PARALLEL STABLE COMPACTIFICATION FOR
ODE WITH PARAMETERS AND MULTIPOINT
CONDITIONS"

R. M. M. MATTHELJf S.J. WRIGHT?
June 30, 1993

Abstract

Many algorithms for solving ordinary differential equations with parameters and multipoint side
conditions give rise to systems of linear algebraic equations in which the coefficient matrices have a
bordered block diagonal structure. In this paper, we show how these problems can be solved by using
parallel algorithms based on stabilized compactification.

1 Introduction

We discuss stable algorithms for solving algebraic linear systems arising from ordinary differential and dif-
ference equations. These equations may include some global parameters, and their solutions are subject to
multipoint side conditions. To make the discussion in subsequent sections clearer, we group the problems to
be addressed into three categories:

Two-point boundary value problems:

= A(t)z + c(t), t € la,bl, (1)
Myx(a) + Myx(b) = d, z(t), c(t), d € RY;

Parametrized problems with multipoint conditions (see, for example, soluton formulations discussed in
Rinzel and Terman [11]):

&= At)e +CHA+c(t), t€lab] (2)
Iy Miz(rj) + NA=d, a<m<---<7 <),

Parameter identification problems (see, for example, chemical rate constant identification as in Bock [3]):

min 377 [[Mja(r;) + NjA = djl|* + || NoX — do?, (3)
i = Az + CON+b(t), € [a,b]
z(t)eR", AeR", M; e RV*" 0 N; e RTX™,

*This research was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

tDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind-
hoven, the Netherlands.

{ Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.

STABLE PARALLEL COMPACTIFICATION FOR ODEs 2

Although these categories appear to be listed in order of increasing generality, the ordering is not strict:
problems of the form (2) can be recast in the form (1) (see, for example, Ascher and Russell [2]). For purposes
of efficiency, it is usually best to use the original form when solving such problems.

Each of these problem categories has a corresponding “discrete” form, in which the differential equation
is replaced by a difference equation. We categorize the discrete problems similarly:

Aixi"i'Bixi-I—l:cia izla"'aNa (4)
Mazi 4+ Myxng1 = d, xi, ¢;, d € RY;

Ajzi + Biziy1 + Cid = ¢, t=1,---, N, (5)
Ei\;-lil Mix; + NA=d,
v, ¢ € Rn’ = Rm’ Mz € R(m+n)><n’ N e R(m+n)><m;
min T8 (| Mwi + Nid = dil|? 4 [[Nod = do 2, (6)

Ajzi + Bizigr + Cid = ¢, t=1,---, N,
z; €R', A eR", M; e R**", N; e RM<™,

The “discrete” categories can be obtained by applying algorithms such as multiple shooting or finite
differencing to the corresponding “continuous” categories. The widely used collocation algorithm also gives
rise to such discrete problems after a condensation step has been applied.

We will not address the special difficulties caused by stiffness and singularly perturbed problems. Neither
will we specifically address nonlinear problems; though it is well known that algorithms for such problems
often require the solution of linear systems like those described above as a core operation.

In the next section, we will review the concept of conditioning for the continuous problems above, and
its implications for the conditioning of the linear systems to be solved in the discrete problems (4), (5), and
(6). In §3, a parallel algorithm for (4) is described and is contrasted with previously proposed algorithms
(e.g., Wright [13, 12]). This algorithm is extended to problems of the form (5) and (6) in §5. Finally, some
numerical results are presented in §6.

2 Conditioning of the Problem and Structure of the Solution
Spaces

The various problems defined in §1 relate to solution spaces of potentially different types. This variety of
solution types influences the possibilities for parallelization that will be discussed in the next section. Here
we characterize these solution spaces; that is, we describe certain growth properties of homogeneous modes
in the fundamental solution ®(¢). Throughout, we assume that the problem is well conditioned. By this we
mean that small perturbations of inhomogeneities in the ODE and the side conditions manifest themselves in
the solution as quantities that are only a moderate constant larger in norm than the original perturbations,
that is,

Isall < 5 max(ld], |l (7)

where [|.|| is a suitable function space norm, in either the continuous or discrete setting, and |.| is any Holder
norm.

STABLE PARALLEL COMPACTIFICATION FOR ODEs 3

In the case of the two-point boundary value problem (1), well-conditioning implies that the underlying
solution space is dichotomic; that is, there exists a projection P and a moderate constant kK such that

1B(1) PO~ 1(s)| < &, t>s,

(8)
1B(1)(I — P)D~(s)| < &, 1< s.

(See de Hoog and Mattheij [5].) Hence, ® can be properly split into one set of solution modes that do not
(significantly) increase and another set of modes that do not (significantly) decrease.

If we have multipoint side conditions (1 = 01in (2)), then well-conditioning allows for a “switch” of growth
behavior at any of the internal conditions. This property was referred to by de Hoog and Mattheij [5] as
polychotomy. Specifically, we can choose projections Py, ---, Py (M < min(p,n)) such that Z]M:1 P =1,
PZ'P]' = P]'PZ' = (SZ']'P]', and

() TF_ P (s) <R, B <8< Brpr, €5

9)

(1) Y1y P07 (s)]

IN

"%a 6k<5§6k+1a t<5a

where, again, kK is a moderate constant and the switch points a = 81,52, -, Bu41 = b are a subset of
{a,7, -, 7p,b}. Polychotomy means that & is dichotomic on each subinterval (fg,Sx+1) but that the
dimension of the subspace of “nonincreasing” modes may become larger — by rank(Py) — at each switch
point [y.

A more or less complementary result to the foregoing holds for “pure” parameter problems (for which
p=2,a=m and b = 13 in (2)). Given well-conditioning, Mattheij [10] showed that there exist a moderate
constant &, projections Py, -+, Pyr with (M < min(m, n)) satisfying the conditions described above, and a
set of switch points ap, k=1,--- M + 1 with a = a1 < s < -+ - < apr41 = b such that

|q)(t) Zj’wzk{—l P]<I>—1(5)| S "%a ap < s S XE+1, t> 8,
(10)
@) S5 P~ (s)| < R, ap<s<oagppr, t<s

Again, ® is dichotomic on each subinterval, but the dimension of the subspace of nonincreasing modes may
now become smaller at each switch point aj as we move from left to right.

In the more general case of m # 0 and p > 2 in (2), one should expect that any combination of (9) and
(10) can occur. We will use the term “polychotomy” to refer to the multiple splitting of the solution space
in this case as well.

Thus, we may expect for (2) a total of at most min(p, n) switch points at which the dimension of the
subspace of nonincreasing modes may increase, and at most min(m, n) switch points at which this dimension
may decrease. Note, however, that a typical “pure” mode of this subspace may undergo only one switch in
behavior; otherwise, it would violate the local well-conditioning on each subinterval (8, Sp+1) or (e, ap41)-

It should be noted that the potential switch points 7, (from which the #; are chosen) are known before-
hand, while the aj may be anywhere in the interval (a,b).

3 The Basic Algorithm

The “stabilized compactification” algorithm has been described in Ascher, Mattheij, and Russell [1, pp.
157-161]. In this section, we outline a parallel version and discuss some aspects of its implementation in a
message-passing computational environment. We describe the method for the case of problem (4); this is
the simplest of our discrete problems since, when it is well conditioned, the dimensions of the nonincreasing
and nondecreasing subspaces remain constant across all the stages. We use ¢ to denote the dimension of

STABLE PARALLEL COMPACTIFICATION FOR ODEs 4

the nonincreasing subspace. The dimension of the complementary nondecreasing subspace will therefore be
(n — £). For the moment, we also assume that the value of ¢ is known.

Suppose that the N + 1 indices in the problem (4) are split into p partitions of approximately equal size.
This is done by choosing indices k1, ko, k3, - - -, kp41 such that

klzoa kp-l-l:Na
ki+12ki+2a Zzlaap

The j-th partition of the linear system is taken to be

Ak‘j-l—l Bk‘j-l—l xk‘j-l—l bk‘j-l—l
Akj-I—Z Bkj-I—Z xkj-I—Z bkj-I—Z

. ' = : (11)
Ak Brig Lhjpr+1 bk ;14

The algorithm starts by transforming the recurrence (11) to one involving upper triangular blocks. Then,
explicit decoupling of nonincreasing and nondecreasing modes is used to find particular and fundamental
solutions for this partition. Because of the decoupling, element growth in the fundamental solution is avoided.

Suppose for the moment that we can choose an n x n orthogonal matrix Rgcjj)_l_l that 1s effective 1n
decoupling these two sets of modes. (The choice of Rgcjj)_l_l will be discussed further below.) Starting with this
matrix, the transformation process performs repeated QR (orthogonal) factorizations to find the following

matrices, all of which are square with dimension n:

R('j,)’ P=ki 42, ki, orthogonal,
QE])’ i=k;j+1,--- kjz1—1, orthogonal,
U»(]), t=4k;+1,-- -, kj+1—1, upper triangular,
V(]), t=4k;+1,-- -, kj+1—1, upper triangular,

such that
AR = Qv (12a)
QVTB; = ViR (12b)

The recurrence
Aijzi + Biziy1 = ¢, P=ki+ 1 ki -1,

has now been transformed to
Uszi + Vizigr = QF ¢4, i=kj 4+ 1, kg — 1, (13)

where

(Here and subsequently, the superscripts on REJ), QEJ), etc., will be dropped when their values are clear from
the context.) From an implementation point of view, these operations create little fill-in. The matrices U;
and V; can be stored in the upper triangles of the data structures formerly occupied by A; and B;. Most of
the information needed to reconstruct the orthogonal matrices); and R; can be stored in the lower triangles,
though an extra n-vector is also needed for each matrix.

We now construct a fundamental solution to (13), denoted by

{q)i};sff“, ®; € ¥, upper triangular, (14)

STABLE PARALLEL COMPACTIFICATION FOR ODEs 5

that satisfies the boundary conditions
(@kj-l—l)z,, = [0 | I], (@kj+1)1,. = [I | 0] (15)

Here, (.)1, denotes the first (n — £) rows of a matrix and (.); denotes the last £ rows. The remaining
components of these two sequences are computed by back substitution with the matrix formed by the
recurrence (13). The (.)2 components are calculated in a forward sweep and the (.); components in a
reverse sweep. Specifically,

fOI‘iIk]'—l—l,“',k]’_H—l
(®ig1)2,. = —(Vi)3 [0 | (Us)a2(®i)a2]; (16)

fOI‘iIk]'+1—1,~~~,k]’—|—1

(@)1 = —(U)T {0V 11 (®ir1)1 + (Vi) 12(®ig1)2, + (Ui)12(Pi)2, } . (17)

Here, (.)11 is the principal (n — £) x (n —) submatrix of an n X n matrix; the three blocks (.)az, ()12,

and (.)2; complete a 2 x 2 block partitioning. Examination of (16) and (17) will confirm that the <I>§]) are
upper triangular. The homogeneous parts of (16) and (17) have coefficients (Vi)z_zl(Ui)zz and —(Ui)l_ll(Vi)H,
respectively. By our original assumption of well-conditioning, the recurrences are stable; they are effectively
producing components of the nonincreasing modes (forward sweep) and nondecreasing modes (backward
sweep), provided that the initial matrix Ry, has been chosen in a suitable way.

The particular solution, denoted by

o kg
{Zi}ii}z+1’
is formed in a similar way. The boundary conditions are
(Zr41)2, =0, Grypa)i, =0 (18)

If one uses the notation ¢; = Q¥ ¢;, the forward and reverse sweeps have the form
fOI‘iIk]'—l—l,“',k]’_H—l
(Zi+1)2 = (Vi)gy {(Cit1)2 — (Ui)2a(%)2} 5 (19)
fOI‘iIk]'+1—1,~~~,k]’—|—1

(zi)1 = (U (@)1 = Vi Gig)r = (Viiz(Zig)2 = (Uira(20)21 - (20)

We now deal with the issue of choosing the values of £ and Ry, 1. Mattheij [9, p. 329] describes a heuristic
that, applied to the present situation, would find R ,41 so that the diagonal elements of Vi_lUZ' (namely,
(U)u/(Vi)u, L =1,---,n) appear in descending order for most 1 = k; +1,---,k;j41 — 1. We generalize this
heuristic slightly for two reasons. First, we usually do not have boundary condition information to guide the
choice of Ry,11; and second, we wish to allow possible singularity of U; and V; (that is, of A; and B;.)

To make an initial guess at 2,11, we make use of the generalized singular value decomposition. In the
following result, which is a direct consequence of Theorem 8.7.4 of Golub and Van Loan [6], all matrices are
assumed to be n X n.

Theorem 3.1 Provided that [A, B] has full rank n, there are orthogonal matrices P, @, and W and an
upper triangular matric T such that

wirt-Tap =, wiT=TBQ =5,

where C' = diag(cy, -+, ¢n) and S = diag(sy, -, 8p), with 1 >¢1 > > ¢y 20 and 0 <53 < - <5, < 1,
and ¢ +s?=1,i=1,---,n.

STABLE PARALLEL COMPACTIFICATION FOR ODEs 6

Our initial guess for Ry 11 is obtained as follows:
(i) Set A= Ag,41, B = B, 41, and compute W, T', P, Q, C, and S as in Theorem 3.1.

(ii)) Perform a QR factorization to obtain Z (n x n orthogonal) and ¥ (n x n upper triangular) such that
TTW = ZY.

(111) Set Rkj+1 — P, Rkj+2 — Q, ij+1 — Z, Ukj+1 — YC, ij_|_1 —YSs.

We note that this construction is valid since, by our assumption that (4) is well conditioned, [Ag, 41, Br,41]
has full rank. It is also easy to check that equations (12) hold for i = k; + 1. Moreover the diagonals of
Uk, +1 and V41 are ordered properly, relative to each other. By this, we mean that

e any zero diagonal elements in Vi, 11 occur in the upper left of the matrix;
e any zero diagonals in Uy, 41 occur in the lower right; and

o for the indices [for which both (Vi,41)u and (Ug,41)u are nonzero, the ratio

(Uk40)u/(Vij41)n = a/si
decreases as [increases.

Using this initial choice of R 41, we now compute a few more successive ¢, f;, U;, and V; by using the
formulae (12) and check to see whether the diagonals of U; and V; continue to appear in the proper order.
If not, the columns of Ry 41 are permuted in accordance with the present ordering, and the orthogonal
transformation process is begun anew.

Before computing the fundamental and particular solutions, we need to determine the dimension ¢ of the
nonincreasing subspace. When the boundary conditions are separated (that is, zero rows of M, correspond
to nonzero rows of My, and vice versa) and the problem is well conditioned, ¢ may just be taken to be
the number of nonzero rows in M,. Otherwise, we require the lower right ¢ x ¢ submatrix (V;)a2 of V; to
dominate the corresponding submatrix (U;)22 of U;. For “close calls,” we can use the test suggested in [9]:

If the quantity
p kiti—1

> X ws|(v),/ (v),]

j=1i=kj+1
is negative, the [-th diagonal element is included in the (2,2) partition. In a multiprocessor setting, the
formation of this “global” sum requires interprocesssor communication. If vendor-supplied primitives for
this type of operation are not available, it can be implemented easily by making a binary tree out the
processors.
In partition j, each component x; of the true solution can be expressed in terms of the fundamental and
particular solutions in the following way:

m=0Ws; 429 = Rz i=ki4 1 ki, (21)

where the values of s; € R*, j = 1,---,p and xn4;1 are determined by solving a reduced system. The
boundary conditions contribute one block row to this system:

Maz1 + Myxny =d
(1) g1 (1) _
= MJRy(®7's1+72)+ Myany = d. (22)

The remaining p blocks of the reduced system are obtained by considering the equations that bind adjacent
partitions together. These are obtained by taking the last block equation from each partition. For j =
2,---,p, we have

Ap;xp; + Br; g 41 = cr,

= AR O s 5T 4 B R (9 4 5 | = e (23)

STABLE PARALLEL COMPACTIFICATION FOR ODEs 7

Table 1: Operation counts and storage requirements for five algorithms, assuming separated end conditions
(N = number of stages, n = dimension of each #;, £ = number of left-hand end conditions, R = number of
right-hand sides, p = number of partitions in first level of PSC)

Algorithm Operation Count Storage
LU (row pivoting) N[3+ 3%+ R(4n + 2¢n)] 3Nn?
DECOMP/SOLVE [3+ 4R+ 512) — 2nf? 2Nn?
Structured QR N[%f 3+ 11Rn? 4Nn?
Structured LU N[Zn?® 4+ 8Rn?] 4Nn?
PSC N[ZEn® 4+ 6Rn?] + p[En® + 11Rn?] 2Nn® + 4pn”

The remaining equation, obtained from the last partition, is

ANRE\Z;) <I>(p)5 +Z(p) + Byry41 = eN. (24)

Aggregating (22), (23), and (24), and defining s,41 = zN4+1, We see that the reduced system has the form

1‘1]'5]'+B]'5]'+1 = 5]’, ji=1-,p (25&)
Mas1 4+ Myspy1 = d. (25b)

This system has the same form as the original system (4), which immediately suggests that the partition-
ing/reduction process can be performed recursively. Such an approach is indeed desirable when the number
of processors is large, making the reduced system (25) too large to solve on a single processor. We return to
this point in §6.

Tables 1 and 2 compare storage requirements and operation counts for five algorithms, including the
one discussed above (partitioned stabilized compactification, or PSC). In reporting the operation counts,
lower-order (n?) terms are ignored. We assume that, for each algorithm, the calculation of fundamental and
particular solutions was carried out in separate phases. It is therefore necessary to store enough information
to reconstruct the transformations that were used to factor the matrix associated with the recurrence (4).
The statistics for the structured QR algorithm differ slightly from those reported in Wright [13], since we refer
here to an improved variant of the technique which is based on Givens rotations rather than Householder
transformations. (This variant will be described in a forthcoming report.) The statistics for PSC assume that
the reduced system (25) is solved by using structured QR. We use this approach in our implementation in
§6, since it can be implemented stably, in a fashion akin to cyclic reduction, on a binary tree of processors.

For problems with separated end conditions, all five algorithms are stable, while only structured QR and
PSC are guaranteed to be stable when the end conditions are coupled (although LU and structured LU are
almost always stable in these circumstances). The LU and DECOMP/SOLVE algorithms are not parallelizable
unless n is large.

As well as halving the computational cost of structured QR, PSC has a clear advantage in storage re-
quirement. The Householder vectors that define the orthogonal matrices); and R; can be largely stored in
the lower triangle that is vacated when A; and B; are transformed to U; and V;. The only real fill-in is due
to the fundamental solution matrices ®;. When N is significantly larger than p, the factorization process
requires only about 25% more storage than the cost of storing the original system.

The algorithm PSC can be viewed as a particular factorization of the matrix corresponding to the recur-
rence (4). We state this result as a theorem.

Theorem 3.2 Algorithm PSC is equivalent to a particular solution scheme for the linear system Ax = c,

STABLE PARALLEL COMPACTIFICATION FOR ODEs 8

Table 2: Operation counts and storage requirements for five algorithms, assuming coupled end conditions
(N = number of stages, n = dimension of each #;, R = number of right-hand sides, p = number of partitions
in first level of PSC)

Algorithm Operation Count Storage
LU (row pivoting) | N[2£n” + 8Rn7] 4Nn?
DECOMP/SOLVE [}4 n3 4+ 4 Rn?] 3Nn?
Structured QR N[Zn® 4+ 11Rn?] 4Nn?
Structured LU N[Zn?® 4+ 8Rn?] 4Nn?
PSC N[ZEn® 4+ 6Rn?] + p[En® + 11Rn?] 2Nn® + 4pn”
where
A B C1
Ay Bs C2
A= , c= :
Ay By CN
Ma Mb d
In this scheme, A is factored in the form
Ly 01[1 02]_:7
PLQARPr = | ~ =LU 26
woarre=| 1 S][4 |10 (26)

where Pr and Pgr are permutation matrices, Q and R are block diagonal matrices with orthogonal n x n
blocks, and Ly is lower triangular. The block A in (26) has the form

A B
Ay Bs
A= .
A4, B
Ma Mb
(that is, the coeficient matriz associated with the recurrence (25)). The remaining blocks in (26) are defined
i the proof.

Proof. We prove only the case of p > 1 (trivial modifications are required for p = 1). The matrices Q
and R come from the initial orthogonal transformation phase. They are defined as

QT = dlag(Q(ll)a (zl)aangz) 1;1 Qgi:.p,@gi) 19 a"'a 54;1;)_*_1_1’[’[)’

R = diag®R" RY, - R R RYRY, - RE).
Then QAR is
S "]
Ugy—1 Via—1
1 2
(A Ry) (Bi, R4)

ANR®) . By
| (MR M, |

STABLE PARALLEL COMPACTIFICATION FOR ODEs 9

Column pivoting is now performed on this matrix. The columns of @AR that contain the last (n—£) columns
of Ug,41, 3 = 1,---,p, are shifted to the right of the matrix, as are the columns of QAR that contain the
first £ columns of Vi, _1, j = 2,---, p+ 1. Denoting the overall pivot matrix by P., we write the pivoted form
as

T1 Sl
A o JIONe
T2 SZ
AP B JlONTe)
T3 S3
QARP, = AP g AL B : (27)
TP SP
o o - 0o AP o o . o A By
I M(gl) 0 0 0 M(SZ) 0 0 0 My |

The component blocks of this matrix can be described by using the following notation: N; = (k; —k;j_1—1)n
denotes the dimension of the square matrix T, (.) 1 denotes the first n — ¢ columns of an n x n matrix, and
(.). 2 denotes the last £ columns of an n x n matrix. Then

(Ukj+1).1 Vij41
Ukj-I—Z Vk‘j-l—Z

T; = . . e RV,
Ukjsr-1 (Vayp—1).2
0 (Ur41).,2
0
Sj = : eRVT,
0

(Vijp1-1).1 0

B(l) = [(Bkj_HR(j-H)).71 0-- 0] c R”XNJ'+1’ B](z) — [0 (Bk R(j+1)).72] € Rnxn’

J kjip1—1 I+ k-1
AP = (A B,) 2 00 RV AT = (0040 (A RE,) 2] € ROV

MY = [(MaR(ll)).,l 0---0] € RP*N1, M = [0 (MGR(ll)),yz] eER.

We can now perform a block LU factorization on the remaining matrix. By restating (16) and (17) as a
system of linear equations, we find that

TjCi)]':—Sj J=1-p

where .)
(q)k]jﬂ)l,.

o

<I>§€]j)+1_1

L (@)),]

STABLE PARALLEL COMPACTIFICATION FOR ODEs 10

Therefore, (27) can be written as the following product:

(1) (1)
JASS] U 2 ‘ Uz e
QARP, = 07 0 0 Ay 0 . 0 Ay Bn ,
MY 0 MP o0 0 M,
where
e -
1
T
. = I
1
L 1p |
(where each Tin L) is n x n),
[T T [—a, |
A(12) Bgl) A(ll) BiZ)
1 —&,
A By AL p@)
U1(1) _ 2 ; ’ U2(1) _ 2 _%3
AL A
i I I o, 0 |
Now
o T]
AP 1 BW !
7 0 0
e 5(1) I
s _ AP 1 B, 0 0
i@ g
3
1 - r
A 2
S [Oy?.

A little manipulation using the definitions of the coefficient matrices for the reduced system (25), the defi-
nitions of flgl), 121;2), B](»l), and B](»z), and the fundamental boundary conditions (15) yields

—121;»2)(1)]’ + fi]' = 121;»1), —B](»l)&]q_l + B]' = B](Z)
Hence
_ T _fi)l) .
AP 1 BWY A B
I —b,
vt = AP 1 Bl Ay By
I —bs
L I b, 0

STABLE PARALLEL COMPACTIFICATION FOR ODEs 11

JAN 2
S Oyd.
Using the definitions of Uz(z) and Ul(z) and of M(Sl), M(Sz), Mb(l), and Mb(z), we have that

0 .. 0 AP U(z)_l 0 .. 0 AP
|

MY o0 o MY o0

(Ul(z) has the effect of deleting a number of the zero columns) and

00 AP o [0 0 A By
MY 0 o0 2 M, 0 --- 0 M,
3 0 - 0 AY By
oMY o0 0 My |
Hence, by modifying the factorization (27), we find that
W@ (2) (2)
s) 0 il Yy
QARP.=| 0 - 0 A7 [o 0 0 A By
0 0 My 0 -~ 0 M,y

Now, let P, be a permutation matrix that pivots all zero rows of Ul(z) to the bottom:

U =p,

- P,
e[1]
we have that
P.QARP,
1 2
i L2 _ |0 o Ul(z)‘ Uz(z)
= b o - 0 AP ;| BB 0 - 0 A, By
MM o0 0 M, 0 0 M,
L 0|1 vl
L& 7 0 A)
where
A(lz) Bgl)
T i@
Tz 2 2
L3 = , L& = . ,
1(2)
T, Ap

STABLE PARALLEL COMPACTIFICATION FOR ODEs 12

) Ay B

By
l

v = -
N A, By
-®, 0 AL P M,

Finally, since linear systems involving each matrix T; (and hence L(B)) can be solved by a triangular substitu-

tion process, it follows that there are permutation matrices Py and P; such that Py L3 Py is lower triangular.
Hence

P . P
[0 I]PTQARPC[! 1]

BRI

B [pompl 0] lz Pry®

o

o
0 A

"] e

~

IMp T 0 A

By making the obvious identifications

| P 5 _ Py
PL - |: I :| PTa PR - Pc |: I :| bl
Li=PI®P, Ly=LWp, U,=PIU,

we obtain (26).
To complete the proof, we note that the quantities in both factors on the right-hand side of (26) are
quantities that are actually computed by Algorithm PSC. The remainder of the algorithm consists of

1. performing the orthogonal “preprocessing” of A with @ and R, and operating with ¢ on the right-hand
side ¢;

2. permuting the rows and columns of QAR and the rows of Q¢ in a predetermined way;

3. performing an LU factorization with no further pivoting, stopping the elimination at stage (N +1—p)n;
4. doing a “forward substitution” with L, to get the right-hand side of the reduced system:;

5. continuing the forward substitution with L; to get the particular solution Z;;

6. solving the reduced system (coefficient matrix fi) to obtain the s;; and

7. doing a back substitution, followed by orthogonal transformations, to recover all the ;.

n
Stability of the algorithm can now be proved by using error analysis techniques from numerical linear
algebra. We have the following result.

Theorem 3.3 Suppose that PSC is used to solve (4) in finite-precision floating-point arithmetic, with unit
roundoff v <€ 1. Assume that

1) the growth in the fundamental solution is not excessive; that is, there 1s a moderate constant v, such
that

max max <I>(»j) < max (|77 Y| < e
o, e el s max Tl < i

STABLE PARALLEL COMPACTIFICATION FOR ODEs 13

(ii) the reduced system As = ¢ is solved in a stable way; that is, there is a moderate constant ~v2 such that
the computed solution s satisfies

(A+E;)5=(¢+es), (29)
where R
1E4ll2 < yaullAll2, llezlla < yaulléll2. (30)
Then the computed solution ¥ of Ax = b satisfies
(A4+Ea)z = (b+ep), (31)
where
1Eallz < ysullAllz, - leslla < ya(l+ [[All2)ulo]]2, (32)
where v3 = O(Nn®? + N3np=1/2927,) and v4 = O(n*p*'>*Ny172).
Proof. We assume throughout the proof that ||.|| denotes the Euclidean norm [|.[|z. Our result depends
on standard analysis for Householder QR factorizations (Lawson and Hanson, [8, pp. 86-89]) and LU
factorizations (Golub and Van Loan [6, §3.3]). The key to the stability argument is the fact that element

growth in the L and U factors of PLQARPE is bounded, because of (i). We stress that our assumption (i) is
reasonable: when (4) is well conditioned, a dichotomy exists, and so our use of decoupling will ensure that

(i) holds provided that the starting matrices Rgfj)_l_l for each partition are chosen appropriately.

First, we take account of the errors arising from the initial orthogonal transformation. By the argument
of Lawson and Hanson [8, p. 87], we have that if C' € R**" is a general matrix and Q € R**" is a product
of n Householder transformations, then

comp(QC) = Q(C' + H),
where comp(.) denotes the computed value of its argument, taking roundoff error into account, and
|H|| < (3n + 40)n®/ ?u||C|| + O(u?).

For the case of a vector ¢ € R?,
comp(Qe) = Qe+ h),
where

IR]] < (3n + 40)nu|c|| + O(u?).
Applying these results to the initial orthogonal transformation of A, we find that
Uy = comp(QF comp(4A;R;))
QF [(Ai + H)R; + H]
= QA+ H]]R:,

where
IHZ < ([HH |+ 1H]I| < 2(3n + 40)n°/ || A llu + O(u?).
Similarly,
Vi = Qf [Bi + H}]Ria,
where

[H] < 2(3n +40)n®/?|| Bil[u + O(u?).

Similar analysis can be applied to comp(M, R(ll)) and to the block rows k; that are not multiplied from the
left by an orthogonal transformation. Since the pivoting operations do not incur any roundoff error,

comp(PLQARPR) = PLQ(A + H)RPg, (33)

STABLE PARALLEL COMPACTIFICATION FOR ODEs 14

where
IH| < (N +1) |sup [|H|| + sup || H]
< AN + Dnr®?(3n + 40)||AlJu + O(u?).
Similarly,
comp(Qb) = Q(b+ h),
where

1A]] < (N + 1)Y2(3n + 40)n||b]ju + O(u?).

We now examine the LU factorization of comp(PLQARPg). Although the Gaussian elimination process
is terminated prematurely, we can use the proof of Theorem 3.3.1 of Golub and Van Loan [6] to show that

LU = comp(PLQARPR) + H, (34)
where R o
|| < 3(N + Dnu (jcomp(PLQARPR)| + |E||IT]) + O(u?).
Hence,
1]l2 < 3(N + Dnu [[|4] + IZIIT] + O(). (35)
Now ~ R R ~ ~
IZN < Lol + 1 Zall + A = 12O+ 12+ (1AL, (36)

and so, by using the definitions that appear during the proof of Theorem 3.2,

ILO) < Jleomp(QAR)| < | A+ O(u),
L) < 2(p+ DY max (max((| 4 Rl || BiRiga), 1Mo Rl) +O(u)
< 2p+ DY2A|+ Ow),
A< 20 107 ma (s UL DB 8 1)

In the last of these inequalities,
A< AR 4211+ 115+ O(w) < AL+ (N/p)r1 + O(u)).
Similar inequalities can be derived for ||B]|| and ||Ma||, SO
1A < 2(p+ 1)V (1+ (N/p)70)l| Al + O(u).

For the upper triangular factor, we have that

- 2 3

1)) < 2+ 102l = 2+ 1057

< 2 ma]fd |+ O(w) < 24 (N/phs + O(w). (37)

By using some elementary inequalities, we then have from (35), (36), and (37) that
1] < 6(N + D(p+ 1D)'*n(3 + (N/p)71)*[|AlJu + O(u).
Consider now the forward and back substitution process involving L and U, that is,

LUy = comp(PLQb) = PLQ(b + h). (38)

STABLE PARALLEL COMPACTIFICATION FOR ODEs 15

Using (29), (30), and a simple backwards error argument, we can show that the computed solution g of (38)
will satisfy

i e [l
L2—|—H2 A—|—EA 0 1 Y2

— (E+Ei) ([j—I-EU)g:PLQ(b"'h"'eZ)a

where) consists of the first (N — p)n rows of PrQ, Q2 contains the last (p + 1)n rows, and E;, Ey, and
e; are defined in obvious ways. Now (29) and (30) imply that

€]l

IN

Yau HQl(b + 71) - (ﬁz + HZ)(ﬁl + Hl)_lQZ(b + il)H

IN

you (L IElIET)+ O(w)) (18] + O(w)
Faull A0l + O?),

IN

where 74 = O(y172p'/?), and
£l < y2ull Al < 272(p + DYP(L+ (N/p)1)ull 4] + O(u®).
Following Golub and Van Loan [6, p. 106], we find that the remaining error terms in (39) satisfy
[Ha]] < nul|Ly]] < nuflAfl + O(u?),
M) < nullLsl] < 20u(p + DA+ O(u?),
[Hs]] < nul|Us|| < 2nu(N/p)y:.
Hence
1Bl < WAL+ I+ 140 < Faull Al + 00,
I1Egll < 2nNyu,
lesll < FaullAfl[[]l,
where 73 = O(np~"?N7172). From (33), (34), and (39), we have that

(EU + E;U+ LEg + O(uz)) y o= PLQ(b+h+e)
— (PLQARPR+ H)y = PrQ(b+h+e;),
where ~ R o
H=PQHRPr+ H + E;U + LEg + O(u?).
Hence

L] < [+ I+ BT+ DL Ee < s,
where 73 1s as defined in the statement of the theorem. Also,
17+ ezll < yallbll
The result follows by making the identifications
Es=QTPIHPLRT, e = h+ej, y = RPry.

n

If the algorithm of this section is applied recursively (that is, if the reduced system is itself solved on

multiple processors by using the same technique), the theorem indicates the amount of deterioration in
accuracy that can be expected in moving between levels of the recursion.

STABLE PARALLEL COMPACTIFICATION FOR ODEs 16

4 A No-fill-in Variant

In the preceding section, we showed how the fundamental and particular solutions for the problem (4) could
be calculated by using the blocks U; and V; from the transformed coefficient matrix. As described there,
the algorithm assumed that the data for the initial orthogonal reduction (that is, the U, Vi, @, and R;
matrices) is not overwritten in storage. This assumption means that new storage must be used to store the
fundamental solution blocks ®;, resulting in a fill-in of approximately 25%.

In this section, we outline a scheme in which the fill-in is reduced by storing the components of ®; in
storage formerly occupied by U; and V;. At the same time, we wish to allow for the possibility that the
particular solution is calculated at some later time than the fundamental solution, that is, the right-hand sides
¢;,t=1,---, N and d are not known at the time the fundamental solution is calculated. This situation may
arise when a “chord method” approach is applied to a nonlinear version of (4). In this method, approximate
Newton iterations are calculated by using the same Jacobian information for a number of successive iterations,
while the right-hand side changes from iteration to iteration. In the preceding section, particular solutions
are calculated by using (19) and (20). Hence, if we plan to overwrite components of U; and V;, we need to
devise new formulae for finding the Zz;s.

To satisfy both requirements of the preceding paragraph, we need to define a “general solution” \IIEJ),
t = k; +1,---,kj41 on partition j in such a way that each \IIEJ) € R**" is nonsingular. Moreover, \IIEJ)
will be identical to the fundamental solution <I>§]) whenever all U; and V; in partition j are nonsingular.
Computation of the sequence ¥, involves a simple modification of the forward sweep/reverse sweep process
(16) and (17). The only enhancement is that when some (U;)22 or (V;)11 are singular, diagonal terms are
added to (U;)22(¥;)22 or (Vi)11(¥;41)11 to prevent singularity in the next general solution matrix in the
sequence. Note that we are taking advantage here of the fact that U; and V; (and also ®; and ¥;) are
upper triangular. This means that singularity manifests itself as zero elements on the diagonal and is easily
remedied by replacing these zeros by, say, ones, which is what we do.

Fori=Fk; +1,---,kj4+1 — 1, we define

ZZF = [eﬂlEAfa

where ef is the R® unit vector, with zeros everywhere except for a 1 in position /, and
A = {1 | I-th diagonal element of (U;)s3 is zero}.

Note that Zf(Z')T is an £ x ¢ matrix that is zero everywhere except for ones in the diagonal positions in
which (U;)a2 has zeros. Similarly, define
Zft = [67_Z]leARa

where ef_z is the R*~* unit vector with a 1 in the ! position, and
AF = {l| I-th diagonal element of (V;);; is zero}.
The boundary conditions for ¥; coincide with (15); that is,
(We,41)2, =011, (Wepy)r,. =[] 0] (40)
The sweeps are defined as follows:

fOI‘iIk]'—l—l,“',k]’_H—l

(Wit1), = —(Vi)zy {[0 | (Ui)22(Ws)a2] + 2] [Z?F] } ; (41)

STABLE PARALLEL COMPACTIFICATION FOR ODEs 17

fOI‘iIk]'+1—1,~~~,k]’—|—1
(Ti)1, =

A {(vonwmh,. HDia(Wip)a, + (a0, + 2| | } . (42)

Note that the extra terms in (41) and (42) do not disturb the upper triangularity of each ¥,.

By making use of the relationship between the fundamental and general solution, we can store the general
solution in a compressed format. We show how this is done for the (2, 2) block of ¥;; for the other two nonzero
blocks the technique is similar.

First, we show that we can write

(U;)az = (®;)20 + WE(ZHT (43)

where ZZF contains all ef such that the [-th diagonal of (Uy,)22 is zero for some, and possibly more than one,
k=k;+1,---i—1. Fori=k;+1, W and Z}" are null. Assuming that (43) is true for k = k; +1,...,4,
we have from (41) that

(Wip1)2 = —(Vi)oy {(Uz’)zz [(®i)az + W ZI)T] + 2] [Z?F] }
= (Pip1)az — (Vi)ao (U)W (21 — (Vi)gw 25 (Z])T.

We obtain Zﬁl—l by merging the columns of ZZF and ZZ»F, while VT/Zﬂl is obtained by merging —(I/i)z_zl(Ui)szT/iF
and —(Vi)z_leZ»F. We “merge” rather than simply append Z" to Z{" since there is no need for Zﬁl—l to have

two copies of the same column. (The same effect can be obtained by adding the two corresponding columns
of I/Vlﬂl) The corresponding formula to (43) for the (1,1) and (1, 2) blocks is

(W), = (®;),, +WHEZEHT. (44)

In each case, the substantive additional storage requirements are for the matrices VT/ZF and VT/Z»R (the Z;
matrices can be stored in a few integer locations.) In the worst case, this will require the same amount of
storage as the general solution itself, but we usually expect it to be much less. For example, if the (¢, ¢)
element of one or more of the (U;)22 matrices is zero, then we need about (k;j11 — k; — 1)n locations to store
the W;, or about 2/n of the space required by the entire general solution.

As we noted earlier, a particular solution of the recurrence (13) can be calculated by performing the
forward and backward sweeps (19) and (20). Since we would like to overwrite some components of the U;
and V; matrices by components of ®;, we now describe an alternative method for calculating the z; which
makes use of the ¥; but only of selected components of U; and V;.

The boundary conditions (18) are used for z;, i = k;j + 1,- -, k;j+1, as before. Defining the change of
variables

and using the boundary conditions (40), we obtain
(Uk‘j-l—l)Z,, = 0, (vkj+1)1,. = 0. (46)

We now substitute in (13) and define ¢; = Q7 ¢; to obtain
UiWv; + Vil 4041 = ¢ (47)
Note from (41) and (42) that

ZRZRT 0
- v = Ve + | A ZE(ZF Y

STABLE PARALLEL COMPACTIFICATION FOR ODEs 18

By isolating the last £ rows of (47), and by considering the (2,2) block of (48), we obtain

—[(Vi)22(Wiy1)az + 25 (Z5) T (vi)2 4 (Vi)22(Wig1)a2(vigr)2 = ()2
= (vig1)2 = (v0)2 + [(Vi)aa(Wig1)22) 7 (é)2 + 25 (Z)T (vi)a). (49)

Here, (.)2 denotes the last £ rows of a vector in R*. By isolating the first n — ¢ rows of the expressions (47)

and (48), we find that

(vi)1 = (vig)r + (U1 ()1)" {28 (25 (viga)1 + (e
H(U)11()12 + (Ui)12(Y5)22][(v541)2 — (vi)2]} - (50)

We conclude that v;, i = k; + 1, -+, kj41, can be found by doing a forward sweep using (49) followed by
a reverse sweep using (50). Note that we need to solve linear systems with coefficient matrices (V;)az, (Us)11,
(¥;)11, and (¥;)22 in order to obtain z; from (45) and (49),(50). If we assume that (4) is well conditioned
and that the partitioning is done correctly, these matrices are invertible.

The blocks (Ur)22, (V1)11, and (V)12 are not used in (49) and (50). We can therefore overwrite these
blocks in storage to avoid fill-in. During the forward sweep (16), (U;)22 can be progressively overwritten
by (Vi)22 in memory, and (®;41)22 can be stored in the space vacated by (V;)22. During the reverse sweep
(17), (®;)11 and (®;)12 can progressively overwrite (V;)11 and (V;)12. The matrices W and W which are
needed to recover ¥; from ®; will need to be stored in new locations.

5 Extension to Problems with Multipoint Conditions or Param-
eters

We now show how the algorithm of §3 can be modified to handle problems of the forms (5) and (6). As
mentioned in §2, the fundamental solution modes in these problems exhibits not dichotomy but, in general,
polychotomy and skew-polychotomy. The practical consequence for the Algorithm PSC is that the value of £
(the number of “decreasing” fundamental modes) is no longer constant across all partitions; in fact, it may
increase or decrease repeatedly within each partition. It is even possible for the submatrix [A; B;] to be
rank deficient. In order to adapt PSC to these circumstances, we need to be able to recognize when ¢ has
changed, and to modify the compactification strategy accordingly.

A change in £ is recognized by periodically examining the diagonal elements of Vi_lUZ' during the initial
orthogonal factorization process (12). As mentioned earlier, these are (U;)u/(Vi)u, I = 1,...,n. If the
number of diagonals that are less than 1 is either greater than or less than the current value of £ for a few
successive stages, then we deem /¢ to have changed. The most general way of handling such a dichotomy
change is simply to break off the present partition at the current stage point, and start a new one. Specifically,
suppose that at stage ¢ during the orthogonal preprocessing of partition j, we decide that ¢ has changed.

We then set k;4 = ¢ + 1 and terminate the preprocessing of the current partition after calculating Rgfjl

Next, we skip a row and start a new partition by choosing Rgc]:zl—l as described in §3. The skipped row must
now be added to the reduced system. If s;; € R" is the “reduced” variable for the new partition, the extra
equation is

Ay Rgcjjl <I>§€]])+ 85 + él(cjji_ + By Rgc]]izl—l q)gc]j1_2|-15j+ + ’%l(c]]i—}l—l = Ckjy-

To avoid creating a new partition in the case in which ¢ increases, we can pick up an extra component
during the forward sweep calculation of the “decreasing” part of ®;, at the point at which the dichotomy
change occurs. Correspondingly, a row is dropped from the first part of ®; during the backward sweep. This
is essentially the strategy used by de Hoog and Mattheij [4, §4].

A circumstance that causes more immediate failure of the algorithm occurs when the submatrix [A; B;]
fails to have full rank for some 7. When this occurs, [U; V;] is also rank deficient, and it is easy to show that
for at least one index [= 1,-- - n, the [-th diagonals of U; and V; are both zero. Hence at least one of (U;)11

STABLE PARALLEL COMPACTIFICATION FOR ODEs 19

and (V;)22 are singular, so either the forward sweep (16) or the reverse sweep (17) will break down at stage
¢. Since this difficulty can be detected during the initial orthogonal factorization, the fix is the same as for
a dichotomy change — we create a partition break at stage .

We assume from this point on that the number of partitions p and the separator indices k;, j =1,---,p,
have been altered where necessary during the partitioned compactification, to reflect the number of new
dichotomy switches that were encountered.

Construction of the reduced system is slightly different for problems of the form (5) than it is for problems
of the form (4). Rather than (21), each z; is now expressible as

“ :(I)Ej)sj +Agj)’\+£z(j)a T :jo)zi, i=kj+1,- kjy. (51)
Since
U0 4 Vil = 0, i=kj+ 1, kg,
Uiéz(j)'i'vifz(i)l = QZ'TCi, i=ki+ 1, kg,
Uizi + Vizep1 + QY Cx = QT ¢, i= ki1, ki,

we have by substitution in (51) that

UAY 4 VAL, +QTCi I =0, i=kj+1,-- ki
We choose Agj), t=4k; +1, -, k;j;11, to satisfy the recurrence suggested by this formula, namely,
5(3)

Clearly, this recurrence has the same form as the one that is solved for the particular solution 2"’ (except
that it has m columns instead of one), and we can solve it in exactly the same way. The choice of boundary

()

conditions is also the same as for 2;”/. When no dichotomy switch is encountered within a partition, we set

(Agcjj){_l)n—2+1:n,. = 0; (Aggjjl_l)lzn—ﬁ,. =0. (53)

In deriving the scheme (52) and (53), we are essentially treating the parameter term as a forcing term.
We can now use (51) to construct the reduced system. For the side conditions, we have

N+1
Z M;z;, + NA = d
i=1
= 303 MRD [0 AN+ e Nx = d (54)
j=1li=k;+1

S

p
= ZMij+N/\ =
ji=1

where
Mj = Zf:l;-u Mijo)q)gj)a N=N + Z?:l Zf;-l;i+1 Mijo)Agj)a
d=d- Z?:l Zf;-lz+1 Mijo)éz(j)~
For the remaining equations, we obtain

Ajsj+ Bisj + Cih = &,

STABLE PARALLEL COMPACTIFICATION FOR ODEs 20

where Aj, Bj and &; are as defined in (25a), and

+ B, R(j+1) A(i+1)
i+1

Cj = Ciyp + Akj+1R(]) A [SNERLY SR

kiv1 kit
Again, recursive application of the compactification to the reduced system is possible, but only up to a
point. We would expect to have an intrinsic lower bound on the number of stages in the smallest possible
reduced system, namely, the total number of dichotomy switches. In other words, the smallest reduced
system 1s one in which a dichotomy switch occurs at each stage.
For problems of the form (6), substitution like that described in (54) can be performed in the least squares
objective function. We obtain

ZN+1 |M;x; + Nid — di|* + [|[NoA — do||?

=1
= i I1Mys5 + NjA = d|” + [|NoA — do?, (55)
where
~ . 1i=k;41
M]. — [MZREJ)CI)EJ)] ’
kit
N . . i:k‘j-l—l
Nj = [N2+MZR5])A5])] ’
kit
N . . i:k‘j-l—l
d = [di _ MZ»REJ)%Z(])]

6 Numerical Results

We implemented the PSC and SQR algorithms on the Intel Touchstone Delta at the Concurrent Supercomputer
Consortium. This machine has 513 computational nodes, each with an Intel 1860 microprocessor and 16
Megabytes of memory. The nodes are arranged in a two-dimensional mesh configuration. Underlying the
mesh 1s a high-speed bus which allows data to be ported between any two nodes in a fashion that is transparent
to the user. Provided the total amount of data being transferred is not too great, the time to send a message
across this bus is not strongly dependent on the physical locations of the source and destination nodes in the
mesh. We chose this architecture since it seems typical of the new generation of massively parallel machines.
The forthcoming Intel Paragon will be a commercial version of the Touchstone Delta, and the Thinking
Machines CM-5 1s architecturally similar.

Our codes handle two classes of problem — two-point boundary value problems (1) and (4), and two-point
problems with parameters ((2) and (5) with 7 = @ and 72 = b). As discussed earlier, the SQR algorithm
is similar to the one described in [13], except that Givens rotations are used in addition to Householder
transformations during the QR factorizations. The extra columns in the shooting matrix that are due to the
presence of parameters are handled as described in Wright [12, §5]. Each processor compresses its “slice” of
the shooting matrix into a single block row, leaving a reduced system with (p 4+ 1)n + m rows and columns.
This system is solved by using a “cyclic reduction” variant of SQR, which we now briefly describe. Assume
that the processors are numbered 0,1,2,---,p — 1, where p = 27 for some integer d > 0. At the first level
of cyclic reduction, the odd-numbered processors 2i + 1,7 =0,1,---,p/2 — 1 pass their piece of the reduced
system (consisting of a single block row) to the neighboring even-numbered processor 2i. Each processor 2i
then compresses this block row with its own block row to produce a single block row. At the end of this first
level, the size of the reduced system has been approximately halved — it now has dimension (p/2+ 1)n+m.
At the second level, the processors 47 + 2 pass their data to processors 4i. After d levels, processor 0 is left
with a reduced system of dimension 2n 4+ m. It solves this system to produce z1, zn41, and A. We then
backtrack along the binary tree traversed during the process of compression to recover all the intermediate
solution components.

The implementation of PSC is similar. Fach processor is assigned an equal-sized slice of the original
shooting matrix to which it applies the stabilized compactification algorithm described in §§3 and 5. At the

STABLE PARALLEL COMPACTIFICATION FOR ODEs 21

end of this stage, each processor contains one or, in the case of dichotomy changes, more than one block
row of the reduced system. If a processor contains more than one block row, orthogonal compression like
that used by SQR is applied to obtain a single block row. The cyclic reduction SQR compression scheme just
described is now applied to solve the reduced system that remains.

In our tests, we form discrete problems by applying the “box scheme” to our continuous problems. We
seek z; € R*, i = 1,--- N + 1 such that #; = z(¢;), where {;, = a+ ({ — 1)h and h = (b — a)/N. The
parametrized ODE (2) is approximated by

(Tig1 — 2i)/h = A(tip1y2)(wi + @ig1)/2+ Ctigr/2)A + c(tizry2)-
Our first test problem has a change of dichotomy near the point ¢ = 1/3.

Example 1 n =3 m=1.

20
T =Q({) 10(t —1/3) Rtz + C)A + e(t), t e€0,1], (56)
—20
where, using the shorthand ¢ = cost, s = sint,
c s 0 1 1 3
Q) = —s c 0|, R(t) = 111, Cit)y=1 0
c—s c+s 1 1 5t

The vector function c(t) is chosen so that z(t) = €’(1,1,1)T and A = 1 is a solution of the parametrized
ODE. The boundary conditions are

1 1 1 2+e
1 1 0 . 1+e

1 2(0) + 1 z(1)+ 1 A= .
2 3 4 -2 -3 -4 0 9 — 9e

PSC is able to detect the change in dichotomy near ¢t = 1/3. On a single processor with N = 1000, a
change from two decreasing modes to one decreasing mode is reported at ¢ = .406. The “rightward shift” is
due to the fact that our heuristic for detecting dichotomy changes is rather conservative; it reports a switch
only when the behavior is consistently different over a significant number of consecutive intervals. When we
use four processors, each with 1000 intervals (a total of N = 4000), the situation is a little more complicated.
The algorithm for calculating the fundamental solution detects a number of points at which a dichotomy
switch appears to occur and reports them as such. However, in all but one case, a restart at that point
(as described in §5) indicates that the number of increasing and decreasing modes has not changed. The
exception 1s, of course, the point at which the one true dichotomy switch occurs. The spurious switches do
not affect the stability of the algorithm and have only a marginal effect on the computation time, since they
add just a single row to the reduced system. The locations of the “breaks” are summarized in Table 3.

Tables 4 and 5 show timings for SQR and PSC, respectively. In both cases, the time for initial reduction
of each partition remains essentially constant and is somewhat less for PSC than for SQR. The time to solve
the reduced system by the cyclic reduction algorithm tends to increase as the depth of the tree increases,
though not in a smooth way. Nevertheless, solution of the reduced system is such a small part of the overall
computation that near-perfect speedup is attained.

Our second example arises from transport theory. Consider the single-group one-dimensional transport
equation as defined by Jin and Levermore [7, Example 2]:

p0y®(z, p) + or(2)®(x, p) = %W(JL‘)UT(JL‘)/ Oz, p)dp', x€(0,L), (57)

-1

STABLE PARALLEL COMPACTIFICATION FOR ODEs 22

Table 3: Example 1, four processors, N = 4000. Restart points for stabilized compactification (excluding the
breakpoints due to partitioning into four subintervals) and number of decreasing modes on the subinterval
between this breakpoint and the preceding one.

t | 378 403 433 961
No. of decreasing modes | 2 1 1 1

Table 4: Example 1. PSC: Timings with number of intervals per processor fixed at 1000. All times are in
seconds.

Number of processors | 1 2 4 8 16 32 64 128
Time for initial reduction 347 348 347 347 347 347 347 347
Time for reduced system solution | .001 .001 .001 .014 .013 .012 .013 .014
Total time 371 372 371 384 382 382 383 .384

with boundary conditions

(0, p) = Fa(p) (n>0), (L,p) = Fao(p) (p <0). (58)

One widely accepted method for solving this equation, the discrete ordinates method, proceeds by replacing
the integral term in (57) by a quadrature approximation. The resulting two-point boundary value problem
in the remaining independent variable z can then be solved to obtain an approximation to ®. We use
Gaussian quadrature with an even number of abscissae, in which specification of weights w;, i = 1, n,
and abscissae p;, 1 =1,---;n with =1 < pg < -+ < pp < 1, fty = —pn_i41, Wi = Wp—iy1, and w; > 0 leads
to the approximation

1 n
/ Flp)ydp =y wif(ps).
-1 i=1
Using the notation
A
@;(x) = (2, i),

and discretizing the boundary conditions in an obvious (though not optimal) way, we can write the boundary
value problem arising from Example 2 of Jin and Levermore [7] as

pi®}(z) + or(2)@i(z) = Sw(z)or(z) Y wj®i(x), i=1--n, (59)
j=1
®;(0)=5, i=in+1,---,n, ®;(11)=0, i=1,---,3n. (60)

Because of separation of the boundary conditions and the well-posed nature of this problem, we would
expect exactly half of the fundamental modes to be nonincreasing and half to be nondecreasing across the
entire interval. Our implementation of PSC indicates that this is indeed the case. No “spurious” dichotomy
changes are flagged on any of the examples we tried.

Table 5: Example 1. SQR: Timings with number of intervals per processor fixed at 1000. All times are in
seconds.

Number of processors | 1 2 4 8 16 32 64 128
Time for initial reduction 613 613 614 .614 .614 613 .614 .614
Time for reduced system solution | .001 .002 .002 .012 .013 .014 .014 .014
Total time 642 643 644 654 .655 .65 .6b6 .656

STABLE PARALLEL COMPACTIFICATION FOR ODEs 23

Table 6: Example 2. PSC: Timings with n = 20 and number of intervals per processor fixed at 200. All times
are in seconds.

Number of processors | 1 2 4 8 16
Time for initial reduction 218 2.22 221 219 2.19
Time for reduced system solution | .028 .044 .088 .113 .093
Total time 2.26 231 236 235 2.33

Table 7: Example 2. SQR: Timings with n = 20 and number of intervals per processor fixed at 200. All times
are in seconds.

Number of processors | 1 2 4 8 16

Time for initial reduction 6.61 6.38 6.37 6.37 6.38
Time for reduced system solution | .016 .049 .140 .190 .206
Total time 6.72 6.53 6.61 6.66 6.68

Results for the two algorithms are given in Tables 6 through 9 for the cases n = 20 and n = 10. A box
discretization was used with constant interval length and a fixed number of intervals per processor. As in
Example 1, the time taken to solve the reduced system tends to increase with the number of levels in the
tree (though not smoothly), but high efficiency is obtained even on a large number of processors.

References

[1] U. M. AscHER, R. M. M. MATTHELJ, AND R. D. RUSSELL, Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, 1988.

[2] U. M. AscHER AND R. D. RUSSELL, Reformulation of boundary value problems into “standard” form,
STAM Review, 23 (1981), pp. 238-254.

[3] H.-G. Bock, Recent advances in parameler identification techniques for O.D.E., in Numerical Treat-
ment of Inverse Problems in Differential and Integral Equations, P. Deuflhard and E. Hairer, eds., vol. 2
of Progress in Scientific Computing, Birkhauser, Boston, 1983, pp. 95-121.

[4] F. R. bpE Hooag aND R. M. M. MATTHEL, An algorithm for solving multi-point boundary value
problems, Computing, 38 (1987), pp. 219-234.

[6] ——, On the conditioning of mullipoint and integral boundary value problems, STAM Journal of Math-
ematical Analysis and Applications, 20 (1989), pp. 200-214.

[6] G. H. GorLuB aND C. F. VAN LoaN, Malriz Compulations, The Johns Hopkins University Press,
Baltimore, MD, second ed., 1989.

Table 8: Example 2. PSC: Timings with n = 10 and number of intervals per processor fixed at 200. All times
are in seconds.

Number of processors | 1 2 4 8 16 32 64 128
Time for initial reduction 449 450 450 450 .451 451 452 452
Time for reduced system solution | .006 .009 .012 .034 .028 .041 .043 .034
Total time A73 477 480 502 497 510 512 504

STABLE PARALLEL COMPACTIFICATION FOR ODEs 24

Table 9: Example 2. SQR: Timings with n = 10 and number of intervals per processor fixed at 200. All times
are in seconds.

Number of processors | 1 2 4 8 16 32 64 128
Time for initial reduction 1.27 127 127 127 127 126 1.26 1.27
Time for reduced system solution | .004 .010 .016 .031 .029 .034 .040 .054
Total time 1.30 131 132 133 132 133 133 1.35

[7] S. JIN AND D. LEVERMORE, The discrete-ordinate method in diffusive regimes, Transport Theory and
Statistical Physics, 20 (1991), pp. 413-439.

[8] C. L. LawsoN aAND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[9] R. M. M. MATTHEL, Stabilily of block L U-decomposilions of malrices arising from BV P, STAM Journal
on Algebraic and Discrete Methods, 5 (1984), pp. 314-331.

[10] ——, On boundary value problems for ordinary differential equations with parameters, in Differential
Equations, C. M. Dafermos, ed., Marcel Dekker, New York, 1989, pp. 481-489.

[11] J. RINZEL AND D. TERMAN, Propogation phenomena in a bistable reaction-diffusion system, SIAM
Journal on Applied Mathematics, 42 (1982), pp. 1111-1137.

[12] S. J. WRIGHT, Stable parallel elimination for boundary value ODEs; Tech. Rep. MCS-P229-0491,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, April

1991.

[13] ——, Stable parallel algorithms for two-point boundary value problems, STAM Journal on Scientific and
Statistical Computing, 13 (1992), pp. 742-764.

