Fast Numerical Determination of Symmetric Sparsity Patterns

Richard G. Carter

October 1992

Argonne Laboratory Preprint MCS-P326-0992

Fast Numerical Determination of Symmetric Sparsity Patterns *

Richard G. Carter T

Abstract

We consider a function ¢ : % — R for which the Jacobian is symmetric and sparse. Such
functions often arise, for instance, in numerical optimization, where g is the gradient of some
objective function f so that the Jacobian of g is the Hessian of f. In many such applications one
can generate extremely efficient algorithms by taking advantage of the sparsity structure of the
problem if this pattern is known a priori. Unfortunately, determining such sparsity structures
by hand is often difficult and prone to error. If one suspects a mistake has been made, or if ¢
is a “black box” so that the true structure is completely unknown, one often has no alternative
but to compute the entire matrix by finite differences — a prohibitively expensive task for large
problems.

We show that it is possible to numerically determine symmetric sparsity patterns using a
relatively small number of ¢ evaluations. Numerical results are shown for n up to 100,000 in
which all nonzeros in the Jacobian are correctly identified in about one-hundredth of the time
required to estimate the sparsity structure by a full finite difference calculation. When a good
initial guess for the sparsity structure is available, numerical results are presented for n up to
500,000, in which all missing nonzeros are correctly located almost five-thousand times faster
than would be possible with a full finite difference calculation.

1 Introduction

Consider a function g : % — R” for which the Jacobian Vg¢T : 7 — R™*" is symmetric and
sparse. Such systems arise, for instance, in numerical optimization, where ¢ = Vf for some
objective function f so that the Jacobian of ¢ is the Hessian matrix V2f. These systems are
particularly common when the variables in the optimization problem correspond to mesh points in a
discretization. Forinstance, Figure 1 represents the sparsity pattern arising from the optimal design
of a composite material when regular triangular finite elements are used in the model discretization
[1], while Figure 2 represents the more complex sparsity pattern arising from the solution of the
Ginzburg-Landau equations in two dimensions for superconducting materials [1],[7].

In many applications one can generate extremely efficient algorithms by taking advantage of
the sparsity structure of Vg if this structure is known. It is well known that if the columns of
Vg can be partitioned into k groups such that within each group no two columns share a nonzero
element in the same row, then the entire matrix can be approximated using only k& evaluations of
g. Moreover, the matrix can be determined ezactly using values for the directional derivative of ¢
in k specific directions, if such directional derivatives can be computed. Since k is typically much
less than n unless the sparsity structure is pathological, Vg can be determined very inexpensively
provided the sparsity structure is known and the columns can be efficiently partitioned into groups.
Determining such a partition given a specified sparsity structure is a graph coloring problem and

*This research was supported by the Army Research Office under grant DAALO3-89-C-0038, and in part by the
Applied Mathematical Sciences Subprogram of the Office of Energy Research of the US Department of Energy under
contract W-31-109-Eng-38.

tArmy High Performance Computing Research Center, Institute of Technology, University of Minnesota, 1100
Washington Avenue South, Minneapolis, Minnesota 55415

201

601

801

100t] 3
0 20 40 60 80 100

Figure 1: Symmetric Sparsity Structure for Optimal Design Problem

has been well analyzed [6], [4]. Efficient software for computing a nearly optimal partition and
using it for determining Vg is widely available in the public domain [3]. For the nonsymmetric case
we refer to this procedure as the CPR method. (Specialized methods exist for reducing work even
further in the symmetric case (see, for instance, [8], [5], and [2]), but for reasons that will become
clear later, we use the CPR method as the foundation of our algorithm.)

Unfortunately, correctly specifying the sparsity structure by hand calculation is often difficult,
tedious, and prone to error. Including extra elements in the structure that later turn out to be
zero is no particular problem, but leaving elements out of the structure specification will cause the
CPR procedure to return erroneous results. If one suspects such a mistake has been made, or if
g is a “black box” so that one has no idea of the true structure, there is often no alternative but
to compute the entire matrix by finite differences (using n evaluations of ¢g) in order to find the
location of the “missing” elements — a prohibitively expensive task for large problems. We refer
to this as the FFD (full finite difference) approach.

Let S, denote the true sparsity structure of Vg, and let Sy denote an erroneous initial guess to
Si. We show how to numerically determine the true sparsity pattern S, using Sp and a relatively
small number of g evaluations. The basic idea of the method is based on the crucial observation that
symmetric pairs of missing elements (i.e., elements of S, that are not in Sp) will cause nonsymmetric
perturbations in the output of the CPR algorithm. These perturbations can be located and used
to reconstruct possible source locations for elements not included Sy. We emphasize that this
technique is a numerical procedure rather than a symbolic one; hence, we refer to our method as
the NSSD (numerical sparsity structure determination) algorithm.

In some applications, Vg may be technically dense yet sparse for practical purposes, in the sense
that almost all the elements are of insignificant size. For instance, one test problem we consider has
Vg = A+ B, where the 5% n elements of A all have magnitudes between 1 and 2 and have locations
randomly distributed as in Figure 3, while B has o(n%/?) elements of size 10~¢ distributed* as in

*Specifically, the rows of nonzeros in the lower triangle of B are spaced 1/n/2 rows apart.

100k L . R R Bt
0 20 40 60 80 100

Figure 2: Symmetric Sparsity Structure for 2-D Ginzburg-Landau Equations

Figure 4. An important feature of our algorithm is the ability to “filter out” small elements by
appropriate use of a number of tests with user-adjustable tolerances.

Although the basic idea behind our method is extremely simple, some of the details of the
algorithm are somewhat involved. To motivate the reader, we preview some of our numerical
results in the following tables. To put the computational times in perspective, we also compare
the times required for our algorithm with the amount of time it would have taken to determine the
structure by full finite differences. The test problem for the first table uses Vg = A + B, where A
and B are described above. No initial guess for the structure was provided, and tolerances were
set to ignore the elements of B. In each case all nonzero entries of A were correctly located.

Table 1. Performance of NSSD algorithm compared with full finite differences for Vg = A + B.
No initial guess for the pattern provided by user.

Estimated time for a
Number g Total full finite difference
of evaluation Other | NSSD || Hessian to get structure
g time time | time (nXx cost(g eval))
n nnz evals (sec) (sec) | (sec) (sec)
2,000 10,008 187 19.5 34.6 54.1 220
5,000 24,994 264 114 148 262 2,475
10,000 50,000 238 335 293 628 14,650
20,000 100,015 318 1,350 2,760 | 4,110 82,200
50,000 250,015 346 5,830 6,300 | 12,130 816,251
100,000 500,021 477 22,100 32,500 | 54,600 4,686,499

The quantity nnz denotes the number of elements in the true sparsity pattern. Note that for

201

60[.

80[-

lOO0

20 40

60

80

100

Figure 3: Symmetric Sparsity Structure for Random Pattern A

the n = 100,000 case, NSSD is almost 100 times faster than full finite differences.

If a good initial guess for the true structure is provided, these times decrease even further.
Moreover, because of lower storage requirements we can solve larger problems. In the next example
(Table 2) the initial guess for the structure was set to be the true structure of A less 1000 entries.
Again, tolerances were set to ignore the elements of B. In each case all 1000 missing entries of A
were correctly located. Note that for the n = 500,000 case, NSSD is almost 5000 times faster than

full finite differences.

Table 2: Performance of NSSD algorithm T and comparison to FFD, with 1000 elements missing

from the initial guess.

Number g Estimated time for a
of evaluation Other | Total full finite difference
g time time NSSD || Hessian to get structure
n nnz evals (sec) (sec) time (nX cost(g eval))
2,000 10,008 121 12.7 7.76 | 20.5 sec 220.0 sec
5,000 24,994 102 50.8 24.7 | 75.5 sec 2,475.0 sec
10,000 50,000 117 172 48.6 | 3.7 min 4.1 hr
20,000 100,015 111 453 75.9 | 8.8 min 22 hr
50,000 250,015 245 4,000 388 1.2 hr 9 days
100,000 500,021 176 8,270 671 2.5 hr 54 days
200,000 999,994 341 45,400 3,200 | 13.5 hr 307 days
500,000 2,499,984 103 51,000 1,990 | 14.8 hr 7.9 years

'Some tolerances were hand-tuned for the n = 500,000 case.

201

60

80

100k d
0 20 40 60 80 100

Figure 4: Symmetric Sparsity Structure for B

Of course, for problems with very inexpensive g evaluations, the contrast is not so great, but
the new method is still significantly faster than finite differences. If we use the slightly different
example Vg = A rather than Vg = A + B, then ¢ can be evaluated with about 10*n operations,
which is about as inexpensive as one can get. For such cases, algorithm overhead dominates the

expense of computing the g values. With no initial guess provided, the algorithm correctly located
all nonzeros in the times shown in Table 3.

Table 3. Performance of NSSD algorithm and comparison to FFD, for Vg = A with no initial
guess provided by user.

Number of | g eval Other || Estimated time for a
g time time full finite difference
n evals (sec) (sec) (sec)
2,000 175 2.65 22.0 29.2
5,000 211 9.63 102 225
10,000 223 24.4 314 1,098
20,000 296 70.6 1,450 4,764
50,000 300 189 5,980 31,240

For the “real” examples such as the composite optimal design problem and the 2-D Ginzburg-
Landau problem, the NSSD algorithm is typically 10 to 100 times faster than full finite differences
for problems in the n=2,000 to n=40,000 range.

These results will be discussed in greater detail in §6. We also note that if additional information
is available in the form of an analytic expression for the diagonal of Vg, NSSD performs even better.

The NSSD algorithm is best understood if it is first presented in simplest form and then modified
in stages until the most general form of the algorithm is presented. In §2 we present notation and
discuss the effects of nonempty S, — Sp on the CPR method. In §3 we present an algorithm that
can quickly identify and locate a small number of missing elements, provided an analytic expression
for the diagonal of Vg is available. In §4 we show how this algorithm can be modified into a
multilevel approach which can successfully handle extremely poor initial guesses Sp. In §5 we
show how the introduction of a voting scheme between the levels allows us to drop the restrictive
assumption that an analytic expression for the diagonal of Vg is available. In §6 we discuss the
actual implementation of the algorithm, and present further numerical results. In §7 we summarize
our results and suggest areas for future research.

2 Determination of Sparse Matrices by the CPR Algorithm

Notation. Script letters such as S, P, R, and F refer to sets of indices of matrix elements,
typically pointing to collections of elements within Vg. These sets are also referred to as patterns.
PT denotes the transpose of a sparsity pattern P. The quantity nnz(S) denotes the number of
elements in an index set §. S, is the pattern of the nonzero elements in Vg; that is, S, is the true
sparsity structure. Sp is a symmetric initial guess for S,. Z is the set of indices pointing to the
diagonal of Vg. C denotes a set of column indices.

We often denote the true value of Vg by H,, and the output of the CPR algorithm (using some
pattern §) by H. The individual elements of H are denoted by h; ; while columns of H are denoted
by h;; the distinction between these usages will be clear from context. Finally, we often refer to a
subset of the columns of H by the notation He.

The CPR algorithm. Consider the equation

H,.d=y, (1)

where d,y € R". Let A, h3, ..., h; be the columns of H., and let Hf = {h7 : j € C} be a subset
of the columns such that no two columns in 7 have a nonzero in the same row position. Curtis,
Powell, and Reid [6] observed in 1974 that if d has components d; = 6; #0if j € C and d; = 0
otherwise, then d and y uniquely determine ;. This fact can be established by noting

Hod =Y &n%. (2)
jec
Since no pair of columns in A} has a nonzero in the same row, we have

;b = yi (3)

I,

for each nonzero k7 ;, j € C; hence, d and y uniquely determine H.

The left-hand side of (1) is just the directional derivative of ¢ at the point z in the direction d.
Until recently the most common way to determine y was to approximate this directional derivative
using forward or central differences:

y=g(@+d)—gle)+o(|d]) or y= %(g(w +d) = gl = d)) + of||d]]*) (4)

where each nonzero component of d is appropriately small. An alternative approach which has
recently become very attractive is to use an automatic differentiation package such as ADIFOR to

generate code for computing the expression Vg?d exactly for the direction d we have selected. For
other applications, it is sometimes possible to write an analytic expression for the product Vg’d
with much less human effort than is involved in deriving a complete expression for Vg. In either of
these alternatives, Hj will be reconstructed exactly (except for roundoff) for any (nonzero) choice
of 6;. In describing our algorithm in §2 through §5, we assume for simplicity that y values are
exact, but in §6 and in our numerical examples in §1, we have used forward differences.

If the columns of H, can be partitioned into £ groups such that within each group C; no two
columns share a nonzero row element, Equation (1) can be expressed in matrix form as

H.D =Y, (5)
where D, Y € R%*% and the index sets {C;}, S« together determine H = H, uniquely by the formula

hij = vik/6; (6)

for each (7,) inside the pattern S, with k& the group number of column j, and h; ; = 0 for indices
outside the pattern.

Coleman and Moré [4] have established that the task of efficiently partitioning the columns is a
graph coloring problem and have published software [3] that computes a nearly optimal partition
(coloring) for a given pattern. A description of their coloring algorithm is beyond the scope of this
paper, but we remark that if a pattern has a maximum of k£ nonzeros per row, (a) the best we can
expect is a partitioning into k groups, and (b) the Coleman-Garbow-Moré code [3] typically does
almost this well. The reader is cautioned that pathological examples do exist for which the number
of groups is as large as n, but such cases are rare in practice.

Example 1. The best way to understand the CPR algorithm is to consider an actual example.
Suppose

[enRien B e B el =N
[enRien B e e el =)
OO == O oo
OO == O oo
o R O O o oo
_ o O O o o o
_ o oo oo oo

[en Bl an B an B e B e BN =

00 0 000

The columns of this matrix can be easily partitioned into two groups. For this example, we
select group Cy to consist of columns 1, 2,5, and 8, while group Cs consists of columns 3, 4, 6, and
7. The patterns for the two partitions can be represented by

[0 . &
.0 .
O - &
so=| 8o | ®)
&

& -
L O_

(The symbols © and & are used to distinguish between columns belonging to different groups.)
Equation (5) is then

[enRien B e B el =N

0

[enRien B e e el =)

0

[enRien B e B el =N

0

OO OO oo

OO == O oo

0

OO RO O o oo

_ o O O o o o

0

o oo oo oo
o

1 0g

07
0

bs

63
0
63
b4
b4
b6
07
0

It is easy to verify that expanding D and Y into a dense matrix format using Equation (6) and the
pattern S, yields the original matrix H,.

The CPR algorithm with an incorrect initial pattern. Suppose elements (1,4) and (4,1)
are actually nonzero. That is, we have erroneously specified the pattern to be Sg rather than the
true structure S,, where

Vi
Vi
So =

Although the columns of Sy are partitioned “correctly,

Q

&
&

&
&

Vi
Vi

&

&

Q

and S, =

Vi
Vi

2

Q

&
&

&

&
&

Vi
Vi

&

&

Q

(10)

notice that columns 3 and 4 overlap in

row 1 of S, even though the two columns are in the same group, and columns 1 and 5 similarly
overlap in row 4 even though they are in the same group.

Let us denote the (1,4) element by « and the (4,1) element by § so that we may distinguish
between them. If we apply the CPR algorithm using the erroneous structure Sy, Equation (5)

becomes

S oo L~k O

0

[en R an B e e B el =)

0

[en Rl an B an B e B e B =

oSO R, O oD

0

OO == O oo

0

O R OO o o o

0

_ o o o oo o

0

o oo o o oo

1

0g 0

b1
b2

bs

(53—|-(540é i

0
63
b4
b4
b6
o7

0

(11)

Using the sparsity template Sg and Equation (6) to expand D and Y out into a full matrix

yields

SO OO O = O =

oo oo O o= O

§
1—|—a§

oo O o o = o

0
0
0
1
1
0
0
0

L+ g

0
0
0

oo O =

OO RF O O o o O

O R, OO O o o O

_ o O o O o o o

(12)

Now, examine Equations (10) — (12). Clearly, the overlap at row 4 in columns 1 and 5
manifested within the &y pattern as a perturbation to element (4,5), while the overlap at row 1 in
columns 3 and 4 manifested within the Sy pattern as a perturbation to element (1,3). Note that

these perturbations are not symmetric even though by hypothesis H, = HT.
Example 2. Another possible effect of missing elements is demonstrated by the following
example with “missing” elements at locations (1,7) and (7,1):

33 -

&

&

Q

and S, =

Notice that columns 3 and 7 overlap in row 1 of the true sparsity pattern, but the addition of
the (7,1) element to column 1 does not cause column 1 to overlap with any other column in group
1. Performing the same calculations as in the preceding example, we get

Using the sparsity template Sp to expand D and Y out into a full matrix yields

1 01 0 00 « 0 (51 0 (51 (53 + (570[i
01000000 0y 0 P 0
10100000 0 65 0 03
00011000 0 44 05 04 (14)
00011000 05 0 05 04
000 0O01O0O0 0 d6 0 06
g 0 0 000 1 0 0 o7 0np o7

(0000000 1]|6 0] | é 0

1 0 l4+af 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
I 0 0 0 1 1 0 0 0 (1)
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

First notice that the nonzero in element (1,7) of H, caused a perturbation of element (1,3) in

H — the same H element perturbed in the preceding example by a nonzero in (1,4).

Second, carefully compare the right-hand sides of Equations (9) and (14). In this example, 3
at (7,1) did not appear as a perturbation of any element of H, but instead appeared in the matrix
Y at a location that is not used in further computation. That is, if our pattern were correct and
B =0, then y7; would have been zero automatically and would not be needed to compute H. Using
the incorrect pattern Sp, the CPR algorithm never accesses y7 1 in computing H.

In general, we have that an element in S, but not in Sy will affect our computation by perturbing
an element of H in the same row and in the same group. If no such element exists, then the
perturbation will appear in the right-hand side Y in the same row and in the column corresponding
to the group, a location that would normally contain zero if the pattern were correct. Formally
stated, this becomes the following.

Proposition 1: Suppose /] ; is a nonzero element in the symmetric matrix H. but (i,7)is not
included in Sp. Let the matrix I be generated by the CPR algorithm using pattern Sp, and let
m be the number of the group to which column j belongs. Then H will be perturbed in element
(i, k), where (i, k) is a member of Sp and column £ is in the group m. If such a k does not exist,
then the (7, m) element of Y will be perturbed.

3 Detection and Localization of a Limited Number of Missing
Nonzero Elements

Since we now know the effect on the CPR algorithm if one misspecifies the pattern, it is only natural
to ask whether one can use these effects to determine the location of missing pattern elements.
Making a few definitions and inverting the reasoning of Proposition 1 yields the following.

Definition 1: Let the matrix H and the coloring {C;} be the result of applying the CPR
method with pattern So # S. If hy; # A7, then h(i,) is said to be an H flaw. The set of all H
flaws, or an approximation to this set, is denoted F".

Definition 2: Let Y be the right-hand side obtained when applying the CPR method with
pattern So # S.«. If y; ,, # 0, but Sy does not contain an element (¢, j) with j € Cp,, then y(i,m) is
said to be a Y flaw. The set of all Y flaws, or an approximation to this set, is denoted FY.

Proposition 2: Let the matrix H and the coloring {C;} be the result of applying the CPR
method with pattern Sop # S.. If h;; is an H flaw and column j belongs to group m, then the
pattern Sp is missing one or more elements in row ¢. Moreover, the set of possible locations for
these missing elements is {(¢, k) : k € C,, }.

Proposition 3: If y; ,,, is a Y flaw, then the pattern Sy is missing one or more elements in row
i. Moreover, the set of possible locations for these missing elements is {(i, k) : k € C,, }.

Definition 3: P(fh) denotes the pattern of possible locations specified by Proposition 2.
P(FY) denotes the pattern of possible locations specified by Proposition 3. P(F) denotes P(F")U
P(FY).

Example 1, continued. Let us return to Example 1 (Equation (10)) and apply the above
definitions. For the sake of argument, suppose that we have somehow determined the correct

10

location of the flaws in H:

The pattern of possibilities is

P(F)=P(F") =

and FY=10.

(16)

(17)

Recall, however, that H, is symmetric. Eliminating nonsymmetric entries among the possibili-

ties yields

(P(F)' 0 P(F)

&

(18)

This is precisely the set S, —S8p: we have correctly identified the missing elements in the pattern.
Example 2, continued. In this example our flaws are

&

11

and FY=

(19)

so our pattern of possibilities is

P(F)=P(FYUP(FY) =

Eliminating nonsymmetric entries among the possibilities yields

(P! O P(F) =

Again, this is precisely the set S, — Sp.

&

(21)

Example 3. Although in the preceding two examples we were able to uniquely determine
the missing elements, nothing precludes elements of P and PT from matching by accident. If this
situation occurs, we will obtain spurious possibilities as well as the pattern locations for which we

are looking. Consider the following example:
o o
Y
Y

B 2 b
G CICRE
IR R
- >y -
ACIRCIECIN
S
- >y -
G CICRE

So =

12

<SS
>

where

- 33
IR C RS R e
- >y -
- 3343 -

R R RS
- >y -
- 333 -
R R AR
- >y -

¢

o

- 33

Vi
Vi
Vi

We have partitioned Sy into three groups. The true stencil S, contains twelve elements not
found in &y. After determining H using the CPR algorithm, the flaws are

Q

Then the stencil of possibilities P is

13

R CRCEE]

- 333

and FY=0. (24)
[}
A (25)
[}
[}

Eliminating nonsymmetric elements yields

@
Q .
o Y YR o
: ¢
T _ -, 3 .
PinP=1 | ‘ (26)
o o o
Q ..
i QQQ |

This pattern contains the 12 missing elements in S, — Sp, along with 8 spurious entries.
Determination of flaw locations. At this point we make the assumption that an analytic
expression for the diagonal of H is available. (This assumption is indeed restrictive and will be
dropped in later sections, but it simplifies our presentation.) Consider the following procedure for
determining the flaw locations.
Procedure 1: Computation of flaw locations

*

1. Given the true values of A};,, 1 =1,2,...,n, and

2. Given the matrix A and the coloring {C;} computed by the CPR algorithm using a symmetric
trial pattern &, and

3. Given tolerances €, €, > 0.
4. Set Fh =7V = .

5. For all (¢,7) € S with j > ¢ Do:

o If i = j and
|hii = hii| > €n, (27)
then add (4,1) to the set F".
o If 1 # j and
|hm‘ — h]‘7i| > €p, (28)

then add (4,7) and (j,4) to the set F".
6. For all y; ; Do:

o If S contains no element (¢, k) with & € C; and
1 n
il > e > 16k] (29)
k=1

then add (¢,7) to the set FY.

7. Exit procedure.

14

We remark that the computation of Y flaws can be easily performed during the CPR computa-
tion of H at almost no additional expense. Determination of H flaws is also extremely inexpensive
computationally.

Rather than the absolute tests used above, we could also use relative tests for detecting flaws.
Specifically, we could replace Equations (27), (28), and (29) with the tests

|hii — Ryl > e maz(|hil, [h7,]), (30)
\hij = hjil > en max(|hijl, |hjil), (31)
1 n
196l > €y~ > 1wl (32)
k=1

The absolute versions of the tests are preferable when one knows the approximate size of small
elements to be filtered from the structure.

Procedure 1 will always tag both (7, j) and (j,7) as flawed if h; ; differs significantly from h;,.
Essentially, we are saying that if we do not know which of the two elements is flawed, we will
consider both to be. How does this affect our computations? Return once more to Example 1, and
consider what happens if Procedure 1 is used to compute the location of the flaws.

)
V) .
ol oY Fr = (33)
B Y N B
[& & &] [&]
v v v : v
I V22 T R .
PR=1 " | & . . & & .| @ PFOPIF)= Iy

(34)

We see that we have found the missing elements in the pattern Sy, along with two spurious
elements. As a rule of thumb, tagging both (¢,7) and (7, ¢) will increase the number of possibilities
in P by a factor of two.

As long as the number of spurious elements in (P(F))?T N P(F) is small, the logical next step is
to add the set (P(F))T NP(F) to the original sparsity pattern and try again. In the above example,
this augmented pattern will contain the true pattern and two spurious elements (4,5) and (5,4).
The extra elements will both be zero in the new H computed by the CPR method; hence, they can
be easily stripped from the final pattern. We thus obtain the following algorithm.

Algorithm 1. Determination of sparsity structure when a good initial guess is
available

15

1. Let a symmetric trial pattern Sp be given.

2. 7 & Sy, then set Sp = Sp U Z.

3. Partition the columns of Sy into groups {Co ;} using a graph coloring algorithm.

4. Perform the CPR algorithm using Sy and {Co ;} to produce H.

5. Compute the set of flaws F using Procedure 1.

6. Compute the set of possibilities P.

7. Define a new pattern S = So + P N pT.

8. Partition the columns of S into groups {C; ;} using a graph coloring algorithm.

9. Perform the CPR algorithm using the pattern S and partition {C; ;} to produce H.

10. Eliminate spurious zeros from H and the final pattern §, and exit.

Elimination of spurious zeros can be accomplished as follows.
Procedure 2: Elimination of spurious zeros

1. Given the matrix H and a symmetric trial pattern S, and
2. Given the tolerance ¢; > 0,
3. Set S, = 0.
4. For all (v,j) € S with j > 7 Do:

o If both h;; and h;; are effectively zero:

max(|hi i, |hjil) < €o, (35)
then add (¢,7) and (j,7) to the set S..

5. Delete all elements in S, from & and H.
6. Exit procedure.

As before, the absolute test (35) can be replaced by a relative test if desired:

max(|h; ;],|h;.]) < €o Irll:a]yx|hi7j| (36)

Limitations of Algorithm 1. Algorithm 1 works quite well as long as nnz(S. — Sp) << n.
Recall, however, that nothing precludes elements of P and P from matching by accident. If
nnz(S. — Sp) is sufficiently small, then the number of these spurious possibilities is manageable
(the user should have no qualms about doubling the size of Sy when computing the intermediate
pattern §). As nnz(S. — So) — n, however, the number of spurious possibilities can explode.

Suppose nnz(S. — Sp) ~ n for a problem with n = 10,000 and nnz(S.) = 100,000. Further
suppose the initial pattern is colored into, say, £ = 10 groups. On the average, we can expect two
H flaws per row if we use Procedure 1. For each flaw, P contains about n/k = 1000 entries; that
is, P is approximately 0.2 full. Now, P NPT should on the average be (0.2)% = 0.04 full. This

16

corresponds to 4,000,000 possible entries out of the 100,000,000 entries in the full matrix. The
10,000 entries missing from the initial pattern are indeed a subset of P NPT, but adding 4,000,000
elements to the pattern (400 per row) is undesirable. The situation is even worse if k£ = 5, in which
case we would expect about 64,000,000 elements (6400 per row) in P NPT — practically the full
matrix.

This is admittedly a back-of-the-envelope argument, but the results are supported by actual
calculations. Algorithm 1 works well for nnz(S. — So) << n, when the number of accidental
mismatches is expected to be small, but breaks down dramatically as nnz(S. — Sp) — n.

4 The Multilevel Algorithm

Suppose that instead of augmenting So by PZ NPy after our first round of calculations, we compute
S1 = Sg+ R4 for some symmetric pattern Ry. The purpose of R is not to make &y a better pattern
than &g, but simply to make it different. We then partition the new pattern, generate Hy, compute
the flaws, and compute the pattern of possibilities P;.

Now, P{ NPy is unlikely to have significantly fewer spurious elements than Pd N Py. However,
the locations of the spurious elements will be significantly different if /Ry has had a sufficiently
randomizing effect, and the number of spurious elements in P = (PL N Po) N (PL N Py) will be
greatly reduced from the number present in (PZ N Pp).

Continuing this process until we have reduced the number of possibilities to a manageable level
gives us a multilevel algorithm that performs extremely well even given poor or nonexistent initial
guesses for the true pattern. An initial objection one might have to this approach is the large size
of the intermediate patterns in the calculation at level [:

Pr=PonPinP nPln..npPnPL. (37)

Fortunately, it is not necessary to calculate or store the intermediate patterns P;,7 < [, nor is it
necessary to store the pattern Py Instead, P; can be computed directly from the flaws. Suppose
we have an element (¢,7) € Pr, and we wish to check whether it is a member of ;. We first check
]—"lh to see whether it contains an element (¢, m), where column m is in the same group as column
j. We then check F/ to see whether it contains an element (z,m), where column m is the group
number of column j. If either of these conditions is true, then (¢,) is a member of P, otherwise
(i,7)is not a member. Testing (7,) for membership in P/ is done by testing (j,¢) for membership
in P.

Of course, appropriate arrays of pointers to the flaws must be maintained so that this test can
be performed efficiently. A full discussion of possible ways to implement these procedures is beyond
the scope of this paper, but we remark that one fast and convenient way to represent the flaws is
to using the following arrays:

1. A sorted list of the h flaws designated by (7, 7) pairs, where ¢ and j designate the row and
column indices of a flaw.

2. A sorted list of the y flaws designated by (¢, k) pairs, where 7 is the row and k is the color of
the flaw.

17

3. Separate lists of pointers to the locations in the above two lists corresponding to the first flaw
location in any given row.

Fast sorters for these lists are also essential. In our trial implementation we used a modified
heapsort.
Computation of Pjis formalized in the following two procedures.

Procedure 3. Test (i,j) for membership in 7,

e Check to see whether]—"lh contains an element (¢, p), where column p is in the same group as
column j. If such an element exists, (¢,) is a member of P;.

e Check to see whether F}) contains an element (i,p), where p is the group number of column
j. If such an element exists, (7, 7) is a member of P.

e If neither condition holds, (4, 7) is not a member of P.

o Exit procedure.

Procedure 4. Computation of the set of possible sources for flaws, P

1. Given integers [> 0,4, > 2, and for [= 0,1,...,1, let the partition sets {C;;} and the
sets of flaws]—"lh and F} be given.

2. Set 75j: 0.
3. For each flaw (i,7) in]—"l—h Do:

(a) Set m =0
(b) For each element (4,k) with k € C;; and k > ¢ Do:
i. If (i, k) is not a member of P¥, then go to 4.
ii. For!l=0,l-1, Do:
o If (¢, k) is not a member of P;, then go to 4.
o If (i,k)is not a member of P, then go to 4.
iii. The possible source (7, k) is consistent with known flaws on all levels. Set m = m+1.

iv. If m > M4, then too many possibilities; exit procedure immediately.

v. Else add (i,k) and (k, 1) to the set Pj.
4. For each flaw (i,7) in F/ Do:

(a) Set m = 0.
(b) For each element (i, k) with k € C;; and k > 7 Do:
i. If (4,k)is not a member of PI—T, then go to 5.
ii. For!l=0,l-1, Do:
o If (¢, k) is not a member of P;, then go to 5.
o If (i,k)is not a member of P/, then go to 5.

iii. The possible source (7, k) is consistent with known flaws on all levels. Set m = m+1.

18

iv. If m > M4, then too many possibilities; exit procedure immediately.

v. Else add (i,k) and (k,1) to the set Pj.

5. Pr has been successfully computed; exit procedure.

The constant m,, 4, in the above procedure deserves some explanation. We have already noted
that for [= 0, then P; can be unacceptably large. In fact, we only wish to compute P; in its
entirety when we have established sufficiently many levels that nnz(P;) is not too much greater
than nnz(S. — Sp). Procedure 4 is halted and declared unsuccessful if, for any given flaw, more
than m,,,. possible source locations exist. This causes Procedure 4 to quickly terminate without
wasting computational resources if the number of possibilities is clearly too large. A suggested
value for m,, 4, 18 5.

We can now present our multilevel algorithm. Since it uses Procedure 1 to determine the flaws,
it does require an analytic expression for the diagonal of H.. (This restrictive condition will be
eliminated in the next section.)

Algorithm 2. Determination of sparsity structure given an analytic expression for
the diagonal

1. Let a symmetric trial pattern Sp be given.
2. 7 Z Sy, then set So = So U Z.
3. Set k£ =0.

4. Partition the columns of Sy into groups {Cp ;} using a graph coloring algorithm, and perform
the CPR algorithm using Sy and {Cy ;} to produce H.

5. Compute the set of flaws F using Procedure 1.
6. Estimate the number of missing elements by ney = nnz(FY) + 0.5 * nnz(FP.)

7. Attempt to compute the set of possibilities P = Py N Pd using Procedure 4.

8. While nnz(P) is “too large” Do:

) Set k=k+1
) Augment the original pattern with a symmetric perturbation Ry: Sk = Skp—1 U Ry.
) Partition the columns of Sy into groups {Cj ;} using a graph coloring algorithm.
d) Perform the CPR algorithm using Sy, and {Cy ;} to produce Hj.
) Compute the set of flaws Fj, using Procedure 1.

) Estimate the number of missing elements by n.s = nnz(FY) + 0.5 nnz(FJ.)

)

Attempt to compute the set of possibilities P = PoNPI NPy NPL N...n P NP using
Procedure 2.

(h) If nnz(P) is “sufficiently small”, then exit loop.
9. Eliminate spurious zeros from Hj and the pattern Sy using Procedure 2

10. Generate an augmented pattern Sgyq1 = S + P.

19

11. Partition the columns of Si4q into groups using a graph coloring algorithm, and perform
the CPR algorithm to produce Hy4q.

12. Eliminate spurious zeros from H and the final pattern Sgy; using Procedure 2, and exit.

To generate a symmetric perturbation pattern Ry with p entries, we use a random number
generator to produce pairs of integers (¢, j)k, k = 1,2, ...,p/2, with each integer being between 1 and
n, and set Ry to be the union of these index pairs, along with the union of (j,), k= 1,2,...,p/2.

The size of S should be at least a small multiple of the estimated number of undetermined
NONZETOS, Ny, S50 We enforce

nnz(Ri) + nnz(Sk—1) > K1lest, (38)

where k1 > 2. Also, Ry must be sufficiently large to effectively randomize the pattern of spurious
possibilities, so we also enforce
nnz(Ry) > Kan , (39)

where k3 > 1. We suggest Ky = 2 and ko = 1, but some tradeoffs should be considered before
selecting these parameters. For instance, when a poor initial guess is provided, a large value of
k1 can lead to prohibitive storage requirements for large problems, so k1 = 2 may be best in this
instance. If sufficient storage is available, k1 = 4 or higher may be more appropriate. Also, selecting
larger values of k5 will occasionally decrease the number of levels required, but more important will
increase the number of groups needed to color each level. Hence, if the cost of g evaluations is the
dominant expense, small values such as k3 = 1 are desirable. On the other hand, if the number of
groups needed to color the pattern at the highest level is increased, the computational expense of
Procedure 4 will be correspondingly decreased. Hence, if g evaluations are very inexpensive, larger
values such as ko = 5 should be considered.

The choice of these parameters is not critical, but proper selection of the values can lead to
improved efficiency.

5 The Multilevel Algorithm with Voting between Levels.

The preceding technique alleviates the main deficiency of Algorithm 1, but still has one undesirable
feature: Procedure 1 requires an analytic expression for the diagonal of H,. One way around this
would be simply to flag each element of the diagonal as a flaw location at every level — clearly an
inefficient approach. Fortunately, the multilevel scheme we are using provides us a way to overcome
this difficulty. We can compare individual elements of H from level to level and use a voting scheme
to decide which diagonal entries are probably flawed.

Suppose we have computed H; for levels [= 0,1, ...,1, where [> 2, and further suppose that a
given element h;; of the diagonal at level [has a 1 in » chance of being flawed. If the distribution
of flaws is random from level to level, then the odds of half or more of the /;; elements being flawed

over the levels [= 0,1, ...,1is only about k1. For k = 10, for instance, this probability is

l
/2
.0006 for 4 levels, .00002 for 6 levels, etc. The probability that more than half of the elements are
flawed by exactly the same amount over the various levels is even less. Hence, if the majority of
elements (h;;);,l = 0,1,..., k take the same value, we can assume with reasonable but not perfect
confidence that this value is the correct value for i7,. Note that this argument does not rely upon
any assumption of an accurate initial guess for the pattern, but only upon having a sufficiently

20

large trial pattern at each level and having each pattern be a sufficiently large perturbation of the
pattern at the previous level.

For the purposes of voting on the diagonal, two elements (h;;); and (h;;), are considered equal
if

|Chii)i = (hii)pl < €o(|(hii il + [(Rii)pl) (40)

for some positive tolerance ¢,.

Procedure 5a: Computation of flaw locations using voting between levels (low
storage version)

1. Given a sparse matrices Hjand the corresponding partition computed by the CPR algorithm
using symmetric trial pattern S, and

2. Given a tolerance ¢, > 0,
3. Set]:lh =F =0
4. For:=1,...,n Do:

o If a simple majority of the elements %;; over the set of matrices H;,l = 0,1, ...litake
the same value (using criterion (40) to perform the vote), then for I = 0,1, ...,/ Do

— If h;,; is not equal to 3 using criterion (27) at level /, then add (4,i) to the set F7.
e Otherwise for [= 0,1,....,I Do
— Add (i,9) to the set F}.

5. For all (¢,7) € §; with ¢ < j Do:

e If i # j and at level [Equation (28) holds, then add (¢,) and (j,) to the set]—"l—h.
e For all y; ; at level [Do:

— If §; contains no element (¢, k) with & € C; and Equation (29) holds, then add (¢,)
to the set 7.

6. Estimate the number of missing elements by n.s; = nnz(FY) + 0.5 nnz(F}') .
7. Exit procedure.

Although Procedure 5a is the simplest technique for computing the set of H flaws to use in
our algorithm, it is not necessarily the best technique. A voting process can also be used with
off-diagonal elements wherever such elements appear in more than one trial pattern. Although
not strictly necessary, this can eliminate many of the extraneous flaws flagged by Procedure 5a,
which in turn can decrease the computational expense of Procedure 4 by a substantial amount.
Unfortunately, this approach requires substantially more storage.

Notice that our information obtained from voting becomes better as more levels are computed.
Since computation of the flaw locations is a computationally insignificant part of our algorithm,
at each level we recompute the flaws at all previous levels using the best information currently
available. The Y flaws do not depend on the voting scheme, and thus do not need to be recomputed.

Procedure 5b: Computation of flaw locations using voting between levels (high
storage version)

1. Given a set of sparse matrices H;, [= 0,1, ...,1 and corresponding partitions computed by
the CPR algorithm using symmetric trial patterns &;, and

21

2. Given a tolerance ¢, > 0,
4. For:=1,...,n Do:

e If a simple majority of the elements h;; over the set of matrices H;,l = 0,1, ..., [take
the same value 3, then for [= 0,1, ..., Do
— If h;; # 3 at level [then add (i,1) to the set JF/.
e Otherwise for [= 0,1,....,I Do
— Add (i,7) to the set F/.
5. For [=0,1,...,l Do:
e For all (¢,j) € & with i < j Do:
— If i # j and at level [|h; ; — h;i| > e, maz(|h;;|,|R;|), then
* If values for h; ; and h;; have been computed at other levels, then vote among
these values to determine whether to add the index (7, j) or the index (7,¢) to
the set]—"lh. If no vote is possible, or if the vote does not yield a simple majority,

or if neither h;; nor h;; agree with the value obtained by the vote, add both
(i,7) and (j,7) to the set FJ.

6. For all y; ; at level [Do:

o If S; contains no element (¢, k) with k£ € C; and Condition (29) holds, then add (7, j) to
the set F/.

7. Estimate the number of missing elements by neg = nnz(Fy) + nnz(FL.)
8. Exit procedure.

Note that the Y flaws do not depend on the voting scheme and thus do not need to be recom-
puted.

We are now in a position to state the complete algorithm for the numerical determination of
symmetric sparsity structures.

Algorithm 3. Numerical Sparsity Structure Determination

1. Let a symmetric trial pattern §o and an estimate n.s of the number of missing elements be
given.

2. 7 Z Sy, then set Sy = So UZ. Check Sy for symmetry.

3. If nnz(Sp) < K1 Mest, then reset the initial trial pattern to be Sp = Sg + Ro where Ry is a
symmetric pattern containing k1 n.s — nnz(Sp) elements.

4. Set k= 0.

5. Partition the columns of Sy into groups {Co ;} using a graph coloring algorithm, and perform
the CPR algorithm using Sy and {Co ;} to produce Hy.

6. While nnz(P) is “too large” Do:

22

10.

11.

12.

13.

14.

(a) Set k=k+1.

(b) Augment the original pattern with a symmetric pattern Ry satisfying Equation (39)
so that S = Sjp_1 U Ry.

Partition the columns of Sy into groups {Cy ;} using a graph coloring algorithm.
Perform the CPR algorithm using Sy and {Cj ;} to produce Hy.

Compute the set of flaws F}, using Procedure 5a or 5b.

If k < 2, then go to 6(a).

Attempt to compute the set of possibilities P = PonPI NPy NP N...0Py ﬁpg using
Procedure 4.

(i) If nnz(P) is “sufficiently small,” then exit loop.

)
)
)
f) Estimate the number of missing elements by ns = nnz(F}) + nnz(FP.)
)
)

. End if.

Reset £ = 0.

. Generate an augmented pattern So = Sp + P.

Partition the columns of Sy into groups using a graph coloring algorithm, and perform the
CPR algorithm to produce Hy.

Compute the set of flaws Fy using Procedure 5a or 5b.
Estimate the number of missing elements by n.y; = nnz(Fy) + nnz(FL.)
Eliminate spurious zeros from Hy using Procedure 2 and the pattern Sp.

If n.s; = 0, then exit. Otherwise, go to 6(a).

Some remarks concerning Algorithm 3.

1.

The initial estimate of the number of missing elements n.s required of the user is not critical
and is used only to determine an appropriate size for the default trial pattern. If the user has
no idea of the true number of nonzeros in the matrix, a simple technique would be to compute
a randomly selected column of Vg using Equation (4) and d = (0 0 ...1...0)T, counting the
number of nonzeros, and multiplying by n.

. In Step 3 of the algorithm, we enlarge the initial pattern supplied by the user so that our

trial pattern satisfies Equation (38). This is typically needed only when the user supplies
no initial guess for the pattern. Although in our early experiments Rg was selected to be a
random symmetric pattern with the requisite number of entries, a more efficient approach is
to specify a band matrix of an appropriate size. This ensures that the initial trial pattern can
be colored efficiently into a smaller number of groups than would be typical for a large random
pattern. Furthermore, since band and multiple-band structures are extremely common, such
a default initial pattern is likely to include a reasonable fraction of the true structure in any
given problem.

23

6 Practical Implementations and Further Discussion of Numer-
ical Results

Although Algorithm 3 is complete as presented, a few further items should be pointed out or
reemphasized.

We reiterate that care must be taken with implementation, since many of the operations can
be computationally intense. We have already mentioned the pointer arrays we selected to allow for
fast access to the information required, but other implementers may select different data structures.
Software for fast sorting of integer arrays is crucial to any implementation. We used a heapsort for
most sorting tasks.

We selected Fortran 77 for our trial implementation to be easily compatible with existing code
[3] for the graph coloring subproblem. Unfortunately, the variable storage requirements of our
algorithm made this a poor decision. Storage capacity on a given computer was definitely the
limiting factor on most of our test runs. We suggest C or Fortran 90 for future implementations.

A subtle problem can potentially arise in applications where many of the nonzeros are the same
or integer multiples of each other. Consider a matrix of zeros and ones, for instance. Now, any
element (7,7) that is left out of the initial trial structure will cause a ﬂaw at some location (i, k).
That is, the computed value of the (i,k) element of H will be 1 +1 X 5—J rather than 1. Now, if
0; =6 for all 7 and 7, we see that the computed value of any flawed element in H will be 2. This
raises the specter of encountering flaws at both the locations (7, k) and (k, 7) arising from completely
different sources, yet being unable to detect either flaw because the elements are perturbed by the
same amounts. Although such an occurrence is extraordinarily unlikely unless most of the nonzeros
have the same values, our tests have shown that such unfortunate coincidences are not uncommon
in large matrices of zeros and ones, particularly with poor initial guesses for the structure.

Fortunately there is an easy fix to this potential difficulty. In any implementation, one must
merely ensure that é§; # ¢; for all ¢,j. For instance, if an appropriate finite difference interval for each
component is §; = 107%, one might instead use ¢; = 7;,107%, where each 7; is a randomly selected
number between 0.5 and 2. The small change in the és will not greatly affect the finite difference
calculations, but will make the possibility of equal-magnitude symmetric flaws vanishingly small.

The choice of parameters and tolerances will affect algorithm efficiency and can in extreme cases
affect reliability as well. In the results presented in §1, we used the absolute error criterion with
€0 =107% ¢, =107% ¢, = 107%, and ¢, = 107%, and used the low-storage version of Procedure 5.
The parameters k1, kg, and m,,,» were set to 2, 1, and 5, respectively. These choices worked well
in almost all cases. An exception was the n = 500,000 case in Table 2. In this case, the sum of
the effects of the elements of B in many rows became so large that the algorithm had difficulty in
terminating with these tight tolerances, so they were reset to ¢ = 1072, ¢;, = 107!, ¢, = 1071, and
€, = 1072,

All of the numerical results in this paper were obtained on a network of SPARC workstations
at Argonne National Laboratory. Memory allocation was typically a limiting factor in problem
size. Most of the results with n less than 50,000 were obtained on Sparcstations with 32 Mbytes
of memory, but all of the larger problems were run on a Sparcstation with 256 Mbytes of memory.

Further numerical tests. Although the random sparsity patterns presented in §1 make a
challenging test of our algorithm, one might wonder whether “real” structures, which tend to have
periodicities, are equally amenable to solution by NSSD. We have successfully tested our algorithm
on a number of real-world examples from the MINPACK-2 test collection [1], such as the composite
optimal design problem 1, but for brevity we present only the most interesting.

Consider the sparsity structure shown in Figure 2, representing the fairly complex sparsity

24

pattern arising from the solution of the Ginzburg-Landau equations in two dimensions for super-
conducting materials [1],[7]. Unlike the random test structures presented in §1, this problem has
a structure typical of many real applications. Furthermore, a relatively small portion of nonzeros
falls on the central band of the matrix, so that the internal initial guess used by NSSD will not be
exceptionally good. Evaluation of each gradient is relatively inexpensive, involving o(n) operations.

An interesting feature of this problem is that the Hessian matrix evaluated at the standard
initial guess has a large number of nonzero elements that are nevertheless very small. For instance,
a typical size of a nonzero element is about 2.5 in the n = 40,000 case, but several thousand of the
457,094 “nonzeros” have magnitudes less than 1075, Since this is roughly the same magnitude as
errors induced by the use of finite differences, an appropriate choice of tolerances for this problem
will be expected to miss these small elements. Hence, care must be taken in interpreting the results.

In our test we selected the relative error criterion, chose ¢g = 1076, ¢, = 1074, ¢, = 107%, and
€, = 107%, and used the high-storage version of Procedure 5. The parameters xy, ko, and m,,q,
were set to 2, 1, and 5, respectively. The results are shown in Table 4. In each case we correctly
determined the location of all the nonzeros in the structure with the exception of elements with
size less than 1075,

Table 4. Performance of NSSD, and comparison to full finite differences, for the 2-D
superconductivity problem with no initial guess for the pattern provided by user.

Estimated time for a
Number g Total full finite difference
of evaluation NSSD || Hessian to get structure
g time time (nX cost(g eval))
n nnz evals. (sec) (sec) (sec)
400 4,592 199 3.57 8.06 7.17
1,600 18,372 244 14.8 42.5 97.05
2,500 28,734 326 30.8 81.6 236.2
3,600 41,370 294 39.4 138.8 482.4
6,400 73,470 305 72.5 257.3 1,521.3
10,000 114,764 340 124.1 550.1 3,650.
14,400 165,118 298 151.6 987.7 7,325.
25,600 293,006 359 315.9 2,761.9 22,526.
40,000 457,094 344 473.1 4,845.9 55,012.

So far we have based our performance analysis on a comparison with full finite differences.
Another basis for comparison is the amount of time required to solve the associated optimization
problem once the structure is known. Once the sparsity pattern has been determined for this 2-D
superconductivity test problem with n=40,000, we used a graph-coloring-Hessian truncated-Newton
conjugate-gradient code to solve the associated optimization problem in roughly 2 to 4 times the
time required to run NSSD with no a priori information. The expense of NSSD is therefore not
negligible but is certainly not prohibitive either.

25

7 Conclusions

7.1 Summary

By examining asymmetries in the results of the nonsymmetric CPR algorithm applied to a sym-
metric problem, one can often identify the location of possible nonzeros that were omitted from the
assumed structure if the assumed structure is close to the true structure. By adding a multilevel
approach and cross-correlating results using several different trial patterns, one can quickly identify
the location of all nonzeros even if no initial guess is available. The technique also effectively filters
out elements of small size.

When gradients are expensive, this algorithm can be several orders of magnitude faster than
using a full finite difference calculation. Even if gradients are inexpensive it typically outperforms
the brute force approach by factors of 10 to 100 for sufficiently large problems.

The algorithms presented in this paper are in no sense mature, and it is quite likely that they
can be simplified and refined substantially. The algorithms and numerical results in this paper are
simply our initial attempt to implement the central ideas presented in §2 — §5. Other researchers
are encouraged to try their own implementations. Both reliability and speed are factors in judging
a given implementation.

7.2 Further Ideas

The possibilities for further work on this topic are extraordinarily rich. Without going into detail,
we would mention the following possible refinements and extensions.

Avoidance of voting on diagonal elements. The least straightforward part of our algorithm
is the procedure for spotting flaws on the diagonal by voting between levels. A possible technique
to avoid such voting is to specifically ezclude all diagonal elements from each trial sparsity pattern
until the final set of calculations. Such an approach might at first seem counterintuitive, since
almost all real problems have mostly nonzero diagonal elements a priori, but recall that there is no
real requirement that our algorithm always use the best possible approximation at each iteration.
The elimination of the necessity of voting on diagonal elements may offset any loss of efficiency
incurred by not using the best guess for the structure each time.

Band matrix formulation. Rather than using different random structures at each level until
the number of possible sources is winnowed to a reasonable number, one can instead use a sequence
of band matrices of increasing bandwidth, where the bandwidth at each level is relatively prime
with respect to previous levels. (For instance, the initial guess might be a band structure of width
5, the second level might use a banded trial structure with bandwidth 9, while the third level might
have bandwidth 13, and so on.) Although this approach gives little homage to the idea of always
using the best possible guess for the structure, it has a number of advantages. First, band structures
have trivial, periodic coloring, which reduces the computational burden. Second, storage/retrieval
schemes for elements of band matrices are typically much faster than for the list-format storage of
general sparse matrices. Third, if most of the matrix is band limited and falls within one of the
trial sparsity structures, then the remaining portion can in principle be reconstructed with much
less overhead than in the algorithm presented in this paper. Suppose, for instance, that only one
flaw exists in a given row at each level, and our trial bandwidths at the different levels are the
primes 3,5,7,13, Using elementary linear diophantine equations, one can easily see that the
separation between possible flaw sources in this row is exactly the product 3 x 5 x 7... up to the
prime bandwidth corresponding to the highest level so far. Since this separation grows very fast,
the computational overhead for such an approach on a limited problem class might drop almost to

26

o(nlnn) with an appropriate modification of Procedures 3 and 4. This approach is also much more
amenable to proofs.

Parallel computation. Many of the most intensive computations in this algorithm seem in
principle quite amenable to parallelization. In particular, distributed processing looks attractive,
since total memory available was the limiting factor in the size of our test problems when running
on sequential machines. Nevertheless, the data structures involved in a distributed implementation
may be very challenging.

Nonsymmetric problems. Possibly the most exciting extension of this work involves compu-
tation of nonsymmetric sparsity patterns. At first glance, this might appear impossible, since our
method depends so heavily on symmetry. However, the multilevel voting procedure introduced to
help identify diagonal flaws can be extended directly to the nonsymmetric case. Specifically, one
identifies flaws only by voting between levels and not by comparing between symmetric pairs of
elements. Similarly, one would compute the sets of possibilities P = Py NPy N ... N Py, rather than
P=PonPInPnPIN...nPxNPL. While not as efficient as the symmetric approach, this idea
has much promise.

27

References

[1]

B. AVERICK, R. CARTER, AND J. MORE, The MINPACK-2 test problem collection (preliminary
version), Tech. Report 91-76, AHPCRC, University of Minnesota, 1991. Also report ANL/MCS-
TM-150.

T. CoLEMAN AND J. Cat, The cyclic coloring problem and estimation of sparse Hessian ma-
trices, STAM J. Alg. Disc. Meth., 7 (1986), pp. 221-235.

T. F. CoLEMAN, B. S. GARBow, AND J. J. MORE, Software for estimating sparse Jacobian
matrices, ACM Trans. Math. Software, 10 (1984), pp. 329-345.

T. COLEMAN AND J. MoRE, Estimation of sparse Jacobian matrices and graph coloring prob-
lems, STAM J. Numer. Anal., 20 (1983), pp. 187-2009.

[6] ——, Estimation of sparse Hessian matrices and graph coloring problems, Math. Programming,

[6]

28 (1984), pp. 243-270.

A. Curtris, M. POWELL, AND J. REID, On the estimation of sparse Jacobian matrices, IMA
J. Appl. Math., 13 (1974), pp. 117-120.

J. GARNER, M. SPANBAUER, R. BENEDEK, K. STRANDBURG, S. WRIGHT, AND P. PrLAss-
MANN, Critical fields of Josephson-coupled superconducting multilayers, Physical Review B (to
appear,1992).

M. PowEgLL AND P. L. ToINT, On the estimation of sparse Hessian matrices, STAM J. Numer.
Anal., 16 (1979), pp. 1060-1074.

28

