MASSIVELY PARALLEL IMPLEMENTATION OF THE
PENN STATE/NCAR MESOSCALE MODEL*

Tan Foster

John Michalakes

Argonne National Laboratory
Chicago, Illinois

1. INTRODUCTION

Parallel computing promises significant
improvements in both the raw speed and cost per-
formance of mesoscale atmospheric models. On
distributed-memory massively parallel computers
available today, the performance of a mesoscale
model will exceed that of conventional supercom-
puters; on the teraflops machines expected within
the next five years, performance will increase by
several orders of magnitude. As a result, scien-
tists will be able to consider larger problems, more
complex model processes, and finer resolutions.

In this paper, we report on a project at
Argonne National Laboratory that will allow sci-
entists to take advantage of parallel computing
technology. This Massively Parallel Mesoscale
Model (MPMM) will be functionally equivalent to
the Penn State/NCAR Mesoscale Model (MM).
In a prototype study, we produced a parallel
version of MM4 using a static (compile-time)
coarse-grained “patch” decomposition. This code
achieves one-third the performance of a one-
processor CRAY Y-MP on twelve Intel 1860 mi-
croprocessors. The current version of MPMM is
based on MM5 and uses a more fine-grained ap-
proach, decomposing the grid as finely as the mesh
itself allows so that each horizontal grid cell is a
parallel process. This will allow the code to uti-
lize many hundreds of processors. A high-level
language for expressing parallel programs is used
to implement communication streams between the
processes in a way that permits dynamic remap-
ping to the physical processors of a particular par-
allel computer. This facilitates load balancing,
grid nesting, and coupling with graphical systems
and other models.

In the rest of this paper, we first introduce
the Penn State/NCAR model and discuss issues
that must be addressed in a massively parallel im-
plementation. We then discuss the prototype par-
allel MM4 and the subsequent fine-grained paral-
lelization of MMb to produce MPMM.

*This work was supported by the Applied Mathematical
Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38,
and was performed in part using the Intel Touchstone Delta
System operated by Caltech on behalf of the Concurrent
Supercomputing Consortium. Access to this facility was
provided by Argonne National Laboratory.

1.1 Penn State/NCAR Model
The Penn State/NCAR Mesoscale Model

is a limited-area primitive equation model, de-
signed to simulate meso-alpha scale (200-2000
km) and meso-beta scale (20-200 km) atmo-
spheric circulation systems (Anthes, 1987; Grell
et al., 1992). Tt has been developed over a pe-
riod of twenty years, first at the Pennsylvania
State University and more recently also at the
National Center for Atmospheric Research. The
time integration uses a fourth-order finite differ-
ence scheme (Brown and Campana, 1978) with op-
tional split-explicit time stepping. Model physics
is highly configurable across a variety of convec-
tion, clouds, planetary boundary layer, radiative
transfer, and other standard and optional param-
eterizations. The model may be run nonhydro-
statically for high-resolution simulations (Dudhia,
1992). The model provides a nested-grid capabil-
ity. A four-dimensional data assimilation module
allows observed weather data dynamically incor-
porated into a simulation.

The MM is used for a range of compu-
tationally demanding applications; including real-
time forecasting, storms research, and climate re-
search. MM real-time forecasts provide frequent
weather updates to aviation users, the general
public, and specialty users interested in detailed
forecasts in localized areas. However, vertical res-
olution is currently limited by available process-
ing power. The MM is being used to investigate
the development of damaging storms in the Mid-
west and cyclones in the tropics. Storm studies
require the ability to switch to higher-resolution
nested grids when advanced convective modeling
processes engage for a developing system. Re-
searchers working to improve the reliability of
long-range climate change projections for a region
couple MM runs with data from general circula-
tion models. Climate change research demands
the ability to model extremely long periods — on
the order of decades — within reasonable limits
of run time and cost. The flexibility and range
of applications for MM reflect the diversity of its
user community, which is drawn from universities,
government agencies, laboratories, and other in-
stitutions.

The need for performance has up to now
been met by designing and optimizing the model



for vector supercomputers. For example, MM4
executes at a rate of 50,000 grid point steps per
CPU second on a single CRAY Y-MP processor.
Hence, a computation involving 50,000 grid points
requires one second per time step, and just under
5 hours for a 30-day simulation with a 150-second
time step. This performance is adequate for many
current problems. However, while multitasking
can increase performance by perhaps an order of
magnitude, technological and physical constraints
limit the absolute performance that can be at-
tained by conventional supercomputer architec-
tures. In addition, the reliance on custom compo-
nents makes this approach very expensive. Hence,
the MM is costly to run and is near 1ts upper limit
of performance on current problems. Clearly, new
approaches are required to deal with the larger and
more complex problems that will be of interest in
the future.

1.2 MPP Approach

Massively Parallel Processing (MPP)
achieves high performance by using, instead of one
or a small number of very expensive vector pro-
cessors, hundreds or thousands of inexpensive mi-
croprocessors. This approach is already competi-
tive with conventional supercomputers and is far
from reaching its limits; architectures capable of
scaling to teraflops peak performance have already
been announced by Intel and Thinking Machines
Corporation, and teraflops computers should be
available within five years. These successes build
on recent developments in interconnect technol-
ogy and microprocessor design. High-speed in-
terconnects and cut-through routing allow inex-
pensive communications even to remote proces-
sors, while modern RISC-based microprocessors
already match the scalar performance of high-end
supercomputers and are likely to improve further
with on-chip vectorization and pipelining.

Finite difference codes such as the MM
have proven particularly well suited to parallel
implementation, because of their regular nearest-
neighbor communication pattern. However, one
potential source of difficulty in MPP codes is par-
allel inefficiency resulting from uneven distribu-
tion of work to processors (load imbalance). The
recoding and run-time costs to restore balanced
performance by redistributing work can be quite
complex if data domains are decomposed stati-
cally. This can be done efficiently and with a
minimum of recoding by using a fine-grained de-
composition and software tools that abstract out
mechanisms for redistributing work between pro-
cessors from the parallel model code. One such
tool is Program Composition Notation (PCN),
a high-level language for expressing parallel pro-
grams (Foster et al., 1992). Parallel processes and
communication streams between parallel processes
are easily and abstractly represented in this lan-

guage.

Another benefit of MPP software tools
such as PCN is that they provide portability over
a wide range of parallel computers. Standardiza-
tion of simple message-passing and parallel pro-
cess paradigms makes it feasible to develop a sin-
gle program that will execute with reasonable effi-
ciency on an Intel Paragon, a Thinking Machines
CM-5, a CRAY (C-90, a network of RISC worksta-
tions, "and most other high-performance comput-
ing platforms.

2. PROTOTYPE PARALLEL MM4

A prototype MPP implementation of ver-
sion 4 of the MM code has been developed at Ar-
gonne National Laboratory. This is based on a
one-dimensional west/east decomposition of the
model grid and executes at about one-third the
speed of a 1-processor CRAY Y-MP on 121860 mi-
croprocessors. The model grid was divided into p
equally sized partitions, two of which represented
the eastern and western boundaries of the grid,
with the remainder representing the interior. Each
partition was mapped to a physical processor on a
parallel computer. Off-processor data was stored
in array extensions and kept up to date by message
passing (Figure 1). The widths of these extensions
were determined by MM4’s finite differencing sten-
cil.

0 1 2 p-1

Figure 1: Static decomposition of MM4 grid.
Data communication was through extended array
“pads” that replicate off-processor memory.

The parallel code reads initial data on a
single processor and then distributes it to the other
processors. This is a potential bottleneck on a
large machine but avoids the need to decompose
the initial data set. Model output follows a reverse
path. Although its principal purpose was as a pro-
totype for exploring parallel processing issues, the
parallel version of MM4 has been used to produce
8 months of climate data for the Pacific Northwest
region of the United States. The parallel MM4
was also demonstrated with real-time graphics at
the ACM SIGGRAPH Showcase '92 conference in
Chicago. In this demonstration, data generated in
in California on the Intel Touchstone Delta* com-
puter was transmitted over a network to a Silicon

*The Intel Touchstone Delta computer connects 528
processing nodes, each with 16 Mbytes of local memory,
over a high-speed mesh communication network. The Delta



Graphics high-performance visualization worksta-
tion at the SIGGRAPH conference. The worksta-
tion then rendered and displayed each new frame
of model output as it was generated.

2.1 Performance

At NCAR, the sequential-vectorized ver-
sion of MM4 runs approximately 110 times faster
than simulation time on one processor of a CRAY
Y-MP. In other words, a 24-hour simulation in

the tested configuration! requires 780 seconds (13
minutes) on the CRAY.

Initial work with MM4 was conducted on
a Sequent Symmetry. Since early work focused
on producing a working reproducible model, per-
formance was a secondary consideration. A 12-
processor run of the 1-D parallel version on the
Sequent Symmetry required 30 seconds to perform
each 160 second time step. For a 24-hour simula-
tion the model would require 15,750 seconds or 4.5
hours. This corresponds to a 6:1 simulation time
to compute time ratio (the CRAY executes MM4
at approximately 110:1).

MM4 Timesfor 48 Time Steps

seconds

Sequent observed
Sequent ideal
10000 Gammaobserved
k Gammaideal ~ "~
Cray” ~~ ~ "7
Sequdnt (observed)
. R
1000 n""».§equent ideal)
(}amma (obsefved)
100
777777 Cray (70seconfds) ~ ~ ~ {7 ]
Gamma (fdea\)
10— 3 10 30 100 Pocessos

Figure 2: MM4 execution times for 48 time step
simulation.

On an 1860-based computer, performance
was much better: a 12-processor run performed
1 time step in 4.8 seconds, yielding a 33:1 ratio
of simulation time to CPU time, almost one-third
the speed of the CRAY. Figure 2 shows the per-

is situated at the California Institute of Technology and is
owned by the Concurrent Supercomputing Consortium, of
which Argonne is a member.

tStandard parameterizations on an 80 kilometer grid,
with 46 latitudes, 61 longitudes, and 15 vertical levels.

formance data for the Sequent, the Intel Gamma,
and the CRAY. The figure shows that ideally, the
Gamma would exceed CRAY performance at just
under 30 processors; however, overhead is cur-
rently deflecting the observed performance in a
curve that, if extrapolated, will never reach the
CRAY at 70 seconds. Improved communication,
reduced load imbalance, and other improvements
to the parallel model are critical to reducing this
deflection.

2.2 2-D Decomposition

To utilize a larger number of processors,
the MM grid must be decomposed in a second
horizontal dimension. This could be achieved by
following the static decomposition strategy em-
ployed in the 1-dimensional prototype, adding ar-
ray extensions in the second dimension and pro-
viding additional structure and communication to
account for diagonal data dependencies between
grid cells. The resulting code would be able to
exploit 250 processors on a single 45 x 61 prob-
lem, giving performance equivalent to 2 CRAY Y-
MP processors if parallel efficiency could be main-
tained through load balancing and communication
tuning. However, relocating work to effect load
balancing would be difficult, since the decompo-
sition requires regular rectangular patches. The
decision therefore was made to adopt a dynamic
rather than a static decomposition when moving
from the prototype to a production version of MM.

3. MASSIVELY PARALLEL MMb

Version 5 of the Penn State/NCAR
Mesoscale Model, released in the fall of 1992, in-
corporates and standardizes a number of features
that either were new or that had been added to
MMA4 for specific applications. Features include a
nonhydrostatic option, four-dimensional data as-
similation, movable nested grids, and improved
physical parameterizations. A pre-release version
of the MMb) code was made available for MPMM
development in the spring of 1992, and work is
continuing. In MPMM, the static decomposition
strategy was abandoned in favor of an approach
that would support dynamic load balancing and
modular implementations of 4DDA, nested grids,
and model coupling.

3.1 Fine-Grained Implementation

MPMM utilizes a fine-grained horizontal
decomposition of the Mesoscale Model domain in
which each multicomputer node is allocated some
small but not statically determined number of
columns in the grid. The shape of the processors’
allocated region tends toward rectangular (where
there are no load imbalances), but columns are
able to migrate away from more heavily loaded
processors when necessary. The technique that al-
lows for this nonstatic decomposition of the grid is
to make a distinction between the logical decom-




position from the physical decomposition. The
grid 1s first mapped into a virtual topology of logi-
cal processes; the virtual topology is then mapped
dynamically into the physical processors of a par-
ticular parallel computer (for example, a mesh of
processors as in the Intel Touchstone Delta com-
puter). In the virtual topology, each grid column
of the model is mapped onto a separate logical
process in the parallel model. These column pro-
cesses are connected by streams over which they
communicate needed data to effect horizontal in-
terpolation and finite differencing within the grid.

Physi cal processor —n:
boundari es

col um processes

Figure 3: During an MPMM run, column pro-
cesses in the virtual topology may be migrated
away from more heavily loaded physical proces-
sors. Communication streams automatically fol-
low under the run-time PCN system implementing
the virtual topology.

Messages over streams between collocated
processes are handled as memory references. Com-
munication over streams that are cut by physi-
cal processor boundaries are handled by using in-
terprocessor communication (message passing) be-
tween the processors. Further, moving a process
to a different physical processor during model exe-
cution does not alter the virtual topology itself, so
communication streams “follow” the process to its
new physical location (Figure 3). The PCN par-
allel programming system handles the underlying
mechanisms for constructing virtual topologies of
processes, mapping them to physical processors,
and implementing communication streams auto-
matically.

In addition to the processes representing
the model grid, we define a number of global or
quasi-global monitor processes which implement
such global functionality as managing input and
output, coordinating load balancing, interfacing

"0.. Load Balancing Monitor

-G e
- e ““
column process e,
N
.

Figure 4: Schematic view of a column process rep-
resenting a single grid column in the mesoscale
model. Diagram shows communication streams to
neighbors and to monitor processes, which are im-
plemented and moved transparently in PCN.

with coupled model systems such as a general cir-
culation model, and interfacing with interactive
graphical systems. Figure 4 shows the process
structure of MPMM. Only one grid process is rep-
resented with its communication streams to mon-
itor processes and to neighbor column processes
in a 12-point stencil. The monitor processes may
be mapped to a single physical processor or may
themselves be implemented as parallel programs
executing on a separate virtual topology of logical
nodes.

3.2 3-D Decomposition

We do not envision decomposing the
model grid in the vertical dimension, for three rea-
sons. First, we expect to obtain sufficient paral-
lelism by a fine-grained horizontal decomposition.
Second, we are concerned that a vertical decompo-
sition would require too many changes to the MM
code, 1n particular to physics routines. Third, we
expect future parallel computers to provide either
multitasking or vectorization facilities within each
node, allowing vertical parallelism to be exploited
by compilers.

3.3 Load Balancing

Atmospheric models are subject to load
imbalances resulting from varying amounts of
work over the model grid (Michalakes, 1991) when
decomposed over a set of distributed memory pro-
cessors in a multicomputer. MPMM will use
dynamic load balancing to maintain parallel ef-
ficiency when the amount of work required per
grid point is not constant; for example, because
of the use of a more elaborate convection scheme
in columns containing storm systems or because
of dynamically created subgrids. The workload on
each processor will be continuously monitored; pe-
riodically, imbalances will be corrected by moving
vertical grid columns from heavily loaded to lightly
loaded processors. This activity is coordinated by
a load balancing monitor process which period-



ically collects and analyzes load data from each
of the processors in the physical topology and in-
structs column processes in the virtual topology to
relocate as needed. As stated previously, the unde-
lying mechanisms supporting process and stream
movement are provided in the PCN run-time sys-
tem. Thus, alternative load-balancing algorithms
can be substituted without changing other compo-
nents of the parallel code, allowing a high degree
of customization for load characteristics of a par-
ticular modeling application.

3.4 Nesting and Coupling

We intend that MPMM be usable by a
broad community of scientists. Critical to this
usability will be mechanisms to simplify the im-
plementation of nesting and coupling to other
models. We will implement both these capabil-
ities using common mechanisms for transferring
data between domains with different resolutions.
In essence, a nested grid will be treated as a
coupled run of the model at a finer resolution.
Each grid will typically be distributed over the
entire parallel computer, and appropriate interpo-
lation/averaging routines will be used to transfer
data between grids. In the case of coupled models,
data transfers may also involve files or potentially
parallel versions of other models running on the
same computer. We anticipate supporting cou-
pling with BATS and CCM2 initially; other mod-
els such as RADM will be considered if required.

3.5 Other Interfaces

The modularity of the design permits the
installation of special-purpose monitor processes
into the model. Work 1s currently under way at
Argonne to develop a PCN/AVS parallel graphi-
cal interface that will allow real-time interactive
2- and 3-dimensional visualization of the model as
it executes on a parallel computer. Such an inter-
face could be easily encapsulated within a moni-
tor process, and would permit scientists to inter-
actively “explore” the data within their models.
Additional modules will support the data move-
ment necessary to implement 4-dimensional data
assimilation in a parallel mesoscale model.

4. CONCLUSIONS

We have described a research and devel-
opment project intended to develop a massively
parallel mesoscale model (MPMM), capable of ex-
ploiting both current and future generations of
parallel computers. Projected teraflops comput-
ers will allow MPMM to achieve performance su-
perior by several orders of magnitude to that cur-
rently achievable on conventional supercomputers.
In addition, MPMM opens the possibility of us-
ing more cost-effective platforms (e.g., networks
of multiprocess workstations) for applications that
do not require teraflops performance.

MPMM will provide the meteorolog-
ical community with a cost-effective; high-
performance mesoscale model. This in turn will
broaden the range and size of problems that
can be studied, permitting scientists to consider
larger problem domains, longer simulations, finer-
resolution grids, and more complex model pro-
cesses, than have previously been possible. In ad-
dition, the parallel algorithms and code developed
for MPMM will be directly applicable to projects
developing parallel implementations of other, sim-
ilar models.

REFERENCES

Anthes, R., E. Hsie, and Y. Kuo, 1987:
Description  of the Penn State/NCAR
Mesoscale Model Version 4 (MM4). NCAR
Technical Note, NCAR/TN-282+4+STR, 66 pp.

Brown, J., and K. Campana, 1992: An economi-
cal time-differencing system for numerical
weather prediction. Mon. Wea. Rev., 106,
1125-1136.

Dudhia, J.,; 1992: A nonhydrostatic version of the
Penn State/NCAR mesoscale model: Valida-
tion tests and simulation of an Atlantic cy-
clone and cold front. Preprint, NCAR.

Foster, 1., R. Olson, and S. Tuecke, 1992:
Productive parallel programming: The PCN
approach. Secientific Programming, 1(1), 51-
66.

Grell, G., J. Dudhia, and D. Stauffer, 1992:
MMb5: A Description of the Fifth Generation
PSU/NCAR Mesoscale Model. Draft NCAR
Technical Note.

Michalakes, J., 1991: Analysis of Workload and
Load Balancing Issues in the NCAR Commu-
nity Climate Model. Argonne National Labo-
ratory Technical Memo, ANL/MCS-TM-144,

20 pp.



