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Abstract

ForTRAN M is a small set of extensions to FORTRAN 77 that supports a modular
approach to the design of message-passing programs. It has the following features.
(1) Modularity. Programs are constructed by using explicitly-declared communica-
tion channels to plug together program modules called processes. A process can
encapsulate common data, subprocesses, and internal communication. (2) Safety.
Operations on channels are restricted so as to guarantee deterministic execution,
even in dynamic computations that create and delete processes and channels. Chan-
nels are typed, so a compiler can check for correct usage. (3) Architecture Indepen-
dence. The mapping of processes to processors can be specified with respect to a
virtual computer with size and shape different from that of the target computer.
Mapping is specified by annotations that influence performance but not correctness.
(4) Efficiency. FORTRAN M can be compiled efficiently for uniprocessors, shared-
memory computers, distributed-memory computers, and networks of workstations.
Because message passing is incorporated into the language, a compiler can optimize
communication as well as computation.



1 Introduction

In the message-passing model of parallel computation, concurrently executing processes
interact by exchanging messages. Originally developed for operating systems applications,
the model has been widely adopted for application programming on distributed-memory
computers, networks of workstations, and other parallel computer architectures. Its pop-
ularity stems from its simplicity, flexibility, and ease of implementation.

A disadvantage of the message-passing model, particularly for scientific and engineer-
ing applications, is that it does not enforce deterministic execution [27]. Hence, the
programmer has no a priori guarantee that a program will give the same result if exe-
cuted more than once with the same input. This nondeterminism is antithetical to both
the scientist’s need for reproducibility and ease of debugging. In addition, most message
passing systems do not enforce information hiding and provide a global name space of
processes. This makes it difficult to develop modular programs and reusable libraries [15].

In this paper, we describe message-passing extensions to sequential programming lan-
guages that enforce both deterministic execution and information hiding, while retaining
much of the flexibility of traditional message-passing. We describe these extensions in
the context of FORTRAN 77, and call the resulting language FORTRAN M. However,
equivalent extensions can be defined for any sequential programming language. The ex-
tensions include constructs for defining program modules called processes, for specifying
that processes are to execute concurrently, for establishing typed, one-to-one communi-
cation channels between processes, and for sending and receiving messages on channels.
The resulting programming model is dynamic: processes and channels can be created and
deleted dynamically, and references to channels can be included in messages.

FORTRAN M enforces determinancy by means of syntactic and semantic restrictions.
In addition, a FORTRAN M compiler can use type information provided by the programmer
to verify correct usage. The price of this safety is that the programmer must explicitly
declare and create the communication channels that will be used in a program. However,
this requirement appears no more onerous than variable type declarations, which serve
a similar purpose. FORTRAN M also provides nondeterministic constructs for programs
that operate in nondeterministic environments. The use of these constructs is typically
isolated to a small number of modules.

FORTRAN M enforces information hiding, and hence facilitates a modular or object-
oriented approach to parallel program design. In particular, it permits the definition of
reusable program components. A channel is only accessible to a process that possesses
a reference to it. Common data is only supported on a per-process basis. Hence, a
process’s interface to its environment is defined by the channels passed to it as arguments.
All other details of its implementation, which can include common data, subprocesses,
process placement, and internal communication channels, are hidden.

FORTRAN M is supported by a theory of parallel and sequential composition of com-
municating processes. Key characteristics of this theory, described in a separate paper [5],
include (1) proofs that a FORTRAN M program is deterministic even though processes and
channels are created and deleted and channels are reconnected; (2) extension of sequential
programming proof techniques to parallel programs; and (3) a compositional proof theory
in which the specification of the whole is derived from the specifications (and not the



texts) of the part.

The basic paradigm underlying FORTRAN M is task parallelism: the parallel execution
of (possibly dissimilar) tasks. Hence, FORTRAN M complements data-parallel languages
such as FORTRAN D [18] and High Performance FORTRAN (HPF). In particular, FOR-
TRAN M can be used to coordinate multiple data-parallel computations. Our goal is
to integrate HPF with FORTRAN M, thus combining the data-parallel and task-parallel
programming paradigms in a single system.

In the rest of this paper, we define FORTRAN M and illustrate its application to
programming problems. In Sections 2 and 3, we present the constructs used to define
and compose processes. In Sections 4-7, we discuss dynamic process and communication
structures, nondeterministic constructs, argument passing, and process placement. Sec-
tions 8 and 9 discuss compilation and related work. We conclude in Section 10 with a
discussion of future research. A language definition is provided as an appendix.

A prototype FORTRAN M compiler for sequential and parallel computers is scheduled
for release in November 1992. Send electronic mail to fortran-m@mes.anl . gov for details.

2 Defining Modules

In modular program design, we develop components of a program separately, as inde-
pendent modules, and then combine modules to obtain a complete program [29, 10].
Interactions between modules are restricted to well-defined interfaces. Hence, module
implementations can be changed without modifying other components, and the proper-
ties of a program can be determined from the specifications for its modules and the code
that plugs these modules together. When successfully applied, modular design reduces
program complexity and facilitates code reuse.

In FORTRAN M, a module is implemented as a process. A process, like a FORTRAN
program, defines common data (labeled PROCESS COMMON to emphasize that it is local to
the process) and the subroutines that operate on that data. It also defines the interface
by which it communicates with its environment. A process has the same syntax as a
subroutine, except that the keyword PROCESS is used in place of SUBROUTINE.

2.1 Interfaces

A process’s dummy arguments (formal parameters) are a set of port variables. These
define the process’s interface to its environment. (For convenience, conventional argument
passing is also permitted between a process and its parent. This nonessential feature is
discussed in Section 6.) A port variable declaration has the general form

port_type ( data_type_list ) name_list

The port_type is OUTPORT or INPORT and specifies whether the port is to be used to
send or receive data, respectively. The data_type_list is a comma-separated list of type
declarations. It specifies the format of the messages that will be sent on the port, much as
a subroutine’s dummy argument declarations defines the arguments that will be passed
to the subroutine.



For example, the following process declares in-ports capable of receiving messages
consisting of single integers (p1), arrays of MSGSIZE reals (p2), and a single integer and a
real array with size specified by the integer (p3). In the third declaration, the names m
and x have scope local to the port declaration.

process example(pl,p2,p3)
parameter (MSGSIZE=20)

inport (integer) pil

inport (real x(MSGSIZE)) p2
inport (integer m, real x(m)) p3

We illustrate the use of ports with a simple example. A program that simulates the
atmospheric circulation (an atmosphere model) is to be coupled with an ocean model. The
two models are to execute concurrently and must exchange information periodically: The
ocean model provides the atmosphere model with an array of sea surface temperatures
(SST), and the atmosphere model provides the ocean model with two arrays containing
components of horizontal momentum, U and V. We implement both models as processes,
and define an interface that allows for the exchange of SST, U, and V values.

We assume initially that the atmosphere model is a sequential program. (A parallel
version is presented in the next section.) Hence, we define an interface consisting of two
ports, sst_i and uv_o. The in-port sst_i can be used to receive arrays of real values
representing sea surface temperatures, while the out-port uv_o can be used to send two
such arrays representing U and V values.

process atmosphere(sst_i,uv_o)

parameter (NLAT=128 ,NLON=256)

inport (real x(NLAT,NLON)) sst_i

outport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_o

2.2 Communication

As each process has its own address space, the only mechanism by which a process can
interact with its environment is via the ports passed to it as arguments. A process uses the
SEND, ENDCHANNEL, and RECEIVE statements to send and receive messages on these ports.
These statements are similar in syntax and semantics to FORTRAN’s WRITE, ENDFILE, and
READ statements, and can include END=, ERR=, and I0STAT= specifiers to indicate how to
recover from various exceptional conditions.

A process sends a message by applying the SEND statement to an out-port. The out-
port declaration specifies the message format. A process sends a sequence of messages
by repeated calls to SEND; it can also call ENDCHANNEL to send an end-of-channel (EOC)
message. The SEND and ENDCHANNEL statements are nonblocking (asynchronous): they
complete immediately. A process receives a value by applying the RECEIVE statement to
an in-port. A RECEIVE statement is blocking (synchronous): it does not complete until
data is available.

For example, the following code repeatedly sends U and V data on the port uv_o and
receives SS'T data from the port sst_i. After doing this TMAX times, it signals the end of
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the communication by sending an EOC message on uv_o. Note the use of process common
to hold the sst, u, and v arrays.

10

process atmosphere(sst_i,uv_o)
parameter(NLAT=128, NLON=256, TMAX=100)
The ports sst_i and uv_o are the external interface.
inport (real x(NLAT,NLON)) sst_i
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_o
Process common variables.
process common /state/ sst, u, v
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)
Repeat TMAX times: send U & V, recv SST, update U & V.
do 10 i=1,TMAX

send(uv.o) u,v

receive(sst i) sst

call atm_compute
continue
Stgnal end of communication.
endchannel (uv.o)
end

The ocean model might be as follows. This repeatedly sends SST data on the out-port

sst_o and receives U and V data on the in-port sst_i, until EOC is detected on sst_i.
Note the use of the END= specifier to indicate where execution should continue if EOC is
detected.

10

3

process ocean(uv_i,sst_o)
parameter (NLAT=128, NLON=256)
The ports uv_i and sst_o are the external interface.
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_i
outport (real x(NLAT,NLON)) sst_o
Process common variables.
process common /state/ sst, u, v
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)
Repeat until EOC: send SST, recv U & V, compute SST.
do while(.true.)

send(sst. o) sst

receive(uv_i,end=10) u,v

call ocn_compute
enddo
end

Composing Modules

A FORTRAN M program is constructed by using process blocks and process do-loops to

plug together (compose) processes. A program creates channels to establish one-to-one



communication streams between processes. In this way, processes with more complex
behaviors are defined. These can themselves be composed with other processes, in a
hierarchical fashion.

3.1 Composition of Processes

A process block has the general form

processes
statement_1

statement_n
endprocesses

where n > 0, and the statements are process calls, process do-loops (defined below),
and/or at most one subroutine call. Statements in a process block execute concurrently.
For example, the following block specifies that the processes atmosphere and ocean are
to execute concurrently.

processes
call atmosphere(...)
call ocean(...)

endprocesses

A process block terminates, allowing execution to proceed to the next executable
statement, when all its constituent statements terminate.

3.2 Channels

Recall that a process communicates with its environment by sending and receiving mes-
sages on ports. When composing processes, we use the CHANNEL statement to define these
ports to be references to first-in/first-out message queues called channels. This statement
has the general form

CHANNEL (out=out-port, in=in-port)

and both creates a channel and defines out-port and in-port to be references to this channel.
These ports are to be used for sending and receiving messages, respectively, and can be
passed as arguments to the composed processes.

In the ocean/atmosphere model, we require two channels, one for communicating SST
values and the other for communicating U and V values. This structure is illustrated in
Figure 1 and is created by the following program. Note that this code defines a process; if
channels are added to define an interface, it can be combined with other processes to form
a more complex program. The process creates two channels, spawns the atmosphere and
ocean processes, blocks until the process block terminates, and then terminates itself.
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Figure 1: Coupled Ocean/Atmosphere Model

process coupled model
parameter (NLAT=128, NLON=256)
C Local port variables.
inport (real x(NLAT,NLON)) ssti
outport (real x(NLAT,NLON)) ssto
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uvi
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvo
C Create channels and define ports.
channel (out=ssto,in=ssti)
channel (out=uvo,in=uvo)
C Call two models with ports as arguments.
processes
call atmosphere(ssti,uvo)
call ocean(uvi,ssto)
endprocesses
end

The value of the four port variables declared in this code fragment is initially unde-
fined. The CHANNEL statements each create a channel and define their two port variable
arguments to be references to this channel. These port variables are passed as argu-
ments to the concurrently executing atmosphere and ocean processes, establishing the
connections shown in Figure 1

We now have a complete parallel program which can be executed on a sequential or
parallel computer. We shall see that this program can be executed on one processor or two
without any change to its component modules. The execution order of the concurrently
executing atmosphere and ocean processes is determined only by availability of messages
on channels. Nevertheless, the computed result does not depend on the order in which
the processes execute. That is, the program is deterministic.

3.3 Replicating Processes

A process do-loop creates multiple instances of the same process. It is frequently used to
define single program, multiple data (SPMD) computation structures, in which multiple
copies of a process are connected in a regular communication structure. The process
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Figure 2: Parallel Atmosphere Model

do-loop is identical in form to the do-loop, except that the keyword PROCESSDO is used
in place of DO and the body can include only a process do-loop or a process call. For
example:

processdo 10 1 = 1,n
call myprocess
10 continue

Process do-loops can be nested inside both process do-loops and process blocks.

We illustrate the use of the process do-loop in Program 1, which implements a parallel
version of the atmosphere model. The parallel code partitions the model’s data domain
into NP? subdomains of size (PLAT=NLAT/NP) x (PLON=NLON/NP) and uses 2NP? channels
to connect these processes in a two-dimensional torus. Figure 2 shows the original grid,
the decomposition, and the process structure, with NLAT=6, NLON=12 and NP=2.

Four arrays of ports, WEi, WEo, NSi, and NSo, are declared and then defined to be
references to the 2NP? channels. Each subdomain process is passed eight of these ports;
these provide in and out connections to its eight neighbors.

It is desirable to provide a parallel interface to a parallel model, so that components
of the model can communicate with corresponding components of other parallel models
without introducing a central bottleneck. Hence, the interface to the parallel model is also
decomposed, giving two arrays of ports, SstI and Uv0, each of size NP xNP. Each port in
these arrays is used to communicate arrays of size PLAT XxPLON. Each subdomain process
is passed one element of SstI and one element of Uv0 as arguments.

The code used to compose the atmosphere and ocean models must be modified as
follows to allow for the parallel interface. The two channels ssto/ssti and uvo/uvi are
replaced with arrays of NPxNP channels, and the calls to the sequential processes are
replaced with calls to the parallel processes

program coupled model
parameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)
inport (real x(PLAT,PLON)) SstI(NP,NP)

outport (real x(PLAT,PLON)) SstO(NP,NP)



11
10

21
20

process par_atmosphere(SstI,Uv0)
parameter (NLAT=128,NLON=256 ,NP=16 ,PLON=NLON/NP ,PLAT=NLAT/NP)
These two port arrays define external interface.
inport (real x(PLAT,PLON)) SstI(NP,NP)
outport (real x(PLAT,PLON), real y(PLAT,PLON)) UvO(NP,NP)
Ports for communication with W & E and N & S neighbors.
inport (real x(PLAT)) WEi(2,NP,NP)
outport (real x(PLAT)) WEo(2,NP,NP)
inport (real x(PLON)) NSi(2,NP,NP)
outport (real x(PLON)) NSo(2,NP,NP)
Create channels used for internal communication.
do 10 1 = 1,NP
do 11 j = 1,NP
channel (in=NSi(2,1,j), out=NSo(1,mod(i,NP)+1,j))
channel (out=NSo(2,1,j), in=NSi(1,mod(i,NP)+1,j))
channel (in=WEi(2,1,j), out=WEo(1,i,mod(j,NP)+1))
channel (out=WEo(2,1,j), in=WEi(1,i,mod(j,NP)+1))
continue
continue
Create NP? processes, with external and internal ports.
processdo 20 1 = 1,NP
processdo 21 j = 1,NP
call subdomain(SstI(i,j), Uv0(i,j), WEi(1,i,j), WEo(1,1,3),
NSi(1,1,3), NSo(1,1,3))
continue
continue
end

Code executed in a single subdomain.

process subdomain(sst_i,uv_o,WEis,WEos,NSis,NSos)
parameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)
External interface ports: for sending SST and receiving U & V.
inport (real x(PLAT,PLON)) sst_i

outport (real x(PLAT,PLON), real y(PLAT,PLON)) uv_o
Ports to and from W & FE and N & S neighbors.

inport (real x(PLAT)) WEis(2)

outport (real x(PLAT)) WEos(2)

inport (real x(PLON)) NSis(2)

outport (real x(PLON)) NSos(2)

Program 1: Parallel Atmosphere Model




inport (real x(PLAT,PLON), real y(PLAT,PLON)) UvI(NP,NP)
outport (real x(PLAT,PLON), real y(PLAT,PLON)) UvO(NP,NP)

C Create NPxNP channels.
do 10 i=1,NP
do 11 j=1,NP
channel (out=Sst0(i,j),in=SstI(i,j))
channel (out=Uv0(i,j),in=UvI(i,j))
11 continue
10 continue

C Pass port arrays to parallel models.
processes
call par_atmosphere(SstI,Uv0)
call par_ocean(Sst0,UvI)
endprocesses
end

3.4 Libraries

The parallel atmosphere model shows how a useful communication structure (a torus)
and computational algorithm (finite differencing) can be encapsulated in a process, with
a port array providing a parallel interface. Parallel implementations of other commonly
used functions, such as broadcast, multicast, parallel prefix, and parallel implementations
of BLAS linear algebra routines [13], can be encapsulated in the same way. As efficient
implementations of these functions may require machine-specific facilities (such as hard-
ware multicast), a FORTRAN M programming environment will include libraries providing
high-performance implementations of these functions on different computers.

4 Dynamic Structures

The process and communication structures in the ocean /atmosphere model are essentially
static: after an initial startup phase, the number of processes and channels does not
change. FORTRAN M can also be used to specify dynamic structures in which processes
and channels are created and deleted, and channels are reconnected, during the course of
a computation.

This is illustrated in the following example. Consider a process network consisting
of a tasks and a database process, as illustrated in Figure 3(A). The tasks process
receives a sequence of integers representing tasks on its in-port. Each time it receives an
integer, it creates three new channels and communicates ports referencing two of these
channels to database. It then establishes the process structure illustrated in Figure 3(B),
by creating a procl and a proc2 process and passing the appropriate ports to these
processes as arguments. The procl, proc2, and database processes communicate among
themselves until proc1 and proc2 terminate. Then, the network reverts to that shown in
Figure 3(A), and tasks handles the next incoming message.

10
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Figure 3: A Dynamic Process and Communication Structure

This structure is specified as follows. Note the declaration of the out-port po, which
specifies that the port is used to transmit messages consisting of an integer, an integer
out-port, and an integer in-port. Each time a task is received, three channels are created
and qi/qo, ri/ro, and si/so are defined to be references to these channels. Two of these
ports, qi and so, are sent to the database process; the remaining ports are passed as
arguments to procl and proc2.

process tasks(mi,po)
C Ports defining external interface.
inport (integer) mi
outport (integer, outport (integer), inport(integer)) po
C Ports for local communication.
inport (integer) qi, ri, si
outport (integer) qo, ro, so
C Repeat: receive a task, create 3 channels, send ports on po.
do while(.true.)
receive(mi) task
channel (out=qo, in=qi)
channel (out=ro, in=ri)
channel (out=so, in=si)
send(po) task,qi,so
processes
call procil(si,ro)
call proc2(ri,qo)
endprocesses
enddo
end
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The ability to transfer a channel reference from one process to another is useful but
potentially dangerous. If not controlled, it could compromise determinism by permitting
multiple out-ports to reference the same channel. Hence, FORTRAN M semantics ensure
that only a single copy of a channel reference can exist at any one time. When the contents
of a port variable are communicated in a message, the value of that port variable becomes
undefined. Similarly, assignment of one port variable to another is not permitted; the
MOVEPORT statement must be used to copy a port, and this makes the copied port variable
undefined. Hence, execution of the following code fragment, which stores the value of
mi in ri and sends the value of qi on the port po, causes both mi and qi to become

undefined.

in_port (integer) qi, mi, ri
out_port (in_port (integer) ) po
moveport (from=mi, to=ri)
send(po) qi

5 Nondeterminism

The determinism enforced by the use of channels removes a major source of complexity
in concurrent programming. However, nondeterminism can be useful in nondeterministic
environments. For example, a load-balancing algorithm may need to execute either a local
or remote task, depending on which is the first to become available. Similarly, we may
wish to process requests to access a shared data structure, or input from several external
devices, in the order in which they become available. These behaviors can be specified by
using the MERGE and PROBE statements.

A MERGE statement defines a first-in/first-out message queue, just like a CHANNEL state-
ment. However, it allows multiple out-ports to reference this queue and hence defines a
many-to-one communication structure. Messages sent on any out-port are appended to
the queue, with the order of messages sent on each out-port being preserved and any
message sent on an out-port eventually appearing in the queue.

For example, consider the following problem, proposed to us by Burton Smith. NP
monte_carlo processes execute independently and generate integer “scores” at irregular
intervals. We wish to generate a histogram of these values. One possible solution is
illustrated in Figure 4(A): we create a single histo process and use MERGE to link the out-
ports of the monte_carlo processes and the in-port of the histo process. This solution
can be implemented as follows. The histo process might be defined either to increment
counts in an array or to update a histogram in a graphical display.

program histogram
parameter (NP=128)
inport (integer) pi
outport (integer) Po(NP)

C The merger links all out-ports with the in-port.
merge (out=(Po(i),i=1,NP),in=pi)
processes

12
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Figure 4: Histogram Problem: Centralized and Distributed Solutions

call histo(pi)
processdo 10 1 = 1,NP
call monte carlo(Po(i))
10 continue
endprocesses
end

An alternative, less centralized solution to the problem is illustrated in Figure 4(B).
The histogram is distributed among many histo processes, and a router process is used
to route values to the appropriate locations. Program 2 presents a possible implementation
of router. This creates NP router node processes, which accept and forward addresses
arriving on the in-ports Pi. A “crossbar” interconnect of NP? channels links these processes
with the out-ports Po; a merger combines messages routed on the NP channels targeted
to a single out-port. This structure can route a message from NP inputs to NP outputs
in constant time. If NP is large, the program can be modified to utilize a communication
network of lower dimension, at the cost of additional communication steps.

A process can apply the PROBE statement to an in-port to determine whether messages
are pending on a channel. It sets a logical variable, specified in an EMPTY=variable specifier,
to true if the channel is empty and to false otherwise. This statement is described in detail
in the appendix.

6 Argument Passing

In preceding programming examples, all communication between processes has occurred
via ports. For programming convenience, FORTRAN M also allows conventional argument
passing between a process and the processes that it calls (its children). The values of these

13
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process router(Pi,Po)
parameter (NP=128)
External interface consists of two port arrays.
inport (integer) Pi(NP)
outport (integer) Po(NP)
Ports used for internal communication.
inport (integer) Li(NP)
outport (integer) Lo(NP,NP)
Create one merger for each out-port.
do 10 1 = 1,NP
merge (out=(Lo(i,j),j=1,NP), in=Li(i))
continue
Create NP (router node, forward node) pairs.
processes
processdo 20 1i=1,NP
call routernode(NP,Pi(i),Lo(1,1))
continue
processdo 21 1=1,NP
call forward node(Li(i),Po(di))
continue
endprocesses
end

process router node(NP,pi,Lo)

inport (integer) pi

outport (integer) po

inport (integer) Lo(NP)

Repeat: receive address and send to correct output.

do while(.true.)
receive(pi) iaddr
send(Lo(mod(iaddr,NP))) iaddr/NP

enddo

end

process forward node(pi,po)
inport (integer) pi
outport (integer) po
Repeat: receive address and forward on output.
do while(.true.)
receive(pi) iaddr
send(po) iaddr
enddo
end

Program 2: Router for Distributed Histogram
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arguments are passed to a child processes when they are created, and copied back to the
parent process when the children terminate. A child process can also specify, by INTENT
declarations, that particular arguments are used for input or output only. For example,
the following process has three input arguments and one output argument. It computes
an approximation to the integral of a function F(x) over the range a.h < & < b.h using
the rectangle rule and interval h. That is, it computes Z?:a+1 F((7 — 0.5) *h).

process integrate(idx_a,idx_b,h,sum)
intent(in) idx_a, idx_b, h
intent (out) sum
sum = 0.0
do 10 i=idx_a+1,idx_Db
sum = sum + F((i-0.5)%*h)
10 continue
end

A dummy argument declared INTENT(IN) cannot be modified by the process. If no
intent declaration is provided for a dummy argument, or it is declared INTENT (INQUT),
then the corresponding actual argument, which must be a variable, is updated after the
process terminates. For a dummy argument declared INTENT(OUT), the corresponding
actual argument must also be a variable, and its value is again updated upon process
termination. However, in this case the value of the variable is undefined upon entry to
the process.

This process is used in the following program, which computes an approximation to the
integral of F'(X) over the interval (0,1). (For comparison, solutions to the same problem
in several other parallel FORTRAN dialects are presented in [22].) The process creates NP
integrate processes, each of which evaluates the integral over a specified subinterval and
stores its result in an element of the array results. Upon termination of the processdo
statement, elements of this array are summed by the main program.

program integration
parameter (NP=128)
real results(NP)
read (k,*) intvls
icomps = intvls/NP
if (icomps*NP .ne. intvls) stop(99)
processdo 10 1=1,NP
call integrate((i-1)*icomps,i*icomps,1.0/intvls,results(i))
10 continue
sum = 0.0
do 20 1 = 1,NP
sum = sum + results(i)
20 continue
print *,’Sum is ’,sum/intvls
end
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A scalar value or array element can be passed to two or more processes in a process
block or do-loop only if these processes all declare the corresponding dummy argument
INTENT(IN). For example, the integration program would be erroneous if integrate
declared sum to be an array with size greater than one.

7 Process Placement

Process blocks and do-loops define concurrent processes; channels and mergers define
how these processes communicate and synchronize. A parallel program defined in terms
of these constructs can be executed on both uniprocessor and multiprocessor computers.
In the latter case, processes must be mapped to processors.

The techniques used to map processes to processors depends in part on the architecture
of the parallel computer in question. If a small number of processors share access to a
common memory, then automatic mechanisms — based, for example, on a centralized
scheduler — may be effective. However, the importance of the memory hierarchy in
larger parallel computers means that process placement (mapping) can be an important
aspect of algorithm design. For this reason, FORTRAN M incorporates constructs that
allow mapping to be specified by the programmer. These constructs influence performance
but not correctness. Hence, we can develop a program on a uniprocessor and then tune
performance on a parallel computer by changing mapping constructs.

7.1 Process Placement Constructs

The FORTRAN M process placement constructs are based on the concept of a virtual
computer: a collection of virtual processors, which may or may not have the same topol-
ogy as the physical computer on which a program executes [25, 36]. For consistency
with FORTRAN concepts, a FORTRAN M virtual computer is an N-dimensional array,
and the mapping constructs are modeled on FORTRAN 77’s array manipulation con-
structs. The PROCESSORS declaration specifies the shape and dimension of a processor
array, the LOCATION annotation maps processes to specified elements of this array, and
the SUBMACHINE annotation specifies that a process should execute in a subset of the

array [15].
The PROCESSORS declaration is similar in form and function to the array DIMENSION
statement. It has the general form PROCESSORS(I;,...,I,) where n > 0 and the I, have

the same form as the arguments to a DIMENSION statement. It specifies the shape and size
of the (implicit) processor array on which a process is executing. This processor array
cannot be larger than that declared in the parent, but it can be smaller or of a different
shape.

The LOCATION annotation is similar in form and function to an array reference. It has
the general form LOCATION(I;, ..., I,), where n > 0 and the I; have the same form
as the indices in an array reference, and specifies the processor on which the annotated
process is to execute. The indices must not reference a processor array element that is
outside the bounds specified by the PROCESSORS declaration provided in the process or
subroutine in which the annotation occurs.

16



A SUBMACHINE annotation is similar in form and function to an array reference passed
as an argument to a subroutine. It has the general form SUBMACHINE(I4,...,I,), where
n > 0 and the I; have the same form as the indices in an array reference. It specifies that
the annotated process is to execute in a virtual computer comprising the processors taken
from the current virtual computer, starting with the specified processor and proceeding
in array element order. The size and shape of the new virtual computer is as specified by
the PROCESSORS declaration in the process definition.

7.2 Mapping Examples

We specify mapping in Program 1 by providing a PROCESSORS declaration at the top of
the program and a LOCATION annotation on the call to subdomain:

processors(NP,NP)

processdo 10 1 = 1,NP
processdo 11 j = 1,NP
call subdomain(SstI(i,j),Uv0(1,j),
Wi(1,1,3),Wo(1,1,3),
Ni(1,1,3),No(1,1,3)) location(i,j)
11 continue
10 continue

The SUBMACHINE annotation can be used to create several disjoint virtual computers,
each comprising a subset of available processors. For example, in the ocean/atmosphere
model, it may be desirable to execute the two models in parallel, on different parts of
the same computer. This organization is illustrated in Figure 5(A) and can be specified
as follows. The atmosphere model is executed in one half of a computer, and the ocean
model in the other half.

parameter (NP=4)
processors (NP, 2*NP)

processes
call atmosphere(SstI,Uv0) submachine(1,1)
call ocean(Sst0,UvI) submachine(1,NP+1)
endprocesses

Alternatively, it may be more efficient to map both models to the same set of pro-
cessors, as illustrated in Figure 5(B). This can be achieved by changing the PROCESSORS
declaration to PROCESSORS (NP ,NP) and omitting the SUBMACHINE annotations. No change
to the component programs is required.

8 Compilation

A prototype FORTRAN M compiler has been developed for sequential and parallel com-
puters and a heterogeneous network version is planned. The latter system will exploit the
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Figure 5: Alternative Mapping Strategies

type information provided for channels to convert between different data representations
automatically. This work will be described elsewhere when it is further advanced. We
restrict ourselves here to some brief comments on performance issues.

The FORTRAN subset of FORTRAN M can be compiled with conventional compilers
and thus achieves the same performance as pure FORTRAN. FORTRAN M’s SEND and
RECEIVE operations are translated into memory-to-memory transfers in shared-memory
computers and uniprocessors and into low-level message-passing operations on distributed-
memory computers. Hence, the efficiency of a simplistic distributed-memory implementa-
tion of FORTRAN M should differ little from that of equivalent programs developed with
message-passing libraries. However, we also expect FORTRAN M to enable novel com-
piler optimizations that can significantly reduce communication and computation costs.
Information about the types, contents, and sequence of messages should be obtainable
by an interprocess analysis analogous to the interprocedural analysis performed by mod-
ern FORTRAN compilers [2, 3]; this information will allow a preprocessor to perform
novel source-to-source transformations such as “process cloning”, “channel merging”, and
“message merging”. In addition, a code generator can generate specialized instruction
sequences that use shared memory or drive message-passing hardware more efficiently
than general purpose communication libraries. Recent research suggests that specialized
communication code can improve message-passing performance by an order of magni-
tude [14, 31].

FORTRAN M performance also depends on the cost of process creation, scheduling, and
termination operations. A preemptive scheduler is required so as to permit overlapping of
computation and communication. Fortunately, these facilities are, increasingly, supported
either at the operating system [38, 9] or hardware levels [21, 33, 11], or can be provided
by a compiler [14].

9 Related Work

Programming notations for parallel scientific programming fall into three principal classes:
coordination languages, message-passing libraries, and data parallel extensions. Here, we
discuss how FORTRAN M differs from each of these approaches, focusing in particular on
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the issues of modularity and safety. We do not consider systems based on shared-memory
models [22], as these are not easily adapted to distributed-memory machines.

In coordination language approaches, a specialized language is used to specify con-
currency, communication, and synchronization; FORTRAN routines are called to perform
computation. This approach has the advantage of clearly separating parallel and sequen-
tial computation, but requires the programmer to learn a new language. Coordination
languages include occam [20], Strand [17], PCN [7, 16], and Delerium [24]. Delerium is
purely a coordination language, while the others can be used to specify both coordina-
tion and computation. occam, derived from Hoare’s Communicating Sequential Processes
(CSP) [19], can specify only static computation and communication structures, does not
enforce determinism, and employs synchronous communication. Strand and PCN can
specify dynamic structures. Communication and synchronization are specified in terms
of read and write operations on single-assignment variables, and a form of guarded com-
mand [12] is used to specify choice between alternatives. A compiler cannot in general
assert that a Strand or PCN program is deterministic, because it cannot always prove
that choices in guarded commands are mutually exclusive. In contrast, a FORTRAN M
compiler need only verify that a program uses neither MERGE nor PROBE. Strand and PCN
do not address the problem of FORTRAN common data.

In message-passing library approaches, programmers call subroutines to communicate
data between processes. The number of processes is often fixed at one per physical
processor. Systems such as P4 [1], Express [28], PVM [35], and Zipcode [34] provide,
as primitives, an asynchronous send to a named process and a synchronous receive. The
Mach operating system provides, in addition, a virtual channel construct (the port); ports
can be transferred between processes in messages [38]. Mach does not restrict copying of
ports, so determinism is not enforced. Libraries have the advantage of simplicity: they are
language independent and do not require compiler modifications. This simplicity comes
at a price, however. Compile-time checking for correct usage is not performed. As library
writers know nothing about how routines will be used, they must program defensively and
incorporate logic that can, in principle, be avoided in code generated by a FORTRAN M
compiler. In contrast to FORTRAN M, message-passing libraries are nondeterministic and,
as the name space of processes is global, do not enforce information hiding.

Related to message-passing libraries is Linda, which provides read and write operations
on a shared tuple space [4]. Tuple space operations can emulate both message-passing
communication protocols and shared data structures. Tuple space operations, like message
passing, are nondeterministic and do not enforce information hiding. Actor-based message
passing systems such as CE/RK [33] have some points of similarity with FORTRAN M,
but are fundamentally different in that they are nondeterministic. CC+4+ is a shared
virtual memory extension of C++ [6]. It differs from FORTRAN M in many respects, in
particular its use of a shared-memory programming model.

In data parallel approaches, sequential languages are extended with directives that
specify how arrays are to be decomposed and distributed over processors [37, 18, 8]. A
compiler then partitions the computation using the “owner computes” rule, with each
operation in the sequential program allocated to the processor containing the data that is
to be operated on. This approach permits succinct specifications of parallel algorithms for
regular problems and guarantees deterministic execution. When extended with support
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for irregular data distributions, data parallel languages can also handle some irregular
problems [23, 32]. However, there are broad classes of problems for which the approach
has not yet been shown to be tractable. These include highly dynamic adaptive grid prob-
lems, multidisciplinary optimization problems, and reactive systems in which a program
interacts with an external environment in a nondeterministic manner. These problems
can all be implemented in a straightforward manner with FORTRAN M.

10 Conclusions

High-level languages such as FORTRAN and C have been adopted almost universally in
sequential programming, and for good reasons: compared with machine languages, they
permit more concise specifications, more compile-time checking, and greater portability
and modularity. In addition, modern compilers generate better object code than do most
programiners.

For a variety of reasons, parallel computers are still programmed primarily in parallel
“machine languages”: locks and semaphores on shared-memory computers, and primitive
send and receive operations on distributed-memory computers. Our goal in defining
FORTRAN M is to make the advantages of high-level languages available to programmers
developing programs for parallel machines. In particular, we are concerned with ensuring
safety. This is achieved in two ways. First, we define language extensions that allow
deterministic execution to be guaranteed. This means that programmers can be confident
that their programs will produce the same output for all executions with a given input.
Second, we require that the user provide type information, which a compiler can use to
detect erroneous programs at compile time.

FORTRAN M’s extensions to FORTRAN 77 (summarized in Figure 6) can be described
in a few minutes and mastered in a few hours. The extensions have a FORTRAN 77 “look
and feel”. For instance, the CHANNEL, SEND, RECEIVE, and ENDCHANNEL statements are
similar to OPEN, WRITE, READ, and ENDFILE. Likewise, the process placement statements
are modeled on FORTRAN 77 array manipulation constructs. The extensions allow pro-
grammers to develop parallel programs by plugging together modules that encapsulate
both code and data. This object-oriented approach to program design supports the imple-
mentation of reusable parallel libraries and multidisciplinary applications. Furthermore,
because the extensions can be implemented efficiently on a wide variety of parallel com-
puters, application portability is achieved with little or no performance penalty. Indeed,
as communication forms an integral part of the language, it should be possible to realize
substantial performance improvements through compiler optimizations.

The definition of FORTRAN M opens several avenues for future research. The in-
tegration of data-parallel notations such as High Performance FORTRAN (HPF) with
FORTRAN M will allow the implementation of heterogeneous applications, in which a
FORTRAN M program coordinates multiple data-parallel computations. Data-parallel
subroutines can be invoked in a specified processor array, with ports used for communi-
cation with FORTRAN M computations. The integration of FORTRAN 90 M constructs is
also of interest. For example, array sections can be used to specify both mapping to a
column of a processor array and communication of a column of a data array.
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Process: PROCESS
PROCESS COMMON

Interface: INPORT
OUTPORT

Control: PROCESSES/ENDPROCESSES
PROCESSDO

Communication: CHANNEL
MERGER
SEND
RECEIVE
ENDCHANNEL
MOVEPORT
PROBE

Performance: PROCESSORS

LOCATION
SUBMACHINE

Figure 6: FORTRAN M’s Extensions to FORTRAN 77
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Appendix: FORTRAN M Language Definition

A. Syntax

Backus-Naur form (BNF) is used to present new syntax, with nonterminal symbols in
slanted font, terminal symbols in TYPEWRITER font, and symbols defined in Appendix F
of the FORTRAN 77 standard [30] underlined. The syntax [symbol] is used to represent
zero or more comma-separated occurrences of symbol; [symbol](") represents one or more
occurrences.

A.1 Process, Process Block, Process Do-loop

A process has the same syntax as a subroutine, except that the keyword PROCESS is
substituted for SUBROUTINE, INTENT declarations can be provided for dummy arguments,
and a process cannot take an assumed size array as a dummy argument.

A process call can occur anywhere that a subroutine call can occur. In addition,
process calls can occur in process blocks and process do-loops, and recursive process calls
are permitted. A process block is a set of statements preceded by a PROCESSES statement
and followed by a ENDPROCESSES statement. A block includes zero or one subroutine calls,
zero or more process calls, and zero or more process do-loops. A process do-loop has the
same syntax as a do-loop, except that the PROCESSDO keyword is used in place of DO, and
the body of the do-loop can contain only a process do-loop or a process call.

A port variable or port array element can be passed as an argument to only a single
process in a process block or process do-loop. Other scalar variables and array elements
can be passed to two or more processes in a process block or process do-loop only if
these processes all declare the corresponding dummy arguments INTENT (IN). A variable
or array element passed to a subroutine in a process block cannot also be passed to a
process in that block.

A.2 New Declarations

Five new declaration statements are defined: INPORT, OUTPORT, INTENT, PROCESSORS, and
PROCESS COMMON.

inport_declaration :: INPORT ( [data_typel ) [namel®
outport_declaration :: OUTPORT ( [data_typel ) [name]™
intent_declaration - INTENT(IN) [name]® |

INTENT (OUT) [namel™ |

INTENT (INOUT) [name]®
machine_declaration :: PROCESSORS( bounds )
name :: variable name | array name | array_declarator
data_type o fortran_data_type |

fortran_data_type name |

INPORT ( [data_typel ) |

OUTPORT ( [data_typel )
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In the PROCESSORS statement, bounds has the same syntax as the arguments to an
array declarator. The product of the dimensions must be nonzero. Any program,

process, subroutine, or function including a LOCATION or SUBMACHINE annotation must
include a PROCESSORS declaration.

The symbol fortran_data_type denotes the six standard FORTRAN data types. The
dimensions in an array._declarator in a port declaration can include integer variable
names in the port declaration, integer parameters, and integer arguments to the process

or subroutine in which the declaration occurs. The symbol “*” cannot be used to specify
an assumed size.
A PROCESS COMMON statement has the same syntax as a COMMON statement.

A.3 New Executable Statements

There are seven new executable statements: CHANNEL, MERGE, MOVEPORT, SEND, RECEIVE,
ENDCHANNEL, and PROBE. Each of these takes as arguments a list of control specifiers,
termed a control information list. The SEND and RECEIVE statements also take other
arguments. A control information list can include at most one of each specifier, except
those that name ports. The number of allowable port specifiers varies from one statement
to another. The first three of these statements are as follows.

channel_statement :: CHANNEL ( [ channel_control]1(1)
merge_statement 2 MERGE([merge_control] 1))
moveport_statement :: MOVEPORT ( [moveport_control] 1))

channel_control 2 oulport_name | 0UT=oulport_name |
inport_name | IN=inport_name |
I0STAT=storage_location | ERR=1label

merge_control i oulport_specifier | QUT=oulport_specifier |
inport_name | IN=inport_name |
I0STAT=storage_location | ERR=1label

moveport_control :: port_name | FROM=port_name |
port_name | TO=port_name |
I0STAT=storage_location | ERR=1label

outport_specifier . oulport_name | data_implied do_list
outport_name ;1 porl_name
inport_name ;1 porl_name
port_name :: variable name | array element name

A CHANNEL statement must include two port specifiers, and these must name an out-
port and an in-port of the same type. If the strings 0UT= and IN= are omitted, these
specifiers must occur as the first and second arguments, respectively.

A MERGE statement must include at least two port specifiers, and these must name an
in-port and one or more unique out-ports, all of the same type. If the strings 0UT= and
IN= are omitted, the out-port specifiers must precede the in-port specifier, which must
precede any other specifiers,
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In a MOVEPORT statement, the port specifiers must name two in-ports or two out-ports,
both of the same type. If the strings FROM= and TO= are omitted, these specifiers must
occur as the first and second arguments, respectively. The first then specifies the “from”
port and the second the “to” port.

The other four statements are as follows.

send_statement . SEND([send_control1™M) Largument ]
receive_statement .- RECEIVE( [recv_controllM)) [wvariable ]
close_statement :: ENDCHANNEL ( [send_control1™)
probe_statement 2 PROBE( [probe_control] 1))
send_control 2 oulport_name | PORT=oulport_name |
I0STAT=storage_location | ERR=1label
recv_control 2 inport_name | PORT=inport_name |
I0STAT=storage_location | ERR=1label | END=label
probe_control 2 inport_name | PORT=inport_name |
ERR=label | I0STAT=storagelocation | EMPTY=storage_location
storage_location :: variable name | array element name
argument :: expression |
variable :: variable name | array element name | array name

If a port specifier does not include the optional characters PORT=, it must be the first
item in the control information list. A storage_location specified in an TOSTAT= or EMPTY=
specifier must have integer and logical type, respectively.

A .4 Mapping

The mapping annotations LOCATION and SUBMACHINE are appended to process calls:

process_call LOCATION (indices)
process_call SUBMACHINE (indices)

where indices has the same syntax as the arguments to an array_element name.

A.5 Restrictions

Port variables cannot be named in EQUIVALENCE statements. Programs cannot include
COMMON data; PROCESS COMMON must be used instead.

B. Concurrency

With two exceptions, a process executes sequentially, in the same manner as a FORTRAN
program. That is, each statement terminates execution before the next is executed. The
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two exceptions are the process block and the process do-loop, in which statements execute
concurrently. That is, the processes created to execute these statements may execute in
any order or in parallel, subject to the constraint that any process that is not blocked
(because of a RECEIVE applied to an empty channel) must eventually execute. A process
block or process do-loop terminates, allowing execution to proceed to the next statement,
when all its process and subroutine calls terminate.

A process can access its own process common data but not that of other processes.
A dummy argument declared INTENT(IN) cannot be modified by the process. If no
INTENT declaration is provided for a dummy argument, or it is declared INTENT (INOUT),
then the corresponding actual argument, which must be a variable, is updated after the
process terminates. If a dummy argument is declared INTENT(QUT), the corresponding
actual argument must also be a variable, and its value is again updated upon process
termination. However, in this case the value of the variable is undefined upon entry to
the process.

C. Channels

Processes communicate and synchronize by sending and receiving values on typed com-
munication streams called channels. A channel is created by a CHANNEL statement, which
also defines the supplied in-port and out-port to be references to the new channel. A
channel is a first-in/first-out message queue. An element is appended to this queue by
applying the SEND statement to the out-port that references the channel. This statement
is asynchronous: it returns immediately. An element is removed from the queue by apply-
ing the RECEIVE statement to the in-port that references the channel. This statement is
synchronous: it blocks until a value is available. The ENDCHANNEL statement appends an
end-of-channel (EOC) message to the queue. The MOVEPORT statement copies a channel
reference from one port variable to another.

These statements all take as arguments a control information list (cilist). The optional
I0STAT=, END=, and ERR= specifiers have the same meaning as the equivalent FORTRAN
[/O specifiers, with end-of-channel treated as end-of-file, and an operation on an undefined
port treated as erroneous. An implementation should also provide, as a debugging aid,
the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVE statement is applied
to a port that is the only reference to a channel.

SEND (cilist) Eq,...,E, Add the values Eq, ..., E, (the sources) to the channel referenced
by the out-port named in cilist (the target). The source values must match the data
types specified in the port declaration, in number and type.

RECEIVE(cilist) Vi, ...,V, Block until the channel referenced by the in-port named in
cilist (the target) is nonempty. If the next value in the channel is not EOC, move
values from the channel into the variables Vy, ..., V,, (the destinations). The des-
tination variables must match the data types specified in the port declaration, in
number and type.

ENDCHANNEL (cilist) Append an EOC message to the channel referenced by the out-port
named in cilist.
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MOVEPORT (cilist) Copy the value of the port specified “from” in cilist (the source) to the
port specified “to” (the target), and set the source port to undefined.

A port is initially undefined. An undefined port becomes defined if it is included in a
CHANNEL (or MERGE: see below) statement, if it occurs as a destination in a RECEIVE, or if
it is named as the target of a MOVEPORT statement whose source is a defined port. Any
other statement involving an undefined port is erroneous.

Application of the ENDCHANNEL statement to an out-port causes that port to become
undefined. The corresponding in-port remains defined until the EOC message is received
by a RECEIVE statement, and then becomes undefined. Both in-ports and out-ports be-
come undefined if they are named as the source of a SEND or MOVEPORToperation.

Storage allocated for a channel is reclaimed when both (a) either the out-port has been
closed, or the out-port goes out of scope, and (b) either EOC is received on the in-port,
or the in-port goes out of scope.

D. Nondeterminism

The MERGE and PROBE statements are used to specify nondeterministic computations.
MERGE is identical to CHANNEL, except that it can define multiple out-ports to be references
to its message queue. Messages are added to the queue as they are sent on out-ports,
with the order of messages from each out-port being preserved and all messages eventually
appearing in the queue. An EOC value is added to the queue only after it has been sent
on all out-ports.

The PROBE statement is used to obtain status information for a channel. Is can only
be applied to an in-port. The I0OSTAT= and ERR= specifiers in its control list are as in the
FORTRAN INQUIRE statement. A logical variable named in an EMPTY= specifier is assigned
the value true if the channel is known to be empty, and false otherwise. Knowledge about
sends is presumed to take a non-zero but finite time to become known to a process
probing an in-port. Hence, a PROBE of an in-port that references a nonempty channel may
signal true if the channel values were only recently communicated. However, if applied
repeatedly without intervening receives, PROBE will eventually signal false, and will then
continue to do so.

E. Mapping

The PROCESSORS declaration and the LOCATION and SUBMACHINE annotations have no se-
mantic content, but determine performance by specifying how processes are to be mapped
within an N-dimensional array of processors (N > 0).

The PROCESSORS declaration is analogous to a DIMENSION statement: it declares the
shape and dimensions of the processor array that is to apply in the program, process, or
subroutine in which it appears. As we descend a call tree, the shape of this array can
change, but its size can only become smaller, not larger.

A LOCATION annotation is analogous to an array reference. It specifies the virtual
processor on which the annotated process is to execute. The specified location cannot be
outside the bounds of the processor array specified by the PROCESSORS declaration.
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The SUBMACHINE annotation is analogous to an array reference in a subroutine call.
It specifies that the annotated process is to execute in a virtual computer with its first
processor specified by the annotation, and with additional processors selected in array
element order. These processors cannot be outside the bounds of the processor array
specified by the PROCESSORS declaration.
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