
DOMAIN DECOMPOSITION: A BLOWUP PROBLEM ANDTHE GINZBURG{LANDAU EQUATIONSMan Kam KwongMathematics and Computer Science DivisionArgonne National LaboratoryArgonne IL 60439-4801ABSTRACT. In two of our recent projects, the technique of domain decomposition playsa crucial role in the numerical integration of the partial di�erential equations. In ourproblems, the local behavior varies because of the nonlinear and singular nature of theequations. Attempts to introduce di�erent length scales did not lead to improvement. Wefound that di�erent forms of the equations have to be used over di�erent subdomains.The �rst project arises in an e�ort to determine the pro�le at the moment of blowup orquenching of a nonlinear heat equation. The second project arises in the investigation ofthe Ginzburg-Landau equation in the theory of superconductivity.1. Blowup and Quenching1.1. PROBLEM FORMULATIONLet 
 be a domain in Rn with boundary @
, and let p > 1 and � > 0 beconstants. We are interested in blowup phenomena for the nonlinear heatproblemut(x; t) = �u(x; t) + �up(x; t); x 2 
; t > 0; (1)u(x; t) = �; x 2 @
; t > 0; (2)and the related problemut(x; t) = �u(x; t) + �eu(x;t); x 2 
; t > 0; (3)u(x; t) = �; x 2 
; t > 0; � > 0: (4)With a suitable scaling, we can reduce � to 1 in (2) and � to 0 in (4). In anappropriate sense, (3) is the limit form of (1) as p!1.It is well known that if the initial pro�le u(x; 0) and/or � is su�cientlylarge, the solutions of the initial-boundary value problems will blow up at



2some �nite time. More speci�cally, there exists a �nite T > 0, such that thesolution u(x; t) exists for all 0 < t < T , butlimt!T max fu(x; t) : x 2 
g =1: (5)The phenomenon of blowup has been studied extensively. Criteria on thenonlinear source function and initial pro�le that lead to blowup are known.Estimates on the blowup time have been derived, and many properties ofthe set of blowup points have been established. There are so many paperson the subject that it is impossible to cite them all; a substantial number ofreferences can be found in the monograph by Bebernes and Eberly [2]. Thesurvey paper by Friedman and McLeod [13] discusses blowup phenomenafor higher-order parabolic equations and hyperbolic equations. Blowup hasalso been observed in solutions of the nonlinear Schr�odinger equation; see,for example, Landman et al. [21].A related phenomenon is exhibited by the solutions of the equationut(x; t) = �u(x; t) + �(1� u(x; t))p ; x 2 
; t > 0; 0 < p < 1; (6)subject to the same boundary conditions (2). In this case, if the initial pro�leand/or � is su�ciently large, then there exists a �nite time T such that thatsolution u(x; t) exists for all 0 < t < T butlimt!T max fu(x; t) : x 2 
g = 1: (7)Here, the solution u(x; t) remains bounded, but a singularity in the deriva-tives of u(x; t) occurs at T , as the second term on the righthand side thenbecomes in�nite. This phenomenon is called quenching. A survey of thesubject together with a useful reference list has been given by Levine [22].1.2. BEHAVIOR NEAR BLOWUPThere is a great deal of interest in the asymptotic behavior of the solution of(1) and (3) near the blowup time, stimulated by the classical work of Gigaand Kohn [15]. Papers by Bressan [5, 6], Filippas and Kohn [11], and Herreroand Vel�azquez [16] are only a small sample of the more recent work on thesubject. It is interesting to note that similar work on the quenching problemis lacking. Below, we shall describe a way to unify the two subjects througha single equation (9). This suggests a means to extend known results on thephenomenon of blowup to cover the phenomenon of quenching.



31.3. THE REGULARIZING TRANSFORMThe motivation for our recent work stems from the search for a reliablenumerical method to compute the heat pro�le near the blowup/quenchingtime T , as well as the limiting pro�le at time T , the so-called blowup orquenching pro�le. Obviously, the unboundedness of u(x; t) or its derivativesrenders any regular numerical scheme for solving parabolic equations uselessonce t is near T . Numerical estimations for the blowup or quenching timehave been carried out, usually by solving the parabolic equation until thesolution or its derivatives become larger than some arbitrary bound. Theonly systematic numerical study of the pro�le in the vicinity of the blowuptime that we are aware of is the rescaling algorithm proposed by Berger andKohn [4], based on the asymptotic results obtained in Giga and Kohn [15].No similar work has been done on the quenching problem yet.Recently, Bellout [3] proposed a new approach based on a change of vari-able, which is inspired by known asymptotic results for the solutions. Themethod avoids the costly rescaling. Following Bellout, we use the transfor-mationv = u1�p �v = e�u� (8)to change (1) ((3)) to the equationvt = �v � �� � jrvj2v ; (9)where � = p=(p� 1) > 1 for (1) and � = 1 for (3). One can easily normalizethe equation with a scaling in the space variable to reduce � to 1. In theone-dimensional experiments we describe below, we retain � in the equationand, instead, choose the scaling to reduce the domain to the unit interval.We discovered that by using the change of variablev = (1� u)p+1; (10)(6) was transformed into an equation of the form (9), where � 2 (0; 1). Wehave thus found a uni�ed approach to treat all three equations (1), (3), and(6).Blowup/quenching in u(x; t) now corresponds to the vanishing of v(x; t).The new variable v(x; t) remains bounded up to the blowup/quenching time.However, the previous di�culty of having to deal with unbounded functionsis replaced by having to deal with the potential singularity of the termjrvj2=v as v ! 0. Bellout believes that this new di�culty is only apparentand conjectures that this term remains bounded uniformly up to the blowuptime. The idea is that near where v is a minimum, rv is also small, sothe ratio jrvj2=v remains bounded. It can be shown that the conjectureis equivalent to the assertion that �v remains uniformly bounded. If the



4conjecture is true, then (9) is a regular parabolic equation, and classicalmethods of integration can be applied with no di�culty up to the blowuptime.In an attempt towards settling the conjecture, Bellout proved in [3] auseful regularity result in the one-dimensional case for (1) with p > 5, whichimplies that vx is bounded for p > 5. Using a re�ned argument of Bell-out's proof, we are able to extend his regularity result to all p > 1 as wellas to cover the case of quenching. Furthermore, we are able to show thatv2x=(vj ln vj
) is bounded for some 
 > 0. The proofs will be given elsewhere.We have also established a rather long list of assertions that are equivalentto the conjecture. The conjecture is, however, still open.The partial regularity results are nevertheless important because theyimply that the di�erential equation satis�ed by v� for some suitable power� > 1 has regular coe�cients. Thus, v� can be solved numerically as a regularparabolic problem with classical algorithms, and the challenge to determinethe blowup pro�le can essentially be considered answered. In practice, how-ever, it is much more convenient to solve the di�erential equation for v thanthe di�erential equation for v� . It is also an intellectual challenge to be ableto resolve the conjecture.1.4. NUMERICAL SIMULATIONWe have performed many numerical experiments, and the results alwayssupported the conjecture that the term jrv�j2=v is uniformly bounded upto the blowup time. Most of the experiments were done using MATLAB,version 4.0. An interesting problem arises when � is increased beyond 4.That is when domain decomposition comes in.We have treated both one-dimensional and two-dimensional problems.For the sake of simplicity, we con�ne our discussion below to the one-dimensional case, with 
 = (0; 1). Instead of dealing with Equation (9) di-rectly, we solve for U(x; t) = 1�v(x; t). This means that we have to deal onlywith the simpler homogeneous boundary conditions U(0; t) = U(1; t) = 0.Furthermore, the evolution of U(x; t) now resembles more that of the origi-nal variable u(x; t); U(x; t) increases towards 1 as u(x; t) blows up, whereasv(x; t) decreases.We use the method of lines, discretizing only the space variable x, toobtain a matrix ordinary di�erential equation in t,dUdt = LU + �+ � U2x1� U ; (11)where U is a column vector representing the values of U(x; t) at the chosennode points, L is the usual �nite-di�erence tridiagonal matrix representingthe second derivative, and Ux is some suitable �nite-di�erence approximation



5of the �rst derivative. The fraction in the last term is to be understood in thecomponentwise sense. The experiments show that U develops some sort of aboundary layer in which Ux assumes very large values. To improve accuracy,we use a �ve-point numerical di�erentiation formula to approximate Ux.In our initial experiments, we used a uniform grid partitioning [0; 1] into49 or 99 grid points. We integrate the system of Equations (11) over timeintervals of size k = tn+1 � tn. As is well known, the system is sti� andrequires special techniques such as the Crank-Nicholson and other implicitmethods. In our situation, we exploit the fact that the coe�cient matrix Lis a constant. Over each time interval [tn; tn+1], we approximate the nonho-mogeneous part of (11), �+ �U2x=(1�U), by a linear function in t, namely,A+ Bt, where A and B are vectors given byA = �+ � U2x1� U �����t=tn ; A +Bk = �+ � U2x1� U �����t=tn+1 : (12)The solution U(tn+1) at the new time step is estimated by solving theapproximated form of (11) exactly:U(tn+1) = U(tn) +K1(LU(tn) + A) +K2B; (13)where K1 and K2 are constant matrices given byK1 = L�1(LLk � I); (14)K2 = L�2(eLk � I � Lk); (15)where I denotes the identity matrix. This formula, however, cannot be useddirectly since only A, not B, is determinable from U(tn) by using (12). Weuse the usual predictor-corrector technique: we take an initial guess B = 0and use (13) to predict the value U(tn+1), which is then substituted intothe second formula in (12) to give a corrected value for B. This step may beiterated to give successively better estimates of B, but in practice we �ndthat one cycle is usually su�cient. Note that the matrices K1 and K2 can becomputed easily once the spectral decomposition of L is known. Moreover,they need to be computed only once for each choice of k.Our method of integration is unconditionally stable for any value of k,and thus the choice of k is restricted only by the error introduced in theapproximation of the nonhomogeneous part of the equation. The criterionwe used to determine a good choice of k is to compare the di�erence inthe results obtained by using k and 2k, respectively. A smaller k is usuallychosen to repeat the last few time steps before the blowup time if higheraccuracy is desired near the �nal moment.



6 Our numerical scheme works e�ciently and accurately for a wide rangeof the parameter � and for � < 3. For illustration we include the graphsfrom three typical runs. We used 99 grid points and the time step k = 10�4.
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7ample of a nonsymmetric initial pro�le. Figure 3 is an example of a solutionblowing up at more than one point.
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atter near thecenter of the interval. This produces, moments before blowup, two \bound-ary layers" near the endpoints, in which the solution shoots up sharply from0 to almost 1 within a short distance. For � = 4, near the blowup time,U(x; t) developed two \horns" as shown in Fig. 4. In the next time step, thesolution blew up at two points. The same phenomenon prevails for largervalues of �. If one had blindly trusted computers, one could have declaredthe discovery of a new kind of blowup behavior. However, it has been rig-orously proved (see, for example, Friedman and McLeod [13]) that if theinitial pro�le is symmetrical and has only one local maximum, at the mid-point of the interval, then all subsequent pro�les behave in the same way. In



8particular, it is impossible for two \horns" to develop and the solution canblow up only at a single point, namely, the midpoint of the interval.
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9that became progressively �ner towards the endpoints: we started with 20uniformly spaced grid points in [0; 1], subdivided the �rst and last intervalsinto 10 subintervals, and repeatedly subdivided the resulting �rst and lastintervals. Our program includes a subroutine to compute the coe�cients fora nonuniform four-point �nite di�erence formula. To our dismay, no matterhow �nely we subdivide the �rst and last intervals, \horns" always occur atthe second or third grid point next to the endpoints.We are puzzled by the persistence of the instability. We believe thatthe explanation lies in the fact that the term v2x=v is of the same order ofmagnitude as the leading term vxx. The stability of the numerical schemeis upset by the presence of the nonlinear term in the same way that a largetime step in the Euler method for solving parabolic equations can lead toinstability. It would be interesting to see a rigorous proof.We �nally succeeded in circumventing the instability problem by us-ing the technique of domain decomposition. We discovered that within theboundary layers the original form of the equation, namely, (1), could besolved without any instability problem. Theory guarantees that if we stayaway from the blowup points (there are only a �nite number of them), theoriginal solution u(x; t) remains uniformly bounded up to T , even though itmay be large.Our algorithm is as follows. Identify two suitable subdomains that con-tain the boundary layers. In our experiments, we used [0; 0:1] and [0.9,1].Based on the value of U at tn, compute the solution in [0:1; 0:9] at the newtime step tn+1 by integrating (11) over the entire domain [0; 1] using themethod described above and discarding the part in the boundary layers.Solve the original equation (1) over each of the boundary layers, requiringthat the solution be continuous across the common boundary point of thesubdomains. The programs have been tested for values of � as high as 20.In theory, the requirement for the matching of the solution at a singlecommon boundary point between two subintervals is not su�cient to guar-antee a smooth matching, for there is the possibility of a jump in the �rstderivative. The proper algorithm should use an iterative scheme to matchthe solution in the common boundary points of overlapping subintervals. Inall our experiments, however, the simple matching procedure su�ces.2. The Ginzburg-Landau Equations2.1. PROBLEM FORMULATIONOur second example concerns the Ginzburg-Landau equations in the theoryof superconductivity. Part of the work reported here is done in collaborationwith H. G. Kaper. More details will appear in a forthcoming joint paper[18]. For the physical background, we refer to the many excellent references



10cited in our earlier work [18, 19, 20] and also in the papers by Du et al. [8,9].We are interested in �nding a complex scalar  and a three-dimensionreal-valued vector A, both functions of position in a given domain 
 2 R3,that minimize the Helmholtz free-energy functional:G( ;A) = Z
 ��j j2+ 12 j j4 + j(r� iA) j2 + �2 jr�Aj2�d
; (16)where i = p�1 and � is a characteristic constant of the superconducting ma-terial. The Euler-Lagrange equations for this variational problem are calledthe Ginzburg-Landau equations.(r� iA)2 + �1� j j2� = 0; (�2r��j j2)A+ Im( �r ) = 0:(17)Of particular interest is the quantity j j which represents the amountof superconducting activity going on at the pertinent location. For type-II superconductors, characterized by the fact that � > 1=p2, Abrikosov [1]showed analytically, by using singular perturbation techniques, the existenceof solutions that exhibited a lattice pattern.
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Fig. 5. Vortex latticeFigure 5 shows the contour plot of j j for one such solution in a two-dimensional domain that models a thin-�lm superconductor as a normalmagnetic �eld. The plot resembles vortices, and indeed superconducting cur-rents are 
owing along the contour lines in circular paths.The �rst attempt to solve the Ginzburg-Landau equations numericallywas by Doria, Gubernatis, and Rainer [10], who used the method of simu-lated annealing on a discrete version of the Helmholltz energy. Recently, our



11colleagues at Argonne applied more sophisticated optimization and linearalgebra techniques to tackle three-dimensional versions of the Ginzburg-Landau equations that model layered superconductors [14]. Du et al. [8, 9]used �nite element approaches in their work.In our recent work [17, 19, 20] we proposed a new method, the sweepingalgorithm, to solve the �ve-point stencils that results from discretizing thetwo-dimensional Ginzburg-Landau equations, thus leading to an alternativenumerical method for solving the Ginzburg-Landau problem. The sweepingalgorithm is of interest in itself, as it can be used to invert banded matricesand general �ve-point stencil arising from other partial di�erential equations.The method o�ers great potential in the exploitation of parallelism and thetechnique of domain decomposition.In our numerical study of the Ginzburg-Landau model, the questions wehave investigated include the e�ect of the aspect ratio of the rectangularregion 
 on the free energy, the relation between the free energy and theaverage magnetic �eld, and the simulation of vortex pinning by impurities.2.2. THE GAUGE TRANSFORMThe boundary conditions imposed on the problem are not the usual peri-odic type. In fact, the vector potential cannot be periodic if the externalmagnetic �eld is nonzero. The situation is further complicated by the factthat the Helmholtz energy functional, and hence also the Ginzburg-Landauequations, are invariant under a class of transformations called gauge trans-forms. More precisely, given  and A, one can pick any real-valued functionof position �(x), called a gauge, and form a new pair =  ei�(x); A = A+r�(x): (18)One can easily verify that the new pair gives the same Helmholtz energy asthe original pair. If the original pair is a solution of the Ginzburg-Landauequations, so is the new pair. Other physical quantities derivable from eachpair, such as current and magnetic �eld, are also the same. The two pairsindeed are di�erent representations of the same physical state. Periodicityin physical states demands only that the functions on opposite sides of thedomain di�er by a gauge. This leads to the so-called modi�ed boundaryconditions.We con�ne our discussions to two-dimensional simulations. In this case,one can arrange to have strict periodicity in one direction and modi�edperiodicity in the other. One can also make the simpli�cation that � is alinear function of the coordinate along the appropriate edge. For instance, fora rectangular domain, [0; Lx]� [0; Ly] that contains n vortices, the boundaryconditions takes the form (0; y) =  (Lx; y);  (x; 0) =  (x; Ly)eigx; (19)



12 A1(0; y) = A1(Lx; y); A1(x; 0) = A1(x; Ly) + g; (20)A2(0; y) = A2(Lx; y); A2(x; 0) = A2(x; Ly); (21)where g = 2n�=Lx, and A1, A2 are the two components of A.2.3. DOMAIN DECOMPOSITION TECHNIQUEThe value of g in the boundary conditions (20) and (21) depends on thenumber of vortices inside the domain, and is related to the total magnetic
ux through the region. For a region that contains many vortices, g canbe very large. This poses the following problem. Suppose that  (x; 0) isa smooth, slowly varying, but nontrivial function. Its counterpart on theopposite edge must be a wildly oscillating function, as a result of the phasefactor eigx. Likewise, if  is slowly varying on the righthand edge, its valueon the left-hand edge must oscillate wildly. It is impossible to �nd a gaugetransform that gives slowly oscillating boundary values on both edges.We illustrate this situation with the plots of the real and imaginary partsof  for a region that contains two of the vortices depicted in Fig. 5. Thenumerical simulation was performed using � = 5. For the region shown,Lx = 3p3 and Ly = 3, and the number of grid points used is 24� 24.
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133p3, the number of oscillations of  increases by 2, so that at the right-hand boundary,  has 20 maxima and 20 minima. It is no longer possibleto approximate  adequately using only 24 grid points in the y direction.
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14along the x direction. The plot shown in Fig. 8 is simply duplicated when alarger rectangular region is used.The method we used to overcome the di�culty posed by the oscillationof  is to divide the domain into smaller subdomains. The Helmholtz en-ergy is iteratively minimized over each subdomain while holding  and A�xed in the other subdomains (this process can be performed in parallel).The idea of partial minimization is simply a block Gauss-Seidel procedure.The important new idea is that we are not solving directly for  and A ineach subdomain, but rather for an equivalent pair  and A derived froma suitable gauge that can smooth out the oscillations in  on both edgesof the subdomain (this approach is now possible because the subdomain issmaller). The gauge is associated with each subdomain and may vary fromone subdomain to the next. The original  and A for the entire domain canbe recovered by an inverse gauge transformation over each subdomain.After each iterative cycle, the Ginzburg-Landau equations are satis�ed inthe interior of all the subdomains, but not on the common boundaries. Attimes the errors at these boundary points can be alarmingly huge, but onemust remember that a better measure of the error is some suitable averageerror over the entire domain. The errors on the common boundaries decreasewith the iterations. A usual technique in the method of domain decompo-sition to speed the improvement is to �nd an appropriate linking operatorthat can give a correction term to the solution found in a subdomain basedon the solution value computed in the surrounding subdomains. Instead, weuse a new approach involving two overlapping decompositions.As an example, we can use, as the �rst decomposition, N vertical strips ofuniform width cut o� starting from the left edge of the domain. The seconddecomposition makes the cuts exactly midway between the edges of thesubdomains in the �rst decomposition. The two \half-strips" at the left andright ends of the domain are joined to form one subdomain. Another exampleis to use N vertical strips in the �rst decomposition and N horizontal stripsin the second (the familiar alternating direction technique).The two decompositions are used alternatively in successive cycles of thepartial minimization procedure. The rationale behind the proposed methodis that the errors incurred in the previous cycle are now in the interior ofthe subdomains of the current decomposition, far away from the commonboundaries, and so will have less e�ect in disturbing the solution values atthese points. Numerical results show that the use of overlapping decom-positions greatly improves the rate of convergence over the use of a �xeddecomposition (without the help of a linking operator).



153. ConclusionDomain decomposition is an excellent device to introduce and exploit paral-lelism in designing numerical algorithms for solving partial di�erential equa-tions. It has also been realized that domain decomposition is sometimescalled for because the problem has rich local structures; see, for example,the remarks by Chin and Hedstrom in [7]. Problems involving multiple scalesbelong to this category.We have given in this article two new examples in which the techniqueof domain decomposition forces its way into the numerical treatment of theproblems. Not only does domain decomposition provide an e�cient meansof computation, but it appears to be the only way to resolve the di�cultieswe encountered in the investigation.Traditionally, domain decomposition methods are well suited for ellipticproblems. Our �rst example involves a semilinear parabolic problem; thesecond example has application in the theory of superconductivity. In bothexamples, the main cause of the di�culties is not in the di�erence in lengthscales but in the singular and nonlinear nature of the underlying equations.Another characteristic of our examples is that di�erent forms of the equa-tions must be solved in di�erent subdomains in order to avoid instability orsingularity of the solutions.Using sets of overlapping domain decompositions in alternative iterativecycles can e�ectively speed up convergence. Whether further improvementscan be achieved by incorporating other traditional techniques such as con-jugate gradient will the the subject of future investigations.Although asymptotics does not seem to have played an explicit role in ourdiscussion, it is instrumental in guiding us to choose the correct transforma-tion needed in our �rst example and in the analytical work that Abrikosovdid in [1]. Without the asymptotic results, no one would have ever guessedthe lattice structure of vortices and the modi�ed periodic form of the bound-ary conditions.Future work will include three-dimensional domains, more general non-linear terms, and more realistic re�nements of the various models.AcknowledgementsThis work was supported by the Applied Mathematical Sciences subpro-gram of the O�ce of Energy Research, U. S. Department of Energy, underContract W-31-109-Eng-38.References[1] Abrikosov, A. (1957) `On the magnetic properties of superconductors of the secondtype', Zh. Eksperim. i Teor. Fiz., 32, 1442{1452. (English translation: Soviet Phys.JETP, 5 1174{1182.)
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