
MASSIVELY PARALLEL IMPLEMENTATION OF THEPENN STATE/NCAR MESOSCALE MODEL�Ian FosterJohn MichalakesArgonne National LaboratoryChicago, Illinois1. INTRODUCTIONParallel computing promises signi�cantimprovements in both the raw speed and cost per-formance of mesoscale atmospheric models. Ondistributed-memory massively parallel computersavailable today, the performance of a mesoscalemodel will exceed that of conventional supercom-puters; on the tera
ops machines expected withinthe next �ve years, performance will increase byseveral orders of magnitude. As a result, scien-tists will be able to consider larger problems, morecomplex model processes, and �ner resolutions.In this paper, we report on a project atArgonne National Laboratory that will allow sci-entists to take advantage of parallel computingtechnology. This Massively Parallel MesoscaleModel (MPMM) will be functionally equivalent tothe Penn State/NCAR Mesoscale Model (MM).In a prototype study, we produced a parallelversion of MM4 using a static (compile-time)coarse-grained \patch" decomposition. This codeachieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel i860 mi-croprocessors. The current version of MPMM isbased on MM5 and uses a more �ne-grained ap-proach, decomposing the grid as �nely as the meshitself allows so that each horizontal grid cell is aparallel process. This will allow the code to uti-lize many hundreds of processors. A high-levellanguage for expressing parallel programs is usedto implement communication streams between theprocesses in a way that permits dynamic remap-ping to the physical processors of a particular par-allel computer. This facilitates load balancing,grid nesting, and coupling with graphical systemsand other models.In the rest of this paper, we �rst introducethe Penn State/NCAR model and discuss issuesthat must be addressed in a massively parallel im-plementation. We then discuss the prototype par-allel MM4 and the subsequent �ne-grained paral-lelization of MM5 to produce MPMM.�This work was supported by the AppliedMathematicalSciences subprogramof the O�ce of Energy Research, U.S.Department of Energy, under Contract W-31-109-Eng-38,and was performed in part using the Intel TouchstoneDeltaSystem operated by Caltech on behalf of the ConcurrentSupercomputing Consortium. Access to this facility wasprovided by Argonne National Laboratory.

1.1 Penn State/NCAR ModelThe Penn State/NCAR Mesoscale Modelis a limited-area primitive equation model, de-signed to simulate meso-alpha scale (200{2000km) and meso-beta scale (20{200 km) atmo-spheric circulation systems (Anthes, 1987; Grellet al., 1992). It has been developed over a pe-riod of twenty years, �rst at the PennsylvaniaState University and more recently also at theNational Center for Atmospheric Research. Thetime integration uses a fourth-order �nite di�er-ence scheme (Brown and Campana, 1978) with op-tional split-explicit time stepping. Model physicsis highly con�gurable across a variety of convec-tion, clouds, planetary boundary layer, radiativetransfer, and other standard and optional param-eterizations. The model may be run nonhydro-statically for high-resolution simulations (Dudhia,1992). The model provides a nested-grid capabil-ity. A four-dimensional data assimilation moduleallows observed weather data dynamically incor-porated into a simulation.The MM is used for a range of compu-tationally demanding applications, including real-time forecasting, storms research, and climate re-search. MM real-time forecasts provide frequentweather updates to aviation users, the generalpublic, and specialty users interested in detailedforecasts in localized areas. However, vertical res-olution is currently limited by available process-ing power. The MM is being used to investigatethe development of damaging storms in the Mid-west and cyclones in the tropics. Storm studiesrequire the ability to switch to higher-resolutionnested grids when advanced convective modelingprocesses engage for a developing system. Re-searchers working to improve the reliability oflong-range climate change projections for a regioncouple MM runs with data from general circula-tion models. Climate change research demandsthe ability to model extremely long periods | onthe order of decades | within reasonable limitsof run time and cost. The
exibility and rangeof applications for MM re
ect the diversity of itsuser community, which is drawn from universities,government agencies, laboratories, and other in-stitutions.The need for performance has up to nowbeen met by designing and optimizing the model

for vector supercomputers. For example, MM4executes at a rate of 50,000 grid point steps perCPU second on a single CRAY Y-MP processor.Hence, a computation involving 50,000 grid pointsrequires one second per time step, and just under5 hours for a 30-day simulation with a 150-secondtime step. This performance is adequate for manycurrent problems. However, while multitaskingcan increase performance by perhaps an order ofmagnitude, technological and physical constraintslimit the absolute performance that can be at-tained by conventional supercomputer architec-tures. In addition, the reliance on custom compo-nents makes this approach very expensive. Hence,the MM is costly to run and is near its upper limitof performance on current problems. Clearly, newapproaches are required to deal with the larger andmore complex problems that will be of interest inthe future.1.2 MPP ApproachMassively Parallel Processing (MPP)achieves high performance by using, instead of oneor a small number of very expensive vector pro-cessors, hundreds or thousands of inexpensive mi-croprocessors. This approach is already competi-tive with conventional supercomputers and is farfrom reaching its limits; architectures capable ofscaling to tera
ops peak performance have alreadybeen announced by Intel and Thinking MachinesCorporation, and tera
ops computers should beavailable within �ve years. These successes buildon recent developments in interconnect technol-ogy and microprocessor design. High-speed in-terconnects and cut-through routing allow inex-pensive communications even to remote proces-sors, while modern RISC-based microprocessorsalready match the scalar performance of high-endsupercomputers and are likely to improve furtherwith on-chip vectorization and pipelining.Finite di�erence codes such as the MMhave proven particularly well suited to parallelimplementation, because of their regular nearest-neighbor communication pattern. However, onepotential source of di�culty in MPP codes is par-allel ine�ciency resulting from uneven distribu-tion of work to processors (load imbalance). Therecoding and run-time costs to restore balancedperformance by redistributing work can be quitecomplex if data domains are decomposed stati-cally. This can be done e�ciently and with aminimum of recoding by using a �ne-grained de-composition and software tools that abstract outmechanisms for redistributing work between pro-cessors from the parallel model code. One suchtool is Program Composition Notation (PCN),a high-level language for expressing parallel pro-grams (Foster et al., 1992). Parallel processes andcommunication streams between parallel processesare easily and abstractly represented in this lan-guage.

Another bene�t of MPP software toolssuch as PCN is that they provide portability overa wide range of parallel computers. Standardiza-tion of simple message-passing and parallel pro-cess paradigms makes it feasible to develop a sin-gle program that will execute with reasonable e�-ciency on an Intel Paragon, a Thinking MachinesCM-5, a CRAY C-90, a network of RISC worksta-tions, and most other high-performance comput-ing platforms.2. PROTOTYPE PARALLEL MM4A prototype MPP implementation of ver-sion 4 of the MM code has been developed at Ar-gonne National Laboratory. This is based on aone-dimensional west/east decomposition of themodel grid and executes at about one-third thespeed of a 1-processor CRAYY-MP on 12 i860 mi-croprocessors. The model grid was divided into pequally sized partitions, two of which representedthe eastern and western boundaries of the grid,with the remainder representing the interior. Eachpartition was mapped to a physical processor on aparallel computer. O�-processor data was storedin array extensions and kept up to date by messagepassing (Figure 1). The widths of these extensionswere determined by MM4's �nite di�erencing sten-cil.
. . .

0 1 2 p−1Figure 1: Static decomposition of MM4 grid.Data communication was through extended array\pads" that replicate o�-processor memory.The parallel code reads initial data on asingle processor and then distributes it to the otherprocessors. This is a potential bottleneck on alarge machine but avoids the need to decomposethe initial data set. Model output follows a reversepath. Although its principal purpose was as a pro-totype for exploring parallel processing issues, theparallel version of MM4 has been used to produce8 months of climate data for the Paci�c Northwestregion of the United States. The parallel MM4was also demonstrated with real-time graphics atthe ACM SIGGRAPH Showcase '92 conference inChicago. In this demonstration, data generated inin California on the Intel Touchstone Delta� com-puter was transmitted over a network to a Silicon�The Intel Touchstone Delta computer connects 528processing nodes, each with 16 Mbytes of local memory,over a high-speedmesh communicationnetwork. The Delta

Graphics high-performance visualization worksta-tion at the SIGGRAPH conference. The worksta-tion then rendered and displayed each new frameof model output as it was generated.2.1 PerformanceAt NCAR, the sequential-vectorized ver-sion of MM4 runs approximately 110 times fasterthan simulation time on one processor of a CRAYY-MP. In other words, a 24-hour simulation inthe tested con�gurationy requires 780 seconds (13minutes) on the CRAY.Initial work with MM4 was conducted ona Sequent Symmetry. Since early work focusedon producing a working reproducible model, per-formance was a secondary consideration. A 12-processor run of the 1-D parallel version on theSequent Symmetry required 30 seconds to performeach 160 second time step. For a 24-hour simula-tion the model would require 15,750 seconds or 4.5hours. This corresponds to a 6:1 simulation timeto compute time ratio (the CRAY executes MM4at approximately 110:1).
MM4 Times for 48 Time Steps

Sequent observed

Sequent ideal

Gamma observed

Gamma ideal

Cray

seconds

processors1e+01

2

5

1e+02

2

5

1e+03

2

5

1e+04

2

1e+00 3 1e+01 3 1e+02
10

100

1000

10000

seconds

1 10 100

Sequent (observed)

Sequent (ideal)

Gamma (observed)

Gamma (ideal)

Cray (70 seconds)

3 30 processors Figure 2: MM4 execution times for 48 time stepsimulation.On an i860-based computer, performancewas much better: a 12-processor run performed1 time step in 4.8 seconds, yielding a 33:1 ratioof simulation time to CPU time, almost one-thirdthe speed of the CRAY. Figure 2 shows the per-is situated at the California Institute of Technology and isowned by the Concurrent Supercomputing Consortium, ofwhich Argonne is a member.yStandard parameterizations on an 80 kilometer grid,with 46 latitudes, 61 longitudes, and 15 vertical levels.

formance data for the Sequent, the Intel Gamma,and the CRAY. The �gure shows that ideally, theGamma would exceed CRAY performance at justunder 30 processors; however, overhead is cur-rently de
ecting the observed performance in acurve that, if extrapolated, will never reach theCRAY at 70 seconds. Improved communication,reduced load imbalance, and other improvementsto the parallel model are critical to reducing thisde
ection.2.2 2-D DecompositionTo utilize a larger number of processors,the MM grid must be decomposed in a secondhorizontal dimension. This could be achieved byfollowing the static decomposition strategy em-ployed in the 1-dimensional prototype, adding ar-ray extensions in the second dimension and pro-viding additional structure and communication toaccount for diagonal data dependencies betweengrid cells. The resulting code would be able toexploit 250 processors on a single 45 � 61 prob-lem, giving performance equivalent to 2 CRAY Y-MP processors if parallel e�ciency could be main-tained through load balancing and communicationtuning. However, relocating work to e�ect loadbalancing would be di�cult, since the decompo-sition requires regular rectangular patches. Thedecision therefore was made to adopt a dynamicrather than a static decomposition when movingfrom the prototype to a production version of MM.3. MASSIVELY PARALLEL MM5Version 5 of the Penn State/NCARMesoscale Model, released in the fall of 1992, in-corporates and standardizes a number of featuresthat either were new or that had been added toMM4 for speci�c applications. Features include anonhydrostatic option, four-dimensional data as-similation, movable nested grids, and improvedphysical parameterizations. A pre-release versionof the MM5 code was made available for MPMMdevelopment in the spring of 1992, and work iscontinuing. In MPMM, the static decompositionstrategy was abandoned in favor of an approachthat would support dynamic load balancing andmodular implementations of 4DDA, nested grids,and model coupling.3.1 Fine-Grained ImplementationMPMM utilizes a �ne-grained horizontaldecomposition of the Mesoscale Model domain inwhich each multicomputer node is allocated somesmall but not statically determined number ofcolumns in the grid. The shape of the processors'allocated region tends toward rectangular (wherethere are no load imbalances), but columns areable to migrate away from more heavily loadedprocessors when necessary. The technique that al-lows for this nonstatic decomposition of the grid isto make a distinction between the logical decom-

position from the physical decomposition. Thegrid is �rst mapped into a virtual topology of logi-cal processes; the virtual topology is then mappeddynamically into the physical processors of a par-ticular parallel computer (for example, a mesh ofprocessors as in the Intel Touchstone Delta com-puter). In the virtual topology, each grid columnof the model is mapped onto a separate logicalprocess in the parallel model. These column pro-cesses are connected by streams over which theycommunicate needed data to e�ect horizontal in-terpolation and �nite di�erencing within the grid.
column processes

Physical processor
boundaries

Figure 3: During an MPMM run, column pro-cesses in the virtual topology may be migratedaway from more heavily loaded physical proces-sors. Communication streams automatically fol-low under the run-time PCN system implementingthe virtual topology.Messages over streams between collocatedprocesses are handled as memory references. Com-munication over streams that are cut by physi-cal processor boundaries are handled by using in-terprocessor communication (message passing) be-tween the processors. Further, moving a processto a di�erent physical processor during model exe-cution does not alter the virtual topology itself, socommunication streams \follow" the process to itsnew physical location (Figure 3). The PCN par-allel programming system handles the underlyingmechanisms for constructing virtual topologies ofprocesses, mapping them to physical processors,and implementing communication streams auto-matically.In addition to the processes representingthe model grid, we de�ne a number of global orquasi-global monitor processes which implementsuch global functionality as managing input andoutput, coordinating load balancing, interfacing

column process

Load Balancing Monitor

Nesting/Coupling Monitor

I/O monitorFigure 4: Schematic view of a column process rep-resenting a single grid column in the mesoscalemodel. Diagram shows communication streams toneighbors and to monitor processes, which are im-plemented and moved transparently in PCN.with coupled model systems such as a general cir-culation model, and interfacing with interactivegraphical systems. Figure 4 shows the processstructure of MPMM. Only one grid process is rep-resented with its communication streams to mon-itor processes and to neighbor column processesin a 12-point stencil. The monitor processes maybe mapped to a single physical processor or maythemselves be implemented as parallel programsexecuting on a separate virtual topology of logicalnodes.3.2 3-D DecompositionWe do not envision decomposing themodel grid in the vertical dimension, for three rea-sons. First, we expect to obtain su�cient paral-lelism by a �ne-grained horizontal decomposition.Second, we are concerned that a vertical decompo-sition would require too many changes to the MMcode, in particular to physics routines. Third, weexpect future parallel computers to provide eithermultitasking or vectorization facilities within eachnode, allowing vertical parallelism to be exploitedby compilers.3.3 Load BalancingAtmospheric models are subject to loadimbalances resulting from varying amounts ofwork over the model grid (Michalakes, 1991) whendecomposed over a set of distributed memory pro-cessors in a multicomputer. MPMM will usedynamic load balancing to maintain parallel ef-�ciency when the amount of work required pergrid point is not constant; for example, becauseof the use of a more elaborate convection schemein columns containing storm systems or becauseof dynamically created subgrids. The workload oneach processor will be continuously monitored; pe-riodically, imbalances will be corrected by movingvertical grid columns from heavily loaded to lightlyloaded processors. This activity is coordinated bya load balancing monitor process which period-

ically collects and analyzes load data from eachof the processors in the physical topology and in-structs column processes in the virtual topology torelocate as needed. As stated previously, the unde-lying mechanisms supporting process and streammovement are provided in the PCN run-time sys-tem. Thus, alternative load-balancing algorithmscan be substituted without changing other compo-nents of the parallel code, allowing a high degreeof customization for load characteristics of a par-ticular modeling application.3.4 Nesting and CouplingWe intend that MPMM be usable by abroad community of scientists. Critical to thisusability will be mechanisms to simplify the im-plementation of nesting and coupling to othermodels. We will implement both these capabil-ities using common mechanisms for transferringdata between domains with di�erent resolutions.In essence, a nested grid will be treated as acoupled run of the model at a �ner resolution.Each grid will typically be distributed over theentire parallel computer, and appropriate interpo-lation/averaging routines will be used to transferdata between grids. In the case of coupled models,data transfers may also involve �les or potentiallyparallel versions of other models running on thesame computer. We anticipate supporting cou-pling with BATS and CCM2 initially; other mod-els such as RADM will be considered if required.3.5 Other InterfacesThe modularity of the design permits theinstallation of special-purpose monitor processesinto the model. Work is currently under way atArgonne to develop a PCN/AVS parallel graphi-cal interface that will allow real-time interactive2- and 3-dimensional visualization of the model asit executes on a parallel computer. Such an inter-face could be easily encapsulated within a moni-tor process, and would permit scientists to inter-actively \explore" the data within their models.Additional modules will support the data move-ment necessary to implement 4-dimensional dataassimilation in a parallel mesoscale model.4. CONCLUSIONSWe have described a research and devel-opment project intended to develop a massivelyparallel mesoscale model (MPMM), capable of ex-ploiting both current and future generations ofparallel computers. Projected tera
ops comput-ers will allow MPMM to achieve performance su-perior by several orders of magnitude to that cur-rently achievable on conventional supercomputers.In addition, MPMM opens the possibility of us-ing more cost-e�ective platforms (e.g., networksof multiprocess workstations) for applications thatdo not require tera
ops performance.

MPMM will provide the meteorolog-ical community with a cost-e�ective, high-performance mesoscale model. This in turn willbroaden the range and size of problems thatcan be studied, permitting scientists to considerlarger problem domains, longer simulations, �ner-resolution grids, and more complex model pro-cesses, than have previously been possible. In ad-dition, the parallel algorithms and code developedfor MPMM will be directly applicable to projectsdeveloping parallel implementations of other, sim-ilar models.REFERENCESAnthes, R., E. Hsie, and Y. Kuo, 1987:Description of the Penn State/NCARMesoscale Model Version 4 (MM4). NCARTechnical Note, NCAR/TN-282+STR, 66 pp.Brown, J., and K. Campana, 1992: An economi-cal time-di�erencing system for numericalweather prediction. Mon. Wea. Rev., 106,1125{1136.Dudhia, J., 1992: A nonhydrostatic version of thePenn State/NCAR mesoscale model: Valida-tion tests and simulation of an Atlantic cy-clone and cold front. Preprint, NCAR.Foster, I., R. Olson, and S. Tuecke, 1992:Productive parallel programming: The PCNapproach. Scienti�c Programming, 1(1), 51-66.Grell, G., J. Dudhia, and D. Stau�er, 1992:MM5: A Description of the Fifth GenerationPSU/NCAR Mesoscale Model. Draft NCARTechnical Note.Michalakes, J., 1991: Analysis of Workload andLoad Balancing Issues in the NCAR Commu-nity Climate Model. Argonne National Labo-ratory Technical Memo, ANL/MCS-TM-144,20 pp.

