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ABSTRACT. In two of our recent projects, the technique of domain decomposition plays
a crucial role in the numerical integration of the partial differential equations. In our
problems; the local behavior varies because of the nonlinear and singular nature of the
equations. Attempts to introduce different length scales did not lead to improvement. We
found that different forms of the equations have to be used over different subdomains.
The first project arises in an effort to determine the profile at the moment of blowup or
quenching of a nonlinear heat equation. The second project arises in the investigation of
the Ginzburg-Landau equation in the theory of superconductivity.

1. Blowup and Quenching

1.1. PROBLEM FORMULATION

Let © be a domain in R™ with boundary 992, and let p > 1 and A > 0 be
constants. We are interested in blowup phenomena for the nonlinear heat
problem

(@, t) = Aula, t)+ MAuP(z,t), 2 €Q,t>0, (1)

wz,t)=a, x€0dQ,t>0, (2)
and the related problem

w(z,t) = Au(z, t) + A"V 2 e Q1> 0, (3)

w(z,t)=F,2 € Q,t>0,A>0. (4)

With a suitable scaling, we can reduce a to 1in (2) and 5 to 0in (4). In an
appropriate sense, (3) is the limit form of (1) as p — oc.

It is well known that if the initial profile u(x,0) and/or A is sufficiently
large, the solutions of the initial-boundary value problems will blow up at
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some finite time. More specifically, there exists a finite T' > 0, such that the
solution wu(z,t) exists for all 0 < ¢ < T, but

lim max {u(z,t) : 2 € Q} = 0. (5)

t—

The phenomenon of blowup has been studied extensively. Criteria on the
nonlinear source function and initial profile that lead to blowup are known.
Estimates on the blowup time have been derived, and many properties of
the set of blowup points have been established. There are so many papers
on the subject that it is impossible to cite them all; a substantial number of
references can be found in the monograph by Bebernes and Eberly [2]. The
survey paper by Friedman and McLeod [13] discusses blowup phenomena
for higher-order parabolic equations and hyperbolic equations. Blowup has
also been observed in solutions of the nonlinear Schrédinger equation; see,
for example, Landman et al. [21].

A related phenomenon is exhibited by the solutions of the equation

(@, t) = Aula,t) + reNt>00<p<l, (6)

= (w0

subject to the same boundary conditions (2). In this case, if the initial profile
and/or A is sufficiently large, then there exists a finite time 7' such that that
solution wu(z,t) exists for all 0 < ¢ < T but

lim max {u(z,t):2 € Q} = 1. (7)

t—

Here, the solution u(x,t) remains bounded, but a singularity in the deriva-
tives of u(z,t) occurs at T', as the second term on the righthand side then
becomes infinite. This phenomenon is called quenching. A survey of the
subject together with a useful reference list has been given by Levine [22].

1.2. BEHAVIOR NEAR BLOWUP

There is a great deal of interest in the asymptotic behavior of the solution of
(1) and (3) near the blowup time, stimulated by the classical work of Giga
and Kohn [15]. Papers by Bressan [5, 6], Filippas and Kohn [11], and Herrero
and Veldzquez [16] are only a small sample of the more recent work on the
subject. It is interesting to note that similar work on the quenching problem
is lacking. Below, we shall describe a way to unify the two subjects through
a single equation (9). This suggests a means to extend known results on the
phenomenon of blowup to cover the phenomenon of quenching.



1.3. THE REGULARIZING TRANSFORM

The motivation for our recent work stems from the search for a reliable
numerical method to compute the heat profile near the blowup/quenching
time T, as well as the limiting profile at time 7', the so-called blowup or
quenching profile. Obviously, the unboundedness of u(x,t) or its derivatives
renders any regular numerical scheme for solving parabolic equations useless
once t is near T. Numerical estimations for the blowup or quenching time
have been carried out, usually by solving the parabolic equation until the
solution or its derivatives become larger than some arbitrary bound. The
only systematic numerical study of the profile in the vicinity of the blowup
time that we are aware of is the rescaling algorithm proposed by Berger and
Kohn [4], based on the asymptotic results obtained in Giga and Kohn [15].
No similar work has been done on the quenching problem yet.

Recently, Bellout [3] proposed a new approach based on a change of vari-
able, which is inspired by known asymptotic results for the solutions. The
method avoids the costly rescaling. Following Bellout, we use the transfor-
mation

v=u"P (v=e") (8)
to change (1) ((3)) to the equation

[Volf (9)

where = p/(p—1) > 1 for (1) and p = 1 for (3). One can easily normalize

the equation with a scaling in the space variable to reduce A to 1. In the

one-dimensional experiments we describe below, we retain A in the equation

and, instead, choose the scaling to reduce the domain to the unit interval.
We discovered that by using the change of variable

v=(1—u)Ptt, (10)

ve=Av—A—p

(6) was transformed into an equation of the form (9), where u € (0,1). We
have thus found a unified approach to treat all three equations (1), (3), and
(6).

Blowup/quenching in u(z,t) now corresponds to the vanishing of v(z,1).
The new variable v(x, ) remains bounded up to the blowup/quenching time.
However, the previous difficulty of having to deal with unbounded functions
is replaced by having to deal with the potential singularity of the term
|Vv|?/v as v — 0. Bellout believes that this new difficulty is only apparent
and conjectures that this term remains bounded uniformly up to the blowup
time. The idea is that near where v is a minimum, Vv is also small, so
the ratio |[Vv|?/v remains bounded. It can be shown that the conjecture
is equivalent to the assertion that Awv remains uniformly bounded. If the
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conjecture is true, then (9) is a regular parabolic equation, and classical
methods of integration can be applied with no difficulty up to the blowup
time.

In an attempt towards settling the conjecture, Bellout proved in [3] a
useful regularity result in the one-dimensional case for (1) with p > 5, which
implies that v, is bounded for p > 5. Using a refined argument of Bell-
out’s proof, we are able to extend his regularity result to all p > 1 as well
as to cover the case of quenching. Furthermore, we are able to show that
v2/(v|Inv|7) is bounded for some v > 0. The proofs will be given elsewhere.
We have also established a rather long list of assertions that are equivalent
to the conjecture. The conjecture is, however, still open.

The partial regularity results are nevertheless important because they
imply that the differential equation satisfied by v? for some suitable power
6 > 1 has regular coefficients. Thus, v’ can be solved numerically as a regular
parabolic problem with classical algorithms, and the challenge to determine
the blowup profile can essentially be considered answered. In practice, how-
ever, it is much more convenient to solve the differential equation for v than
the differential equation for »?. It is also an intellectual challenge to be able
to resolve the conjecture.

1.4. NUMERICAL SIMULATION

We have performed many numerical experiments, and the results always
supported the conjecture that the term |VvA|?/v is uniformly bounded up
to the blowup time. Most of the experiments were done using MATLAB,
version 4.0. An interesting problem arises when p is increased beyond 4.
That is when domain decomposition comes in.

We have treated both one-dimensional and two-dimensional problems.
For the sake of simplicity, we confine our discussion below to the one-
dimensional case, with @ = (0,1). Instead of dealing with Equation (9) di-
rectly, we solve for U(x,t) = 1—v(z,t). This means that we have to deal only
with the simpler homogeneous boundary conditions U(0,t) = U(1,t) = 0.
Furthermore, the evolution of U(x,?) now resembles more that of the origi-
nal variable u(z,t); U(z,t) increases towards 1 as u(x,t) blows up, whereas
v(x,t) decreases.

We use the method of lines, discretizing only the space variable x, to
obtain a matrix ordinary differential equation in t,

dU U?
LU+ z 11
yy Ut A+ui—7 (11)

where U is a column vector representing the values of U(z,t) at the chosen
node points, I is the usual finite-difference tridiagonal matrix representing
the second derivative, and U, is some suitable finite-difference approximation
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of the first derivative. The fraction in the last term is to be understood in the
componentwise sense. The experiments show that U develops some sort of a
boundary layer in which U, assumes very large values. To improve accuracy,
we use a five-point numerical differentiation formula to approximate U,.

In our initial experiments, we used a uniform grid partitioning [0, 1] into
49 or 99 grid points. We integrate the system of Equations (11) over time
intervals of size k = t,41 — t,. As is well known, the system is stiff and
requires special techniques such as the Crank-Nicholson and other implicit
methods. In our situation, we exploit the fact that the coefficient matrix L
is a constant. Over each time interval [t,,?,4+1], we approximate the nonho-
mogeneous part of (11), A+ plU2/(1—U), by a linear function in ¢, namely,
A+ Bt, where A and B are vectors given by

2 2
A=A+p Ue ; A+Bk:’\+“1?xU

1-U
t=tn t=tn41

(12)

The solution U(t,41) at the new time step is estimated by solving the
approximated form of (11) exactly:

U(tpyr) = Uty) + K1(LU(t,) + A) + K3B, (13)
where K7 and Ky are constant matrices given by

Ky =LY LY — 1), (14)

Ky = L7 — 1 — Lk), (15)

where I denotes the identity matrix. This formula, however, cannot be used
directly since only A, not B, is determinable from U(%¢,) by using (12). We
use the usual predictor-corrector technique: we take an initial guess B = 0
and use (13) to predict the value U(%,41), which is then substituted into
the second formula in (12) to give a corrected value for B. This step may be
iterated to give successively better estimates of B, but in practice we find
that one cycle is usually sufficient. Note that the matrices Ky and K5 can be
computed easily once the spectral decomposition of L is known. Moreover,
they need to be computed only once for each choice of k.

Our method of integration is unconditionally stable for any value of k&,
and thus the choice of £ is restricted only by the error introduced in the
approximation of the nonhomogeneous part of the equation. The criterion
we used to determine a good choice of k is to compare the difference in
the results obtained by using k and 2k, respectively. A smaller k is usually
chosen to repeat the last few time steps before the blowup time if higher
accuracy is desired near the final moment.



Our numerical scheme works efficiently and accurately for a wide range
of the parameter A and for p < 3. For illustration we include the graphs
from three typical runs. We used 99 grid points and the time step & = 1074,

o] 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
X

Fig. 1. A=20,p=1,u(z,0)=0

o] 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
X

Fig. 2. A = 100, 0 = 1, u(x,0) = 0.4 sin(7z?)

The figures show the profiles U(z,t,,) at selected time ¢,, that are uni-
formly apart except for the last one which is some moment before blowup.
Figure 1 traces the evolution from a trivial initial profile. Figure 2 is an ex-
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ample of a nonsymmetric initial profile. Figure 3 is an example of a solution
blowing up at more than one point.

o] 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
X

Fig. 3.0 = 100, o = 1, u(x,0) = 0.4sin*(272)

The method of rescaling is a never-ending task; a new rescaling is needed
once the rescaled solution grows sufficiently large. Our method, on the other
hand, allows one to accurately compute the blowup time by extrapolating
max {U(x,t,),x € (0,1)} for various t,, to find out when it will reach U = 1.
The blowup profile can then be accurately computed by integrating (11)
using T' — t,, as the final time step size.

1.5. DOMAIN DECOMPOSITION TECHNIQUE FOR LARGE u

The numerical method described in Section 1.4 fails when p is large and the
technique of domain decomposition has been used to overcome the difficulty.

When the parameter p is increased, the profile becomes flatter near the
center of the interval. This produces, moments before blowup, two “bound-
ary layers” near the endpoints, in which the solution shoots up sharply from
0 to almost 1 within a short distance. For ¢ = 4, near the blowup time,
U(z,t) developed two “horns” as shown in Fig. 4. In the next time step, the
solution blew up at two points. The same phenomenon prevails for larger
values of p. If one had blindly trusted computers, one could have declared
the discovery of a new kind of blowup behavior. However, it has been rig-
orously proved (see, for example, Friedman and McLeod [13]) that if the
initial profile is symmetrical and has only one local maximum, at the mid-
point of the interval, then all subsequent profiles behave in the same way. In
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particular, it is impossible for two “horns” to develop and the solution can
blow up only at a single point, namely, the midpoint of the interval.

o] 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

Fig. 4. Instability sets in: A = 100, = 5,u(z,0) =0

Our first reaction was to repeat the experiments with a significant reduc-
tion in the time step. We soon found that the plan did not work. Our next
attempt was to use a higher-order approximation for the nonhomogeneous
term. Not only did that lead to a much more complicated computation, but
it did nothing to prevent the formation of the “horns.” Our next strategy
was to try to scale down the boundary layer by multiplying U(x,t) by a
factor such as z(1 — z), hoping that the final profiles would take less of the
shape of a plateau. The transformed differential equation is complicated,
and that discouraged us from attempting to modify the code to handle the
new variable.

For a while, multiple-length scale seemed to be a reasonable explanation
of the difficulty. The rapid increase of U(z,t) within a short distance must
mean that we need many more grid points within the boundary layer in
order to represent the variation adequately. We restructured our programs to
handle nonuniform grids. The first attempt was to have three subintervals,
the two boundary layers and the middle section, each having a uniform
subgrid. In one example we used 40 grid points between 0 and 0.1, 40 grid
points between 0.9 and 1, but only 20 between 0.1 and 0.9. The results
were encouraging. The appearance of the “horns” was delayed by a few time
steps, and their locations were pushed outward towards the endpoints. Yet
all attempts to completely eliminate the “horns” failed. We then overhauled
the programs to deal with very general nonuniform grids. We used grids
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that became progressively finer towards the endpoints: we started with 20
uniformly spaced grid points in [0, 1], subdivided the first and last intervals
into 10 subintervals, and repeatedly subdivided the resulting first and last
intervals. Our program includes a subroutine to compute the coefficients for
a nonuniform four-point finite difference formula. To our dismay, no matter
how finely we subdivide the first and last intervals, “horns” always occur at
the second or third grid point next to the endpoints.

We are puzzled by the persistence of the instability. We believe that
the explanation lies in the fact that the term v2/v is of the same order of
magnitude as the leading term w,,. The stability of the numerical scheme
is upset by the presence of the nonlinear term in the same way that a large
time step in the Fuler method for solving parabolic equations can lead to
instability. It would be interesting to see a rigorous proof.

We finally succeeded in circumventing the instability problem by us-
ing the technique of domain decomposition. We discovered that within the
boundary layers the original form of the equation, namely, (1), could be
solved without any instability problem. Theory guarantees that if we stay
away from the blowup points (there are only a finite number of them), the
original solution u(x,t) remains uniformly bounded up to 7', even though it
may be large.

Our algorithm is as follows. Identify two suitable subdomains that con-
tain the boundary layers. In our experiments, we used [0,0.1] and [0.9,1].
Based on the value of U at t,,, compute the solution in [0.1,0.9] at the new
time step t,41 by integrating (11) over the entire domain [0, 1] using the
method described above and discarding the part in the boundary layers.
Solve the original equation (1) over each of the boundary layers, requiring
that the solution be continuous across the common boundary point of the
subdomains. The programs have been tested for values of y as high as 20.

In theory, the requirement for the matching of the solution at a single
common boundary point between two subintervals is not sufficient to guar-
antee a smooth matching, for there is the possibility of a jump in the first
derivative. The proper algorithm should use an iterative scheme to match
the solution in the common boundary points of overlapping subintervals. In
all our experiments, however, the simple matching procedure suffices.

2. The Ginzburg-Landau Equations
2.1. PROBLEM FORMULATION

Our second example concerns the Ginzburg-Landau equations in the theory
of superconductivity. Part of the work reported here is done in collaboration
with H. G. Kaper. More details will appear in a forthcoming joint paper
[18]. For the physical background, we refer to the many excellent references
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cited in our earlier work [18, 19, 20] and also in the papers by Du et al. [8,
9].

We are interested in finding a complex scalar i) and a three-dimension
real-valued vector A, both functions of position in a given domain Q € R3,
that minimize the Helmholtz free-energy functional:

Gl &) = [ (Il + ol +1(V = iA) O + 6 |V x A ) a9t (1)

where ¢ = 4/—1 and & is a characteristic constant of the superconducting ma-
terial. The Euler-Lagrange equations for this variational problem are called
the Ginzburg-Landau equations.

(V=i + (1= [0) ¢ =0, (x*V x —[¢") A+ Im("Ve) = 0.(17)

Of particular interest is the quantity || which represents the amount
of superconducting activity going on at the pertinent location. For type-
II superconductors, characterized by the fact that x > 1/4/2, Abrikosov [1]
showed analytically, by using singular perturbation techniques, the existence
of solutions that exhibited a lattice pattern.

Fig. 5. Vortex lattice

Figure 5 shows the contour plot of |¢| for one such solution in a two-
dimensional domain that models a thin-film superconductor as a normal
magnetic field. The plot resembles vortices, and indeed superconducting cur-
rents are flowing along the contour lines in circular paths.

The first attempt to solve the Ginzburg-Landau equations numerically
was by Doria, Gubernatis, and Rainer [10], who used the method of simu-
lated annealing on a discrete version of the Helmholltz energy. Recently, our
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colleagues at Argonne applied more sophisticated optimization and linear
algebra techniques to tackle three-dimensional versions of the Ginzburg-
Landau equations that model layered superconductors [14]. Du et al. [8, 9]
used finite element approaches in their work.

In our recent work [17, 19, 20] we proposed a new method, the sweeping
algorithm, to solve the five-point stencils that results from discretizing the
two-dimensional Ginzburg-Landau equations, thus leading to an alternative
numerical method for solving the Ginzburg-Landau problem. The sweeping
algorithm is of interest in itself, as it can be used to invert banded matrices
and general five-point stencil arising from other partial differential equations.
The method offers great potential in the exploitation of parallelism and the
technique of domain decomposition.

In our numerical study of the Ginzburg-Landau model, the questions we
have investigated include the effect of the aspect ratio of the rectangular
region £} on the free energy, the relation between the free energy and the
average magnetic field, and the simulation of vortex pinning by impurities.

2.2. THE GAUGE TRANSFORM

The boundary conditions imposed on the problem are not the usual peri-
odic type. In fact, the vector potential cannot be periodic if the external
magnetic field is nonzero. The situation is further complicated by the fact
that the Helmholtz energy functional, and hence also the Ginzburg-Landau
equations, are invariant under a class of transformations called gauge trans-
forms. More precisely, given ¢ and A, one can pick any real-valued function
of position x(z), called a gauge, and form a new pair

¢ =1 A= A+ Vy(z). (18)

One can easily verify that the new pair gives the same Helmholtz energy as
the original pair. If the original pair is a solution of the Ginzburg-Landau
equations, so is the new pair. Other physical quantities derivable from each
pair, such as current and magnetic field, are also the same. The two pairs
indeed are different representations of the same physical state. Periodicity
in physical states demands only that the functions on opposite sides of the
domain differ by a gauge. This leads to the so-called modified boundary
conditions.

We confine our discussions to two-dimensional simulations. In this case,
one can arrange to have strict periodicity in one direction and modified
periodicity in the other. One can also make the simplification that y is a
linear function of the coordinate along the appropriate edge. For instance, for
a rectangular domain, [0, L] x [0, L,] that contains n vortices, the boundary
conditions takes the form

¥(0,y) = ¢¥(Lsyy), ¥(2,0) = ¥(a, Ly)eing (19)
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Al(ovy) = Al(vay)v A1($,0) = A1($,Ly) +9, (20)
A2(0,y) = Az(Ly,y),  As(z,0) = As(z, Ly), (21)

where g = 2nm/L,, and Ay, Ay are the two components of A.

2.3. DOMAIN DECOMPOSITION TECHNIQUE

The value of g in the boundary conditions (20) and (21) depends on the
number of vortices inside the domain, and is related to the total magnetic
flux through the region. For a region that contains many vortices, g can
be very large. This poses the following problem. Suppose that ¥(z,0) is
a smooth, slowly varying, but nontrivial function. Its counterpart on the
opposite edge must be a wildly oscillating function, as a result of the phase
factor €97, Likewise, if 1 is slowly varying on the righthand edge, its value
on the left-hand edge must oscillate wildly. It is impossible to find a gauge
transform that gives slowly oscillating boundary values on both edges.

We illustrate this situation with the plots of the real and imaginary parts
of ¢ for a region that contains two of the vortices depicted in Fig. 5. The
numerical simulation was performed using x = 5. For the region shown,
L, =3V3 and L, = 3, and the number of grid points used is 24 x 24.

Fig. 6. Real part of ¢

As shown in the plots in Figs. 6 and 7, both the real and imaginary parts
of 1 oscillate more and more as one approaches the righthand boundary.
For a larger rectangular region that involves more vortices, 1 will oscillate
even more as we move to the right. For every horizontal distance equal to
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3v/3, the number of oscillations of 1 increases by 2, so that at the right-
hand boundary, % has 20 maxima and 20 minima. It is no longer possible
to approximate 1 adequately using only 24 grid points in the y direction.
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Fig. 7. Imaginary part of 1
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Even though % oscillates wildly, the physical quantity we are interested
in is represented by |¢|, a plot of which is shown is Fig. 8. Unlike the real
and imaginary parts of ¢, the oscillation of || remains steady as one moves
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along the z direction. The plot shown in Fig. 8 is simply duplicated when a
larger rectangular region is used.

The method we used to overcome the difficulty posed by the oscillation
of v is to divide the domain into smaller subdomains. The Helmholtz en-
ergy is iteratively minimized over each subdomain while holding ¢ and A
fixed in the other subdomains (this process can be performed in parallel).
The idea of partial minimization is simply a block Gauss-Seidel procedure.
The important new idea is that we are not solving directly for ¢ and A in
each subdomain, but rather for an equivalent pair ¢ and A derived from
a suitable gauge that can smooth out the oscillations in 1 on both edges
of the subdomain (this approach is now possible because the subdomain is
smaller). The gauge is associated with each subdomain and may vary from
one subdomain to the next. The original ¢» and A for the entire domain can
be recovered by an inverse gauge transformation over each subdomain.

After each iterative cycle, the Ginzburg-Landau equations are satisfied in
the interior of all the subdomains, but not on the common boundaries. At
times the errors at these boundary points can be alarmingly huge, but one
must remember that a better measure of the error is some suitable average
error over the entire domain. The errors on the common boundaries decrease
with the iterations. A usual technique in the method of domain decompo-
sition to speed the improvement is to find an appropriate linking operator
that can give a correction term to the solution found in a subdomain based
on the solution value computed in the surrounding subdomains. Instead, we
use a new approach involving two overlapping decompositions.

As an example, we can use, as the first decomposition, N vertical strips of
uniform width cut off starting from the left edge of the domain. The second
decomposition makes the cuts exactly midway between the edges of the
subdomains in the first decomposition. The two “half-strips” at the left and
right ends of the domain are joined to form one subdomain. Another example
is to use NV vertical strips in the first decomposition and N horizontal strips
in the second (the familiar alternating direction technique).

The two decompositions are used alternatively in successive cycles of the
partial minimization procedure. The rationale behind the proposed method
is that the errors incurred in the previous cycle are now in the interior of
the subdomains of the current decomposition, far away from the common
boundaries, and so will have less effect in disturbing the solution values at
these points. Numerical results show that the use of overlapping decom-
positions greatly improves the rate of convergence over the use of a fixed
decomposition (without the help of a linking operator).
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3. Conclusion

Domain decomposition is an excellent device to introduce and exploit paral-
lelism in designing numerical algorithms for solving partial differential equa-
tions. It has also been realized that domain decomposition is sometimes
called for because the problem has rich local structures; see, for example,
the remarks by Chin and Hedstrom in [7]. Problems involving multiple scales
belong to this category.

We have given in this article two new examples in which the technique
of domain decomposition forces its way into the numerical treatment of the
problems. Not only does domain decomposition provide an efficient means
of computation, but it appears to be the only way to resolve the difficulties
we encountered in the investigation.

Traditionally, domain decomposition methods are well suited for elliptic
problems. Our first example involves a semilinear parabolic problem; the
second example has application in the theory of superconductivity. In both
examples, the main cause of the difficulties is not in the difference in length
scales but in the singular and nonlinear nature of the underlying equations.
Another characteristic of our examples is that different forms of the equa-
tions must be solved in different subdomains in order to avoid instability or
singularity of the solutions.

Using sets of overlapping domain decompositions in alternative iterative
cycles can effectively speed up convergence. Whether further improvements
can be achieved by incorporating other traditional techniques such as con-
jugate gradient will the the subject of future investigations.

Although asymptotics does not seem to have played an explicit role in our
discussion, it is instrumental in guiding us to choose the correct transforma-
tion needed in our first example and in the analytical work that Abrikosov
did in [1]. Without the asymptotic results, no one would have ever guessed
the lattice structure of vortices and the modified periodic form of the bound-
ary conditions.

Future work will include three-dimensional domains, more general non-
linear terms, and more realistic refinements of the various models.
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