
PARALLEL STABLE COMPACTIFICATION FORODE WITH PARAMETERS AND MULTIPOINTCONDITIONS�R. M. M. MATTHEIJy S. J. WRIGHTzJune 30, 1993AbstractMany algorithms for solving ordinary di�erential equations with parameters and multipoint sideconditions give rise to systems of linear algebraic equations in which the coe�cient matrices have abordered block diagonal structure. In this paper, we show how these problems can be solved by usingparallel algorithms based on stabilized compacti�cation.1 IntroductionWe discuss stable algorithms for solving algebraic linear systems arising from ordinary di�erential and dif-ference equations. These equations may include some global parameters, and their solutions are subject tomultipoint side conditions. To make the discussion in subsequent sections clearer, we group the problems tobe addressed into three categories:Two-point boundary value problems:_x = A(t)x+ c(t); t 2 [a; b]; (1)Max(a) +Mbx(b) = d; x(t); c(t); d 2 Rl n;Parametrized problems with multipoint conditions (see, for example, soluton formulations discussed inRinzel and Terman [11]): _x = A(t)x+C(t)� + c(t); t 2 [a; b]; (2)Ppj=1Mix(�j) +N� = d; a � �1 � � � � � �p � b;x(t); c(t) 2 Rl n; � 2 Rl m; Mi 2 Rl (m+n)�n; N 2 Rl (m+n)�m;Parameter identi�cation problems (see, for example, chemical rate constant identi�cation as in Bock [3]):min Ppj=1 kMjx(�j) +Nj�� djk2 + kN0�� d0k2; (3)_x = A(t)x+ C(t)�+ b(t); t 2 [a; b]x(t) 2 Rl n; � 2 Rl m; Mj 2 Rl nj�n; Nj 2 Rl nj�m:�This research was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U.S.Department of Energy, under Contract W-31-109-Eng-38.yDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind-hoven, the Netherlands.zArgonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.1



STABLE PARALLEL COMPACTIFICATION FOR ODEs 2Although these categories appear to be listed in order of increasing generality, the ordering is not strict:problems of the form (2) can be recast in the form (1) (see, for example, Ascher and Russell [2]). For purposesof e�ciency, it is usually best to use the original form when solving such problems.Each of these problem categories has a corresponding \discrete" form, in which the di�erential equationis replaced by a di�erence equation. We categorize the discrete problems similarly:Aixi + Bixi+1 = ci; i = 1; � � � ; N; (4)Max1 +MbxN+1 = d; xi; ci; d 2 Rl n;Aixi +Bixi+1 + Ci� = ci; i = 1; � � � ; N; (5)PN+1i=1 Mixi + N� = d;xi; ci 2 Rl n; � 2 Rl m; Mi 2 Rl (m+n)�n; N 2 Rl (m+n)�m;minPN+1i=1 kMixi +Ni� � dik2 + kN0� � d0k2; (6)Aixi +Bixi+1 + Ci� = ci; i = 1; � � � ; N;xi 2 Rl n; � 2 Rl m; Mi 2 Rl ni�n; Ni 2 Rl ni�m:The \discrete" categories can be obtained by applying algorithms such as multiple shooting or �nitedi�erencing to the corresponding \continuous" categories. The widely used collocation algorithm also givesrise to such discrete problems after a condensation step has been applied.We will not address the special di�culties caused by sti�ness and singularly perturbed problems. Neitherwill we speci�cally address nonlinear problems, though it is well known that algorithms for such problemsoften require the solution of linear systems like those described above as a core operation.In the next section, we will review the concept of conditioning for the continuous problems above, andits implications for the conditioning of the linear systems to be solved in the discrete problems (4), (5), and(6). In x3, a parallel algorithm for (4) is described and is contrasted with previously proposed algorithms(e.g., Wright [13, 12]). This algorithm is extended to problems of the form (5) and (6) in x5. Finally, somenumerical results are presented in x6.2 Conditioning of the Problem and Structure of the SolutionSpacesThe various problems de�ned in x1 relate to solution spaces of potentially di�erent types. This variety ofsolution types inuences the possibilities for parallelization that will be discussed in the next section. Herewe characterize these solution spaces; that is, we describe certain growth properties of homogeneous modesin the fundamental solution �(t). Throughout, we assume that the problem is well conditioned. By this wemean that small perturbations of inhomogeneities in the ODE and the side conditions manifest themselves inthe solution as quantities that are only a moderate constant larger in norm than the original perturbations,that is, k�xk � �max(jdj; kck); (7)where k:k is a suitable function space norm, in either the continuous or discrete setting, and j:j is any H�oldernorm.



STABLE PARALLEL COMPACTIFICATION FOR ODEs 3In the case of the two-point boundary value problem (1), well-conditioning implies that the underlyingsolution space is dichotomic; that is, there exists a projection P and a moderate constant ~� such that8<: j�(t)P��1(s)j � ~�; t > s;j�(t)(I � P )��1(s)j � ~�; t < s: (8)(See de Hoog and Mattheij [5].) Hence, � can be properly split into one set of solution modes that do not(signi�cantly) increase and another set of modes that do not (signi�cantly) decrease.If we have multipoint side conditions (m = 0 in (2)), then well-conditioning allows for a \switch" of growthbehavior at any of the internal conditions. This property was referred to by de Hoog and Mattheij [5] aspolychotomy. Speci�cally, we can choose projections P1; � � � ; PM (M � min(p; n)) such that PMj=1 Pj = I,PiPj = PjPi = �ijPj, and8><>: j�(t)Pkj=1Pj��1(s)j � ~�; �k < s � �k+1; t > s;j�(t)PMj=k+1Pj��1(s)j � ~�; �k < s � �k+1; t < s; (9)where, again, ~� is a moderate constant and the switch points a = �1; �2; � � � ; �M+1 = b are a subset offa; �1; � � � ; �p; bg. Polychotomy means that � is dichotomic on each subinterval (�k; �k+1) but that thedimension of the subspace of \nonincreasing" modes may become larger | by rank(Pk) | at each switchpoint �k.A more or less complementary result to the foregoing holds for \pure" parameter problems (for whichp = 2, a = �1 and b = �2 in (2)). Given well-conditioning, Mattheij [10] showed that there exist a moderateconstant ~�, projections P1; � � � ; PM with (M � min(m;n)) satisfying the conditions described above, and aset of switch points �k, k = 1; � � �M + 1 with a = �1 < �2 < � � � < �M+1 = b such that8><>: j�(t)PMj=k+1 Pj��1(s)j � ~�; �k < s � �k+1; t > s;j�(t)Pkj=1 Pj��1(s)j � ~�; �k < s � �k+1; t < s (10)Again, � is dichotomic on each subinterval, but the dimension of the subspace of nonincreasing modes maynow become smaller at each switch point �k as we move from left to right.In the more general case of m 6= 0 and p > 2 in (2), one should expect that any combination of (9) and(10) can occur. We will use the term \polychotomy" to refer to the multiple splitting of the solution spacein this case as well.Thus, we may expect for (2) a total of at most min(p; n) switch points at which the dimension of thesubspace of nonincreasing modes may increase, and at most min(m;n) switch points at which this dimensionmay decrease. Note, however, that a typical \pure" mode of this subspace may undergo only one switch inbehavior; otherwise, it would violate the local well-conditioning on each subinterval (�k; �k+1) or (�k; �k+1).It should be noted that the potential switch points �k (from which the �k are chosen) are known before-hand, while the �k may be anywhere in the interval (a; b).3 The Basic AlgorithmThe \stabilized compacti�cation" algorithm has been described in Ascher, Mattheij, and Russell [1, pp.157{161]. In this section, we outline a parallel version and discuss some aspects of its implementation in amessage-passing computational environment. We describe the method for the case of problem (4); this isthe simplest of our discrete problems since, when it is well conditioned, the dimensions of the nonincreasingand nondecreasing subspaces remain constant across all the stages. We use ` to denote the dimension of



STABLE PARALLEL COMPACTIFICATION FOR ODEs 4the nonincreasing subspace. The dimension of the complementary nondecreasing subspace will therefore be(n� `). For the moment, we also assume that the value of ` is known.Suppose that the N +1 indices in the problem (4) are split into p partitions of approximately equal size.This is done by choosing indices k1; k2; k3; � � � ; kp+1 such thatk1 = 0; kp+1 = N;ki+1 � ki + 2; i = 1; � � � ; p:The j-th partition of the linear system is taken to be26664 Akj+1 Bkj+1Akj+2 Bkj+2. . . . . .Akj+1 Bkj+1 3777526664 xkj+1xkj+2...xkj+1+1 37775 = 26664 bkj+1bkj+2...bkj+1 37775 : (11)The algorithm starts by transforming the recurrence (11) to one involving upper triangular blocks. Then,explicit decoupling of nonincreasing and nondecreasing modes is used to �nd particular and fundamentalsolutions for this partition. Because of the decoupling, element growth in the fundamental solution is avoided.Suppose for the moment that we can choose an n � n orthogonal matrix R(j)kj+1 that is e�ective indecoupling these two sets of modes. (The choice of R(j)kj+1 will be discussed further below.) Starting with thismatrix, the transformation process performs repeated QR (orthogonal) factorizations to �nd the followingmatrices, all of which are square with dimension n:R(j)i ; i = kj + 2; � � � ; kj+1; orthogonal;Q(j)i ; i = kj + 1; � � � ; kj+1� 1; orthogonal;U (j)i ; i = kj + 1; � � � ; kj+1� 1; upper triangular;V (j)i ; i = kj + 1; � � � ; kj+1� 1; upper triangular;such that AiR(j)i = Q(j)i Ui (12a)Q(j)Ti Bi = ViR(j)Ti+1 : (12b)The recurrence Aixi + Bixi+1 = ci; i = kj + 1; � � � ; kj+1 � 1;has now been transformed toUizi + Vizi+1 = QTi ci; i = kj + 1; � � � ; kj+1 � 1; (13)where zi = RTi xi:(Here and subsequently, the superscripts on R(j)i , Q(j)i , etc., will be dropped when their values are clear fromthe context.) From an implementation point of view, these operations create little �ll-in. The matrices Uiand Vi can be stored in the upper triangles of the data structures formerly occupied by Ai and Bi. Most ofthe information needed to reconstruct the orthogonal matrices Qi and Ri can be stored in the lower triangles,though an extra n-vector is also needed for each matrix.We now construct a fundamental solution to (13), denoted byf�igi=kj+1kj+1 ; �i 2 Rl n�n; upper triangular; (14)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 5that satis�es the boundary conditions(�kj+1)2;: = [0 j I]; (�kj+1 )1;: = [I j 0]: (15)Here, (:)1;: denotes the �rst (n � `) rows of a matrix and (:)2;: denotes the last ` rows. The remainingcomponents of these two sequences are computed by back substitution with the matrix formed by therecurrence (13). The (:)2;: components are calculated in a forward sweep and the (:)1;: components in areverse sweep. Speci�cally,for i = kj + 1; � � � ; kj+1 � 1 (�i+1)2;: = �(Vi)�122 [0 j (Ui)22(�i)22]; (16)for i = kj+1 � 1; � � � ; kj + 1(�i)1;: = �(Ui)�111 f(Vi)11(�i+1)1;: + (Vi)12(�i+1)2;: + (Ui)12(�i)2;:g : (17)Here, (:)11 is the principal (n � `) � (n � `) submatrix of an n � n matrix; the three blocks (:)22, (:)12,and (:)21 complete a 2 � 2 block partitioning. Examination of (16) and (17) will con�rm that the �(j)i areupper triangular. The homogeneous parts of (16) and (17) have coe�cients (Vi)�122 (Ui)22 and �(Ui)�111 (Vi)11,respectively. By our original assumption of well-conditioning, the recurrences are stable; they are e�ectivelyproducing components of the nonincreasing modes (forward sweep) and nondecreasing modes (backwardsweep), provided that the initial matrix Rkj has been chosen in a suitable way.The particular solution, denoted by fẑigkj+1i=kj+1;is formed in a similar way. The boundary conditions are(ẑkj+1)2;: = 0; (ẑkj+1 )1;: = 0: (18)If one uses the notation ĉi = QTi ci, the forward and reverse sweeps have the formfor i = kj + 1; � � � ; kj+1 � 1 (ẑi+1)2 = (Vi)�122 f(ĉi+1)2 � (Ui)22(ẑi)2g ; (19)for i = kj+1 � 1; � � � ; kj + 1(ẑi)1 = (Ui)�111 f(ĉi)1 � (Vi)11(ẑi+1)1 � (Vi)12(ẑi+1)2 � (Ui)12(ẑi)2g : (20)We now deal with the issue of choosing the values of ` and Rkj+1. Mattheij [9, p. 329] describes a heuristicthat, applied to the present situation, would �nd Rkj+1 so that the diagonal elements of V �1i Ui (namely,(Ui)ll=(Vi)ll, l = 1; � � � ; n) appear in descending order for most i = kj + 1; � � � ; kj+1 � 1. We generalize thisheuristic slightly for two reasons. First, we usually do not have boundary condition information to guide thechoice of Rkj+1; and second, we wish to allow possible singularity of Ui and Vi (that is, of Ai and Bi.)To make an initial guess at Rkj+1, we make use of the generalized singular value decomposition. In thefollowing result, which is a direct consequence of Theorem 8.7.4 of Golub and Van Loan [6], all matrices areassumed to be n� n.Theorem 3.1 Provided that [A; B] has full rank n, there are orthogonal matrices P , Q, and W and anupper triangular matrix T such thatWTT�TAP = C; WTT�TBQ = S;where C = diag(c1; � � � ; cn) and S = diag(s1; � � � ; sn), with 1 � c1 � � � � � cn � 0 and 0 � s1 � � � � � sn � 1,and c2i + s2i = 1, i = 1; � � � ; n.



STABLE PARALLEL COMPACTIFICATION FOR ODEs 6Our initial guess for Rkj+1 is obtained as follows:(i) Set A = Akj+1, B = Bkj+1, and compute W , T , P , Q, C, and S as in Theorem 3.1.(ii) Perform a QR factorization to obtain Z (n� n orthogonal) and Y (n� n upper triangular) such thatTTW = ZY .(iii) Set Rkj+1  P , Rkj+2  Q, Qkj+1  Z, Ukj+1  Y C, Vkj+1  Y S.We note that this construction is valid since, by our assumption that (4) is well conditioned, [Akj+1; Bkj+1]has full rank. It is also easy to check that equations (12) hold for i = kj + 1. Moreover the diagonals ofUkj+1 and Vkj+1 are ordered properly, relative to each other. By this, we mean that� any zero diagonal elements in Vkj+1 occur in the upper left of the matrix;� any zero diagonals in Ukj+1 occur in the lower right; and� for the indices l for which both (Vkj+1)ll and (Ukj+1)ll are nonzero, the ratio(Ukj+1)ll=(Vkj+1)ll = cl=sldecreases as l increases.Using this initial choice of Rkj+1, we now compute a few more successive Qi, Ri, Ui, and Vi by using theformulae (12) and check to see whether the diagonals of Ui and Vi continue to appear in the proper order.If not, the columns of Rkj+1 are permuted in accordance with the present ordering, and the orthogonaltransformation process is begun anew.Before computing the fundamental and particular solutions, we need to determine the dimension ` of thenonincreasing subspace. When the boundary conditions are separated (that is, zero rows of Ma correspondto nonzero rows of Mb, and vice versa) and the problem is well conditioned, ` may just be taken to bethe number of nonzero rows in Ma. Otherwise, we require the lower right ` � ` submatrix (Vi)22 of Vi todominate the corresponding submatrix (Ui)22 of Ui. For \close calls," we can use the test suggested in [9]:If the quantity pXj=1 kj+1�1Xi=kj+1 log h�U (j)i �ll =�V (j)i �lliis negative, the l-th diagonal element is included in the (2; 2) partition. In a multiprocessor setting, theformation of this \global" sum requires interprocesssor communication. If vendor-supplied primitives forthis type of operation are not available, it can be implemented easily by making a binary tree out theprocessors.In partition j, each component xi of the true solution can be expressed in terms of the fundamental andparticular solutions in the following way:zi = �(j)i sj + ẑ(j)i ; xi = R(j)i zi; i = kj + 1; � � � ; kj+1; (21)where the values of sj 2 Rl n, j = 1; � � � ; p and xN+1 are determined by solving a reduced system. Theboundary conditions contribute one block row to this system:Max1 +MbxN+1 = d=) MaR(1)1 (�(1)1 s1 + ẑ(1)1 ) +MbxN+1 = d: (22)The remaining p blocks of the reduced system are obtained by considering the equations that bind adjacentpartitions together. These are obtained by taking the last block equation from each partition. For j =2; � � � ; p, we haveAkjxkj +Bkjxkj+1 = ckj=) AkjR(j�1)kj h�(j�1)kj sj�1 + ẑ(j�1)kj i+BkjR(j)kj+1 h�(j)kj+1sj + ẑ(j)kj+1i = ckj : (23)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 7Table 1: Operation counts and storage requirements for �ve algorithms, assuming separated end conditions(N = number of stages, n = dimension of each xi, ` = number of left-hand end conditions, R = number ofright-hand sides, p = number of partitions in �rst level of PSC)Algorithm Operation Count StorageLU (row pivoting) N [53n3 + 3`n2 +R(4n2 + 2`n)] 3Nn2DECOMP/SOLVE N [23n3 + (4R+ 5`)n2 � 2n`2] 2Nn2Structured QR N [463 n3 + 11Rn2] 4Nn2Structured LU N [233 n3 + 8Rn2] 4Nn2PSC N [223 n3 + 6Rn2] + p[463 n3 + 11Rn2] 52Nn2 + 4pn2The remaining equation, obtained from the last partition, isANR(p)N h�(p)N sp + ẑ(p)N i+BNxN+1 = cN : (24)Aggregating (22), (23), and (24), and de�ning sp+1 4= xN+1, we see that the reduced system has the form~Ajsj + ~Bjsj+1 = ~cj; j = 1; � � � ; p; (25a)~Mas1 +Mbsp+1 = ~d: (25b)This system has the same form as the original system (4), which immediately suggests that the partition-ing/reduction process can be performed recursively. Such an approach is indeed desirable when the numberof processors is large, making the reduced system (25) too large to solve on a single processor. We return tothis point in x6.Tables 1 and 2 compare storage requirements and operation counts for �ve algorithms, including theone discussed above (partitioned stabilized compacti�cation, or PSC). In reporting the operation counts,lower-order (n2) terms are ignored. We assume that, for each algorithm, the calculation of fundamental andparticular solutions was carried out in separate phases. It is therefore necessary to store enough informationto reconstruct the transformations that were used to factor the matrix associated with the recurrence (4).The statistics for the structured QR algorithm di�er slightly from those reported in Wright [13], since we referhere to an improved variant of the technique which is based on Givens rotations rather than Householdertransformations. (This variant will be described in a forthcoming report.) The statistics for PSC assume thatthe reduced system (25) is solved by using structured QR. We use this approach in our implementation inx6, since it can be implemented stably, in a fashion akin to cyclic reduction, on a binary tree of processors.For problems with separated end conditions, all �ve algorithms are stable, while only structured QR andPSC are guaranteed to be stable when the end conditions are coupled (although LU and structured LU arealmost always stable in these circumstances). The LU and DECOMP/SOLVE algorithms are not parallelizableunless n is large.As well as halving the computational cost of structured QR, PSC has a clear advantage in storage re-quirement. The Householder vectors that de�ne the orthogonal matrices Qi and Ri can be largely stored inthe lower triangle that is vacated when Ai and Bi are transformed to Ui and Vi. The only real �ll-in is dueto the fundamental solution matrices �i. When N is signi�cantly larger than p, the factorization processrequires only about 25% more storage than the cost of storing the original system.The algorithm PSC can be viewed as a particular factorization of the matrix corresponding to the recur-rence (4). We state this result as a theorem.Theorem 3.2 Algorithm PSC is equivalent to a particular solution scheme for the linear system Ax = c,



STABLE PARALLEL COMPACTIFICATION FOR ODEs 8Table 2: Operation counts and storage requirements for �ve algorithms, assuming coupled end conditions(N = number of stages, n = dimension of each xi, R = number of right-hand sides, p = number of partitionsin �rst level of PSC)Algorithm Operation Count StorageLU (row pivoting) N [233 n3 + 8Rn2] 4Nn2DECOMP/SOLVE N [143 n3 + 4Rn2] 3Nn2Structured QR N [463 n3 + 11Rn2] 4Nn2Structured LU N [233 n3 + 8Rn2] 4Nn2PSC N [223 n3 + 6Rn2] + p[463 n3 + 11Rn2] 52Nn2 + 4pn2where A = 2666664 A1 B1A2 B2. . . . . .AN BNMa Mb 3777775 ; c = 2666664 c1c2...cNd 3777775 :In this scheme, A is factored in the formPLQARPR = � L̂1 0L̂2 ~A �� I Û20 I � = ~L ~U; (26)where PL and PR are permutation matrices, Q and R are block diagonal matrices with orthogonal n � nblocks, and L̂1 is lower triangular. The block ~A in (26) has the form~A = 2666664 ~A1 ~B1~A2 ~B2. . . . . .~Ap ~Bp~Ma Mb 3777775(that is, the coe�cient matrix associated with the recurrence (25)). The remaining blocks in (26) are de�nedin the proof.Proof. We prove only the case of p > 1 (trivial modi�cations are required for p = 1). The matrices Qand R come from the initial orthogonal transformation phase. They are de�ned asQT = diag(Q(1)1 ; Q(1)2 ; � � � ; Q(1)k2�1; I; Q(2)k2+1; � � � ; Q(2)k2�1; I; � � � ; Q(p)kp+1�1; I; I);R = diag(R(1)1 ; R(1)2 ; � � � ; R(1)k2 ; R(2)k2+1; � � � ; R(2)k3 ; R(3)k3+1; � � � ; R(p)kp+1 ; I):Then QAR is266666666666664 U1 V1. . . . . .Uk2�1 Vk2�1(Ak2R(1)k2 ) (Bk2R(2)k2+1)Uk2+1 Vk2+1. . . . . .ANR(p)N�1 BN(MaR(1)1 ) Mb 377777777777775 :



STABLE PARALLEL COMPACTIFICATION FOR ODEs 9Column pivoting is now performed on this matrix. The columns of QAR that contain the last (n�`) columnsof Ukj+1, j = 1; � � � ; p, are shifted to the right of the matrix, as are the columns of QAR that contain the�rst ` columns of Vkj�1, j = 2; � � � ; p+1. Denoting the overall pivot matrix by Pc, we write the pivoted formas QARPc = 2666666666666666664 T1 S1Â(2)1 B̂(1)1 Â(1)1 B̂(2)1T2 S2Â(2)2 B̂(1)2 Â(1)2 B̂(2)2T3 S3Â(2)3 B̂(1)3 Â(1)3 B̂(2)3... ...Tp Sp0 0 � � � 0 Â(2)p 0 0 � � � 0 Â(1)p BNM̂ (1)a 0 � � � 0 0 M̂ (2)a 0 � � � 0 0 Mb
3777777777777777775 : (27)The component blocks of this matrix can be described by using the following notation: Nj = (kj�kj�1�1)ndenotes the dimension of the square matrix Tj , (:):;1 denotes the �rst n� ` columns of an n�n matrix, and(:):;2 denotes the last ` columns of an n� n matrix. ThenTj = 26664 (Ukj+1):;1 Vkj+1Ukj+2 Vkj+2. . . . . .Ukj+1�1 (Vkj+1�1):;2 37775 2 Rl Nj�Nj ;Sj = 2666664 0 (Ukj+1):;20...0(Vkj+1�1):;1 0 3777775 2 Rl Nj�n;B̂(1)j = [(Bkj+1R(j+1)kj+1�1):;1 0 � � �0] 2 Rl n�Nj+1 ; B̂(2)j = [0 (Bkj+1R(j+1)kj+1�1):;2] 2 Rl n�n;Â(1)j = [(Akj+1R(j)kj+1):;1 0] 2 Rl n�n; Â(2)j = [0 � � �0 (Akj+1R(j)kj+1):;2] 2 Rl n�Nj ;M̂ (1)a = [(MaR(1)1 ):;1 0 � � �0] 2 Rl n�N1 ; M̂ (2)a = [0 (MaR(1)1 ):;2] 2 Rl n�n:We can now perform a block LU factorization on the remaining matrix. By restating (16) and (17) as asystem of linear equations, we �nd thatTj�̂j = �Sj ; j = 1; � � � ; p;where �̂j = 266666664 (�(j)kj+1)1;:�(j)kj+2...�(j)kj+1�1(�(j)kj+1)2;: 377777775 :



STABLE PARALLEL COMPACTIFICATION FOR ODEs 10Therefore, (27) can be written as the following product:QARPc = � L(1) 00 I �264 U (1)1 U (1)20 � � � 0 Â(2)pM̂ (1)a 0 � � � 0 0 � � � 0 Â(1)p BNM̂ (2)a 0 � � � 0 Mb 375 ;where L(1) = 26666666664 T1 I T2 I . . . I Tp 37777777775(where each I in L(1) is n� n),U (1)1 = 26666666666664 ÎA(2)1 B̂(1)1ÎA(2)2 B̂(1)2ÎA(2)3 . . . I 37777777777775 ; U (1)2 = 266666666666664 ��̂1Â(1)1 B̂(2)1��̂2Â(1)2 B̂(2)2��̂3Â(1)3 . . . ��̂p 0 377777777777775 :Now U (1)1 = 26666666666664 ÎA(2)1 I B̂(1)1ÎA(2)2 I B̂(1)2ÎA(2)3 . . . I 3777777777777526666666664 I0 0I0 0I . . . I 377777777754= L(2)U (2)1 :A little manipulation using the de�nitions of the coe�cient matrices for the reduced system (25), the de�-nitions of Â(1)j , Â(2)j , B̂(1)j , and B̂(2)j , and the fundamental boundary conditions (15) yields�Â(2)j �̂j + ~Aj = Â(1)j ; �B̂(1)j �̂j+1 + ~Bj = B̂(2)j :Hence U (1)2 = 26666666664 ÎA(2)1 I B̂(1)1ÎA(2)2 I B̂12I . . . I 37777777775266666666664 ��̂1~A1 ~B1��̂2~A2 ~B2��̂3 . . . ��̂p 0 377777777775



STABLE PARALLEL COMPACTIFICATION FOR ODEs 114= L(2)U (2)2 :Using the de�nitions of U (2)2 and U (2)1 and of M̂ (1)a , M̂ (2)a , M̂ (1)b , and M̂ (2)b , we have that" 0 � � � 0 Â(2)pM̂ (1)a 0 � � � 0 #U (2)1 = " 0 � � � 0 Â(2)pM̂ (1)a 0 � � � 0 #(U (2)1 has the e�ect of deleting a number of the zero columns) and" 0 � � � 0 Â(2)pM̂ (1)a 0 � � � 0 #U (2)2 + � 0 � � � 0 ~Ap BN~Ma 0 � � � 0 Mb �= " 0 � � � 0 Â(1)p BNM̂ (1)a 0 � � � 0 Mb # :Hence, by modifying the factorization (27), we �nd thatQARPc = 264 L(1)L(2) 00 � � � 0 Â(2)pM̂ (1)a 0 � � � 0 I 375264 U (2)1 U (2)20 0 � � � 0 ~Ap BN~Ma 0 � � � 0 Mb 375 :Now, let Pr be a permutation matrix that pivots all zero rows of U (2)1 to the bottom:PrU (2)1 = Pr 26666666664 I0 0I0 0I . . . I 37777777775 = � I0 � :Then, augmenting Pr with a 2n� 2n identity matrix to obtain~Pr = � Pr I � ;we have that~PrQARPc= ~Pr 264 L(1)L(2) 00 � � � 0 Â(2)pM̂ (1)a 0 � � � 0 I 375 ~PTr ~Pr 264 U (2)1 U (2)20 � � � 0 ~Ap BN~Ma 0 � � � 0 Mb 375= � L(3) 0L(4) I � " I U (3)20 ~A # ;where L(3) = 26664 T1 T2 . . . Tp 37775 ; L(4) = 26666664 Â(2)1 B̂(1)1Â(2)2 B̂(1)2. . . Â(2)pM̂ (1)a 0 37777775 ;



STABLE PARALLEL COMPACTIFICATION FOR ODEs 12U (3)2 = 26664 ��̂1 ��̂2 . . . ��̂p 0 37775 ; ~A = 2666664 ~A1 ~B1~A2 ~B2. . . . . .~Ap BN~Ma Mb 3777775 :Finally, since linear systems involving each matrix Tj (and hence L(3)) can be solved by a triangular substitu-tion process, it follows that there are permutation matrices P0 and P1 such that P0L(3)P1 is lower triangular.Hence � P0 I � ~PrQARPc � P1 I �= � P0 I � � L(3) 0L(4) I � � P1 I �� PT1 I � " I U (3)20 ~A # � P1 I � (28)= � P0L(3)P1 0L(4)P1 I � " I P T1 U (3)20 ~A # :By making the obvious identi�cationsPL = � P0 I � ~Pr; PR = Pc � P1 I � ;L̂1 = P0L(3)P1; L̂2 = L(4)P1; Û2 = PT1 U (3)2 ;we obtain (26).To complete the proof, we note that the quantities in both factors on the right-hand side of (26) arequantities that are actually computed by Algorithm PSC. The remainder of the algorithm consists of1. performing the orthogonal \preprocessing" of A with Q and R, and operating with Q on the right-handside c;2. permuting the rows and columns of QAR and the rows of Qc in a predetermined way;3. performing an LU factorization with no further pivoting, stopping the elimination at stage (N+1�p)n;4. doing a \forward substitution" with L̂2 to get the right-hand side of the reduced system;5. continuing the forward substitution with L̂1 to get the particular solution ẑi;6. solving the reduced system (coe�cient matrix ~A) to obtain the sj ; and7. doing a back substitution, followed by orthogonal transformations, to recover all the xi.Stability of the algorithm can now be proved by using error analysis techniques from numerical linearalgebra. We have the following result.Theorem 3.3 Suppose that PSC is used to solve (4) in �nite-precision oating-point arithmetic, with unitroundo� u� 1. Assume that(i) the growth in the fundamental solution is not excessive; that is, there is a moderate constant 1 suchthat maxj=1;���;p maxi=kj�1+1;���;kj k�(j)i k2 � 1; maxj=1;���;p kT�1j k2 � 1;



STABLE PARALLEL COMPACTIFICATION FOR ODEs 13(ii) the reduced system ~As = ~c is solved in a stable way; that is, there is a moderate constant 2 such thatthe computed solution �s satis�es ( ~A +E ~A)�s = (~c+ e~c); (29)where kE ~Ak2 � 2uk ~Ak2; ke~ck2 � 2uk~ck2: (30)Then the computed solution �x of Ax = b satis�es(A +EA)�x = (b+ eb); (31)where kEAk2 � 3ukAk2; kebk2 � 4(1 + kAk2)ukbk2; (32)where 3 = O(Nn5=2 +N3np�1=2212) and 4 = O(n2p1=2N12).Proof. We assume throughout the proof that k:k denotes the Euclidean norm k:k2. Our result dependson standard analysis for Householder QR factorizations (Lawson and Hanson, [8, pp. 86{89]) and LUfactorizations (Golub and Van Loan [6, x3.3]). The key to the stability argument is the fact that elementgrowth in the L and U factors of PLQARPR is bounded, because of (i). We stress that our assumption (i) isreasonable: when (4) is well conditioned, a dichotomy exists, and so our use of decoupling will ensure that(i) holds provided that the starting matrices R(j)kj+1 for each partition are chosen appropriately.First, we take account of the errors arising from the initial orthogonal transformation. By the argumentof Lawson and Hanson [8, p. 87], we have that if C 2 Rl n�n is a general matrix and Q 2 Rl n�n is a productof n Householder transformations, then comp(QC) = Q(C +H);where comp(:) denotes the computed value of its argument, taking roundo� error into account, andkHk � (3n+ 40)n3=2ukCk+ O(u2):For the case of a vector c 2 Rl n, comp(Qc) = Q(c+ h);where khk � (3n+ 40)nukck+O(u2):Applying these results to the initial orthogonal transformation of A, we �nd thatUi = comp(QTi comp(AiRi))= QTi �(Ai +H1i )Ri +H2i �= QTi [Ai +H3i ]Ri;where kH3i k � kH1i k+ kH2i k � 2(3n+ 40)n3=2kAiku + O(u2):Similarly, Vi = QTi [Bi +H4i ]Ri+1;where kH4i k � 2(3n+ 40)n3=2kBiku + O(u2):Similar analysis can be applied to comp(MaR(1)1 ) and to the block rows kj that are not multiplied from theleft by an orthogonal transformation. Since the pivoting operations do not incur any roundo� error,comp(PLQARPR) = PLQ(A+ ~H)RPR; (33)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 14where k ~Hk � (N + 1) �supi kH3i k+ supi kH4i k�� 4(N + 1)n3=2(3n+ 40)kAku +O(u2):Similarly, comp(Qb) = Q(b+ h);where khk � (N + 1)1=2(3n+ 40)nkbku+O(u2):We now examine the LU factorization of comp(PLQARPR). Although the Gaussian elimination processis terminated prematurely, we can use the proof of Theorem 3.3.1 of Golub and Van Loan [6] to show that~L ~U = comp(PLQARPR) + Ĥ; (34)where jĤj � 3(N + 1)nu�jcomp(PLQARPR)j+ j~Ljj ~U j�+O(u2):Hence, kĤk2 � 3(N + 1)nuhkAk+ k~Lkk ~Uki+ O(u2): (35)Now k~Lk � kL̂1k+ kL̂2k+ k ~Ak = kL(3)k+ kL(4)k+ k ~Ak; (36)and so, by using the de�nitions that appear during the proof of Theorem 3.2,kL(3)k � kcomp(QAR)k � kAk+O(u);kL(4)k � 2(p+ 1)1=2max�maxi (kAiRik; kBiRi+1k); kMaR1k�+O(u)� 2(p+ 1)1=2kAk+ O(u);k ~Ak � 2(p+ 1)1=2max�maxj (k ~Ajk; k ~Bjk); k ~Mak; kMbk� :In the last of these inequalities,k ~Ajk � kAkj+1k(1 + k�̂jk+ O(u)) � kAk(1 + (N=p)1 +O(u)):Similar inequalities can be derived for k ~Bjk and k ~Mak, sok ~Ak � 2(p+ 1)1=2(1 + (N=p)1)kAk+ O(u):For the upper triangular factor, we have thatk ~Uk � 2 + kÛ2k = 2 + kU (3)2 k� 2 + maxj k�̂jk+O(u) � 2 + (N=p)1 + O(u): (37)By using some elementary inequalities, we then have from (35), (36), and (37) thatkĤk � 6(N + 1)(p+ 1)1=2n(3 + (N=p)1)2kAku +O(u):Consider now the forward and back substitution process involving ~L and ~U , that is,~L ~Uy = comp(PLQb) = PLQ(b+ ~h): (38)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 15Using (29), (30), and a simple backwards error argument, we can show that the computed solution �y of (38)will satisfy � L̂1 + Ĥ1 0L̂2 + Ĥ2 ~A +E ~A �� I Û2 + Ĥ30 I � � �y1�y2 � = � �Q1(b+ ~h)�Q2(b+ ~h) + ~e � (39)=) �~L+ E~L�� ~U +E~U� �y = PLQ(b+ ~h+ e~b);where �Q1 consists of the �rst (N � p)n rows of PLQ, �Q2 contains the last (p + 1)n rows, and E~L, E~U , ande~b are de�ned in obvious ways. Now (29) and (30) imply thatk~ek � 2u Q1(b+ ~h)� (L̂2 + Ĥ2)(L̂1 + Ĥ1)�1Q2(b+ ~h)� 2u�1 + kL̂2kkL̂�11 k+O(u)� (kbk+ O(u))� �4ukAkkbk+ O(u2);where �4 = O(12p1=2), andkE ~Ak � 2uk ~Ak � 22(p + 1)1=2(1 + (N=p)1)ukAk+ O(u2):Following Golub and Van Loan [6, p. 106], we �nd that the remaining error terms in (39) satisfykĤ1k � nukL̂1k � nukAk+O(u2);kĤ2k � nukL̂2k � 2nu(p + 1)1=2kAk+ O(u2);kĤ3k � nukÛ2k � 2nu(N=p)1:Hence kE~Lk � kĤ1k+ kĤ2k+ kE ~Ak � �3ukAk+ O(u2);kE~Uk � 2nN1u;ke~bk � �4ukAkkbk;where �3 = O(np�1=2N12). From (33), (34), and (39), we have that�~L ~U + E~L ~U + ~LE~U +O(u2)� �y = PLQ(b+ ~h+ e~b)=) �PLQARPR + �H� �y = PLQ(b+ ~h+ e~b);where �H = PLQ ~HRPR + Ĥ + E~L ~U + ~LE~U +O(u2):Hence k �Hk � k ~Hk+ kĤk+ kE~Lkk ~Uk+ k~LkkE~Uk � 3;where 3 is as de�ned in the statement of the theorem. Also,k~h+ e~bk � 4kbk:The result follows by making the identi�cationsEA = QTPTL �HPTRRT ; eb = ~h+ e~b; �y = RPR�y:If the algorithm of this section is applied recursively (that is, if the reduced system is itself solved onmultiple processors by using the same technique), the theorem indicates the amount of deterioration inaccuracy that can be expected in moving between levels of the recursion.



STABLE PARALLEL COMPACTIFICATION FOR ODEs 164 A No-�ll-in VariantIn the preceding section, we showed how the fundamental and particular solutions for the problem (4) couldbe calculated by using the blocks Ui and Vi from the transformed coe�cient matrix. As described there,the algorithm assumed that the data for the initial orthogonal reduction (that is, the Ui, Vi, Qi, and Rimatrices) is not overwritten in storage. This assumption means that new storage must be used to store thefundamental solution blocks �i, resulting in a �ll-in of approximately 25%.In this section, we outline a scheme in which the �ll-in is reduced by storing the components of �i instorage formerly occupied by Ui and Vi. At the same time, we wish to allow for the possibility that theparticular solution is calculated at some later time than the fundamental solution, that is, the right-hand sidesci, i = 1; � � � ; N and d are not known at the time the fundamental solution is calculated. This situation mayarise when a \chord method" approach is applied to a nonlinear version of (4). In this method, approximateNewton iterations are calculated by using the same Jacobian information for a number of successive iterations,while the right-hand side changes from iteration to iteration. In the preceding section, particular solutionsare calculated by using (19) and (20). Hence, if we plan to overwrite components of Ui and Vi, we need todevise new formulae for �nding the ẑis.To satisfy both requirements of the preceding paragraph, we need to de�ne a \general solution" 	(j)i ,i = kj + 1; � � � ; kj+1 on partition j in such a way that each 	(j)i 2 Rl n�n is nonsingular. Moreover, 	(j)iwill be identical to the fundamental solution �(j)i whenever all Ui and Vi in partition j are nonsingular.Computation of the sequence 	i involves a simple modi�cation of the forward sweep/reverse sweep process(16) and (17). The only enhancement is that when some (Ui)22 or (Vi)11 are singular, diagonal terms areadded to (Ui)22(	i)22 or (Vi)11(	i+1)11 to prevent singularity in the next general solution matrix in thesequence. Note that we are taking advantage here of the fact that Ui and Vi (and also �i and 	i) areupper triangular. This means that singularity manifests itself as zero elements on the diagonal and is easilyremedied by replacing these zeros by, say, ones, which is what we do.For i = kj + 1; � � � ; kj+1 � 1, we de�ne ZFi = [el̀ ]l2AFi ;where el̀ is the Rl ` unit vector, with zeros everywhere except for a 1 in position l, andAFi = fl j l-th diagonal element of (Ui)22 is zerog:Note that ZFi (ZFi )T is an ` � ` matrix that is zero everywhere except for ones in the diagonal positions inwhich (Ui)22 has zeros. Similarly, de�ne ZRi = [en�`l ]l2ARi ;where en�`l is the Rl n�` unit vector with a 1 in the l position, andARi = fl j l-th diagonal element of (Vi)11 is zerog:The boundary conditions for 	i coincide with (15); that is,(	kj+1)2;: = [0 j I]; (	kj+1 )1;: = [I j 0]: (40)The sweeps are de�ned as follows:for i = kj + 1; � � � ; kj+1 � 1(	i+1)2;: = �(Vi)�122 ([0 j (Ui)22(	i)22] + ZFi � 0ZFi �T) ; (41)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 17for i = kj+1 � 1; � � � ; kj + 1(	i)1;: =�(Ui)�111 ((Vi)11(	i+1)1;: + (Vi)12(	i+1)2;: + (Ui)12(	i)2;: + ZRi � ZRi0 �T) : (42)Note that the extra terms in (41) and (42) do not disturb the upper triangularity of each 	i.By making use of the relationship between the fundamental and general solution, we can store the generalsolution in a compressed format. We show how this is done for the (2; 2) block of 	i; for the other two nonzeroblocks the technique is similar.First, we show that we can write (	i)22 = (�i)22 + �WFi ( �ZFi )T ; (43)where �ZFi contains all el̀ such that the l-th diagonal of (Uk)22 is zero for some, and possibly more than one,k = kj + 1; � � � ; i� 1. For i = kj + 1, �WFi and �ZFi are null. Assuming that (43) is true for k = kj + 1; : : : ; i,we have from (41) that(	i+1)22 = �(Vi)�122 ((Ui)22 �(�i)22 + �WFi ( �ZFi )T �+ ZFi � 0ZFi �T)= (�i+1)22 � (Vi)�122 (Ui)22 �WFi ( �ZFi )T � (Vi)�122 ZFi (ZFi )T :We obtain �ZFi+1 by merging the columns of �ZFi and ZFi , while �WFi+1 is obtained by merging�(Vi)�122 (Ui)22 �WFiand �(Vi)�122 ZFi . We \merge" rather than simply append ZFi to �ZFi since there is no need for �ZFi+1 to havetwo copies of the same column. (The same e�ect can be obtained by adding the two corresponding columnsof �WFi+1.) The corresponding formula to (43) for the (1; 1) and (1; 2) blocks is(	i)1;: = (�i)1;: + �WRi ( �ZRi )T : (44)In each case, the substantive additional storage requirements are for the matrices �WFi and �WRi (the �Zimatrices can be stored in a few integer locations.) In the worst case, this will require the same amount ofstorage as the general solution itself, but we usually expect it to be much less. For example, if the (`; `)element of one or more of the (Ui)22 matrices is zero, then we need about (kj+1� kj � 1)n locations to storethe �Wi, or about 2=n of the space required by the entire general solution.As we noted earlier, a particular solution of the recurrence (13) can be calculated by performing theforward and backward sweeps (19) and (20). Since we would like to overwrite some components of the Uiand Vi matrices by components of �i, we now describe an alternative method for calculating the ẑi whichmakes use of the 	i but only of selected components of Ui and Vi.The boundary conditions (18) are used for ẑi, i = kj + 1; � � � ; kj+1, as before. De�ning the change ofvariables ẑi = 	ivi; (45)and using the boundary conditions (40), we obtain(vkj+1)2;: = 0; (vkj+1 )1;: = 0: (46)We now substitute in (13) and de�ne ĉi = QTi ci to obtainUi	ivi + Vi	i+1vi+1 = ĉi: (47)Note from (41) and (42) that � Ui	i = Vi	i+1 + � ZRi (ZRi )T 00 ZFi (ZFi )T � : (48)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 18By isolating the last ` rows of (47), and by considering the (2; 2) block of (48), we obtain�[(Vi)22(	i+1)22 + ZFi (ZFi )T ](vi)2 + (Vi)22(	i+1)22(vi+1)2 = (ĉi)2) (vi+1)2 = (vi)2 + [(Vi)22(	i+1)22]�1[(ĉi)2 + ZFi (ZFi )T (vi)2]: (49)Here, (:)2 denotes the last ` rows of a vector in Rl n. By isolating the �rst n� ` rows of the expressions (47)and (48), we �nd that(vi)1 = (vi+1)1 + [(Ui)11(	i)11]�1 �ZRi (ZRi )T (vi+1)1 + (ĉi)1+[(Ui)11(	i)12 + (Ui)12(	i)22][(vi+1)2 � (vi)2]g : (50)We conclude that vi, i = kj + 1; � � � ; kj+1, can be found by doing a forward sweep using (49) followed bya reverse sweep using (50). Note that we need to solve linear systems with coe�cient matrices (Vi)22, (Ui)11,(	i)11, and (	i)22 in order to obtain ẑi from (45) and (49),(50). If we assume that (4) is well conditionedand that the partitioning is done correctly, these matrices are invertible.The blocks (Ul)22, (Vl)11, and (Vl)12 are not used in (49) and (50). We can therefore overwrite theseblocks in storage to avoid �ll-in. During the forward sweep (16), (Ui)22 can be progressively overwrittenby (Vi)22 in memory, and (�i+1)22 can be stored in the space vacated by (Vi)22. During the reverse sweep(17), (�i)11 and (�i)12 can progressively overwrite (Vi)11 and (Vi)12. The matrices �WFi and �WRi which areneeded to recover 	i from �i will need to be stored in new locations.5 Extension to Problems with Multipoint Conditions or Param-etersWe now show how the algorithm of x3 can be modi�ed to handle problems of the forms (5) and (6). Asmentioned in x2, the fundamental solution modes in these problems exhibits not dichotomy but, in general,polychotomy and skew-polychotomy. The practical consequence for the Algorithm PSC is that the value of `(the number of \decreasing" fundamental modes) is no longer constant across all partitions; in fact, it mayincrease or decrease repeatedly within each partition. It is even possible for the submatrix [Ai Bi] to berank de�cient. In order to adapt PSC to these circumstances, we need to be able to recognize when ` haschanged, and to modify the compacti�cation strategy accordingly.A change in ` is recognized by periodically examining the diagonal elements of V �1i Ui during the initialorthogonal factorization process (12). As mentioned earlier, these are (Ui)ll=(Vi)ll , l = 1; : : : ; n. If thenumber of diagonals that are less than 1 is either greater than or less than the current value of ` for a fewsuccessive stages, then we deem ` to have changed. The most general way of handling such a dichotomychange is simply to break o� the present partition at the current stage point, and start a new one. Speci�cally,suppose that at stage i during the orthogonal preprocessing of partition j, we decide that ` has changed.We then set kj+ = i + 1 and terminate the preprocessing of the current partition after calculating R(j)kj+ .Next, we skip a row and start a new partition by choosing R(j+)kj++1 as described in x3. The skipped row mustnow be added to the reduced system. If sj+ 2 Rl n is the \reduced" variable for the new partition, the extraequation is Akj+R(j)kj+ h�(j)kj+sj + ẑ(j)kj+i+ Bkj+R(j+)kj++1 h�(j+)kj++1sj+ + ẑ(j+)kj++1i = ckj+ :To avoid creating a new partition in the case in which ` increases, we can pick up an extra componentduring the forward sweep calculation of the \decreasing" part of �i, at the point at which the dichotomychange occurs. Correspondingly, a row is dropped from the �rst part of �i during the backward sweep. Thisis essentially the strategy used by de Hoog and Mattheij [4, x4].A circumstance that causes more immediate failure of the algorithm occurs when the submatrix [Ai Bi]fails to have full rank for some i. When this occurs, [Ui Vi] is also rank de�cient, and it is easy to show thatfor at least one index l = 1; � � � ; n, the l-th diagonals of Ui and Vi are both zero. Hence at least one of (Ui)11



STABLE PARALLEL COMPACTIFICATION FOR ODEs 19and (Vi)22 are singular, so either the forward sweep (16) or the reverse sweep (17) will break down at stagei. Since this di�culty can be detected during the initial orthogonal factorization, the �x is the same as fora dichotomy change | we create a partition break at stage i.We assume from this point on that the number of partitions p and the separator indices kj, j = 1; � � � ; p,have been altered where necessary during the partitioned compacti�cation, to reect the number of newdichotomy switches that were encountered.Construction of the reduced system is slightly di�erent for problems of the form (5) than it is for problemsof the form (4). Rather than (21), each zi is now expressible aszi = �(j)i sj +�(j)i � + ẑ(j)i ; xi = R(j)i zi; i = kj + 1; � � � ; kj+1: (51)Since Ui�(j)i + Vi�(j)i+1 = 0; i = kj + 1; � � � ; kj+1;Uiẑ(j)i + Viẑ(j)i+1 = QTi ci; i = kj + 1; � � � ; kj+1;Uizi + Vizi+1 + QTi Ci� = QTi ci; i = kj + 1; � � � ; kj+1;we have by substitution in (51) thathUi�(j)i + Vi�(j)i+1 +QTi Cii� = 0; i = kj + 1; � � � ; kj+1:We choose �(j)i , i = kj + 1; � � � ; kj+1, to satisfy the recurrence suggested by this formula, namely,Ui�(j)i + Vi�(j)i+1 = �QTi Ci; i = kj + 1; � � � ; kj+1: (52)Clearly, this recurrence has the same form as the one that is solved for the particular solution ẑ(j)i (exceptthat it has m columns instead of one), and we can solve it in exactly the same way. The choice of boundaryconditions is also the same as for ẑ(j)i . When no dichotomy switch is encountered within a partition, we set(�(j)kj+1)n�`+1:n;: = 0; (�(j)kj+1 )1:n�`;: = 0: (53)In deriving the scheme (52) and (53), we are essentially treating the parameter term as a forcing term.We can now use (51) to construct the reduced system. For the side conditions, we haveN+1Xi=1 Mixi +N� = d) pXj=1 kj+1Xi=kj+1MiR(j)i h�(j)i sj +�(j)i � + ẑ(j)i i+N� = d (54)) pXj=1 ~Mjsj + ~N� = ~d;where ~Mj =Pkj+1i=kj+1MiR(j)i �(j)i ; ~N = N +Ppj=1Pkj+1i=kj+1MiR(j)i �(j)i ;~d = d�Ppj=1Pkj+1i=kj+1MiR(j)i ẑ(j)i :For the remaining equations, we obtain ~Ajsj + ~Bjsj+1 + ~Cj� = ~cj ;



STABLE PARALLEL COMPACTIFICATION FOR ODEs 20where ~Aj , ~Bj and ~cj are as de�ned in (25a), and~Cj = Ckj+1 + Akj+1R(j)kj+1�(j)kj+1 +Bkj+1R(j+1)kj+1+1�(j+1)kj+1+1:Again, recursive application of the compacti�cation to the reduced system is possible, but only up to apoint. We would expect to have an intrinsic lower bound on the number of stages in the smallest possiblereduced system, namely, the total number of dichotomy switches. In other words, the smallest reducedsystem is one in which a dichotomy switch occurs at each stage.For problems of the form (6), substitution like that described in (54) can be performed in the least squaresobjective function. We obtain PN+1i=1 kMixi +Ni� � dik2 + kN0�� d0k2= Ppj=1 kM̂jsj + N̂j�� d̂jk2 + kN0�� d0k2; (55)where M̂j = hMiR(j)i �(j)i ii=kj+1kj+1 ;N̂j = hNi +MiR(j)i �(j)i ii=kj+1kj+1 ;d̂j = hdi �MiR(j)i ẑ(j)i ii=kj+1kj+1 :6 Numerical ResultsWe implemented the PSC and SQR algorithms on the Intel Touchstone Delta at the Concurrent SupercomputerConsortium. This machine has 513 computational nodes, each with an Intel i860 microprocessor and 16Megabytes of memory. The nodes are arranged in a two-dimensional mesh con�guration. Underlying themesh is a high-speed bus which allows data to be ported between any two nodes in a fashion that is transparentto the user. Provided the total amount of data being transferred is not too great, the time to send a messageacross this bus is not strongly dependent on the physical locations of the source and destination nodes in themesh. We chose this architecture since it seems typical of the new generation of massively parallel machines.The forthcoming Intel Paragon will be a commercial version of the Touchstone Delta, and the ThinkingMachines CM-5 is architecturally similar.Our codes handle two classes of problem| two-point boundary value problems (1) and (4), and two-pointproblems with parameters ((2) and (5) with �1 = a and �2 = b). As discussed earlier, the SQR algorithmis similar to the one described in [13], except that Givens rotations are used in addition to Householdertransformations during the QR factorizations. The extra columns in the shooting matrix that are due to thepresence of parameters are handled as described in Wright [12, x5]. Each processor compresses its \slice" ofthe shooting matrix into a single block row, leaving a reduced system with (p+ 1)n+m rows and columns.This system is solved by using a \cyclic reduction" variant of SQR, which we now briey describe. Assumethat the processors are numbered 0; 1; 2; � � �; p � 1, where p = 2d for some integer d � 0. At the �rst levelof cyclic reduction, the odd-numbered processors 2i+ 1, i = 0; 1; � � � ; p=2� 1 pass their piece of the reducedsystem (consisting of a single block row) to the neighboring even-numbered processor 2i. Each processor 2ithen compresses this block row with its own block row to produce a single block row. At the end of this �rstlevel, the size of the reduced system has been approximately halved | it now has dimension (p=2+1)n+m.At the second level, the processors 4i + 2 pass their data to processors 4i. After d levels, processor 0 is leftwith a reduced system of dimension 2n + m. It solves this system to produce x1, xN+1, and �. We thenbacktrack along the binary tree traversed during the process of compression to recover all the intermediatesolution components.The implementation of PSC is similar. Each processor is assigned an equal-sized slice of the originalshooting matrix to which it applies the stabilized compacti�cation algorithm described in xx3 and 5. At the



STABLE PARALLEL COMPACTIFICATION FOR ODEs 21end of this stage, each processor contains one or, in the case of dichotomy changes, more than one blockrow of the reduced system. If a processor contains more than one block row, orthogonal compression likethat used by SQR is applied to obtain a single block row. The cyclic reduction SQR compression scheme justdescribed is now applied to solve the reduced system that remains.In our tests, we form discrete problems by applying the \box scheme" to our continuous problems. Weseek xi 2 Rl n, i = 1; � � � ; N + 1 such that xi � x(ti), where ti = a + (i � 1)h and h = (b � a)=N . Theparametrized ODE (2) is approximated by(xi+1 � xi)=h = A(ti+1=2)(xi + xi+1)=2 + C(ti+1=2)� + c(ti+1=2):Our �rst test problem has a change of dichotomy near the point t = 1=3.Example 1 n = 3, m = 1._x = Q(t)24 20 10(t� 1=3) �20 35R(t)x+ C(t)�+ c(t); t 2 [0; 1]; (56)where, using the shorthand c = cos t, s = sin t,Q(t) = 24 c s 0�s c 0c� s c + s 1 35 ; R(t) = 24 1 11 11 35 ; C(t) = 24 305t 35 :The vector function c(t) is chosen so that x(t) = et(1; 1; 1)T and � = 1 is a solution of the parametrizedODE. The boundary conditions are2664 1 1 12 3 4 3775x(0) + 2664 111�2 �3 �4 3775x(1) + 2664 10�10 3775� = 2664 2 + e1 + ee9� 9e 3775 :PSC is able to detect the change in dichotomy near t = 1=3. On a single processor with N = 1000, achange from two decreasing modes to one decreasing mode is reported at t = :406. The \rightward shift" isdue to the fact that our heuristic for detecting dichotomy changes is rather conservative; it reports a switchonly when the behavior is consistently di�erent over a signi�cant number of consecutive intervals. When weuse four processors, each with 1000 intervals (a total of N = 4000), the situation is a little more complicated.The algorithm for calculating the fundamental solution detects a number of points at which a dichotomyswitch appears to occur and reports them as such. However, in all but one case, a restart at that point(as described in x5) indicates that the number of increasing and decreasing modes has not changed. Theexception is, of course, the point at which the one true dichotomy switch occurs. The spurious switches donot a�ect the stability of the algorithm and have only a marginal e�ect on the computation time, since theyadd just a single row to the reduced system. The locations of the \breaks" are summarized in Table 3.Tables 4 and 5 show timings for SQR and PSC, respectively. In both cases, the time for initial reductionof each partition remains essentially constant and is somewhat less for PSC than for SQR. The time to solvethe reduced system by the cyclic reduction algorithm tends to increase as the depth of the tree increases,though not in a smooth way. Nevertheless, solution of the reduced system is such a small part of the overallcomputation that near-perfect speedup is attained.Our second example arises from transport theory. Consider the single-group one-dimensional transportequation as de�ned by Jin and Levermore [7, Example 2]:�@x�(x; �) + �T (x)�(x; �) = 12w(x)�T (x) Z 1�1�(x; �0) d�0; x 2 (0; L); (57)



STABLE PARALLEL COMPACTIFICATION FOR ODEs 22Table 3: Example 1, four processors, N = 4000. Restart points for stabilized compacti�cation (excluding thebreakpoints due to partitioning into four subintervals) and number of decreasing modes on the subintervalbetween this breakpoint and the preceding one.t .378 .403 .433 .961No. of decreasing modes 2 1 1 1Table 4: Example 1. PSC: Timings with number of intervals per processor �xed at 1000. All times are inseconds. Number of processors 1 2 4 8 16 32 64 128Time for initial reduction .347 .348 .347 .347 .347 .347 .347 .347Time for reduced system solution .001 .001 .001 .014 .013 .012 .013 .014Total time .371 .372 .371 .384 .382 .382 .383 .384with boundary conditions �(0; �) = F1(�) (� > 0); �(L; �) = F2(�) (� < 0): (58)One widely accepted method for solving this equation, the discrete ordinates method, proceeds by replacingthe integral term in (57) by a quadrature approximation. The resulting two-point boundary value problemin the remaining independent variable x can then be solved to obtain an approximation to �. We useGaussian quadrature with an even number of abscissae, in which speci�cation of weights !i, i = 1; � � � ; n,and abscissae �i, i = 1; � � � ; n with �1 < �1 < � � � < �n < 1, �i = ��n�i+1, !i = !n�i+1, and !i > 0 leadsto the approximation Z 1�1 f(�) d� � nXi=1 !if(�i):Using the notation �i(x) 4= �(x; �i);and discretizing the boundary conditions in an obvious (though not optimal) way, we can write the boundaryvalue problem arising from Example 2 of Jin and Levermore [7] as�i�0i(x) + �T (x)�i(x) = 12w(x)�T (x) nXj=1 !j�j(x); i = 1; � � � ; n; (59)�i(0) = 5; i = 12n + 1; � � � ; n; �i(11) = 0; i = 1; � � � ; 12n: (60)Because of separation of the boundary conditions and the well-posed nature of this problem, we wouldexpect exactly half of the fundamental modes to be nonincreasing and half to be nondecreasing across theentire interval. Our implementation of PSC indicates that this is indeed the case. No \spurious" dichotomychanges are agged on any of the examples we tried.Table 5: Example 1. SQR: Timings with number of intervals per processor �xed at 1000. All times are inseconds. Number of processors 1 2 4 8 16 32 64 128Time for initial reduction .613 .613 .614 .614 .614 .613 .614 .614Time for reduced system solution .001 .002 .002 .012 .013 .014 .014 .014Total time .642 .643 .644 .654 .655 .655 .656 .656



STABLE PARALLEL COMPACTIFICATION FOR ODEs 23Table 6: Example 2. PSC: Timings with n = 20 and number of intervals per processor �xed at 200. All timesare in seconds. Number of processors 1 2 4 8 16Time for initial reduction 2.18 2.22 2.21 2.19 2.19Time for reduced system solution .028 .044 .088 .113 .093Total time 2.26 2.31 2.36 2.35 2.33Table 7: Example 2. SQR: Timings with n = 20 and number of intervals per processor �xed at 200. All timesare in seconds. Number of processors 1 2 4 8 16Time for initial reduction 6.61 6.38 6.37 6.37 6.38Time for reduced system solution .016 .049 .140 .190 .206Total time 6.72 6.53 6.61 6.66 6.68Results for the two algorithms are given in Tables 6 through 9 for the cases n = 20 and n = 10. A boxdiscretization was used with constant interval length and a �xed number of intervals per processor. As inExample 1, the time taken to solve the reduced system tends to increase with the number of levels in thetree (though not smoothly), but high e�ciency is obtained even on a large number of processors.References[1] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary ValueProblems for Ordinary Di�erential Equations, Prentice-Hall, Englewood Cli�s, 1988.[2] U. M. Ascher and R. D. Russell, Reformulation of boundary value problems into \standard" form,SIAM Review, 23 (1981), pp. 238{254.[3] H.-G. Bock, Recent advances in parameter identi�cation techniques for O.D.E., in Numerical Treat-ment of Inverse Problems in Di�erential and Integral Equations, P. Deuhard and E. Hairer, eds., vol. 2of Progress in Scienti�c Computing, Birkhauser, Boston, 1983, pp. 95{121.[4] F. R. de Hoog and R. M. M. Mattheij, An algorithm for solving multi-point boundary valueproblems, Computing, 38 (1987), pp. 219{234.[5] , On the conditioning of multipoint and integral boundary value problems, SIAM Journal of Math-ematical Analysis and Applications, 20 (1989), pp. 200{214.[6] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press,Baltimore, MD, second ed., 1989.Table 8: Example 2. PSC: Timings with n = 10 and number of intervals per processor �xed at 200. All timesare in seconds.Number of processors 1 2 4 8 16 32 64 128Time for initial reduction .449 .450 .450 .450 .451 .451 .452 .452Time for reduced system solution .006 .009 .012 .034 .028 .041 .043 .034Total time .473 .477 .480 .502 .497 .510 .512 .504



STABLE PARALLEL COMPACTIFICATION FOR ODEs 24Table 9: Example 2. SQR: Timings with n = 10 and number of intervals per processor �xed at 200. All timesare in seconds.Number of processors 1 2 4 8 16 32 64 128Time for initial reduction 1.27 1.27 1.27 1.27 1.27 1.26 1.26 1.27Time for reduced system solution .004 .010 .016 .031 .029 .034 .040 .054Total time 1.30 1.31 1.32 1.33 1.32 1.33 1.33 1.35[7] S. Jin and D. Levermore, The discrete-ordinate method in di�usive regimes, Transport Theory andStatistical Physics, 20 (1991), pp. 413{439.[8] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cli�s,NJ, 1974.[9] R. M. M. Mattheij, Stability of block LU-decompositions of matrices arising from BVP, SIAM Journalon Algebraic and Discrete Methods, 5 (1984), pp. 314{331.[10] , On boundary value problems for ordinary di�erential equations with parameters, in Di�erentialEquations, C. M. Dafermos, ed., Marcel Dekker, New York, 1989, pp. 481{489.[11] J. Rinzel and D. Terman, Propogation phenomena in a bistable reaction-di�usion system, SIAMJournal on Applied Mathematics, 42 (1982), pp. 1111{1137.[12] S. J. Wright, Stable parallel elimination for boundary value ODEs, Tech. Rep. MCS{P229{0491,Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, April1991.[13] , Stable parallel algorithms for two-point boundary value problems, SIAM Journal on Scienti�c andStatistical Computing, 13 (1992), pp. 742{764.


