x0; y0; s0) is used as the starting point for Algorithm PDA and the sequence of stepsizes f�kg satis�es�k 2 Jk 4= "0; 1 � ��4 �xkTsk�1�4�# ; 8k = 1; 2; : : : (85)then (xk; yk; sk) 2 N4(�; �; 2); 8k � 0:(ii) Let �� be an arbitrary constant satisfying �� 2 (0; 1 � 4�). If the sequence of step sizesf�kg is de�ned as �k = max 13 ; 1� � �xkTsk���! �̂k; 8k � 0; (86)where � = �x0Ts0��(1�4�) = 2��4 ; (87)and �̂k is any number satisfyingj�̂k � 1j � ��4 �xkT sk�1�4� ; (88)then, �k 2 Jk for all k � 0 and the sequence of duality gaps corresponding to fxk; yk; skgeventually converges q-superlinearly to zero according toxk+1T sk+1 � 319 � �xkTsk�(1+��) : (89)22



Proof. We �rst show (i). In view of Lemma 4.3, it is su�cient to show that fx0; y0; s0g 2N4(�; �; 2). Indeed, relation (84) implies that x0T s0 � 1 and(x0Ts0)1�4�=(��4) = 1=(2):Moreover, using (83) and (84), we obtainmini x0i s0i � �2� �1=4 (x0Ts0)5=4= �2� �1=4 (x0Ts0)(1�4�)=4(x0Ts0)1+�= �(x0Ts0)1+�:Hence, fx0; y0; s0g 2 N4(�; �; 2).We now show (ii), starting with a proof that �k 2 Jk for all k � 0. Indeed, using relation(88) and the fact that (xk; yk; sk) 2 N4(�; �; 2), and in particular that(xkTsk)1�4�=(��4) � 1=(2); (90)we obtain 13 �̂k � 13  1 + ��4 �xkTsk�1�4�!� 13 �1 + 12� = 12 � 1 � ��4 �xkTsk�1�4� : (91)Moreover, from (88), (87) and the fact that �� 2 (0; 1 � 4�), it follows that 1� � �xkTsk���! �̂k�  1� 2��4 �xkT sk���! 1 + ��4 �xkT sk�1�4�!� 1� 2��4 �xkT sk��� + ��4 �xkT sk�1�4�� 1� ��4 �xkT sk�1�4� : (92)Together, (91) and (92) imply that �k 2 Jk. Before showing that (89) holds, we show thatxkT sk converges at least q-linearly to zero. Indeed, by (90) and (88), we have�k � 13 �̂k � 13 "1� ��4 �xkT sk�1�4�# � 16 :23



Using this inequality together with (68) and � 2 (0; 1=4), we obtainxk+1T sk+1 � (1� �k(1 � �=2)) xkTsk � �1� 16(1 � �=2)�xkTsk < 4148xkTsk; (93)as required. We now show that (89) holds. Because of the q-superlinear convergence property,we can choose an integer K such that�(xkTsk)�� � 2=3; 8k � K: (94)In view of (86), this implies that�k = �1 � �(xkTsk)��� �̂k; 8k � K: (95)>From relations (88), (95) and (72), it follows thatxk+1T sk+1 � xkTsk 241 � �k 0@1� nC5 (xkTsk)1�3��3 1A35 �xkT sk 241� �1� �(xkTsk)���  1 � ��4 (xkTsk)1�4�!0@1� nC5 (xkTsk)1�3��3 1A35 ;for all k � K. Using (69), (87), relation (54) with p = 4 and q = 3, and (94), we have thatnC5 (xkT sk)1�3��3 � � (xkT sk)1�4��4 � �2 (xkT sk)�� � 13 :Hence, xk+1T sk+1 � (xkTsk) �1� �1� �(xkTsk)���3�� (xkTsk) h3�(xkTsk)�� + �3(xkTsk)3��i� �3 + 49��(xkTsk)1+��;for every k � K. Hence, (89) holds.A number of choices for �̂k that insures the validity of (88) are possible. The simplestis to set �̂k � 1 but, from Lemma 4.4, we see that choosing �̂k according to (76) is anotherpossibility. A third possibility is to choose�̂k = sup n� j (xk + ��xk; sk(�)) � 0 for all � 2 [0; �] o ;which can be shown, by a technique similar to that used in Lemma 4.4, to satisfy (88).However, this last choice is not attractive since �̂k is not easily computable.24



5 A globally and superlinearly convergent potentialreduction algorithmIn this section we embed the locally convergent algorithm of the previous section in thepotential reduction algorithm of Monteiro [9].We start by outlining a version of the algorithm in [9] in which the centering parameter(namely, the parameter �k in the notation of [9]) is chosen to be zero. The directions soobtained are referred to as primal-dual a�ne scaling directions. For simplicity of exposition,we �x certain parameters in his algorithm to numerical values. The algorithm makes use ofthe Tanabe-Todd-Ye potential function:�q(x; s) = q log xTs� nXi=1 log xisi (96)where q > n.Algorithm PDPRinitially: choose �xed constants � > 1 and � 2 (0; 1) and let (x0; y0; s0) be astrictly feasible point;for k = 1; 2; : : :Find (�xk;�yk;�sk) by solving (18) with (x; y; s) = (xk; yk; sk);Set �k = �k�̂k where �k � 1=3 and�̂k � maxf� j xk + ��xk � 0; sk + ��sk � 0g; (97)De�ne �k = ��mk�k, where mk is the smallest non-negative integer for whichxk + ��mk�k�xk > 0; sk(��mk�k) > 0;and �q(xk + ��mk�k�xk; sk(��mk�k)) (98)� �q(xk; sk) + �(��mk�k)r�q(xk; sk)T " �xk�sk # ;Set (xk+1; yk+1; sk+1) = (xk + �k�xk; yk + �k�yk; sk(�k));end for 25



Some comments are in order. First, there is nothing special with the constant 1=3 whichgives a lower bound for �k. In fact, any positive constant could be used in place of 1=3.Second, �k de�ned in (97) is well-de�ned in the sense that the maximum of the set exists.This can be shown as follows. By relation (18a), it follows that xkT�sk+skT�xk = �xkT sk <0. Hence, some component of either �xk or �sk must be negative. Thus, the maximum in(97) is �nite.The following global convergence theorem can be proved as a consequence of the resultspresented in Monteiro [9].Theorem 5.1 In Algorithm PDPR, limk!1 xkTsk = 0;and the sequence f(xk; yk; sk)g has at least one limit point. If (�x; �y; �s) is one such limit pointthen �x solves the primal problem (1), while (�x; �y) solves the corresponding dual problem (2).The theorem above guarantees that AlgorithmPDPR converges globally from any feasiblestarting point. To prove local superlinear convergence of Algorithm PDPR, we need theassumption stated below that some iterate (xK; yK; sK) of the algorithm satis�es a conditionsimilar to (83) and (84). In the �nal result of this section, we show that this assumption canbe dispensed with for certain values of q.Assumption 6 For �xed constants  � � and � 2 (0; 1=4), assume that an integer K > 0is known for which the iterate (xK; yK; sK) of Algorithm PDPR satis�esmini xKi sKi � �2� �1=4 �xKTsK�5=4 ; and (99)� = �2� �1=4 �xKT sK�(1�4�)=4 � 1: (100)If Assumption 6 holds then the following rule for selecting the sequence of initial stepsizes can be employed: �k 4= max 13 ; 1� �k �xkT sk���! �̂k; (101)where �� 2 (0; 1 � 4�) and �k = ( any value; if k < K;� if k � K, (102)with � 4= 2��4 = (xKT sK)�(1�4�):Superlinear convergence follows from the results of Section 4 if we can show that �k = �kfor all k su�ciently large. That is, the relation (98) must be satis�ed with mk = 0 for allsu�ciently large k. We have the following result:26



Theorem 5.2 Suppose that Assumptions 1{6 hold. Assume that the sequence of initial trialstep sizes is chosen as described in the previous paragraph. Then Algorithm PDPR convergessuperlinearly with q-order at least 1 + ��.Proof. First, we observe that if (xk; yk; sk) 2 N (�; �; 2) then Lemma 4.4 and Theorem4.5(ii) imply that the initial k-th step size satis�es �k 2 Jk. Since �k � �k, we also have that�k 2 Jk. Lemma 4.3 then implies that (xk+1; yk+1; sk+1) 2 N (�; �; 2). Since (xK; yK; sK) 2N (�; �; 2), the above argument implies that (xk; yk; sk) 2 N (�; �; 2), for all k � K. Asmentioned in the discussion above, superlinear convergence with q-order at least 1+�� followsas a consequence of Theorem 4.5(ii) once we show that �k satis�es the following relation�q(xk + �k�xk; sk(�k))� �q(xk; sk) � ��kr�q(xk; sk)T " �xk�sk # ; (103)for every k su�ciently large. Indeed, from Theorem 5.1, we know that xkT sk ! 0 as k tendsto 1, that is Algorithm PDPR converges globally. Therefore, we can choose K1 � K suchthat � �xkT sk��� � 23 ; 8k � K1;and so �k = max 13 ; 1 � � �xkT sk���! �̂k = �1� �(xkT sk)��� �̂k; 8k � K1: (104)Moreover, it follows from (104) and Lemma 4.4 that����k � �1� �(xkTsk)������ = �1 � �(xkT sk)��� j�̂k � 1j� j�̂k � 1j� ��4 (xkTsk)1�4�� �2 (xkT sk)��:Hence, we obtain that �1 � 32�(xkT sk)��� � �k � �1 � 12�(xkTsk)��� : (105)In the remainder of the proof, we drop the superscript and subscript k for the sake of clarity.The right hand side of (103) is easy to evaluate. Indeed, from (18a) and the fact that by(105), � � 1, we have��r�q(x; s)T " �x�s #= �� (� qxT ss�X�1e�T �x+ � qxTsx� S�1e�T �s)27



= �� ( qxT s(sT�x+ xT�s)� nXi=1 ��xixi + �sisi �)= ��� (q � n)� ��(q � n):We now evaluate the left hand side of (103). >From (57) it follows that(x+ ��x)Ts(�)xT s � 1 � �+ nC5 (xTs)1�3��3 ; 8� 2 [0; 1]: (106)Moreover, it follows from (56) that for i = 1; : : : ; n(xi+��xi)si(�)xisi � 1 � � � C5 (xT s)2�3��3(xisi)� 1 � � � C5 (xT s)1�4��4 ; 8� 2 [0; 1]; (107)where the last inequality is due to the fact that xisi � �(xTs)1+�. Using (106), (107) andthe de�nition of �q given in (96), we obtain�q(x+ ��x; s(�))� �q(x; s)= q log "(x+ ��x)Ts(�)xTs #� nXi=1 log "(xi + ��xi)si(�)xisi #� q log "1� �+ nC5 (xTs)1�3��3 #� nXi=1 log "1� � �C5 (xTs)1�4��4 #= (q � n) log(1 � �) + q log "1 + nC5(xTs)1�3��3(1� �) #� n log "1 � C5(xTs)1�4��4(1 � �) # ;for all � 2 [0; 1]. Setting � = �k in the above relation and using (105), we obtain�q(x+ ��x; s(� ))� �q(x; s)� (q � n) log �32�(xTs)���+ q log "1 + nC5(xTs)1�3�����3(�=2) #� n log "1� C5(xTs)1�4�����4(�=2) # :Consider each of the three terms in this expression. Since xkTsk ! 0 and �� 2 (0; 1� 4�), wehave for k su�ciently large that(q � n) log �3�2 (xTs)��� � �2(q � n)�;28



q log "1 + nC5(xTs)1�3�����3(�=2) # � q � n2 �;�n log "1� C5(xTs)1�4�����4(�=2) # � q � n2 �:Hence, for k su�ciently large,�q(xk + �k�xk; sk(�k))� �q(xk; sk) � �(q � n)� � ��kr�q(xk; sk)T " �xk�sk # :We now address two important issues in the implementation of Algorithm PDPR, namely,the choice of  greater than the (unknown) constant �, and the availability of an index Ksuch that the conditions (99) and (100) are satis�ed. We address the latter issue �rst. Givenany  > 0, we show that a K satisfying the two conditions of Assumption 6 is alwaysavailable provided that the parameter q that de�nes the potential function �q lies in therange (n; n+ 1=4).Theorem 5.3 Let  > 0 and � 2 (0; 1=4) be given and assume that q 2 (n; n + 1=4). Thenthere exists an integer K such that both (99) and (100) hold.Proof. For convenience, we de�ne the quantity � = q � n so that � 2 (0; 1=4). Since thepotential function �q decreases at each iteration, we have�q(xk; sk) � �q(x0; s0) 4= M:Now, for any i 2 f1; 2; : : : ; ng, we have(1 + �) log xkTsk � log xki ski� M � (n� 1) log xkTsk +Xj 6=i log xkj skj� M � (n� 1) log �xkT sk � xki ski �+Xj 6=i log xkj skj� M � (n� 1) log(n� 1)4= �M:Hence log xki ski�xkT sk�1+� � � �M=) xki ski � e� �M �xkT sk�1+�=) xki ski � �2� �1=4 �xkTsk�5=48<:e� �M " �2 #1=4 �xkT sk���1=49=; :29



Hence (99) will be satis�ed for k = K if we havee� �M " �2 #1=4 �xKT sK���1=4 � 1:Since xkTsk ! 0 by Theorem 5.1, this last condition, and hence (99), is guaranteed to holdfor any su�ciently large choice of K. By increasing K if necessary, we can also ensure that(100) is also satis�ed. Hence, the result follows.In the remainder of the paper, we assume that q 2 (n; n+ 1=4).The remaining issue is the choice of a constant . In order for the theory of sections 4and 5 to hold, we require that  � �, where the constant �, which depends on the problemdata but not on �, is not known. Our strategy is similar to one that has been suggested forthe choice of penalty parameter in the nonsmooth penalty function approach for constrainedoptimization (see Fletcher [2]); namely, to embed Algorithm PDPR in an outer loop in which is successively increased until a suitable value is found. We formalize this procedure asfollows:Algorithm G-PDPRinitially: Choose �xed constants � > 1, �� 2 (0; 1), � 2 (0; (1� ��)=4), � 2 (0; 1)and 0 � �;Let (x0; y0; s0) be a strictly feasible point;for ` = 0; 1; : : :Phase 1:Apply Algorithm PDPR with  = `, de�ning the initial steps �kby (101), with �k arbitrary;terminate Phase 1 at the �rst iterate k = K` for which (99) and (100)hold with K = K`.Phase 2:Set � = (xK`TsK`)�(1�4�);Set � = (2=�)1=4(xK`T sK`)(1�4�)=4;Continue Algorithm PDPR with �k � �;terminate Phase 2 if any of the following three conditions is violatedby the current iterate (xk; yk; sk):30



(xk + �k�xk; yk + �k�yk; sk(�k)) 2 N (�; �; 2); (108)j�̂k � 1j � ��4 (xkTsk)1�4�; (109)(xk + �k�xk)T sk(�k) � 319 � �xkT sk�(1+��) : (110)Set `+1  10` and ` `+ 1;end forThe increase factor of 10 for  can of course be replaced by any constant that exceeds 1.Note that Algorithm G-PDPR is a special case of Algorithm PDPR, in which we de�ne thechoice of initial step size in a somewhat elaborate way. Note also that the choices of �� and� guarantee that � 2 (0; 1=4) and that �� 2 (0; 1� 4�).The following result guarantees global and superlinear convergence of Algorithm G-PDPR.Theorem 5.4 Suppose that q 2 (n; n+1=4) and that Assumptions 1{5 hold. Then AlgorithmG-PDPR converges converges globally and superlinearly with q-order at least 1 + ��Proof. As noted above, Algorithm G-PDPR is simply a special case of Algorithm PDPR,and so global convergence follows as a consequence of Theorem 5.1.To prove local convergence properties, we show �rst that the number of \outer loops" inAlgorithm G-PDPR is �nite. Let us assume for contradiction that this is not true. Thenthere must be a loop index ` for which ` > �. Theorem 5.3 implies that Phase 1 of loop` terminates, while Lemma 4.4 and Theorem 4.5 ensure that conditions (108), (109), and(110) are not violated on any subsequent iteration. This means that Phase 2 of loop ` doesnot terminate, giving a contradiction.Now consider the �nal loop of Algorithm G-PDPR. Since all the conditions (108), (109)and (110) are satis�ed for every k su�ciently large, it is clear from (110) that superlinearconvergence with Q-order at least (1 + ��) is obtained if we can show that �k = �k, for allk su�ciently large. The proof that this holds is identical to that of Theorem 5.2. We needto observe that (105) can be obtained by using relation (109), while the relations (106) and(107) follow from Lemma 4.2 and (108).6 Conclusions and discussionWe have described an algorithm for general convex programming problems that convergesglobally and superlinearly under fairly weak assumptions. An interesting feature of the globalconvergence framework is that the choice of q for the potential function does not depend on�. Since smaller values of q�n are typically (and, for some algorithms, rigorously) associated31



with slower convergence, the choices of q we have described in Section 5 are preferable tothe more obvious choice q = n + �, which would have made for simpler analysis.The analysis can be generalized in at least two ways. First, a centering parameter canbe introduced into the step calculation (18). Equation (18a) can be replaced bySk�xk +Xk�sk = �SkXke+ �k(xkT sk)=n;where �k 2 [0; �], � 2 [0; 1). The second term on the right hand side serves to bias the steptowards the central path, and is a common feature of most interior point algorithms. Theglobal convergence analysis in Monteiro [9] still holds when �k is chosen in this way, whileour local convergence analysis still goes through provided that �k approaches zero su�cientlyrapidly (that is, like some power of (xkT sk)) during the latter stages of the algorithm.A second possible generalization is to functions whose Hessian satis�es a H�older continuitycondition kr2f(x1)�r2f(x2)k � Cxkx1 � x2k(where  2 (0; 1]) in place of the Lipschitz continuity condition in Assumption 2. In thiscase, it is still possible to design an algorithm with global and superlinear convergence. Theq-order for the convergence of the duality gap to zero may lie in the range [1; 1 + ).AcknowledgmentPart of this work was done while the �rst author was visiting the Mathematics and Com-puter Science Division of Argonne National Laboratory. He thanks Argonne for its �nancialsupport and for the congenial scienti�c atmosphere that it provided.References[1] J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical program-ming, Research Report 1050, iComputer Sciences Department, University of Wisconsin,Wisconsin, Madison, 1991. SIAM Journal on Control and Optimization, to appear.[2] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York,second ed., 1987.[3] J. Ji, F. Potra, and S. Huang, A predictor-corrector method for linear comple-mentarity problems with polynomial complexity and superlinear convergence, TechnicalReport, Department of Mathematics, The University of Iowa, Iowa City, Iowa, 52240,USA, August 1991.[4] J. Ji, F. Potra, R. A. Tapia, and Y. Zhang, An interior{point method withpolynomial complexity and superlinear convergence for linear complementarity problems,Technical Report TR{91{23, Dept. of Mathematical Sciences, Rice University, Houston,TX 77251, USA, 1991. 32
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