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Fast Numerical Determination of Symmetric Sparsity Patterns �Richard G. Carter yAbstractWe consider a function g : <n ! <n for which the Jacobian is symmetric and sparse. Suchfunctions often arise, for instance, in numerical optimization, where g is the gradient of someobjective function f so that the Jacobian of g is the Hessian of f . In many such applications onecan generate extremely e�cient algorithms by taking advantage of the sparsity structure of theproblem if this pattern is known a priori. Unfortunately, determining such sparsity structuresby hand is often di�cult and prone to error. If one suspects a mistake has been made, or if gis a \black box" so that the true structure is completely unknown, one often has no alternativebut to compute the entire matrix by �nite di�erences | a prohibitively expensive task for largeproblems.We show that it is possible to numerically determine symmetric sparsity patterns using arelatively small number of g evaluations. Numerical results are shown for n up to 100,000 inwhich all nonzeros in the Jacobian are correctly identi�ed in about one-hundredth of the timerequired to estimate the sparsity structure by a full �nite di�erence calculation. When a goodinitial guess for the sparsity structure is available, numerical results are presented for n up to500,000, in which all missing nonzeros are correctly located almost �ve-thousand times fasterthan would be possible with a full �nite di�erence calculation.1 IntroductionConsider a function g : <n ! <n for which the Jacobian rgT : <n ! <n�n is symmetric andsparse. Such systems arise, for instance, in numerical optimization, where g � rf for someobjective function f so that the Jacobian of g is the Hessian matrix r2f . These systems areparticularly common when the variables in the optimization problem correspond to mesh points in adiscretization. For instance, Figure 1 represents the sparsity pattern arising from the optimal designof a composite material when regular triangular �nite elements are used in the model discretization[1], while Figure 2 represents the more complex sparsity pattern arising from the solution of theGinzburg-Landau equations in two dimensions for superconducting materials [1],[7].In many applications one can generate extremely e�cient algorithms by taking advantage ofthe sparsity structure of rg if this structure is known. It is well known that if the columns ofrg can be partitioned into k groups such that within each group no two columns share a nonzeroelement in the same row, then the entire matrix can be approximated using only k evaluations ofg. Moreover, the matrix can be determined exactly using values for the directional derivative of gin k speci�c directions, if such directional derivatives can be computed. Since k is typically muchless than n unless the sparsity structure is pathological, rg can be determined very inexpensivelyprovided the sparsity structure is known and the columns can be e�ciently partitioned into groups.Determining such a partition given a speci�ed sparsity structure is a graph coloring problem and�This research was supported by the Army Research O�ce under grant DAALO3-89-C-0038, and in part by theApplied Mathematical Sciences Subprogram of the O�ce of Energy Research of the US Department of Energy undercontract W-31-109-Eng-38.yArmy High Performance Computing Research Center, Institute of Technology, University of Minnesota, 1100Washington Avenue South, Minneapolis, Minnesota 554151
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100Figure 1: Symmetric Sparsity Structure for Optimal Design Problemhas been well analyzed [6], [4]. E�cient software for computing a nearly optimal partition andusing it for determining rg is widely available in the public domain [3]. For the nonsymmetric casewe refer to this procedure as the CPR method. (Specialized methods exist for reducing work evenfurther in the symmetric case (see, for instance, [8], [5], and [2]), but for reasons that will becomeclear later, we use the CPR method as the foundation of our algorithm.)Unfortunately, correctly specifying the sparsity structure by hand calculation is often di�cult,tedious, and prone to error. Including extra elements in the structure that later turn out to bezero is no particular problem, but leaving elements out of the structure speci�cation will cause theCPR procedure to return erroneous results. If one suspects such a mistake has been made, or ifg is a \black box" so that one has no idea of the true structure, there is often no alternative butto compute the entire matrix by �nite di�erences (using n evaluations of g) in order to �nd thelocation of the \missing" elements | a prohibitively expensive task for large problems. We referto this as the FFD (full �nite di�erence) approach.Let S� denote the true sparsity structure of rg, and let S0 denote an erroneous initial guess toS�. We show how to numerically determine the true sparsity pattern S� using S0 and a relativelysmall number of g evaluations. The basic idea of the method is based on the crucial observation thatsymmetric pairs of missing elements (i.e., elements of S� that are not in S0) will cause nonsymmetricperturbations in the output of the CPR algorithm. These perturbations can be located and usedto reconstruct possible source locations for elements not included S0. We emphasize that thistechnique is a numerical procedure rather than a symbolic one; hence, we refer to our method asthe NSSD (numerical sparsity structure determination) algorithm.In some applications, rg may be technically dense yet sparse for practical purposes, in the sensethat almost all the elements are of insigni�cant size. For instance, one test problem we consider hasrg = A+B, where the 5�n elements of A all have magnitudes between 1 and 2 and have locationsrandomly distributed as in Figure 3, while B has o(n3=2) elements of size 10�6 distributed� as in�Speci�cally, the rows of nonzeros in the lower triangle of B are spaced pn=2 rows apart.2
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100Figure 2: Symmetric Sparsity Structure for 2-D Ginzburg-Landau EquationsFigure 4. An important feature of our algorithm is the ability to \�lter out" small elements byappropriate use of a number of tests with user-adjustable tolerances.Although the basic idea behind our method is extremely simple, some of the details of thealgorithm are somewhat involved. To motivate the reader, we preview some of our numericalresults in the following tables. To put the computational times in perspective, we also comparethe times required for our algorithm with the amount of time it would have taken to determine thestructure by full �nite di�erences. The test problem for the �rst table uses rg = A +B, where Aand B are described above. No initial guess for the structure was provided, and tolerances wereset to ignore the elements of B. In each case all nonzero entries of A were correctly located.Table 1. Performance of NSSD algorithm compared with full �nite di�erences for rg = A+ B.No initial guess for the pattern provided by user.Estimated time for aNumber g Total full �nite di�erenceof evaluation Other NSSD Hessian to get structureg time time time ( n� cost(g eval) )n nnz evals (sec) (sec) (sec) (sec)2,000 10,008 187 19.5 34.6 54.1 2205,000 24,994 264 114 148 262 2,47510,000 50,000 238 335 293 628 14,65020,000 100,015 318 1,350 2,760 4,110 82,20050,000 250,015 346 5,830 6,300 12,130 816,251100,000 500,021 477 22,100 32,500 54,600 4,686,4993
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100Figure 3: Symmetric Sparsity Structure for Random Pattern AThe quantity nnz denotes the number of elements in the true sparsity pattern. Note that forthe n = 100; 000 case, NSSD is almost 100 times faster than full �nite di�erences.If a good initial guess for the true structure is provided, these times decrease even further.Moreover, because of lower storage requirements we can solve larger problems. In the next example(Table 2) the initial guess for the structure was set to be the true structure of A less 1000 entries.Again, tolerances were set to ignore the elements of B. In each case all 1000 missing entries of Awere correctly located. Note that for the n = 500; 000 case, NSSD is almost 5000 times faster thanfull �nite di�erences.Table 2: Performance of NSSD algorithm y and comparison to FFD, with 1000 elements missingfrom the initial guess.Number g Estimated time for aof evaluation Other Total full �nite di�erenceg time time NSSD Hessian to get structuren nnz evals (sec) (sec) time ( n� cost(g eval) )2,000 10,008 121 12.7 7.76 20.5 sec 220.0 sec5,000 24,994 102 50.8 24.7 75.5 sec 2,475.0 sec10,000 50,000 117 172 48.6 3.7 min 4.1 hr20,000 100,015 111 453 75.9 8.8 min 22 hr50,000 250,015 245 4,000 388 1.2 hr 9 days100,000 500,021 176 8,270 671 2.5 hr 54 days200,000 999,994 341 45,400 3,200 13.5 hr 307 days500,000 2,499,984 103 51,000 1,990 14.8 hr 7.9 yearsySome tolerances were hand-tuned for the n = 500; 000 case.4
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        Figure 4: Symmetric Sparsity Structure for BOf course, for problems with very inexpensive g evaluations, the contrast is not so great, butthe new method is still signi�cantly faster than �nite di�erences. If we use the slightly di�erentexample rg = A rather than rg = A + B, then g can be evaluated with about 10*n operations,which is about as inexpensive as one can get. For such cases, algorithm overhead dominates theexpense of computing the g values. With no initial guess provided, the algorithm correctly locatedall nonzeros in the times shown in Table 3.Table 3. Performance of NSSD algorithm and comparison to FFD, for rg = A with no initialguess provided by user.Number of g eval Other Estimated time for ag time time full �nite di�erencen evals (sec) (sec) (sec)2,000 175 2.65 22.0 29.25,000 211 9.63 102 22510,000 223 24.4 314 1,09820,000 296 70.6 1,450 4,76450,000 300 189 5,980 31,240For the \real" examples such as the composite optimal design problem and the 2-D Ginzburg-Landau problem, the NSSD algorithm is typically 10 to 100 times faster than full �nite di�erencesfor problems in the n=2,000 to n=40,000 range. 5



These results will be discussed in greater detail in x6. We also note that if additional informationis available in the form of an analytic expression for the diagonal ofrg, NSSD performs even better.The NSSD algorithm is best understood if it is �rst presented in simplest form and then modi�edin stages until the most general form of the algorithm is presented. In x2 we present notation anddiscuss the e�ects of nonempty S� � S0 on the CPR method. In x3 we present an algorithm thatcan quickly identify and locate a small number of missing elements, provided an analytic expressionfor the diagonal of rg is available. In x4 we show how this algorithm can be modi�ed into amultilevel approach which can successfully handle extremely poor initial guesses S0. In x5 weshow how the introduction of a voting scheme between the levels allows us to drop the restrictiveassumption that an analytic expression for the diagonal of rg is available. In x6 we discuss theactual implementation of the algorithm, and present further numerical results. In x7 we summarizeour results and suggest areas for future research.2 Determination of Sparse Matrices by the CPR AlgorithmNotation. Script letters such as S, P , R, and F refer to sets of indices of matrix elements,typically pointing to collections of elements within rg. These sets are also referred to as patterns.PT denotes the transpose of a sparsity pattern P . The quantity nnz(S) denotes the number ofelements in an index set S. S� is the pattern of the nonzero elements in rg; that is, S� is the truesparsity structure. S0 is a symmetric initial guess for S�. I is the set of indices pointing to thediagonal of rg. C denotes a set of column indices.We often denote the true value of rg by H�, and the output of the CPR algorithm (using somepattern S) by H . The individual elements of H are denoted by hi;j while columns of H are denotedby hi; the distinction between these usages will be clear from context. Finally, we often refer to asubset of the columns of H by the notation HC.The CPR algorithm. Consider the equationH� d = y; (1)where d; y 2 <n. Let h�1; h�2; :::; h�n be the columns of H�, and let H�C = fh�j : j 2 Cg be a subsetof the columns such that no two columns in H�C have a nonzero in the same row position. Curtis,Powell, and Reid [6] observed in 1974 that if d has components dj = �j 6= 0 if j 2 C and dj = 0otherwise, then d and y uniquely determine H�C . This fact can be established by notingH�d =Xj2C �jh�j : (2)Since no pair of columns in H�C has a nonzero in the same row, we have�jh�i;j = yi (3)for each nonzero h�i;j , j 2 C; hence, d and y uniquely determine H�C .The left-hand side of (1) is just the directional derivative of g at the point x in the direction d.Until recently the most common way to determine y was to approximate this directional derivativeusing forward or central di�erences:y = g(x+ d)� g(x) + o(kdk) or y = 12(g(x+ d)� g(x� d)) + o(kdk2) (4)where each nonzero component of d is appropriately small. An alternative approach which hasrecently become very attractive is to use an automatic di�erentiation package such as ADIFOR to6



generate code for computing the expression rgTd exactly for the direction d we have selected. Forother applications, it is sometimes possible to write an analytic expression for the product rgTdwith much less human e�ort than is involved in deriving a complete expression for rg. In either ofthese alternatives, H�C will be reconstructed exactly (except for roundo�) for any (nonzero) choiceof �i. In describing our algorithm in x2 through x5, we assume for simplicity that y values areexact, but in x6 and in our numerical examples in x1, we have used forward di�erences.If the columns of H� can be partitioned into k groups such that within each group Cj no twocolumns share a nonzero row element, Equation (1) can be expressed in matrix form asH�D = Y; (5)where D; Y 2 <n�k and the index sets fCjg;S� together determine H = H� uniquely by the formulahi;j = yi;k=�j (6)for each (i; j) inside the pattern S� with k the group number of column j, and hi;j = 0 for indicesoutside the pattern.Coleman and Mor�e [4] have established that the task of e�ciently partitioning the columns is agraph coloring problem and have published software [3] that computes a nearly optimal partition(coloring) for a given pattern. A description of their coloring algorithm is beyond the scope of thispaper, but we remark that if a pattern has a maximum of k nonzeros per row, (a) the best we canexpect is a partitioning into k groups, and (b) the Coleman-Garbow-Mor�e code [3] typically doesalmost this well. The reader is cautioned that pathological examples do exist for which the numberof groups is as large as n, but such cases are rare in practice.Example 1. The best way to understand the CPR algorithm is to consider an actual example.Suppose H� = 26666666666664 1 0 1 0 0 0 0 00 1 0 0 0 0 0 01 0 1 0 0 0 0 00 0 0 1 1 0 0 00 0 0 1 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1 37777777777775 : (7)The columns of this matrix can be easily partitioned into two groups. For this example, weselect group C1 to consist of columns 1, 2 ,5, and 8, while group C2 consists of columns 3, 4, 6, and7. The patterns for the two partitions can be represented byS0 = 26666666666664 ~ � | � � � � �� ~ � � � � � �~ � | � � � � �� � � | ~ � � �� � � | ~ � � �� � � � � | � �� � � � � � | �� � � � � � � ~ 37777777777775 : (8)(The symbols ~ and | are used to distinguish between columns belonging to di�erent groups.)Equation (5) is then 7



26666666666664 1 0 1 0 0 0 0 00 1 0 0 0 0 0 01 0 1 0 0 0 0 00 0 0 1 1 0 0 00 0 0 1 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1 3777777777777526666666666664 �1 0�2 00 �30 �4�5 00 �60 �7�8 0 37777777777775 = 26666666666664 �1 �3�2 0�1 �3�5 �4�5 �40 �60 �7�8 0 37777777777775 : (9)It is easy to verify that expanding D and Y into a dense matrix format using Equation (6) and thepattern S� yields the original matrix H�.The CPR algorithm with an incorrect initial pattern. Suppose elements (1,4) and (4,1)are actually nonzero. That is, we have erroneously speci�ed the pattern to be S0 rather than thetrue structure S�, whereS0 = 26666666666664 ~ � | � � � � �� ~ � � � � � �~ � | � � � � �� � � | ~ � � �� � � | ~ � � �� � � � � | � �� � � � � � | �� � � � � � � ~ 37777777777775 and S� = 26666666666664 ~ � | | � � � �� ~ � � � � � �~ � | � � � � �~ � � | ~ � � �� � � | ~ � � �� � � � � | � �� � � � � � | �� � � � � � � ~ 37777777777775 : (10)Although the columns of S0 are partitioned \correctly," notice that columns 3 and 4 overlap inrow 1 of S� even though the two columns are in the same group, and columns 1 and 5 similarlyoverlap in row 4 even though they are in the same group.Let us denote the (1,4) element by � and the (4,1) element by � so that we may distinguishbetween them. If we apply the CPR algorithm using the erroneous structure S0, Equation (5)becomes 26666666666664 1 0 1 � 0 0 0 00 1 0 0 0 0 0 01 0 1 0 0 0 0 0� 0 0 1 1 0 0 00 0 0 1 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1 3777777777777526666666666664 �1 0�2 00 �30 �4�5 00 �60 �7�8 0 37777777777775 = 26666666666664 �1 �3 + �4��2 0�1 �3�1� + �5 �4�5 �40 �60 �7�8 0 37777777777775 : (11)Using the sparsity template S0 and Equation (6) to expand D and Y out into a full matrixyields H = 26666666666664 1 0 1 + � �4�3 0 0 0 0 00 1 0 0 0 0 0 01 0 1 0 0 0 0 00 0 0 1 1 + � �1�5 0 0 00 0 0 1 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1 37777777777775 : (12)8



Now, examine Equations (10) | (12). Clearly, the overlap at row 4 in columns 1 and 5manifested within the S0 pattern as a perturbation to element (4; 5), while the overlap at row 1 incolumns 3 and 4 manifested within the S0 pattern as a perturbation to element (1; 3). Note thatthese perturbations are not symmetric even though by hypothesis H� = HT� .Example 2. Another possible e�ect of missing elements is demonstrated by the followingexample with \missing" elements at locations (1; 7) and (7; 1):S0 = 26666666666664 ~ � | � � � � �� ~ � � � � � �~ � | � � � � �� � � | ~ � � �� � � | ~ � � �� � � � � | � �� � � � � � | �� � � � � � � ~ 37777777777775 and S� = 26666666666664 ~ � | � � � | �� ~ � � � � � �~ � | � � � � �� � � | ~ � � �� � � | ~ � � �� � � � � | � �~ � � � � � | �� � � � � � � ~ 37777777777775 : (13)Notice that columns 3 and 7 overlap in row 1 of the true sparsity pattern, but the addition ofthe (7; 1) element to column 1 does not cause column 1 to overlap with any other column in group1. Performing the same calculations as in the preceding example, we get26666666666664 1 0 1 0 0 0 � 00 1 0 0 0 0 0 01 0 1 0 0 0 0 00 0 0 1 1 0 0 00 0 0 1 1 0 0 00 0 0 0 0 1 0 0� 0 0 0 0 0 1 00 0 0 0 0 0 0 1 3777777777777526666666666664 �1 0�2 00 �30 �4�5 00 �60 �7�8 0 37777777777775 = 26666666666664 �1 �3 + �7��2 0�1 �3�5 �4�5 �40 �6�1� �7�8 0 37777777777775 : (14)Using the sparsity template S0 to expand D and Y out into a full matrix yieldsH = 26666666666664 1 0 1 + � �7�3 0 0 0 0 00 1 0 0 0 0 0 01 0 1 0 0 0 0 00 0 0 1 1 0 0 00 0 0 1 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1 37777777777775 : (15)First notice that the nonzero in element (1; 7) of H� caused a perturbation of element (1; 3) inH | the same H element perturbed in the preceding example by a nonzero in (1; 4).Second, carefully compare the right-hand sides of Equations (9) and (14). In this example, �at (7; 1) did not appear as a perturbation of any element of H , but instead appeared in the matrixY at a location that is not used in further computation. That is, if our pattern were correct and� = 0, then y7;1 would have been zero automatically and would not be needed to compute H . Usingthe incorrect pattern S0, the CPR algorithm never accesses y7;1 in computing H .9



In general, we have that an element in S� but not in S0 will a�ect our computation by perturbingan element of H in the same row and in the same group. If no such element exists, then theperturbation will appear in the right-hand side Y in the same row and in the column correspondingto the group, a location that would normally contain zero if the pattern were correct. Formallystated, this becomes the following.Proposition 1: Suppose h�i;j is a nonzero element in the symmetric matrix H� but (i; j) is notincluded in S0. Let the matrix H be generated by the CPR algorithm using pattern S0, and letm be the number of the group to which column j belongs. Then H will be perturbed in element(i; k), where (i; k) is a member of S0 and column k is in the group m. If such a k does not exist,then the (i;m) element of Y will be perturbed.3 Detection and Localization of a Limited Number of MissingNonzero ElementsSince we now know the e�ect on the CPR algorithm if one misspeci�es the pattern, it is only naturalto ask whether one can use these e�ects to determine the location of missing pattern elements.Making a few de�nitions and inverting the reasoning of Proposition 1 yields the following.De�nition 1: Let the matrix H and the coloring fCjg be the result of applying the CPRmethod with pattern S0 6= S�. If hi;j 6= h�i;j , then h(i; j) is said to be an H aw. The set of all Haws, or an approximation to this set, is denoted Fh.De�nition 2: Let Y be the right-hand side obtained when applying the CPR method withpattern S0 6= S�. If yi;m 6= 0, but S0 does not contain an element (i; j) with j 2 Cm, then y(i;m) issaid to be a Y aw. The set of all Y aws, or an approximation to this set, is denoted Fy.Proposition 2: Let the matrix H and the coloring fCjg be the result of applying the CPRmethod with pattern S0 6= S�. If hi;j is an H aw and column j belongs to group m, then thepattern S0 is missing one or more elements in row i. Moreover, the set of possible locations forthese missing elements is f(i; k) : k 2 Cmg.Proposition 3: If yi;m is a Y aw, then the pattern S0 is missing one or more elements in rowi. Moreover, the set of possible locations for these missing elements is f(i; k) : k 2 Cmg.De�nition 3: P(Fh) denotes the pattern of possible locations speci�ed by Proposition 2.P(Fy) denotes the pattern of possible locations speci�ed by Proposition 3. P(F) denotes P(Fh)[P(Fy).Example 1, continued. Let us return to Example 1 (Equation (10)) and apply the abovede�nitions. For the sake of argument, suppose that we have somehow determined the correct10



location of the aws in H :Fh = 26666666666664 � � | � � � � �� � � � � � � �� � � � � � � �� � � � ~ � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775 and Fy = ;: (16)The pattern of possibilities isP(F) = P(Fh) = 26666666666664 � � � | � | | �� � � � � � � �� � � � � � � �~ ~ � � � � � ~� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775 : (17)Recall, however, that H� is symmetric. Eliminating nonsymmetric entries among the possibili-ties yields (P(F))T \ P(F) = 26666666666664 � � � | � � � �� � � � � � � �� � � � � � � �~ � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775 : (18)This is precisely the set S��S0: we have correctly identi�ed the missing elements in the pattern.Example 2, continued. In this example our aws areFh = 26666666666664 � � | � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775 and Fy = 26666666666664 � �� �� �� �� �� �~ �� � 37777777777775 ; (19)
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so our pattern of possibilities isP(F) = P(Fh) [ P(Fy) = 26666666666664 � � � | � | | �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �~ ~ � � ~ � � ~� � � � � � � � 37777777777775 : (20)Eliminating nonsymmetric entries among the possibilities yields(P(F))T \ P(F) = 26666666666664 � � � � � � | �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �~ � � � � � � �� � � � � � � � 37777777777775 : (21)Again, this is precisely the set S� � S0.Example 3. Although in the preceding two examples we were able to uniquely determinethe missing elements, nothing precludes elements of P and PT from matching by accident. If thissituation occurs, we will obtain spurious possibilities as well as the pattern locations for which weare looking. Consider the following example:S0 = 26666666666666666666664
~ } � � � � � � � � � �~ } � � � � � � � � � �� } � ~ � � � � � � � �� � � ~ } � � � � � � �� � � ~ } � � � � � � �� � � � } � ~ � � � � �� � � � � � ~ } � � � �� � � � � � ~ } � � � �� � � � � � � } � ~ � �� � � � � � � � � ~ } �� � � � � � � � � ~ } �� � � � � � � � � � } �

37777777777777777777775 ; (22)
12



where S� = 26666666666666666666664
~ } � � � � ~ � � � � �~ } � � � � ~ � � � � �� } � ~ � � � � � ~ � �� � � ~ } � � � � � � �� � � ~ } � � � � � } �� � � � } � ~ � � � � �~ } � � � � ~ } � � � �� � � � � � ~ } � � � �� � � � � � � } � ~ � �� � � � � � � � � ~ } �� � � � } � � � � ~ } �� � � � � � � � � � } �

37777777777777777777775 : (23)We have partitioned S0 into three groups. The true stencil S� contains twelve elements notfound in S0. After determining H using the CPR algorithm, the aws areFH = 26666666666666666666664
~ � � � � � � � � � � �~ � � � � � � � � � � �� � � ~ � � � � � � � �� � � � � � � � � � � �� � � � } � � � � � � �� � � � � � � � � � � �� � � � � � ~ } � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � } �� � � � � � � � � � � �

37777777777777777777775 and Fy = ;: (24)Then the stencil of possibilities P isP = 26666666666666666666664
� � � ~ � � ~ � � ~ � �� � � ~ � � ~ � � ~ � �~ � � � � � ~ � � ~ � �� � � � � � � � � � � �� } � � � � � } � � } �� � � � � � � � � � � �~ } � ~ } � � � � ~ } �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� } � � } � � } � � � �� � � � � � � � � � � �

37777777777777777777775 : (25)
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Eliminating nonsymmetric elements yieldsPT \ P = 26666666666666666666664
� � � � � � ~ � � � � �� � � � � � ~ � � � � �� � � � � � � � � ~ � �� � � � � � � � � � � �� � � � � � � � � � } �� � � � � � � � � � � �~ } � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � } � � � � � � �� � � � � � � � � � � �

37777777777777777777775 : (26)This pattern contains the 12 missing elements in S� � S0, along with 8 spurious entries.Determination of aw locations. At this point we make the assumption that an analyticexpression for the diagonal of H is available. (This assumption is indeed restrictive and will bedropped in later sections, but it simpli�es our presentation.) Consider the following procedure fordetermining the aw locations.Procedure 1: Computation of aw locations1. Given the true values of h�ii; i = 1; 2; :::; n, and2. Given the matrixH and the coloring fCjg computed by the CPR algorithm using a symmetrictrial pattern S, and3. Given tolerances �h; �y > 0.4. Set Fh = Fy = ;.5. For all (i; j) 2 S with j � i Do:� If i = j and jhi;i � h�i;ij > �h; (27)then add (i; i) to the set Fh.� If i 6= j and jhi;j � hj;ij > �h; (28)then add (i; j) and (j; i) to the set Fh.6. For all yi;j Do:� If S contains no element (i; k) with k 2 Cj andjyi;j j > �y 1n nXk=1 j�k j (29)then add (i; j) to the set Fy.7. Exit procedure. 14



We remark that the computation of Y aws can be easily performed during the CPR computa-tion of H at almost no additional expense. Determination of H aws is also extremely inexpensivecomputationally.Rather than the absolute tests used above, we could also use relative tests for detecting aws.Speci�cally, we could replace Equations (27), (28), and (29) with the testsjhi;i � h�i;ij > �h max(jhi;ij; jh�i;ij); (30)jhi;j � hj;ij > �h max(jhi;j j; jhj;ij); (31)jyi;j j > �y 1n nXk=1 jyk;j j: (32)The absolute versions of the tests are preferable when one knows the approximate size of smallelements to be �ltered from the structure.Procedure 1 will always tag both (i; j) and (j; i) as awed if hi;j di�ers signi�cantly from hj;i.Essentially, we are saying that if we do not know which of the two elements is awed, we willconsider both to be. How does this a�ect our computations? Return once more to Example 1, andconsider what happens if Procedure 1 is used to compute the location of the aws.Fh = 26666666666664 � � | � � � � �� � � � � � � �~ � � � � � � �� � � � ~ � � �� � � | � � � �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775 and Fy = ; (33)
P(F) = 26666666666664 � � � | � | | �� � � � � � � �� ~ � � ~ � � ~~ ~ � � � � � ~� � | � � | | �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775 and P(F)T \ P(F) = 26666666666664 � � � | � � � �� � � � � � � �� � � � ~ � � �~ � � � � � � �� � | � � � � �� � � � � � � �� � � � � � � �� � � � � � � � 37777777777775(34)We see that we have found the missing elements in the pattern S0, along with two spuriouselements. As a rule of thumb, tagging both (i; j) and (j; i) will increase the number of possibilitiesin P by a factor of two.As long as the number of spurious elements in (P(F))T \P(F) is small, the logical next step isto add the set (P(F))T \P(F) to the original sparsity pattern and try again. In the above example,this augmented pattern will contain the true pattern and two spurious elements (4; 5) and (5; 4).The extra elements will both be zero in the new H computed by the CPR method; hence, they canbe easily stripped from the �nal pattern. We thus obtain the following algorithm.Algorithm 1. Determination of sparsity structure when a good initial guess isavailable 15



1. Let a symmetric trial pattern S0 be given.2. If I 6� S0, then set S0 = S0 [ I.3. Partition the columns of S0 into groups fC0;jg using a graph coloring algorithm.4. Perform the CPR algorithm using S0 and fC0;jg to produce H .5. Compute the set of aws F using Procedure 1.6. Compute the set of possibilities P .7. De�ne a new pattern S = S0 + P \ PT .8. Partition the columns of S into groups fC1;jg using a graph coloring algorithm.9. Perform the CPR algorithm using the pattern S and partition fC1;jg to produce H .10. Eliminate spurious zeros from H and the �nal pattern S, and exit.Elimination of spurious zeros can be accomplished as follows.Procedure 2: Elimination of spurious zeros1. Given the matrix H and a symmetric trial pattern S, and2. Given the tolerance �0 > 0,3. Set Sz = ;.4. For all (i; j) 2 S with j � i Do:� If both hi;j and hj;i are e�ectively zero:max(jhi;jj; jhj;ij) < �0; (35)then add (i; j) and (j; i) to the set Sz.5. Delete all elements in Sz from S and H .6. Exit procedure.As before, the absolute test (35) can be replaced by a relative test if desired:max(jhi;jj; jhj;ij) < �0maxi;j jhi;j j (36)Limitations of Algorithm 1. Algorithm 1 works quite well as long as nnz(S� � S0) << n.Recall, however, that nothing precludes elements of P and PT from matching by accident. Ifnnz(S� � S0) is su�ciently small, then the number of these spurious possibilities is manageable(the user should have no qualms about doubling the size of S0 when computing the intermediatepattern S). As nnz(S� � S0)! n, however, the number of spurious possibilities can explode.Suppose nnz(S� � S0) � n for a problem with n = 10; 000 and nnz(S�) � 100; 000. Furthersuppose the initial pattern is colored into, say, k = 10 groups. On the average, we can expect twoH aws per row if we use Procedure 1. For each aw, P contains about n=k = 1000 entries; thatis, P is approximately 0:2 full. Now, P \ PT should on the average be (0:2)2 = 0:04 full. This16



corresponds to 4,000,000 possible entries out of the 100,000,000 entries in the full matrix. The10,000 entries missing from the initial pattern are indeed a subset of P \PT , but adding 4,000,000elements to the pattern (400 per row) is undesirable. The situation is even worse if k = 5, in whichcase we would expect about 64,000,000 elements (6400 per row) in P \ PT | practically the fullmatrix.This is admittedly a back-of-the-envelope argument, but the results are supported by actualcalculations. Algorithm 1 works well for nnz(S� � S0) << n, when the number of accidentalmismatches is expected to be small, but breaks down dramatically as nnz(S� � S0)! n.4 The Multilevel AlgorithmSuppose that instead of augmenting S0 by PT0 \P0 after our �rst round of calculations, we computeS1 = S0+R1 for some symmetric patternR1. The purpose of R1 is not to make S1 a better patternthan S0, but simply to make it di�erent. We then partition the new pattern, generate H1, computethe aws, and compute the pattern of possibilities P1.Now, PT1 \P1 is unlikely to have signi�cantly fewer spurious elements than PT0 \P0. However,the locations of the spurious elements will be signi�cantly di�erent if R1 has had a su�cientlyrandomizing e�ect, and the number of spurious elements in �P = (PT0 \ P0) \ (PT1 \ P1) will begreatly reduced from the number present in (PT0 \ P0).Continuing this process until we have reduced the number of possibilities to a manageable levelgives us a multilevel algorithm that performs extremely well even given poor or nonexistent initialguesses for the true pattern. An initial objection one might have to this approach is the large sizeof the intermediate patterns in the calculation at level �l:�P�l = P0 \ PT0 \ P1 \ PT1 \ :::\ P�l \ PT�l : (37)Fortunately, it is not necessary to calculate or store the intermediate patterns Pi; i < �l, nor is itnecessary to store the pattern P�l. Instead, �P�l can be computed directly from the aws. Supposewe have an element (i; j) 2 P�l, and we wish to check whether it is a member of Pl. We �rst checkFhl to see whether it contains an element (i;m), where column m is in the same group as columnj. We then check Fyl to see whether it contains an element (i;m), where column m is the groupnumber of column j. If either of these conditions is true, then (i; j) is a member of Pl, otherwise(i; j) is not a member. Testing (i; j) for membership in PTl is done by testing (j; i) for membershipin Pl.Of course, appropriate arrays of pointers to the aws must be maintained so that this test canbe performed e�ciently. A full discussion of possible ways to implement these procedures is beyondthe scope of this paper, but we remark that one fast and convenient way to represent the aws isto using the following arrays:1. A sorted list of the h aws designated by (i; j) pairs, where i and j designate the row andcolumn indices of a aw.2. A sorted list of the y aws designated by (i; k) pairs, where i is the row and k is the color ofthe aw. 17



3. Separate lists of pointers to the locations in the above two lists corresponding to the �rst awlocation in any given row.Fast sorters for these lists are also essential. In our trial implementation we used a modi�edheapsort.Computation of �P�l is formalized in the following two procedures.Procedure 3. Test (i; j) for membership in Pl� Check to see whether Fhl contains an element (i; p), where column p is in the same group ascolumn j. If such an element exists, (i; j) is a member of Pl.� Check to see whether Fyl ) contains an element (i; p), where p is the group number of columnj. If such an element exists, (i; j) is a member of Pl.� If neither condition holds, (i; j) is not a member of Pl.� Exit procedure.Procedure 4. Computation of the set of possible sources for aws, �P1. Given integers �l � 0; mmax � 2, and for l = 0; 1; :::;�l, let the partition sets fCl;jg and thesets of aws Fhl and Fyl be given.2. Set �P�l = ;.3. For each aw (i; j) in Fh�l Do:(a) Set m = 0(b) For each element (i; k) with k 2 Cj;�l and k > i Do:i. If (i; k) is not a member of PT�l , then go to 4.ii. For l = 0; �l� 1, Do:� If (i; k) is not a member of Pl, then go to 4.� If (i; k) is not a member of PTl , then go to 4.iii. The possible source (i; k) is consistent with known aws on all levels. Setm = m+1.iv. If m > mmax, then too many possibilities; exit procedure immediately.v. Else add (i; k) and (k; i) to the set �P�l.4. For each aw (i; j) in Fy�l Do:(a) Set m = 0.(b) For each element (i; k) with k 2 Cj;�l and k > i Do:i. If (i; k) is not a member of PT�l , then go to 5.ii. For l = 0; �l� 1, Do:� If (i; k) is not a member of Pl, then go to 5.� If (i; k) is not a member of PTl , then go to 5.iii. The possible source (i; k) is consistent with known aws on all levels. Setm = m+1.18



iv. If m > mmax, then too many possibilities; exit procedure immediately.v. Else add (i; k) and (k; i) to the set �P�l.5. �P�l has been successfully computed; exit procedure.The constant mmax in the above procedure deserves some explanation. We have already notedthat for �l = 0, then �P�l can be unacceptably large. In fact, we only wish to compute �P�l in itsentirety when we have established su�ciently many levels that nnz( �P�l) is not too much greaterthan nnz(S� � S0). Procedure 4 is halted and declared unsuccessful if, for any given aw, morethan mmax possible source locations exist. This causes Procedure 4 to quickly terminate withoutwasting computational resources if the number of possibilities is clearly too large. A suggestedvalue for mmax is 5.We can now present our multilevel algorithm. Since it uses Procedure 1 to determine the aws,it does require an analytic expression for the diagonal of H�. (This restrictive condition will beeliminated in the next section.)Algorithm 2. Determination of sparsity structure given an analytic expression forthe diagonal1. Let a symmetric trial pattern S0 be given.2. If I 6� S0, then set S0 = S0 [ I.3. Set k = 0.4. Partition the columns of S0 into groups fC0;jg using a graph coloring algorithm, and performthe CPR algorithm using S0 and fC0;jg to produce H .5. Compute the set of aws F using Procedure 1.6. Estimate the number of missing elements by nest = nnz(Fyk ) + 0:5 � nnz(Fhk .)7. Attempt to compute the set of possibilities �P = P0 \ PT0 using Procedure 4.8. While nnz( �P) is \too large" Do:(a) Set k = k + 1(b) Augment the original pattern with a symmetric perturbation Rk: Sk = Sk�1 [Rk.(c) Partition the columns of Sk into groups fCk;jg using a graph coloring algorithm.(d) Perform the CPR algorithm using Sk and fCk;jg to produce Hk .(e) Compute the set of aws Fk using Procedure 1.(f) Estimate the number of missing elements by nest = nnz(Fyk ) + 0:5 � nnz(Fhk .)(g) Attempt to compute the set of possibilities �P = P0\PT0 \P1\PT1 \ :::\Pk \PTk usingProcedure 2.(h) If nnz( �P) is \su�ciently small", then exit loop.9. Eliminate spurious zeros from Hk and the pattern Sk using Procedure 210. Generate an augmented pattern Sk+1 = Sk + �P.19



11. Partition the columns of Sk+1 into groups using a graph coloring algorithm, and performthe CPR algorithm to produce Hk+1.12. Eliminate spurious zeros from H and the �nal pattern Sk+1 using Procedure 2, and exit.To generate a symmetric perturbation pattern Rk with p entries, we use a random numbergenerator to produce pairs of integers (i; j)k, k = 1; 2; :::; p=2, with each integer being between 1 andn, and set Rk to be the union of these index pairs, along with the union of (j; i)k, k = 1; 2; :::; p=2.The size of Sk should be at least a small multiple of the estimated number of undeterminednonzeros, nest, so we enforce nnz(Rk) + nnz(Sk�1) � �1nest; (38)where �1 � 2. Also, Rk must be su�ciently large to e�ectively randomize the pattern of spuriouspossibilities, so we also enforce nnz(Rk) � �2n ; (39)where �2 � 1. We suggest �1 = 2 and �2 = 1, but some tradeo�s should be considered beforeselecting these parameters. For instance, when a poor initial guess is provided, a large value of�1 can lead to prohibitive storage requirements for large problems, so �1 = 2 may be best in thisinstance. If su�cient storage is available, �1 = 4 or higher may be more appropriate. Also, selectinglarger values of �2 will occasionally decrease the number of levels required, but more important willincrease the number of groups needed to color each level. Hence, if the cost of g evaluations is thedominant expense, small values such as �2 = 1 are desirable. On the other hand, if the number ofgroups needed to color the pattern at the highest level is increased, the computational expense ofProcedure 4 will be correspondingly decreased. Hence, if g evaluations are very inexpensive, largervalues such as �2 = 5 should be considered.The choice of these parameters is not critical, but proper selection of the values can lead toimproved e�ciency.5 The Multilevel Algorithm with Voting between Levels.The preceding technique alleviates the main de�ciency of Algorithm 1, but still has one undesirablefeature: Procedure 1 requires an analytic expression for the diagonal of H�. One way around thiswould be simply to ag each element of the diagonal as a aw location at every level | clearly anine�cient approach. Fortunately, the multilevel scheme we are using provides us a way to overcomethis di�culty. We can compare individual elements of H from level to level and use a voting schemeto decide which diagonal entries are probably awed.Suppose we have computed Hl for levels l = 0; 1; :::; �l, where �l � 2, and further suppose that agiven element hi;i of the diagonal at level l has a 1 in � chance of being awed. If the distributionof aws is random from level to level, then the odds of half or more of the hi;i elements being awedover the levels l = 0; 1; :::; �l is only about  �l�l=2 ! ���l. For � = 10, for instance, this probability is:0006 for 4 levels, :00002 for 6 levels, etc. The probability that more than half of the elements areawed by exactly the same amount over the various levels is even less. Hence, if the majority ofelements (hi;i)l; l = 0; 1; :::; k take the same value, we can assume with reasonable but not perfectcon�dence that this value is the correct value for h�i;i. Note that this argument does not rely uponany assumption of an accurate initial guess for the pattern, but only upon having a su�ciently20



large trial pattern at each level and having each pattern be a su�ciently large perturbation of thepattern at the previous level.For the purposes of voting on the diagonal, two elements (hi;i)l and (hi;i)p are considered equalif j(hi;i)l � (hi;i)pj < �v(j(hi;i)lj+ j(hi;i)pj) (40)for some positive tolerance �v .Procedure 5a: Computation of aw locations using voting between levels (lowstorage version)1. Given a sparse matrices H�l and the corresponding partition computed by the CPR algorithmusing symmetric trial pattern S�l, and2. Given a tolerance �h > 0,3. Set Fhl = Fyl = ;.4. For i = 1; :::; n Do:� If a simple majority of the elements hi;i over the set of matrices Hl; l = 0; 1; :::; �l takethe same value � (using criterion (40) to perform the vote), then for l = 0; 1; :::;�lDo{ If hi;i is not equal to � using criterion (27) at level l, then add (i; i) to the set Fhl .� Otherwise for l = 0; 1; :::; �l Do{ Add (i; i) to the set Fhl .5. For all (i; j) 2 S�l with i < j Do:� If i 6= j and at level �l Equation (28) holds, then add (i; j) and (j; i) to the set Fh�l .� For all yi;j at level �l Do:{ If S�l contains no element (i; k) with k 2 Cj and Equation (29) holds, then add (i; j)to the set Fy�l .6. Estimate the number of missing elements by nest = nnz(Fyk ) + 0:5 � nnz(Fhk ) .7. Exit procedure.Although Procedure 5a is the simplest technique for computing the set of H aws to use inour algorithm, it is not necessarily the best technique. A voting process can also be used witho�-diagonal elements wherever such elements appear in more than one trial pattern. Althoughnot strictly necessary, this can eliminate many of the extraneous aws agged by Procedure 5a,which in turn can decrease the computational expense of Procedure 4 by a substantial amount.Unfortunately, this approach requires substantially more storage.Notice that our information obtained from voting becomes better as more levels are computed.Since computation of the aw locations is a computationally insigni�cant part of our algorithm,at each level we recompute the aws at all previous levels using the best information currentlyavailable. The Y aws do not depend on the voting scheme, and thus do not need to be recomputed.Procedure 5b: Computation of aw locations using voting between levels (highstorage version)1. Given a set of sparse matrices Hl; l = 0; 1; :::; �l and corresponding partitions computed bythe CPR algorithm using symmetric trial patterns Sl, and21



2. Given a tolerance �h > 0,3. Set Fhl = Fyl = ;.4. For i = 1; :::; n Do:� If a simple majority of the elements hi;i over the set of matrices Hl; l = 0; 1; :::; �l takethe same value �, then for l = 0; 1; :::; �l Do{ If hi;i 6= � at level l then add (i; i) to the set Fhl .� Otherwise for l = 0; 1; :::; �l Do{ Add (i; i) to the set Fhl .5. For l = 0; 1; :::; �l Do:� For all (i; j) 2 Sl with i < j Do:{ If i 6= j and at level l jhi;j � hj;ij > �h max(jhi;j j; jhj;ij), then� If values for hi;j and hj;i have been computed at other levels, then vote amongthese values to determine whether to add the index (i; j) or the index (j; i) tothe set Fhl . If no vote is possible, or if the vote does not yield a simple majority,or if neither hi;j nor hj;i agree with the value obtained by the vote, add both(i; j) and (j; i) to the set Fhl .6. For all yi;j at level �l Do:� If S�l contains no element (i; k) with k 2 Cj and Condition (29) holds, then add (i; j) tothe set Fy�l .7. Estimate the number of missing elements by nest = nnz(Fyk ) + nnz(Fhk .)8. Exit procedure.Note that the Y aws do not depend on the voting scheme and thus do not need to be recom-puted.We are now in a position to state the complete algorithm for the numerical determination ofsymmetric sparsity structures.Algorithm 3. Numerical Sparsity Structure Determination1. Let a symmetric trial pattern S0 and an estimate nest of the number of missing elements begiven.2. If I 6� S0, then set S0 = S0 [ I. Check S0 for symmetry.3. If nnz(S0) � �1 nest, then reset the initial trial pattern to be S0 = S0 + R0 where R0 is asymmetric pattern containing �1 nest � nnz(S0) elements.4. Set k = 0.5. Partition the columns of S0 into groups fC0;jg using a graph coloring algorithm, and performthe CPR algorithm using S0 and fC0;jg to produce H0.6. While nnz( �P) is \too large" Do: 22



(a) Set k = k + 1 .(b) Augment the original pattern with a symmetric pattern Rk satisfying Equation (39)so that Sk = Sk�1 [ Rk.(c) Partition the columns of Sk into groups fCk;jg using a graph coloring algorithm.(d) Perform the CPR algorithm using Sk and fCk;jg to produce Hk .(e) Compute the set of aws Fk using Procedure 5a or 5b.(f) Estimate the number of missing elements by nest = nnz(Fyk ) + nnz(Fhk .)(g) If k < 2, then go to 6(a).(h) Attempt to compute the set of possibilities �P = P0\PT0 \P1\PT1 \ :::\Pk \PTk usingProcedure 4.(i) If nnz( �P) is \su�ciently small," then exit loop.7. End if.8. Reset k = 0.9. Generate an augmented pattern S0 = S0 + �P.10. Partition the columns of S0 into groups using a graph coloring algorithm, and perform theCPR algorithm to produce H0.11. Compute the set of aws F0 using Procedure 5a or 5b.12. Estimate the number of missing elements by nest = nnz(Fy0 ) + nnz(Fh0 .)13. Eliminate spurious zeros from H0 using Procedure 2 and the pattern S0.14. If nest = 0, then exit. Otherwise, go to 6(a).Some remarks concerning Algorithm 3.1. The initial estimate of the number of missing elements nest required of the user is not criticaland is used only to determine an appropriate size for the default trial pattern. If the user hasno idea of the true number of nonzeros in the matrix, a simple technique would be to computea randomly selected column of rg using Equation (4) and d = (0 0 :::1:::0)T, counting thenumber of nonzeros, and multiplying by n.2. In Step 3 of the algorithm, we enlarge the initial pattern supplied by the user so that ourtrial pattern satis�es Equation (38). This is typically needed only when the user suppliesno initial guess for the pattern. Although in our early experiments R0 was selected to be arandom symmetric pattern with the requisite number of entries, a more e�cient approach isto specify a band matrix of an appropriate size. This ensures that the initial trial pattern canbe colored e�ciently into a smaller number of groups than would be typical for a large randompattern. Furthermore, since band and multiple-band structures are extremely common, sucha default initial pattern is likely to include a reasonable fraction of the true structure in anygiven problem. 23



6 Practical Implementations and Further Discussion of Numer-ical ResultsAlthough Algorithm 3 is complete as presented, a few further items should be pointed out orreemphasized.We reiterate that care must be taken with implementation, since many of the operations canbe computationally intense. We have already mentioned the pointer arrays we selected to allow forfast access to the information required, but other implementers may select di�erent data structures.Software for fast sorting of integer arrays is crucial to any implementation. We used a heapsort formost sorting tasks.We selected Fortran 77 for our trial implementation to be easily compatible with existing code[3] for the graph coloring subproblem. Unfortunately, the variable storage requirements of ouralgorithm made this a poor decision. Storage capacity on a given computer was de�nitely thelimiting factor on most of our test runs. We suggest C or Fortran 90 for future implementations.A subtle problem can potentially arise in applications where many of the nonzeros are the sameor integer multiples of each other. Consider a matrix of zeros and ones, for instance. Now, anyelement (i; j) that is left out of the initial trial structure will cause a aw at some location (i; k).That is, the computed value of the (i; k) element of H will be 1 + 1 � �j�i rather than 1. Now, if�i = �j for all i and j, we see that the computed value of any awed element in H will be 2. Thisraises the specter of encountering aws at both the locations (i; k) and (k; i) arising from completelydi�erent sources, yet being unable to detect either aw because the elements are perturbed by thesame amounts. Although such an occurrence is extraordinarily unlikely unless most of the nonzeroshave the same values, our tests have shown that such unfortunate coincidences are not uncommonin large matrices of zeros and ones, particularly with poor initial guesses for the structure.Fortunately there is an easy �x to this potential di�culty. In any implementation, one mustmerely ensure that �i 6= �j for all i,j. For instance, if an appropriate �nite di�erence interval for eachcomponent is �i = 10�6, one might instead use �i = �i10�6, where each �i is a randomly selectednumber between 0:5 and 2. The small change in the �s will not greatly a�ect the �nite di�erencecalculations, but will make the possibility of equal-magnitude symmetric aws vanishingly small.The choice of parameters and tolerances will a�ect algorithm e�ciency and can in extreme casesa�ect reliability as well. In the results presented in x1, we used the absolute error criterion with�0 = 10�6; �h = 10�4; �y = 10�6; and �v = 10�6, and used the low-storage version of Procedure 5.The parameters �1, �2, and mmax were set to 2, 1, and 5, respectively. These choices worked wellin almost all cases. An exception was the n = 500; 000 case in Table 2. In this case, the sum ofthe e�ects of the elements of B in many rows became so large that the algorithm had di�culty interminating with these tight tolerances, so they were reset to �0 = 10�2; �h = 10�1; �y = 10�1; and�v = 10�2.All of the numerical results in this paper were obtained on a network of SPARC workstationsat Argonne National Laboratory. Memory allocation was typically a limiting factor in problemsize. Most of the results with n less than 50; 000 were obtained on Sparcstations with 32 Mbytesof memory, but all of the larger problems were run on a Sparcstation with 256 Mbytes of memory.Further numerical tests. Although the random sparsity patterns presented in x1 make achallenging test of our algorithm, one might wonder whether \real" structures, which tend to haveperiodicities, are equally amenable to solution by NSSD. We have successfully tested our algorithmon a number of real-world examples from the MINPACK-2 test collection [1], such as the compositeoptimal design problem 1, but for brevity we present only the most interesting.Consider the sparsity structure shown in Figure 2, representing the fairly complex sparsity24



pattern arising from the solution of the Ginzburg-Landau equations in two dimensions for super-conducting materials [1],[7]. Unlike the random test structures presented in x1, this problem hasa structure typical of many real applications. Furthermore, a relatively small portion of nonzerosfalls on the central band of the matrix, so that the internal initial guess used by NSSD will not beexceptionally good. Evaluation of each gradient is relatively inexpensive, involving o(n) operations.An interesting feature of this problem is that the Hessian matrix evaluated at the standardinitial guess has a large number of nonzero elements that are nevertheless very small. For instance,a typical size of a nonzero element is about 2:5 in the n = 40; 000 case, but several thousand of the457,094 \nonzeros" have magnitudes less than 10�5. Since this is roughly the same magnitude aserrors induced by the use of �nite di�erences, an appropriate choice of tolerances for this problemwill be expected to miss these small elements. Hence, care must be taken in interpreting the results.In our test we selected the relative error criterion, chose �0 = 10�6; �h = 10�4; �y = 10�6; and�v = 10�6, and used the high-storage version of Procedure 5. The parameters �1, �2, and mmaxwere set to 2, 1, and 5, respectively. The results are shown in Table 4. In each case we correctlydetermined the location of all the nonzeros in the structure with the exception of elements withsize less than 10�5.Table 4. Performance of NSSD, and comparison to full �nite di�erences, for the 2-Dsuperconductivity problem with no initial guess for the pattern provided by user.Estimated time for aNumber g Total full �nite di�erenceof evaluation NSSD Hessian to get structureg time time ( n� cost(g eval) )n nnz evals. (sec) (sec) (sec)400 4,592 199 3.57 8.06 7.171,600 18,372 244 14.8 42.5 97.052,500 28,734 326 30.8 81.6 236.23,600 41,370 294 39.4 138.8 482.46,400 73,470 305 72.5 257.3 1,521.310,000 114,764 340 124.1 550.1 3,650.14,400 165,118 298 151.6 987.7 7,325.25,600 293,006 359 315.9 2,761.9 22,526.40,000 457,094 344 473.1 4,845.9 55,012.So far we have based our performance analysis on a comparison with full �nite di�erences.Another basis for comparison is the amount of time required to solve the associated optimizationproblem once the structure is known. Once the sparsity pattern has been determined for this 2-Dsuperconductivity test problem with n=40,000, we used a graph-coloring-Hessian truncated-Newtonconjugate-gradient code to solve the associated optimization problem in roughly 2 to 4 times thetime required to run NSSD with no a priori information. The expense of NSSD is therefore notnegligible but is certainly not prohibitive either.25



7 Conclusions7.1 SummaryBy examining asymmetries in the results of the nonsymmetric CPR algorithm applied to a sym-metric problem, one can often identify the location of possible nonzeros that were omitted from theassumed structure if the assumed structure is close to the true structure. By adding a multilevelapproach and cross-correlating results using several di�erent trial patterns, one can quickly identifythe location of all nonzeros even if no initial guess is available. The technique also e�ectively �ltersout elements of small size.When gradients are expensive, this algorithm can be several orders of magnitude faster thanusing a full �nite di�erence calculation. Even if gradients are inexpensive it typically outperformsthe brute force approach by factors of 10 to 100 for su�ciently large problems.The algorithms presented in this paper are in no sense mature, and it is quite likely that theycan be simpli�ed and re�ned substantially. The algorithms and numerical results in this paper aresimply our initial attempt to implement the central ideas presented in x2 | x5. Other researchersare encouraged to try their own implementations. Both reliability and speed are factors in judginga given implementation.7.2 Further IdeasThe possibilities for further work on this topic are extraordinarily rich. Without going into detail,we would mention the following possible re�nements and extensions.Avoidance of voting on diagonal elements. The least straightforward part of our algorithmis the procedure for spotting aws on the diagonal by voting between levels. A possible techniqueto avoid such voting is to speci�cally exclude all diagonal elements from each trial sparsity patternuntil the �nal set of calculations. Such an approach might at �rst seem counterintuitive, sincealmost all real problems have mostly nonzero diagonal elements a priori, but recall that there is noreal requirement that our algorithm always use the best possible approximation at each iteration.The elimination of the necessity of voting on diagonal elements may o�set any loss of e�ciencyincurred by not using the best guess for the structure each time.Band matrix formulation. Rather than using di�erent random structures at each level untilthe number of possible sources is winnowed to a reasonable number, one can instead use a sequenceof band matrices of increasing bandwidth, where the bandwidth at each level is relatively primewith respect to previous levels. (For instance, the initial guess might be a band structure of width5, the second level might use a banded trial structure with bandwidth 9, while the third level mighthave bandwidth 13, and so on.) Although this approach gives little homage to the idea of alwaysusing the best possible guess for the structure, it has a number of advantages. First, band structureshave trivial, periodic coloring, which reduces the computational burden. Second, storage/retrievalschemes for elements of band matrices are typically much faster than for the list-format storage ofgeneral sparse matrices. Third, if most of the matrix is band limited and falls within one of thetrial sparsity structures, then the remaining portion can in principle be reconstructed with muchless overhead than in the algorithm presented in this paper. Suppose, for instance, that only oneaw exists in a given row at each level, and our trial bandwidths at the di�erent levels are theprimes 3,5,7,13, ::: . Using elementary linear diophantine equations, one can easily see that theseparation between possible aw sources in this row is exactly the product 3 � 5 � 7::: up to theprime bandwidth corresponding to the highest level so far. Since this separation grows very fast,the computational overhead for such an approach on a limited problem class might drop almost to26



o(n lnn) with an appropriate modi�cation of Procedures 3 and 4. This approach is also much moreamenable to proofs.Parallel computation. Many of the most intensive computations in this algorithm seem inprinciple quite amenable to parallelization. In particular, distributed processing looks attractive,since total memory available was the limiting factor in the size of our test problems when runningon sequential machines. Nevertheless, the data structures involved in a distributed implementationmay be very challenging.Nonsymmetric problems. Possibly the most exciting extension of this work involves compu-tation of nonsymmetric sparsity patterns. At �rst glance, this might appear impossible, since ourmethod depends so heavily on symmetry. However, the multilevel voting procedure introduced tohelp identify diagonal aws can be extended directly to the nonsymmetric case. Speci�cally, oneidenti�es aws only by voting between levels and not by comparing between symmetric pairs ofelements. Similarly, one would compute the sets of possibilities �P = P0 \ P1 \ :::\ Pk rather than�P = P0 \PT0 \P1 \PT1 \ :::\Pk \PTk . While not as e�cient as the symmetric approach, this ideahas much promise.
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