
Fortran M:A Language for Modular Parallel ProgrammingIan T. FosterMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439K. Mani ChandyDepartment of Computer ScienceCalifornia Institute of TechnologyPasadena, CA 91125June 1992AbstractFortranM is a small set of extensions to Fortran 77 that supports a modularapproach to the design of message-passing programs. It has the following features.(1) Modularity. Programs are constructed by using explicitly-declared communica-tion channels to plug together program modules called processes. A process canencapsulate common data, subprocesses, and internal communication. (2) Safety.Operations on channels are restricted so as to guarantee deterministic execution,even in dynamic computations that create and delete processes and channels. Chan-nels are typed, so a compiler can check for correct usage. (3) Architecture Indepen-dence. The mapping of processes to processors can be speci�ed with respect to avirtual computer with size and shape di�erent from that of the target computer.Mapping is speci�ed by annotations that in
uence performance but not correctness.(4) E�ciency. Fortran M can be compiled e�ciently for uniprocessors, shared-memory computers, distributed-memory computers, and networks of workstations.Because message passing is incorporated into the language, a compiler can optimizecommunication as well as computation. 1

1 IntroductionIn the message-passing model of parallel computation, concurrently executing processesinteract by exchanging messages. Originally developed for operating systems applications,the model has been widely adopted for application programming on distributed-memorycomputers, networks of workstations, and other parallel computer architectures. Its pop-ularity stems from its simplicity,
exibility, and ease of implementation.A disadvantage of the message-passing model, particularly for scienti�c and engineer-ing applications, is that it does not enforce deterministic execution [27]. Hence, theprogrammer has no a priori guarantee that a program will give the same result if exe-cuted more than once with the same input. This nondeterminism is antithetical to boththe scientist's need for reproducibility and ease of debugging. In addition, most messagepassing systems do not enforce information hiding and provide a global name space ofprocesses. This makes it di�cult to develop modular programs and reusable libraries [15].In this paper, we describe message-passing extensions to sequential programming lan-guages that enforce both deterministic execution and information hiding, while retainingmuch of the
exibility of traditional message-passing. We describe these extensions inthe context of Fortran 77, and call the resulting language Fortran M. However,equivalent extensions can be de�ned for any sequential programming language. The ex-tensions include constructs for de�ning program modules called processes, for specifyingthat processes are to execute concurrently, for establishing typed, one-to-one communi-cation channels between processes, and for sending and receiving messages on channels.The resulting programming model is dynamic: processes and channels can be created anddeleted dynamically, and references to channels can be included in messages.Fortran M enforces determinancy by means of syntactic and semantic restrictions.In addition, a FortranM compiler can use type information provided by the programmerto verify correct usage. The price of this safety is that the programmer must explicitlydeclare and create the communication channels that will be used in a program. However,this requirement appears no more onerous than variable type declarations, which servea similar purpose. Fortran M also provides nondeterministic constructs for programsthat operate in nondeterministic environments. The use of these constructs is typicallyisolated to a small number of modules.Fortran M enforces information hiding, and hence facilitates a modular or object-oriented approach to parallel program design. In particular, it permits the de�nition ofreusable program components. A channel is only accessible to a process that possessesa reference to it. Common data is only supported on a per-process basis. Hence, aprocess's interface to its environment is de�ned by the channels passed to it as arguments.All other details of its implementation, which can include common data, subprocesses,process placement, and internal communication channels, are hidden.Fortran M is supported by a theory of parallel and sequential composition of com-municating processes. Key characteristics of this theory, described in a separate paper [5],include (1) proofs that a FortranM program is deterministic even though processes andchannels are created and deleted and channels are reconnected; (2) extension of sequentialprogramming proof techniques to parallel programs; and (3) a compositional proof theoryin which the speci�cation of the whole is derived from the speci�cations (and not the2

texts) of the part.The basic paradigm underlying FortranM is task parallelism: the parallel executionof (possibly dissimilar) tasks. Hence, Fortran M complements data-parallel languagessuch as Fortran D [18] and High Performance Fortran (HPF). In particular, For-tran M can be used to coordinate multiple data-parallel computations. Our goal isto integrate HPF with Fortran M, thus combining the data-parallel and task-parallelprogramming paradigms in a single system.In the rest of this paper, we de�ne Fortran M and illustrate its application toprogramming problems. In Sections 2 and 3, we present the constructs used to de�neand compose processes. In Sections 4{7, we discuss dynamic process and communicationstructures, nondeterministic constructs, argument passing, and process placement. Sec-tions 8 and 9 discuss compilation and related work. We conclude in Section 10 with adiscussion of future research. A language de�nition is provided as an appendix.A prototype Fortran M compiler for sequential and parallel computers is scheduledfor release in November 1992. Send electronic mail to fortran-m@mcs.anl.gov for details.2 De�ning ModulesIn modular program design, we develop components of a program separately, as inde-pendent modules, and then combine modules to obtain a complete program [29, 10].Interactions between modules are restricted to well-de�ned interfaces. Hence, moduleimplementations can be changed without modifying other components, and the proper-ties of a program can be determined from the speci�cations for its modules and the codethat plugs these modules together. When successfully applied, modular design reducesprogram complexity and facilitates code reuse.In Fortran M, a module is implemented as a process. A process, like a Fortranprogram, de�nes common data (labeled PROCESS COMMON to emphasize that it is local tothe process) and the subroutines that operate on that data. It also de�nes the interfaceby which it communicates with its environment. A process has the same syntax as asubroutine, except that the keyword PROCESS is used in place of SUBROUTINE.2.1 InterfacesA process's dummy arguments (formal parameters) are a set of port variables. Thesede�ne the process's interface to its environment. (For convenience, conventional argumentpassing is also permitted between a process and its parent. This nonessential feature isdiscussed in Section 6.) A port variable declaration has the general formport type (data type list) name listThe port type is OUTPORT or INPORT and speci�es whether the port is to be used tosend or receive data, respectively. The data type list is a comma-separated list of typedeclarations. It speci�es the format of the messages that will be sent on the port, much asa subroutine's dummy argument declarations de�nes the arguments that will be passedto the subroutine. 3

For example, the following process declares in-ports capable of receiving messagesconsisting of single integers (p1), arrays of MSGSIZE reals (p2), and a single integer and areal array with size speci�ed by the integer (p3). In the third declaration, the names mand x have scope local to the port declaration.process example(p1,p2,p3)parameter(MSGSIZE=20)inport (integer) p1inport (real x(MSGSIZE)) p2inport (integer m, real x(m)) p3We illustrate the use of ports with a simple example. A program that simulates theatmospheric circulation (an atmosphere model) is to be coupled with an ocean model. Thetwo models are to execute concurrently and must exchange information periodically: Theocean model provides the atmosphere model with an array of sea surface temperatures(SST), and the atmosphere model provides the ocean model with two arrays containingcomponents of horizontal momentum, U and V. We implement both models as processes,and de�ne an interface that allows for the exchange of SST, U, and V values.We assume initially that the atmosphere model is a sequential program. (A parallelversion is presented in the next section.) Hence, we de�ne an interface consisting of twoports, sst i and uv o. The in-port sst i can be used to receive arrays of real valuesrepresenting sea surface temperatures, while the out-port uv o can be used to send twosuch arrays representing U and V values.process atmosphere(sst_i,uv_o)parameter(NLAT=128,NLON=256)inport (real x(NLAT,NLON)) sst_ioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_o...2.2 CommunicationAs each process has its own address space, the only mechanism by which a process caninteract with its environment is via the ports passed to it as arguments. A process uses theSEND, ENDCHANNEL, and RECEIVE statements to send and receive messages on these ports.These statements are similar in syntax and semantics to Fortran's WRITE, ENDFILE, andREAD statements, and can include END=, ERR=, and IOSTAT= speci�ers to indicate how torecover from various exceptional conditions.A process sends a message by applying the SEND statement to an out-port. The out-port declaration speci�es the message format. A process sends a sequence of messagesby repeated calls to SEND; it can also call ENDCHANNEL to send an end-of-channel (EOC)message. The SEND and ENDCHANNEL statements are nonblocking (asynchronous): theycomplete immediately. A process receives a value by applying the RECEIVE statement toan in-port. A RECEIVE statement is blocking (synchronous): it does not complete untildata is available.For example, the following code repeatedly sends U and V data on the port uv o andreceives SST data from the port sst i. After doing this TMAX times, it signals the end of4

the communication by sending an EOC message on uv o. Note the use of process commonto hold the sst, u, and v arrays.process atmosphere(sst i,uv o)parameter(NLAT=128, NLON=256, TMAX=100)C The ports sst i and uv o are the external interface.inport (real x(NLAT,NLON)) sst ioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uv oC Process common variables.process common /state/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)C Repeat TMAX times: send U & V, recv SST, update U & V.do 10 i=1,TMAXsend(uv o) u,vreceive(sst i) sstcall atm compute10 continueC Signal end of communication.endchannel(uv o)endThe ocean model might be as follows. This repeatedly sends SST data on the out-portsst o and receives U and V data on the in-port sst i, until EOC is detected on sst i.Note the use of the END= speci�er to indicate where execution should continue if EOC isdetected.process ocean(uv i,sst o)parameter(NLAT=128, NLON=256)C The ports uv i and sst o are the external interface.inport (real x(NLAT,NLON), real y(NLAT,NLON)) uv ioutport (real x(NLAT,NLON)) sst oC Process common variables.process common /state/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)C Repeat until EOC: send SST, recv U & V, compute SST.do while(.true.)send(sst o) sstreceive(uv i,end=10) u,vcall ocn computeenddo10 end3 Composing ModulesA Fortran M program is constructed by using process blocks and process do-loops toplug together (compose) processes. A program creates channels to establish one-to-one5

communication streams between processes. In this way, processes with more complexbehaviors are de�ned. These can themselves be composed with other processes, in ahierarchical fashion.3.1 Composition of ProcessesA process block has the general formprocessesstatement_1...statement_nendprocesseswhere n � 0, and the statements are process calls, process do-loops (de�ned below),and/or at most one subroutine call. Statements in a process block execute concurrently.For example, the following block speci�es that the processes atmosphere and ocean areto execute concurrently. processescall atmosphere(...)call ocean(...)endprocessesA process block terminates, allowing execution to proceed to the next executablestatement, when all its constituent statements terminate.3.2 ChannelsRecall that a process communicates with its environment by sending and receiving mes-sages on ports. When composing processes, we use the CHANNEL statement to de�ne theseports to be references to �rst-in/�rst-out message queues called channels. This statementhas the general form CHANNEL(out=out-port, in=in-port)and both creates a channel and de�nes out-port and in-port to be references to this channel.These ports are to be used for sending and receiving messages, respectively, and can bepassed as arguments to the composed processes.In the ocean/atmosphere model, we require two channels, one for communicating SSTvalues and the other for communicating U and V values. This structure is illustrated inFigure 1 and is created by the following program. Note that this code de�nes a process; ifchannels are added to de�ne an interface, it can be combined with other processes to forma more complex program. The process creates two channels, spawns the atmosphere andocean processes, blocks until the process block terminates, and then terminates itself.6

A T M O C N

channel(ssti, ssto)

channel(uvi, uvo)
uviuvo

ssti sstoFigure 1: Coupled Ocean/Atmosphere Modelprocess coupled modelparameter(NLAT=128, NLON=256)C Local port variables.inport (real x(NLAT,NLON)) sstioutport (real x(NLAT,NLON)) sstoinport (real x(NLAT,NLON), real y(NLAT,NLON)) uvioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uvoC Create channels and de�ne ports.channel(out=ssto,in=ssti)channel(out=uvo,in=uvo)C Call two models with ports as arguments.processescall atmosphere(ssti,uvo)call ocean(uvi,ssto)endprocessesendThe value of the four port variables declared in this code fragment is initially unde-�ned. The CHANNEL statements each create a channel and de�ne their two port variablearguments to be references to this channel. These port variables are passed as argu-ments to the concurrently executing atmosphere and ocean processes, establishing theconnections shown in Figure 1.We now have a complete parallel program which can be executed on a sequential orparallel computer. We shall see that this program can be executed on one processor or twowithout any change to its component modules. The execution order of the concurrentlyexecuting atmosphere and ocean processes is determined only by availability of messageson channels. Nevertheless, the computed result does not depend on the order in whichthe processes execute. That is, the program is deterministic.3.3 Replicating ProcessesA process do-loop creates multiple instances of the same process. It is frequently used tode�ne single program, multiple data (SPMD) computation structures, in which multiplecopies of a process are connected in a regular communication structure. The process7

N
L
A
T

N L O N P
L
A
T

P L O NFigure 2: Parallel Atmosphere Modeldo-loop is identical in form to the do-loop, except that the keyword PROCESSDO is usedin place of DO and the body can include only a process do-loop or a process call. Forexample: processdo 10 i = 1,ncall myprocess10 continueProcess do-loops can be nested inside both process do-loops and process blocks.We illustrate the use of the process do-loop in Program 1, which implements a parallelversion of the atmosphere model. The parallel code partitions the model's data domaininto NP2 subdomains of size (PLAT=NLAT/NP) � (PLON=NLON/NP) and uses 2 NP2 channelsto connect these processes in a two-dimensional torus. Figure 2 shows the original grid,the decomposition, and the process structure, with NLAT=6, NLON=12 and NP=2.Four arrays of ports, WEi, WEo, NSi, and NSo, are declared and then de�ned to bereferences to the 2 NP2 channels. Each subdomain process is passed eight of these ports;these provide in and out connections to its eight neighbors.It is desirable to provide a parallel interface to a parallel model, so that componentsof the model can communicate with corresponding components of other parallel modelswithout introducing a central bottleneck. Hence, the interface to the parallel model is alsodecomposed, giving two arrays of ports, SstI and UvO, each of size NP�NP. Each port inthese arrays is used to communicate arrays of size PLAT�PLON. Each subdomain processis passed one element of SstI and one element of UvO as arguments.The code used to compose the atmosphere and ocean models must be modi�ed asfollows to allow for the parallel interface. The two channels ssto/ssti and uvo/uvi arereplaced with arrays of NP�NP channels, and the calls to the sequential processes arereplaced with calls to the parallel processes.program coupled modelparameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)inport (real x(PLAT,PLON)) SstI(NP,NP)outport (real x(PLAT,PLON)) SstO(NP,NP)8

process par atmosphere(SstI,UvO)parameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)C These two port arrays de�ne external interface.inport (real x(PLAT,PLON)) SstI(NP,NP)outport (real x(PLAT,PLON), real y(PLAT,PLON)) UvO(NP,NP)C Ports for communication with W & E and N & S neighbors.inport (real x(PLAT)) WEi(2,NP,NP)outport (real x(PLAT)) WEo(2,NP,NP)inport (real x(PLON)) NSi(2,NP,NP)outport (real x(PLON)) NSo(2,NP,NP)C Create channels used for internal communication.do 10 i = 1,NPdo 11 j = 1,NPchannel(in=NSi(2,i,j), out=NSo(1,mod(i,NP)+1,j))channel(out=NSo(2,i,j), in=NSi(1,mod(i,NP)+1,j))channel(in=WEi(2,i,j), out=WEo(1,i,mod(j,NP)+1))channel(out=WEo(2,i,j), in=WEi(1,i,mod(j,NP)+1))11 continue10 continueC Create NP2 processes, with external and internal ports.processdo 20 i = 1,NPprocessdo 21 j = 1,NPcall subdomain(SstI(i,j), UvO(i,j), WEi(1,i,j), WEo(1,i,j),NSi(1,i,j), NSo(1,i,j))21 continue20 continueendC Code executed in a single subdomain.process subdomain(sst i,uv o,WEis,WEos,NSis,NSos)parameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)C External interface ports: for sending SST and receiving U & V.inport (real x(PLAT,PLON)) sst ioutport (real x(PLAT,PLON), real y(PLAT,PLON)) uv oC Ports to and from W & E and N & S neighbors.inport (real x(PLAT)) WEis(2)outport (real x(PLAT)) WEos(2)inport (real x(PLON)) NSis(2)outport (real x(PLON)) NSos(2)... Program 1: Parallel Atmosphere Model9

inport (real x(PLAT,PLON), real y(PLAT,PLON)) UvI(NP,NP)outport (real x(PLAT,PLON), real y(PLAT,PLON)) UvO(NP,NP)...C Create NP�NP channels.do 10 i=1,NPdo 11 j=1,NPchannel(out=SstO(i,j),in=SstI(i,j))channel(out=UvO(i,j),in=UvI(i,j))11 continue10 continue...C Pass port arrays to parallel models.processescall par atmosphere(SstI,UvO)call par ocean(SstO,UvI)endprocessesend3.4 LibrariesThe parallel atmosphere model shows how a useful communication structure (a torus)and computational algorithm (�nite di�erencing) can be encapsulated in a process, witha port array providing a parallel interface. Parallel implementations of other commonlyused functions, such as broadcast, multicast, parallel pre�x, and parallel implementationsof BLAS linear algebra routines [13], can be encapsulated in the same way. As e�cientimplementations of these functions may require machine-speci�c facilities (such as hard-ware multicast), a FortranM programming environment will include libraries providinghigh-performance implementations of these functions on di�erent computers.4 Dynamic StructuresThe process and communication structures in the ocean/atmosphere model are essentiallystatic: after an initial startup phase, the number of processes and channels does notchange. Fortran M can also be used to specify dynamic structures in which processesand channels are created and deleted, and channels are reconnected, during the course ofa computation.This is illustrated in the following example. Consider a process network consistingof a tasks and a database process, as illustrated in Figure 3(A). The tasks processreceives a sequence of integers representing tasks on its in-port. Each time it receives aninteger, it creates three new channels and communicates ports referencing two of thesechannels to database. It then establishes the process structure illustrated in Figure 3(B),by creating a proc1 and a proc2 process and passing the appropriate ports to theseprocesses as arguments. The proc1, proc2, and database processes communicate amongthemselves until proc1 and proc2 terminate. Then, the network reverts to that shown inFigure 3(A), and tasks handles the next incoming message.10

t a s k s database

p r o c 1

p r o c 2

databaset a s k s

q

r

s

task

(A)

(B)Figure 3: A Dynamic Process and Communication StructureThis structure is speci�ed as follows. Note the declaration of the out-port po, whichspeci�es that the port is used to transmit messages consisting of an integer, an integerout-port, and an integer in-port. Each time a task is received, three channels are createdand qi/qo, ri/ro, and si/so are de�ned to be references to these channels. Two of theseports, qi and so, are sent to the database process; the remaining ports are passed asarguments to proc1 and proc2.process tasks(mi,po)C Ports de�ning external interface.inport (integer) mioutport (integer, outport (integer), inport(integer)) poC Ports for local communication.inport (integer) qi, ri, sioutport (integer) qo, ro, soC Repeat: receive a task, create 3 channels, send ports on po.do while(.true.)receive(mi) taskchannel(out=qo, in=qi)channel(out=ro, in=ri)channel(out=so, in=si)send(po) task,qi,soprocessescall proc1(si,ro)call proc2(ri,qo)endprocessesenddoend 11

The ability to transfer a channel reference from one process to another is useful butpotentially dangerous. If not controlled, it could compromise determinism by permittingmultiple out-ports to reference the same channel. Hence, Fortran M semantics ensurethat only a single copy of a channel reference can exist at any one time. When the contentsof a port variable are communicated in a message, the value of that port variable becomesunde�ned. Similarly, assignment of one port variable to another is not permitted; theMOVEPORT statement must be used to copy a port, and this makes the copied port variableunde�ned. Hence, execution of the following code fragment, which stores the value ofmi in ri and sends the value of qi on the port po, causes both mi and qi to becomeunde�ned. in_port (integer) qi, mi, riout_port (in_port (integer)) pomoveport(from=mi, to=ri)send(po) qi5 NondeterminismThe determinism enforced by the use of channels removes a major source of complexityin concurrent programming. However, nondeterminism can be useful in nondeterministicenvironments. For example, a load-balancing algorithm may need to execute either a localor remote task, depending on which is the �rst to become available. Similarly, we maywish to process requests to access a shared data structure, or input from several externaldevices, in the order in which they become available. These behaviors can be speci�ed byusing the MERGE and PROBE statements.A MERGE statement de�nes a �rst-in/�rst-out message queue, just like a CHANNEL state-ment. However, it allows multiple out-ports to reference this queue and hence de�nes amany-to-one communication structure. Messages sent on any out-port are appended tothe queue, with the order of messages sent on each out-port being preserved and anymessage sent on an out-port eventually appearing in the queue.For example, consider the following problem, proposed to us by Burton Smith. NPmonte carlo processes execute independently and generate integer \scores" at irregularintervals. We wish to generate a histogram of these values. One possible solution isillustrated in Figure 4(A): we create a single histo process and use MERGE to link the out-ports of the monte carlo processes and the in-port of the histo process. This solutioncan be implemented as follows. The histo process might be de�ned either to incrementcounts in an array or to update a histogram in a graphical display.program histogramparameter(NP=128)inport (integer) pioutport (integer) Po(NP)C The merger links all out-ports with the in-port.merge(out=(Po(i),i=1,NP),in=pi)processes 12

h i s t o

mcarlo m

e

r

g

e

r

mcarlo

mcarlo

pi

Po(1)

Po(2)

Po(3)

mcarlo

mcarlo

mcarlo

r o u t e r

h i s t o

h i s t o

h i s t o

(A) (B)Figure 4: Histogram Problem: Centralized and Distributed Solutionscall histo(pi)processdo 10 i = 1,NPcall monte carlo(Po(i))10 continueendprocessesendAn alternative, less centralized solution to the problem is illustrated in Figure 4(B).The histogram is distributed among many histo processes, and a router process is usedto route values to the appropriate locations. Program 2 presents a possible implementationof router. This creates NP router node processes, which accept and forward addressesarriving on the in-ports Pi. A \crossbar" interconnect of NP2 channels links these processeswith the out-ports Po; a merger combines messages routed on the NP channels targetedto a single out-port. This structure can route a message from NP inputs to NP outputsin constant time. If NP is large, the program can be modi�ed to utilize a communicationnetwork of lower dimension, at the cost of additional communication steps.A process can apply the PROBE statement to an in-port to determine whether messagesare pending on a channel. It sets a logical variable, speci�ed in an EMPTY=variable speci�er,to true if the channel is empty and to false otherwise. This statement is described in detailin the appendix.6 Argument PassingIn preceding programming examples, all communication between processes has occurredvia ports. For programming convenience, FortranM also allows conventional argumentpassing between a process and the processes that it calls (its children). The values of these13

process router(Pi,Po)parameter(NP=128)C External interface consists of two port arrays.inport (integer) Pi(NP)outport (integer) Po(NP)C Ports used for internal communication.inport (integer) Li(NP)outport (integer) Lo(NP,NP)C Create one merger for each out-port.do 10 i = 1,NPmerge(out=(Lo(i,j),j=1,NP), in=Li(i))10 continueC Create NP (router node, forward node) pairs.processesprocessdo 20 i=1,NPcall router node(NP,Pi(i),Lo(1,i))20 continueprocessdo 21 i=1,NPcall forward node(Li(i),Po(i))21 continueendprocessesendprocess router node(NP,pi,Lo)inport (integer) pioutport (integer) poinport (integer) Lo(NP)C Repeat: receive address and send to correct output.do while(.true.)receive(pi) iaddrsend(Lo(mod(iaddr,NP))) iaddr/NPenddoendprocess forward node(pi,po)inport (integer) pioutport (integer) poC Repeat: receive address and forward on output.do while(.true.)receive(pi) iaddrsend(po) iaddrenddoend Program 2: Router for Distributed Histogram14

arguments are passed to a child processes when they are created, and copied back to theparent process when the children terminate. A child process can also specify, by INTENTdeclarations, that particular arguments are used for input or output only. For example,the following process has three input arguments and one output argument. It computesan approximation to the integral of a function F(x) over the range a:h � x � b:h usingthe rectangle rule and interval h. That is, it computes Pbj=a+1 F((j � 0:5) � h).process integrate(idx_a,idx_b,h,sum)intent(in) idx_a, idx_b, hintent(out) sumsum = 0.0do 10 i=idx_a+1,idx_bsum = sum + F((i-0.5)*h)10 continueendA dummy argument declared INTENT(IN) cannot be modi�ed by the process. If nointent declaration is provided for a dummy argument, or it is declared INTENT(INOUT),then the corresponding actual argument, which must be a variable, is updated after theprocess terminates. For a dummy argument declared INTENT(OUT), the correspondingactual argument must also be a variable, and its value is again updated upon processtermination. However, in this case the value of the variable is unde�ned upon entry tothe process.This process is used in the following program, which computes an approximation to theintegral of F (X) over the interval (0,1). (For comparison, solutions to the same problemin several other parallel Fortran dialects are presented in [22].) The process creates NPintegrate processes, each of which evaluates the integral over a speci�ed subinterval andstores its result in an element of the array results. Upon termination of the processdostatement, elements of this array are summed by the main program.program integrationparameter(NP=128)real results(NP)read(*,*) intvlsicomps = intvls/NPif(icomps*NP .ne. intvls) stop(99)processdo 10 i=1,NPcall integrate((i-1)*icomps,i*icomps,1.0/intvls,results(i))10 continuesum = 0.0do 20 i = 1,NPsum = sum + results(i)20 continueprint *,'Sum is ',sum/intvlsend 15

A scalar value or array element can be passed to two or more processes in a processblock or do-loop only if these processes all declare the corresponding dummy argumentINTENT(IN). For example, the integration program would be erroneous if integratedeclared sum to be an array with size greater than one.7 Process PlacementProcess blocks and do-loops de�ne concurrent processes; channels and mergers de�nehow these processes communicate and synchronize. A parallel program de�ned in termsof these constructs can be executed on both uniprocessor and multiprocessor computers.In the latter case, processes must be mapped to processors.The techniques used to map processes to processors depends in part on the architectureof the parallel computer in question. If a small number of processors share access to acommon memory, then automatic mechanisms | based, for example, on a centralizedscheduler | may be e�ective. However, the importance of the memory hierarchy inlarger parallel computers means that process placement (mapping) can be an importantaspect of algorithm design. For this reason, Fortran M incorporates constructs thatallow mapping to be speci�ed by the programmer. These constructs in
uence performancebut not correctness. Hence, we can develop a program on a uniprocessor and then tuneperformance on a parallel computer by changing mapping constructs.7.1 Process Placement ConstructsThe Fortran M process placement constructs are based on the concept of a virtualcomputer: a collection of virtual processors, which may or may not have the same topol-ogy as the physical computer on which a program executes [25, 36]. For consistencywith Fortran concepts, a Fortran M virtual computer is an N -dimensional array,and the mapping constructs are modeled on Fortran 77's array manipulation con-structs. The PROCESSORS declaration speci�es the shape and dimension of a processorarray, the LOCATION annotation maps processes to speci�ed elements of this array, andthe SUBMACHINE annotation speci�es that a process should execute in a subset of thearray [15].The PROCESSORS declaration is similar in form and function to the array DIMENSIONstatement. It has the general form PROCESSORS(I1,...,In) where n � 0 and the Ij havethe same form as the arguments to a DIMENSION statement. It speci�es the shape and sizeof the (implicit) processor array on which a process is executing. This processor arraycannot be larger than that declared in the parent, but it can be smaller or of a di�erentshape.The LOCATION annotation is similar in form and function to an array reference. It hasthe general form LOCATION(I1, ..., In), where n � 0 and the Ij have the same formas the indices in an array reference, and speci�es the processor on which the annotatedprocess is to execute. The indices must not reference a processor array element that isoutside the bounds speci�ed by the PROCESSORS declaration provided in the process orsubroutine in which the annotation occurs.16

A SUBMACHINE annotation is similar in form and function to an array reference passedas an argument to a subroutine. It has the general form SUBMACHINE(I1,...,In), wheren � 0 and the Ij have the same form as the indices in an array reference. It speci�es thatthe annotated process is to execute in a virtual computer comprising the processors takenfrom the current virtual computer, starting with the speci�ed processor and proceedingin array element order. The size and shape of the new virtual computer is as speci�ed bythe PROCESSORS declaration in the process de�nition.7.2 Mapping ExamplesWe specify mapping in Program 1 by providing a PROCESSORS declaration at the top ofthe program and a LOCATION annotation on the call to subdomain:processors(NP,NP)...processdo 10 i = 1,NPprocessdo 11 j = 1,NPcall subdomain(SstI(i,j),UvO(i,j),Wi(1,i,j),Wo(1,i,j),Ni(1,i,j),No(1,i,j)) location(i,j)11 continue10 continueThe SUBMACHINE annotation can be used to create several disjoint virtual computers,each comprising a subset of available processors. For example, in the ocean/atmospheremodel, it may be desirable to execute the two models in parallel, on di�erent parts ofthe same computer. This organization is illustrated in Figure 5(A) and can be speci�edas follows. The atmosphere model is executed in one half of a computer, and the oceanmodel in the other half.parameter(NP=4)processors(NP,2*NP)...processescall atmosphere(SstI,UvO) submachine(1,1)call ocean(SstO,UvI) submachine(1,NP+1)endprocessesAlternatively, it may be more e�cient to map both models to the same set of pro-cessors, as illustrated in Figure 5(B). This can be achieved by changing the PROCESSORSdeclaration to PROCESSORS(NP,NP) and omitting the SUBMACHINE annotations. No changeto the component programs is required.8 CompilationA prototype Fortran M compiler has been developed for sequential and parallel com-puters and a heterogeneous network version is planned. The latter system will exploit the17

(A) (B)Figure 5: Alternative Mapping Strategiestype information provided for channels to convert between di�erent data representationsautomatically. This work will be described elsewhere when it is further advanced. Werestrict ourselves here to some brief comments on performance issues.The Fortran subset of Fortran M can be compiled with conventional compilersand thus achieves the same performance as pure Fortran. Fortran M's SEND andRECEIVE operations are translated into memory-to-memory transfers in shared-memorycomputers and uniprocessors and into low-levelmessage-passing operations on distributed-memory computers. Hence, the e�ciency of a simplistic distributed-memory implementa-tion of Fortran M should di�er little from that of equivalent programs developed withmessage-passing libraries. However, we also expect Fortran M to enable novel com-piler optimizations that can signi�cantly reduce communication and computation costs.Information about the types, contents, and sequence of messages should be obtainableby an interprocess analysis analogous to the interprocedural analysis performed by mod-ern Fortran compilers [2, 3]; this information will allow a preprocessor to performnovel source-to-source transformations such as \process cloning", \channel merging", and\message merging". In addition, a code generator can generate specialized instructionsequences that use shared memory or drive message-passing hardware more e�cientlythan general purpose communication libraries. Recent research suggests that specializedcommunication code can improve message-passing performance by an order of magni-tude [14, 31].FortranM performance also depends on the cost of process creation, scheduling, andtermination operations. A preemptive scheduler is required so as to permit overlapping ofcomputation and communication. Fortunately, these facilities are, increasingly, supportedeither at the operating system [38, 9] or hardware levels [21, 33, 11], or can be providedby a compiler [14].9 Related WorkProgramming notations for parallel scienti�c programming fall into three principal classes:coordination languages, message-passing libraries, and data parallel extensions. Here, wediscuss how Fortran M di�ers from each of these approaches, focusing in particular on18

the issues of modularity and safety. We do not consider systems based on shared-memorymodels [22], as these are not easily adapted to distributed-memory machines.In coordination language approaches, a specialized language is used to specify con-currency, communication, and synchronization; Fortran routines are called to performcomputation. This approach has the advantage of clearly separating parallel and sequen-tial computation, but requires the programmer to learn a new language. Coordinationlanguages include occam [20], Strand [17], PCN [7, 16], and Delerium [24]. Delerium ispurely a coordination language, while the others can be used to specify both coordina-tion and computation. occam, derived from Hoare's Communicating Sequential Processes(CSP) [19], can specify only static computation and communication structures, does notenforce determinism, and employs synchronous communication. Strand and PCN canspecify dynamic structures. Communication and synchronization are speci�ed in termsof read and write operations on single-assignment variables, and a form of guarded com-mand [12] is used to specify choice between alternatives. A compiler cannot in generalassert that a Strand or PCN program is deterministic, because it cannot always provethat choices in guarded commands are mutually exclusive. In contrast, a Fortran Mcompiler need only verify that a program uses neither MERGE nor PROBE. Strand and PCNdo not address the problem of Fortran common data.In message-passing library approaches, programmers call subroutines to communicatedata between processes. The number of processes is often �xed at one per physicalprocessor. Systems such as P4 [1], Express [28], PVM [35], and Zipcode [34] provide,as primitives, an asynchronous send to a named process and a synchronous receive. TheMach operating system provides, in addition, a virtual channel construct (the port); portscan be transferred between processes in messages [38]. Mach does not restrict copying ofports, so determinism is not enforced. Libraries have the advantage of simplicity: they arelanguage independent and do not require compiler modi�cations. This simplicity comesat a price, however. Compile-time checking for correct usage is not performed. As librarywriters know nothing about how routines will be used, they must program defensively andincorporate logic that can, in principle, be avoided in code generated by a Fortran Mcompiler. In contrast to FortranM, message-passing libraries are nondeterministic and,as the name space of processes is global, do not enforce information hiding.Related to message-passing libraries is Linda, which provides read and write operationson a shared tuple space [4]. Tuple space operations can emulate both message-passingcommunication protocols and shared data structures. Tuple space operations, likemessagepassing, are nondeterministic and do not enforce information hiding. Actor-based messagepassing systems such as CE/RK [33] have some points of similarity with Fortran M,but are fundamentally di�erent in that they are nondeterministic. CC++ is a sharedvirtual memory extension of C++ [6]. It di�ers from Fortran M in many respects, inparticular its use of a shared-memory programming model.In data parallel approaches, sequential languages are extended with directives thatspecify how arrays are to be decomposed and distributed over processors [37, 18, 8]. Acompiler then partitions the computation using the \owner computes" rule, with eachoperation in the sequential program allocated to the processor containing the data that isto be operated on. This approach permits succinct speci�cations of parallel algorithms forregular problems and guarantees deterministic execution. When extended with support19

for irregular data distributions, data parallel languages can also handle some irregularproblems [23, 32]. However, there are broad classes of problems for which the approachhas not yet been shown to be tractable. These include highly dynamic adaptive grid prob-lems, multidisciplinary optimization problems, and reactive systems in which a programinteracts with an external environment in a nondeterministic manner. These problemscan all be implemented in a straightforward manner with Fortran M.10 ConclusionsHigh-level languages such as Fortran and C have been adopted almost universally insequential programming, and for good reasons: compared with machine languages, theypermit more concise speci�cations, more compile-time checking, and greater portabilityand modularity. In addition, modern compilers generate better object code than do mostprogrammers.For a variety of reasons, parallel computers are still programmed primarily in parallel\machine languages": locks and semaphores on shared-memory computers, and primitivesend and receive operations on distributed-memory computers. Our goal in de�ningFortran M is to make the advantages of high-level languages available to programmersdeveloping programs for parallel machines. In particular, we are concerned with ensuringsafety. This is achieved in two ways. First, we de�ne language extensions that allowdeterministic execution to be guaranteed. This means that programmers can be con�dentthat their programs will produce the same output for all executions with a given input.Second, we require that the user provide type information, which a compiler can use todetect erroneous programs at compile time.Fortran M's extensions to Fortran 77 (summarized in Figure 6) can be describedin a few minutes and mastered in a few hours. The extensions have a Fortran 77 \lookand feel". For instance, the CHANNEL, SEND, RECEIVE, and ENDCHANNEL statements aresimilar to OPEN, WRITE, READ, and ENDFILE. Likewise, the process placement statementsare modeled on Fortran 77 array manipulation constructs. The extensions allow pro-grammers to develop parallel programs by plugging together modules that encapsulateboth code and data. This object-oriented approach to program design supports the imple-mentation of reusable parallel libraries and multidisciplinary applications. Furthermore,because the extensions can be implemented e�ciently on a wide variety of parallel com-puters, application portability is achieved with little or no performance penalty. Indeed,as communication forms an integral part of the language, it should be possible to realizesubstantial performance improvements through compiler optimizations.The de�nition of Fortran M opens several avenues for future research. The in-tegration of data-parallel notations such as High Performance Fortran (HPF) withFortran M will allow the implementation of heterogeneous applications, in which aFortran M program coordinates multiple data-parallel computations. Data-parallelsubroutines can be invoked in a speci�ed processor array, with ports used for communi-cation with Fortran M computations. The integration of Fortran 90 M constructs isalso of interest. For example, array sections can be used to specify both mapping to acolumn of a processor array and communication of a column of a data array.20

Process: PROCESSPROCESS COMMONInterface: INPORTOUTPORTControl: PROCESSES/ENDPROCESSESPROCESSDOCommunication: CHANNELMERGERSENDRECEIVEENDCHANNELMOVEPORTPROBEPerformance: PROCESSORSLOCATIONSUBMACHINEFigure 6: Fortran M's Extensions to Fortran 77
21

AcknowledgmentsWe are grateful to Robert Olson for his splendid e�orts developing the prototype For-tran M compiler, and to John Thayer for preparing test and benchmark programs. Thisresearch was supported by the Applied Mathematical Sciences subprogram of the O�ceof Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, andby the National Science Foundation's Center for Research in Parallel Computation, underContract CCR-8809615.

22

Appendix: Fortran M Language De�nitionA. SyntaxBackus-Naur form (BNF) is used to present new syntax, with nonterminal symbols inslanted font, terminal symbols in TYPEWRITER font, and symbols de�ned in Appendix Fof the Fortran 77 standard [30] underlined. The syntax [symbol] is used to representzero or more comma-separated occurrences of symbol ; [symbol](1) represents one or moreoccurrences.A.1 Process, Process Block, Process Do-loopA process has the same syntax as a subroutine, except that the keyword PROCESS issubstituted for SUBROUTINE, INTENT declarations can be provided for dummy arguments,and a process cannot take an assumed size array as a dummy argument.A process call can occur anywhere that a subroutine call can occur. In addition,process calls can occur in process blocks and process do-loops, and recursive process callsare permitted. A process block is a set of statements preceded by a PROCESSES statementand followed by a ENDPROCESSES statement. A block includes zero or one subroutine calls,zero or more process calls, and zero or more process do-loops. A process do-loop has thesame syntax as a do-loop, except that the PROCESSDO keyword is used in place of DO, andthe body of the do-loop can contain only a process do-loop or a process call.A port variable or port array element can be passed as an argument to only a singleprocess in a process block or process do-loop. Other scalar variables and array elementscan be passed to two or more processes in a process block or process do-loop only ifthese processes all declare the corresponding dummy arguments INTENT(IN). A variableor array element passed to a subroutine in a process block cannot also be passed to aprocess in that block.A.2 New DeclarationsFive new declaration statements are de�ned: INPORT, OUTPORT, INTENT, PROCESSORS, andPROCESS COMMON.inport declaration :: INPORT ([data type]) [name](1)outport declaration :: OUTPORT ([data type]) [name](1)intent declaration :: INTENT(IN) [name](1) jINTENT(OUT) [name](1) jINTENT(INOUT) [name](1)machine declaration :: PROCESSORS(bounds)name :: variable name j array name j array declaratordata type :: fortran data type jfortran data type name jINPORT ([data type]) jOUTPORT ([data type])23

In the PROCESSORS statement, bounds has the same syntax as the arguments to anarray declarator. The product of the dimensions must be nonzero. Any program,process, subroutine, or function including a LOCATION or SUBMACHINE annotation mustinclude a PROCESSORS declaration.The symbol fortran data type denotes the six standard Fortran data types. Thedimensions in an array declarator in a port declaration can include integer variablenames in the port declaration, integer parameters, and integer arguments to the processor subroutine in which the declaration occurs. The symbol *" cannot be used to specifyan assumed size.A PROCESS COMMON statement has the same syntax as a COMMON statement.A.3 New Executable StatementsThere are seven new executable statements: CHANNEL, MERGE, MOVEPORT, SEND, RECEIVE,ENDCHANNEL, and PROBE. Each of these takes as arguments a list of control speci�ers,termed a control information list. The SEND and RECEIVE statements also take otherarguments. A control information list can include at most one of each speci�er, exceptthose that name ports. The number of allowable port speci�ers varies from one statementto another. The �rst three of these statements are as follows.channel statement :: CHANNEL([channel control](1))merge statement :: MERGE([merge control](1))moveport statement :: MOVEPORT([moveport control](1))channel control :: outport name j OUT=outport name jinport name j IN=inport name jIOSTAT=storage location j ERR=labelmerge control :: outport speci�er j OUT=outport speci�er jinport name j IN=inport name jIOSTAT=storage location j ERR=labelmoveport control :: port name j FROM=port name jport name j TO=port name jIOSTAT=storage location j ERR=labeloutport speci�er :: outport name j data implied do listoutport name :: port nameinport name :: port nameport name :: variable name j array element nameA CHANNEL statement must include two port speci�ers, and these must name an out-port and an in-port of the same type. If the strings OUT= and IN= are omitted, thesespeci�ers must occur as the �rst and second arguments, respectively.A MERGE statement must include at least two port speci�ers, and these must name anin-port and one or more unique out-ports, all of the same type. If the strings OUT= andIN= are omitted, the out-port speci�ers must precede the in-port speci�er, which mustprecede any other speci�ers, 24

In a MOVEPORT statement, the port speci�ers must name two in-ports or two out-ports,both of the same type. If the strings FROM= and TO= are omitted, these speci�ers mustoccur as the �rst and second arguments, respectively. The �rst then speci�es the \from"port and the second the \to" port.The other four statements are as follows.send statement :: SEND([send control](1)) [argument]receive statement :: RECEIVE([recv control](1)) [variable]close statement :: ENDCHANNEL([send control](1))probe statement :: PROBE([probe control](1))send control :: outport name j PORT=outport name jIOSTAT=storage location j ERR=labelrecv control :: inport name j PORT=inport name jIOSTAT=storage location j ERR=label j END=labelprobe control :: inport name j PORT=inport name jERR=label j IOSTAT=storage location j EMPTY=storage locationstorage location :: variable name j array element nameargument :: expression jvariable :: variable name j array element name j array nameIf a port speci�er does not include the optional characters PORT=, it must be the �rstitem in the control information list. A storage location speci�ed in an IOSTAT= or EMPTY=speci�er must have integer and logical type, respectively.A.4 MappingThe mapping annotations LOCATION and SUBMACHINE are appended to process calls:process call LOCATION(indices)process call SUBMACHINE(indices)where indices has the same syntax as the arguments to an array element name.A.5 RestrictionsPort variables cannot be named in EQUIVALENCE statements. Programs cannot includeCOMMON data; PROCESS COMMON must be used instead.B. ConcurrencyWith two exceptions, a process executes sequentially, in the same manner as a Fortranprogram. That is, each statement terminates execution before the next is executed. The25

two exceptions are the process block and the process do-loop, in which statements executeconcurrently. That is, the processes created to execute these statements may execute inany order or in parallel, subject to the constraint that any process that is not blocked(because of a RECEIVE applied to an empty channel) must eventually execute. A processblock or process do-loop terminates, allowing execution to proceed to the next statement,when all its process and subroutine calls terminate.A process can access its own process common data but not that of other processes.A dummy argument declared INTENT(IN) cannot be modi�ed by the process. If noINTENT declaration is provided for a dummy argument, or it is declared INTENT(INOUT),then the corresponding actual argument, which must be a variable, is updated after theprocess terminates. If a dummy argument is declared INTENT(OUT), the correspondingactual argument must also be a variable, and its value is again updated upon processtermination. However, in this case the value of the variable is unde�ned upon entry tothe process.C. ChannelsProcesses communicate and synchronize by sending and receiving values on typed com-munication streams called channels. A channel is created by a CHANNEL statement, whichalso de�nes the supplied in-port and out-port to be references to the new channel. Achannel is a �rst-in/�rst-out message queue. An element is appended to this queue byapplying the SEND statement to the out-port that references the channel. This statementis asynchronous: it returns immediately. An element is removed from the queue by apply-ing the RECEIVE statement to the in-port that references the channel. This statement issynchronous: it blocks until a value is available. The ENDCHANNEL statement appends anend-of-channel (EOC) message to the queue. The MOVEPORT statement copies a channelreference from one port variable to another.These statements all take as arguments a control information list (cilist). The optionalIOSTAT=, END=, and ERR= speci�ers have the same meaning as the equivalent FortranI/O speci�ers, with end-of-channel treated as end-of-�le, and an operation on an unde�nedport treated as erroneous. An implementation should also provide, as a debugging aid,the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVE statement is appliedto a port that is the only reference to a channel.SEND(cilist) E1,...,En Add the values E1, ..., En (the sources) to the channel referencedby the out-port named in cilist (the target). The source values must match the datatypes speci�ed in the port declaration, in number and type.RECEIVE(cilist) V1,...,Vn Block until the channel referenced by the in-port named incilist (the target) is nonempty. If the next value in the channel is not EOC, movevalues from the channel into the variables V1, ..., Vn (the destinations). The des-tination variables must match the data types speci�ed in the port declaration, innumber and type.ENDCHANNEL(cilist) Append an EOC message to the channel referenced by the out-portnamed in cilist. 26

MOVEPORT(cilist) Copy the value of the port speci�ed \from" in cilist (the source) to theport speci�ed \to" (the target), and set the source port to unde�ned.A port is initially unde�ned. An unde�ned port becomes de�ned if it is included in aCHANNEL (or MERGE: see below) statement, if it occurs as a destination in a RECEIVE, or ifit is named as the target of a MOVEPORT statement whose source is a de�ned port. Anyother statement involving an unde�ned port is erroneous.Application of the ENDCHANNEL statement to an out-port causes that port to becomeunde�ned. The corresponding in-port remains de�ned until the EOC message is receivedby a RECEIVE statement, and then becomes unde�ned. Both in-ports and out-ports be-come unde�ned if they are named as the source of a SEND or MOVEPORToperation.Storage allocated for a channel is reclaimed when both (a) either the out-port has beenclosed, or the out-port goes out of scope, and (b) either EOC is received on the in-port,or the in-port goes out of scope.D. NondeterminismThe MERGE and PROBE statements are used to specify nondeterministic computations.MERGE is identical to CHANNEL, except that it can de�ne multiple out-ports to be referencesto its message queue. Messages are added to the queue as they are sent on out-ports,with the order of messages from each out-port being preserved and all messages eventuallyappearing in the queue. An EOC value is added to the queue only after it has been senton all out-ports.The PROBE statement is used to obtain status information for a channel. Is can onlybe applied to an in-port. The IOSTAT= and ERR= speci�ers in its control list are as in theFortran INQUIRE statement. A logical variable named in an EMPTY= speci�er is assignedthe value true if the channel is known to be empty, and false otherwise. Knowledge aboutsends is presumed to take a non-zero but �nite time to become known to a processprobing an in-port. Hence, a PROBE of an in-port that references a nonempty channel maysignal true if the channel values were only recently communicated. However, if appliedrepeatedly without intervening receives, PROBE will eventually signal false, and will thencontinue to do so.E. MappingThe PROCESSORS declaration and the LOCATION and SUBMACHINE annotations have no se-mantic content, but determine performance by specifying how processes are to be mappedwithin an N -dimensional array of processors (N � 0).The PROCESSORS declaration is analogous to a DIMENSION statement: it declares theshape and dimensions of the processor array that is to apply in the program, process, orsubroutine in which it appears. As we descend a call tree, the shape of this array canchange, but its size can only become smaller, not larger.A LOCATION annotation is analogous to an array reference. It speci�es the virtualprocessor on which the annotated process is to execute. The speci�ed location cannot beoutside the bounds of the processor array speci�ed by the PROCESSORS declaration.27

The SUBMACHINE annotation is analogous to an array reference in a subroutine call.It speci�es that the annotated process is to execute in a virtual computer with its �rstprocessor speci�ed by the annotation, and with additional processors selected in arrayelement order. These processors cannot be outside the bounds of the processor arrayspeci�ed by the PROCESSORS declaration.

28

References[1] Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson,J., and Stevens, R., Portable Programs for Parallel Processors, Holt, Rinehart, andWinston, 1987.[2] Briggs, P., Cooper, K., Hall, M., and Torczon, L., Goal-directed interproceduraloptimization, Report CRPC-TR90102, Center for Research in Parallel Computation,Rice University, Houston, Texas, 1990.[3] Callahan, D., Cooper, K., Hood, R., Kennedy, K., and Torczon, L., Parascope: Aparallel programming environment, Intl J. Supercomputer Applications, 2(4), 1988.[4] Carriero, N., and Gelernter, D., How to Write Parallel Programs, MIT Press, 1990.[5] Chandy, K. M., and Foster, I., Communicating processes, Preprint, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Ill., 1992.[6] Chandy, K. M., and Kesselman, C., Compositional parallel programming in CC++,Technical Report, Caltech, 1992.[7] Chandy, K. M. and Taylor, S., An Introduction to Parallel Programming, Jones andBartlett, 1991.[8] Chapman, B., Mehrotra, P., and Zima, H., Vienna Fortran | A Fortran lan-guage extension for distributed memory systems, Languages, Compilers, and Run-time Environments for Distributed Memory Machines, Elsevier Press, 1992.[9] Cooper, E., and Draves, R., C Threads, Technical Report, Department of ComputerScience, Carnegie Mellon University, Pittsburgh, 1987.[10] Cox, B., and Novobilski, A., Object-Oriented Programming: An Evolutionary Ap-proach, Addison-Wesley, 1991.[11] Dally, W. J., et al., The J-Machine: A �ne-grain concurrent computer, InformationProcessing 89, G. X. Ritter (ed.), Elsevier Science Publishers B.V., North Holland,IFIP, 1989.[12] Dijkstra, E.W., Guarded commands, nondeterminacy and the formal derivation ofprograms, CACM, 18, 453-7, 1975.[13] Dongarra, J., van de Geijn, R., and Walker, D., A look at scalable dense linear algebralibraries, Proc. 1992 Scalable High Performance Computers Conf., IEEE Press, 992.[14] von Eicken, T., Culler, D., Goldstein, S., and Schauser, K., Active messages: Amechanism for integrating communication and computation, Proc. 19th Intl Symp.Computer Architecture, ACM, 1992.[15] Foster, I., Information hiding in parallel programs, Preprint MCS-P290-0292, Math-ematics and Computer Science Division, Argonne National Laboratory, 1992.29

[16] Foster, I., Olson, R., and Tuecke, S., Productive parallel programming: The PCNapproach, Scienti�c Programming, 1(1), 51{66, 1992.[17] Foster, I. and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-Hall, 1989.[18] Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., and Wu,M., Fortran D language speci�cation, Technical Report TR90-141, Department ofComputer Science, Rice University, Houston, Texas, 1990.[19] Hoare, C., Communicating Sequential Processes, CACM, 21(8), 666{677, 1978.[20] Inmos, Ltd, occam Programming Manual, Prentice Hall, 1984.[21] Inmos, Ltd, Transputer Reference Manual, Prentice Hall, 1988.[22] Karp, A., and Babb, R., A comparison of 12 parallel Fortran dialects, IEEE Soft-ware, 5(5), 52{67, 1988.[23] Koelbel, C., Mehrotra, P., and Van Rosendale, J., Supporting shared data structureson distributed memory machines, Proc. 2nd ACM SIGPLAN Symp. on Principlesand Practice of Parallel Programming, ACM, 1990.[24] Lucco, S., and Sharp, O., Parallel programming with coordination structures, Proc.18th ACM POPL, ACM, 1991.[25] Martin, A., The torus: An exercise in constructing a processing surface, Proc. Conf.on VLSI, Caltech, 52{57, 1979.[26] Metcalf, M., and Reid, J., Fortran 90 Explained, Oxford Science Publications,1990.[27] Pancake, C., and Bergmark, D., Do parallel languages respond to the needs of scien-ti�c programmers?, Computer 23(12), 13{23, 1990.[28] Parasoft Corporation, Express user manual, 1989.[29] Parnas, D., On the criteria to be used in decomposing systems into modules, CACM,15(12), 1053-1058, 1972.[30] Programming Language Fortran, American National Standard X3.9-1978, Ameri-can National Standards Institute, 1978.[31] Rosing, M., and Saltz, J., Low-latency messages on distributed-memory multipro-cessors, Technical Report, ICASE Report, Institute for Computer Applications inScience and Engineering, Hampton, Virginia, 1992.[32] Saltz, J., Berryman, H., and Wu, J., Multiprocessors and run-time compilation,ICASE Report 90-59, Institute for Computer Applications in Science and Engineer-ing, Hampton, Virginia, 1990. 30

[33] Seitz, C. L., Multicomputers, Developments in Concurrency and Communication,Addison-Wesley, 1991.[34] Skjellum, A., and Leung, A., Zipcode: A portable multicomputer communicationlibrary atop the Reactive Kernel, Proc. 5th Distributed Memory Computer Conf.,IEEE Press, 767-776, 1990.[35] Sunderam, V., PVM: A framework for parallel distributed computing, Concurrency:Practice and Experience, 2, 315{339, 1990.[36] Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, Englewood Cli�s,N.J., 1989.[37] Thinking Machines Corporation, CM Fortran Reference Manual, Cambridge,Mass., 1989.[38] Young, M., et al., The duality of memory and communication in Mach, Proc. 11thSymp. on Operating System Principles, ACM, 63{76, 1987.

31

