Asymptotics of a Free Boundary Problem*

F. V. Atkinson, ${ }^{\dagger}$ H G. Kaper, Man Kam Kwong
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

May 18, 1995

Abstract

As was shown by Kaper and Kwong [Differential and Integral Equations 3, 353-362], there exists a unique $R>0$, such that the differential equation $$
u^{\prime \prime}+\frac{2 \nu+1}{r} u^{\prime}+u-u^{q}=0, r>0,
$$ $(0 \leq q<1, \nu \geq 0)$ admits a classical solution u, which is positive and monotone on $(0, R)$ and which satisfies the boundary conditions $$
u^{\prime}(0)=0, u(R)=u^{\prime}(R)=0 .
$$

In this article it is shown that $u(0)$ is bounded, but R grows beyond bounds as $q \rightarrow 1$.

AMS(MOS) Subject Classification. Primary 34B15. Secondary 35J25, 35J65.

Key Words and Phrases. Reaction-diffusion equation, free boundary problem, radial solution, Emden-Fowler equation, positive solution, asymptotic behavior.

1 The Problem

In [1], the reaction-diffusion equation $\Delta u+u^{1 / 2}-1=0$ was proposed as a simple model for Tokamak equilibria with magnetic islands. The equation motivated a study of free

[^0]boundary problems for reaction-diffusion equations in $\mathbf{R}^{N}(N=2,3, \ldots)$ of the general form $\Delta u+u^{p}-u^{q}=0$, where $0 \leq q<p \leq 1$. In [2], we showed that there is a unique R ($R>0$) and a unique positive-valued function u on $(0, R)$, such that u is the radial solution of the differential equation which satisfies the boundary conditions $u(R)=0, u^{\prime}(R)=0$. (A radial solution depends only on the radial variable $r=|x|$.) The solution (R, u) of the free boundary problem depends on the values of the exponents p and q.

In this article we analyze the special case $p=1$ in more detail and focus on the behavior of the solution as $q \rightarrow 1$. That is, we are interested in the behavior as $q \rightarrow 1(q<1)$ of the pair (R, u), R a real number ($R>0$), u a positive-valued function on $(0, R)$, which satisfies the boundary value problem

$$
\begin{gather*}
u^{\prime \prime}+\frac{2 \nu+1}{r} u^{\prime}+u-u^{q}=0,0<r<R, \tag{1.1}\\
u^{\prime}(0)=0, u(R)=u^{\prime}(R)=0 . \tag{1.2}
\end{gather*}
$$

We consider ν as a real number, not necessarily half-integer ($\nu \geq 0$). The existence and uniqueness of such a solution follow from [2]. The function u is monotone on $(0, R)$.

2 The Result

We prove the following result.

Theorem 1 For each $q \in[0,1)$, there is a unique $R>0$ such that (1.1), (1.2) admits a (classical) solution u that is positive everywhere on $(0, R)$. The function u is monotonically decreasing on $(0, R) ; u(0)$ is bounded, but R grows beyond bounds as $q \rightarrow 1$.

In the special case $\nu=\frac{1}{2}(N=3)$ we have a lower bound on R,

$$
\begin{equation*}
R>\sqrt{\frac{2}{1-q}}, \quad 0 \leq q<1 . \tag{2.1}
\end{equation*}
$$

However, as we do not have a comparable upper bound, we cannot conclude that $R=$ $\mathrm{O}\left((1-q)^{-1 / 2}\right)$ as $q \rightarrow 1$.

3 The Proof

Using a shooting argument, we replace the boundary value problem (1.1), (1.2) by the initial value problem

$$
\begin{gather*}
u^{\prime \prime}+\frac{2 \nu+1}{r} u^{\prime}+u-u^{q}=0, r>0, \tag{3.1}\\
u(0)=\gamma, u^{\prime}(0)=0 . \tag{3.2}
\end{gather*}
$$

The results of [2] imply that, for any $q \in[0,1)$, there is a unique $\gamma>1$ such that the solution of (3.1), (3.2) decreases from γ to meet the r-axis with zero slope at some value $R>0$. Denoting this solution by $u(\cdot, \gamma)$, we have

$$
\begin{equation*}
u(R, \gamma)=0, u^{\prime}(R, \gamma)=0 \tag{3.3}
\end{equation*}
$$

The lower bound on γ can be sharpened to $(2 /(1+q))^{1 /(1-q)}$, but 1 suffices for our purpose. The proof consists of a detailed investigation of the behavior of $u(\cdot, \gamma)$.

3.1 Down to 1

We begin by showing that $u(r, \gamma)$ decreases monotonically from the value γ at $r=0$ to the value 1 at some finite point r_{0}.

Lemma 1 There exists a point $r_{0}<j_{\nu, 1} /(1-q)^{1 / 2}$ such that $u(\cdot, \gamma)$ is monotonically decreasing on $\left(0, r_{0}\right)$, with $u\left(r_{0}, \gamma\right)=1$ and $u^{\prime}\left(r_{0}, \gamma\right)<0$. Here, $j_{\nu, 1}$ is the first positive zero of J_{ν}-the Bessel function of the first kind of order ν.

Proof. As long as $u>1$, we have $u-u^{q}>(1-q) u$, so $u(\cdot, \gamma)$ oscillates faster than the solution v of the equation

$$
\begin{equation*}
v^{\prime \prime}+\frac{2 \nu+1}{r} v^{\prime}+(1-q) v=0 . \tag{3.4}
\end{equation*}
$$

In particular, $u(\cdot, \gamma)$ reaches the value 1 before v does. Now, $v(r)$ is a constant multiple of $r^{-\nu} J_{\nu}\left(r(1-q)^{1 / 2}\right)$, where J_{ν} is the Bessel function of the first kind of order ν-see, for example, [3]. Hence, $v(r)=1$ for some value $r<j_{\nu, 1} /(1-q)^{1 / 2}$, where $j_{\nu, 1}$ is the first positive zero of J_{ν}. We conclude that there must be a point $r_{0}<j_{\nu, 1} /(1-q)^{1 / 2}$, such that $\gamma>u(r, \gamma)>1$ for $0<r<r_{0}$ and $u\left(r_{0}, \gamma\right)=1$.

Since $u^{\prime}(0, \gamma)=0$ and $u^{\prime \prime}(r, \gamma)<0$ near 0 , it must be the case that $u^{\prime}(r, \gamma)<0$ near 0 .
Suppose $u(\cdot, \gamma)$ were not monotone on $\left(0, r_{0}\right)$. Then there exists a value $r_{1} \in\left(0, r_{0}\right)$ where $u(r, \gamma)$ has a local minimum, with $u\left(r_{1}, \gamma\right)>1$. Because $u(r, \gamma)$ reaches the value 1 at r_{0}, there must then exist a value $r_{2} \in\left(r_{1}, r_{0}\right)$ such that $u\left(r_{2}, \gamma\right)=u\left(r_{1}, \gamma\right)$ and $u^{\prime}\left(r_{2}, \gamma\right) \leq 0$. Multiplying the differential equation (3.1) by u^{\prime} and integrating over (r_{1}, r_{2}), we find that

$$
\begin{equation*}
\frac{1}{2}\left(u^{\prime}\left(r_{2}, \gamma\right)\right)^{2}=-(2 \nu+1) \int_{r_{1}}^{r_{2}} \frac{\left(u^{\prime}(r, \gamma)\right)^{2}}{r} d r . \tag{3.5}
\end{equation*}
$$

But here we have a contradiction, as the two sides of this identity have opposite signs. It must therefore be the case that $u(\cdot, \gamma)$ is monotone on $\left(0, r_{0}\right)$.

The monotonicity of $u(\cdot, \gamma)$ on $\left(0, r_{0}\right)$ implies that $u^{\prime}\left(r_{0}, \gamma\right) \leq 0$. If $u^{\prime}\left(r_{0}, \gamma\right)=0$, then it follows from the Lipschitz continuity of the function $u-u^{q}$ for $u>0$ and the consequential uniqueness of the solution of the initial value problem for (3.1) in the direction of decreasing r starting at $r=r_{0}$ that $u(r, \gamma)=1$ for all $r \in\left(0, r_{0}\right)$. But then we have a contradiction, as $u(0, \gamma)=\gamma>1$. We conclude that $u^{\prime}\left(r_{0}, \gamma\right)<0$.

3.2 Beyond r_{0}

From Lemma 1 we know that $u(r, \gamma)$ decreases monotonically until it reaches the value 1 with a negative slope at $r=r_{0}$. Beyond $r_{0}, u(r, \gamma)$ decreases further until either it reaches the value 0 with a negative or zero slope, or it bottoms out at some finite value of r with a minimum value between 0 and 1 .

Let r_{1} be the point where $u(r, \gamma)$ ceases to be positive,

$$
\begin{equation*}
r_{1}=\sup \left\{r>r_{0}: u(s, \gamma)>0,0<s<r\right\} . \tag{3.6}
\end{equation*}
$$

If r_{1} is finite and $u\left(r_{1}, \gamma\right)=0$, we do not consider $u(\cdot, \gamma)$ beyond r_{1}. In this case, we can use the same argument as in the proof of Lemma 1 to show that $u(\cdot, \gamma)$ is monotonically decreasing on the entire interval $\left(0, r_{1}\right)$. In particular, if γ is such that not only $u\left(r_{1}, \gamma\right)=0$, but also $u^{\prime}\left(r_{1}, \gamma\right)=0$, then $u(\cdot, \gamma)$ defines the (unique) solution u of the free boundary problem (3.1), (3.3), where $R=r_{1}$.

If $r_{1}=\infty$, then $u(r, \gamma)$ has a positive minimum at some finite value of r, after which it oscillates with decreasing amplitude around the constant value 1 .

Lemma 2 For $0<r<r_{1}$, we have $0<u(r, \gamma)<\gamma$.
Proof. The lemma is true for $0<r \leq r_{0}$ (cf. Lemma 1). Beyond r_{0}, we use a simple energy argument. The energy E of any solution u of (3.1), defined by the expression

$$
\begin{equation*}
E(r)=\frac{1}{2}\left(u^{\prime}(r)\right)^{2}+\frac{1}{2}(u(r))^{2}-\frac{1}{q+1}(u(r))^{q+1}, \tag{3.7}
\end{equation*}
$$

is a monotonically decreasing function of its argument, as $E^{\prime}(r)=-((2 \nu+1) / r)\left(u^{\prime}(r)\right)^{2} \leq 0$ for all $r \geq 0$.

Suppose the lemma were false for $r_{0}<r<r_{1}$. Then $u\left(r_{2}, \gamma\right)=\gamma$ for some $r_{2} \in\left(r_{0}, r_{1}\right)$, where $E\left(r_{2}\right) \geq \gamma^{2} / 2-\gamma^{q+1} /(q+1)=E(0)$, and we have a contradiction.

Let w be defined in terms of $u(\cdot, \gamma)$ by the expression

$$
\begin{equation*}
w(r)=\frac{r u(r, \gamma)}{\gamma} \tag{3.8}
\end{equation*}
$$

This function is a solution of the initial value problem

$$
\begin{gather*}
w^{\prime \prime}+\frac{2 \nu-1}{r} w^{\prime}+\left(1-\frac{1}{(u(r, \gamma))^{1-q}}-\frac{2 \nu-1}{r^{2}}\right) w=0, r>0, \tag{3.9}\\
w(0)=0, w^{\prime}(0)=1 . \tag{3.10}
\end{gather*}
$$

It vanishes when u vanishes, while its derivative vanishes when both u and u^{\prime} vanish. Furthermore,

$$
\begin{equation*}
0<w(r)<r, 0<r<r_{1} . \tag{3.11}
\end{equation*}
$$

The following lemma gives a lower bound for r_{1}.

Lemma 3 We have $r_{1}>j_{\nu, 1} / \delta$, where

$$
\begin{equation*}
\delta=\sqrt{1-\gamma^{-(1-q)}} \tag{3.12}
\end{equation*}
$$

Proof. Because $u(r, \gamma)<\gamma, w$ oscillates less than the solution v of the initial value problem

$$
\begin{equation*}
v^{\prime \prime}+\frac{2 \nu-1}{r} w^{\prime}+\left(\delta^{2}-\frac{2 \nu-1}{r^{2}}\right) v=0, r>0 ; v(0)=0, v^{\prime}(0)=1 \tag{3.13}
\end{equation*}
$$

at least as long as v is positive. Since $v(r)=2^{\nu} \Gamma(\nu+1) \delta^{-\nu} r^{1-\nu} J_{\nu}(\delta r)$, the first zero of v occurs at $j_{\nu, 1} / \delta$. It must therefore be the case that $r_{1}>j_{\nu, 1} / \delta$.

3.3 Bounds on $\left(0, j_{\nu, 1} / \delta\right)$

We rewrite the equation (3.9) in the form

$$
\begin{equation*}
w^{\prime \prime}+\frac{2 \nu-1}{r} w^{\prime}+\left(\delta^{2}-\frac{2 \nu-1}{r^{2}}\right) w=f(w) \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
f(w)=\frac{1}{\gamma^{1-q}}\left\{\left(\frac{r}{w}\right)^{1-q}-1\right\} w \tag{3.15}
\end{equation*}
$$

Using the method of variation of parameters, we obtain the integral equation for w,

$$
\begin{equation*}
w(r)=r g(\delta r)+\frac{\pi}{2} \int_{0}^{r} r^{1-\nu} s^{\nu}\left\{J_{\nu}(\delta s) Y_{\nu}(\delta r)-Y_{\nu}(\delta s) J_{\nu}(\delta r)\right\} f(w(s)) d s \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\rho)=2^{\nu} \Gamma(\nu+1) \rho^{-\nu} J_{\nu}(\rho) \tag{3.17}
\end{equation*}
$$

J_{ν} and Y_{ν} are the Bessel functions of the first and second kind, respectively, of order ν. The expression (3.16) holds for all $r \in\left[0, r_{1}\right)$ or, if r_{1} is finite, for all $r \in\left[0, r_{1}\right]$. We now restrict r to the interval $\left[0, j_{\nu, 1} / \delta\right]$.

Lemma 4 For $0<r<j_{\nu, 1} / \delta$, we have

$$
\begin{equation*}
0<r g(\delta r)<w(r)<r\left(g(\delta r)+\frac{\phi(\delta r)}{\log \gamma}\right) \tag{3.18}
\end{equation*}
$$

where g is defined in (3.17) and

$$
\begin{equation*}
\phi(\rho)=\frac{\rho^{2}(g(\rho))^{-1} \log (g(\rho))^{-1}}{4(\nu+1)} \tag{3.19}
\end{equation*}
$$

Proof. Take any $r \in\left(0, j_{\nu, 1} / \delta\right)$. It follows from the Kneser-Sommerfeld expansion [3, Section 15.42] that

$$
\begin{equation*}
J_{\nu}(\delta s) Y_{\nu}(\delta r)-Y_{\nu}(\delta s) J_{\nu}(\delta r)=\frac{4 \delta r J_{\nu}(\delta r)}{\pi J_{\nu}(\delta s)} \sum_{n=1}^{\infty} \frac{\left(J_{\nu}\left(j_{\nu, n} s / r\right)\right)^{2}}{\left(j_{\nu, n}^{2}-(\delta r)^{2}\right) j_{\nu, n} J_{\nu}^{\prime 2}\left(j_{\nu, n}\right)}, \tag{3.20}
\end{equation*}
$$

for $0 \leq s \leq r$. All the terms in the right member are positive, so the expression in the left member is positive. Furthermore, $f(w(s))$ is positive for $0 \leq s \leq r$. Therefore, the integral in (3.16) is positive. Obviously, $g(\delta r)$ is positive, so

$$
\begin{equation*}
w(r)>r g(\delta r)>0,0<r<j_{\nu, 1} / \delta . \tag{3.21}
\end{equation*}
$$

It remains to establish the upper bound on $w(r)$ in (3.18). From (3.21) and the fact that g is decreasing on $\left(0, j_{\nu, 1}\right)$ we deduce that

$$
\begin{equation*}
\frac{s}{w(s)}<\frac{1}{g(\delta s)} \leq \frac{1}{g(\delta r)}, 0 \leq s \leq r . \tag{3.22}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f(w(s))<\frac{(g(\delta r))^{-(1-q)}-1}{\gamma^{1-q}} w(s), 0 \leq s \leq r . \tag{3.23}
\end{equation*}
$$

Furthermore, $w(s) \leq s$, cf. (3.11), so

$$
\begin{align*}
& w(r)-r g(\delta r)=\frac{\pi}{2} \int_{0}^{r} r^{1-\nu} s^{\nu}\left\{J_{\nu}(\delta s) Y_{\nu}(\delta r)-Y_{\nu}(\delta s) J_{\nu}(\delta r)\right\} f(w(s)) d s \\
& \quad \leq r \frac{(g(\delta r))^{-(1-q)}-1}{\gamma^{1-q}-1}\left[\rho^{-\nu} \frac{\pi}{2} \int_{0}^{\rho}\left\{J_{\nu}(z) Y_{\nu}(\rho)-Y_{\nu}(z) J_{\nu}(\rho)\right\} z^{\nu+1} d z\right]_{\rho=\delta r} . \tag{3.24}
\end{align*}
$$

The expression in square brackets can be evaluated by means of the recurrence formulae for Bessel functions [3, Section 3.2] and the resulting expression can be simplified further by means of the Wronskian [3, Section 3.63],

$$
\begin{equation*}
\rho^{-\nu} \frac{\pi}{2} \int_{0}^{\rho}\left\{J_{\nu}(z) Y_{\nu}(\rho)-Y_{\nu}(z) J_{\nu}(\rho)\right\} z^{\nu+1} d z=1-g(\rho) \tag{3.25}
\end{equation*}
$$

We estimate this expression by substituting the series expansion for the Bessel function J_{ν} and truncating after the first term,

$$
\begin{equation*}
1-g(\rho)=1-2^{\nu} \Gamma(\nu+1) \rho^{-\nu} J_{\nu}(\rho) \leq \frac{\rho^{2}}{4(\nu+1)} . \tag{3.26}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left[\rho^{-\nu} \frac{\pi}{2} \int_{0}^{\rho}\left\{J_{\nu}(z) Y_{\nu}(\rho)-Y_{\nu}(z) J_{\nu}(\rho)\right\} z^{\nu+1} d z\right]_{\rho=\delta r} \leq \frac{(\delta r)^{2}}{4(\nu+1)} . \tag{3.27}
\end{equation*}
$$

To estimate the factor in front of the square brackets in (3.24), we observe that $0<g(\delta r)<1$ on ($0, j_{\nu, 1} / \delta$) and $\gamma>1$. Furthermore, one readily verifies that

$$
\frac{1-x^{1-q}}{\log x^{-1}} \leq \frac{y^{1-q}-1}{\log y}
$$

for any pair (x, y) with $0<x \leq 1 \leq y$. Therefore,

$$
\begin{align*}
& \frac{(g(\delta r))^{-(1-q)}-1}{\gamma^{1-q}-1}=(g(\delta r))^{-(1-q)} \frac{1-(g(\delta r))^{1-q}}{\gamma^{1-q}-1} \\
& \leq \frac{(g(\delta r))^{-(1-q)} \log (g(\delta r))^{-1}}{\log \gamma} \leq \frac{(g(\delta r))^{-1} \log (g(\delta r))^{-1}}{\log \gamma} \tag{3.28}
\end{align*}
$$

Using (3.27) and (3.28) in (3.24), we obtain the estimate

$$
\begin{equation*}
w(r)-r g(\delta r) \leq r \frac{\phi(\delta r)}{\log \gamma} \tag{3.29}
\end{equation*}
$$

where ϕ is defined in (3.19). The upper bound for $w(r)$ given in (3.18) follows.

In terms of u, we have the following bounds:

$$
\begin{equation*}
0<\gamma g(\delta r)<u(r, \gamma)<\gamma\left[g(\delta r)+\frac{\phi(\delta r)}{\log \gamma}\right], 0<r<\frac{j_{\nu, 1}}{\delta} \tag{3.30}
\end{equation*}
$$

Because $\phi(\rho)$ increases beyond bounds as $g(\rho)$ decreases to 0 , the upper bound in (3.18) or (3.30) increases indefinitely as r approaches the right endpoint of the interval $\left(0, j_{\nu, 1} / \delta\right)$.

In the following analysis we also need an estimate of the quantity $r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)$. It is given by the expression

$$
\begin{equation*}
r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)=h(\delta r)+\delta \frac{\pi}{2} \int_{0}^{r} r^{1-\nu} s^{\nu}\left\{J_{\nu}(\delta s) Y_{\nu-1}(\delta r)-Y_{\nu}(\delta s) J_{\nu-1}(\delta r)\right\} f(w(s)) d s \tag{3.31}
\end{equation*}
$$

where

$$
\begin{equation*}
h(\rho)=2^{\nu} \Gamma(\nu+1) \rho^{1-\nu} J_{\nu-1}(\rho) . \tag{3.32}
\end{equation*}
$$

Like (3.16), (3.31) holds for all $r \in\left[0, r_{1}\right)$ or, if r_{1} is finite, for all $r \in\left[0, r_{1}\right]$. The following lemma gives an estimate on ($0, j_{\nu, 1} / \delta$).

Lemma 5 For $0<r<j_{\nu, 1} / \delta$, we have

$$
\begin{equation*}
\left|r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)-h(\delta r)\right|<2(\nu+1) \frac{\phi(\delta r)}{\log \gamma}, \tag{3.33}
\end{equation*}
$$

where h is defined in (3.32) and ϕ is defined in (3.19).

Proof. The proof is similar to, although slightly more involved than, the proof of Lemma 4. Instead of (3.16), we use (3.31). The analog of (3.24) is

$$
\begin{align*}
& \delta \frac{\pi}{2} \int_{0}^{r} r^{1-\nu} s^{\nu}\left\{J_{\nu}(\delta s) Y_{\nu-1}(\delta r)-Y_{\nu}(\delta s) J_{\nu-1}(\delta r)\right\} f(w(s)) d s \\
& \quad \leq \frac{(g(\delta r))^{-(1-q)}-1}{\gamma^{1-q}-1}\left[\rho^{1-\nu} \frac{\pi}{2} \int_{0}^{\rho}\left\{J_{\nu}(z) Y_{\nu-1}(\rho)-Y_{\nu}(z) J_{\nu-1}(\rho)\right\} z^{\nu+1} d z\right]_{\rho=\delta r} \tag{3.34}
\end{align*}
$$

The expression in square brackets can again be evaluated; instead of (3.25) we have

$$
\begin{equation*}
\rho^{1-\nu} \frac{\pi}{2} \int_{0}^{\rho}\left\{J_{\nu}(z) Y_{\nu-1}(\rho)-Y_{\nu}(z) J_{\nu-1}(\rho)\right\} z^{\nu+1} d z=2(\nu+1)-h(\rho), \tag{3.35}
\end{equation*}
$$

where

$$
\begin{equation*}
2(\nu+1)-h(\rho)=2(\nu+1)-2^{\nu} \Gamma(\nu+1) \rho^{1-\nu} J_{\nu-1}(\rho) \leq \frac{1}{2} \rho^{2} . \tag{3.36}
\end{equation*}
$$

The lemma follows from (3.31), (3.34), (3.35), (3.36), and (3.27).

3.4 Estimates at r_{0}

We use the results of Lemmas 4 and 5 to estimate r_{0} and $r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}$ at r_{0}.

Lemma 6 Let $a \in\left(j_{\nu-1,1}, j_{\nu, 1}\right)$ be fixed. Then there exists a constant $\gamma_{1}>1$ that does not depend on q, such that

$$
\begin{equation*}
r_{0}^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}\left(r_{0}\right)<-\frac{1}{2}|h(a)| \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a}{\delta}<r_{0}<\left(1+\frac{4 \nu}{|h(a)|}\right)^{1 /(2 \nu)} \frac{a}{\delta}, \tag{3.38}
\end{equation*}
$$

for all $\gamma \geq \gamma_{1}$.

Proof. With the choice of a indicated in the statement of the lemma, we have $g(a)>0$ and $h(a)<0$. These inequalities follow from the interlacing property of the zeros of Bessel functions,

$$
0<j_{\nu, 1}<j_{\nu+1,1}<j_{\nu, 2}<j_{\nu+1,2}<j_{\nu, 3}<\ldots ;
$$

cf. [3, Section 15.22].
We begin by observing that w oscillates less than v, where $v(r)=r g(\delta r), g$ defined by (3.17). Therefore r_{0}, which is defined by the identity $w(r)=r / \gamma$, is certainly beyond the point r_{2}, where $g\left(\delta r_{2}\right)=1 / \gamma$. Therefore, if

$$
\begin{equation*}
\gamma_{0}=1 / g(a), \tag{3.39}
\end{equation*}
$$

then $g\left(\delta r_{2}\right) \leq g(a)$ for all $\gamma \geq \gamma_{0}$. Now, g is monotonically decreasing between a and $j_{\nu-1,1}$, so then we also have $\delta r_{2} \geq a$ for all $\gamma \geq \gamma_{0}$. Since $r_{0}>r_{2}$, we have thus achieved that

$$
\begin{equation*}
a / \delta<r_{0} . \tag{3.40}
\end{equation*}
$$

for all $\gamma \geq \gamma_{0}$.
With $r_{3}=a / \delta$, it follows from (3.33) that

$$
\begin{equation*}
r_{3}^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}\left(r_{3}\right)<-|h(a)|+2(\nu+1) \frac{\phi(a)}{\log \gamma} . \tag{3.41}
\end{equation*}
$$

Here, $h(a)$ and $\phi(a)$ do not depend on q or γ. Therefore, if we now define γ_{1},

$$
\begin{equation*}
\gamma_{1}=\min \left\{\gamma_{0}, \exp \left(2(\nu+1) \frac{\phi(a)}{|h(a)|}\right)\right\} \tag{3.42}
\end{equation*}
$$

then γ_{1} is independent of q and

$$
\begin{equation*}
r_{3}^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}\left(r_{3}\right)<-\frac{1}{2}|h(a)| \tag{3.43}
\end{equation*}
$$

for all $\gamma \geq \gamma_{1}$. Writing the differential equation (3.9) in the form

$$
\begin{equation*}
\left(r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}\right)^{\prime}=-\left(1-u^{-(1-q)}\right) \tag{3.44}
\end{equation*}
$$

we observe that the function $r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}$ is decreasing as long as $u(r, \gamma)>1$ - that is, up to r_{0}. Therefore, the bound (3.43) extends to the entire interval $\left[r_{3}, r_{0}\right]$, and we have

$$
\begin{equation*}
r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)<-\frac{1}{2}|h(a)|, r_{3} \leq r \leq r_{0} \tag{3.45}
\end{equation*}
$$

for all $\gamma \geq \gamma_{1}$. In particular, the inequality holds at r_{0}, as asserted in (3.37).
Multiplying both sides of the inequality (3.45) by $r^{2 \nu-1}$ and integrating over the interval $\left(r_{3}, r_{0}\right)$, we find

$$
\begin{equation*}
\left(\frac{w\left(r_{3}\right)}{r_{3}}+\frac{|h(a)|}{4 \nu}\right) r_{3}^{2 \nu}-\frac{|h(a)|}{4 \nu} r_{0}^{2 \nu}>\frac{w\left(r_{0}\right)}{r_{0}} r_{0}^{2 \nu} \tag{3.46}
\end{equation*}
$$

Here, we estimate the expression in the right member from below by 0 . In the left member, we estimate the ratio $w\left(r_{3}\right) / r_{3}$ from above by 1 ; cf. (3.11). Thus,

$$
\begin{equation*}
r_{0}^{2 \nu}<\left(1+\frac{4 \nu}{|h(\boldsymbol{a})|}\right) r_{3}^{2 \nu} \tag{3.47}
\end{equation*}
$$

The inequalities (3.38) now follow from (3.40) and (3.47).

3.5 Down to 0

We are now in a position to prove that the continuation of u beyond r_{0} decreases to 0 for all sufficiently large γ, independently of q.

Lemma 7 There exists a constant γ_{2} that does not depend on $q\left(\gamma_{2} \geq \gamma_{1}\right.$, where γ_{1} is the constant introduced in Lemma 6), such that $r_{1}<\infty$ for all $\gamma \geq \gamma_{2}$.

Proof. The proof is by contradiction, where we assume that, for some $\gamma \geq \gamma_{1}$, the solution $u(\cdot, \gamma)$ of $(3.1),(3.2)$ is positive for all $r \geq 0$.

Consider the function w defined by (3.8). By assumption, w is positive for all $r>0$. Because $\left(r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}\right)^{\prime}=(r / \gamma)\left(u^{q}-u\right)$ and $u^{q}-u<1-q$ for $u>0$, we have

$$
\begin{equation*}
\left(r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}\right)^{\prime}(r)<\frac{(1-q) r}{\gamma}, r>0 \tag{3.48}
\end{equation*}
$$

Integrating (3.48) from r_{0} to any point $r>r_{0}$, and using the estimate (3.37) at r_{0}, we find

$$
\begin{equation*}
r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)<-\frac{1}{2}|h(a)|+\frac{(1-q) r^{2}}{2 \gamma}, r>r_{0}, \tag{3.49}
\end{equation*}
$$

for all $\gamma \geq \gamma_{1}$. Because $\gamma \delta^{2}=\gamma-\gamma^{q}>\gamma^{1-q}-1>(1-q) \log \gamma$, it follows that

$$
\begin{equation*}
r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)<-\frac{1}{2}|h(a)|+\frac{r^{2} \delta^{2}}{2 \log \gamma}, r>r_{0} \tag{3.50}
\end{equation*}
$$

for all $\gamma \geq \gamma_{1}$.
Now we restrict r to a compact interval $\left[r_{0}, r_{2}\right.$], where

$$
\begin{equation*}
r_{2}=b / \delta, \tag{3.51}
\end{equation*}
$$

and $b>a$ is a suitably chosen constant. Defining the constant γ_{2} by

$$
\begin{equation*}
\gamma_{2}=\min \left\{\gamma_{1}, \mathrm{e}^{2 b^{2} /|h(a)|}\right\}, \tag{3.52}
\end{equation*}
$$

we then have

$$
\begin{equation*}
\frac{r^{2} \delta^{2}}{2 \log \gamma} \leq \frac{1}{4}|h(a)|, r_{0} \leq r \leq r_{2}, \tag{3.53}
\end{equation*}
$$

for all $\gamma \geq \gamma_{2}$, so (3.50) reduces to

$$
\begin{equation*}
r^{1-2 \nu}\left(r^{2 \nu-1} w\right)^{\prime}(r)<-\frac{1}{4}|h(a)|, r_{0} \leq r \leq r_{2} \tag{3.54}
\end{equation*}
$$

for all $\gamma \geq \gamma_{2}$. Hence,

$$
\begin{equation*}
w\left(r_{2}\right)<\left[(a / b)^{2 \nu} \frac{w\left(r_{0}\right)}{r_{0}}-\left(1-(a / b)^{2 \nu}\right) \frac{|h(a)|}{8 \nu}\right] r_{2} . \tag{3.55}
\end{equation*}
$$

Using (3.38) to estimate $w\left(r_{0}\right) / r_{0}$ and writing the inequality in terms of u, we thus find that

$$
\begin{equation*}
u\left(r_{2}, \gamma\right)<(a / b)^{2 \nu}\left(1+\frac{4 \nu}{|h(a)|}\right)^{1 /(2 \nu)}-\gamma\left(1-(a / b)^{2 \nu}\right) \frac{|h(a)|}{8 \nu} \tag{3.56}
\end{equation*}
$$

for all $\gamma \geq \gamma_{2}$.
But now we have a contradiction, as the expression in the right member of this inequality certainly becomes negative for sufficiently large values of γ. We conclude therefore that $u(\cdot, \gamma)$ reaches the value 0 at some finite point r_{1}, as claimed.

3.6 Completion of the Proof

According to Lemma $7, u(\cdot, \gamma)$ ceases to be positive at a finite point r_{1} for all $\gamma \geq \gamma_{2}$, where γ_{2} is a constant that does not depend on q. Obviously, r_{1} depends on the value of γ; in fact, it decreases as γ increases. Let

$$
\begin{equation*}
\Gamma=\inf \left\{\gamma>1: r_{1}<\infty\right\} \tag{3.57}
\end{equation*}
$$

If $\gamma=u(0)=\Gamma$, then $u(\cdot, \gamma)$ reaches the r-axis with a horizontal slope, so $u(\cdot, \Gamma)$ defines the unique solution u of the free boundary problem (1.1), (1.2), where

$$
\begin{equation*}
R=r_{1}(\Gamma) \tag{3.58}
\end{equation*}
$$

Obviously, Γ depends on q. However, it follows from Lemma 7 that $1<\Gamma \leq \gamma_{2}$, so $u(0)$ is bounded as $q \rightarrow 1(q<1)$.

It remains to investigate the behavior of R as $q \rightarrow 1(q<1)$. Because Γ is bounded, $\lim _{q \rightarrow 1} \Gamma^{1-q}=1$. Then it follows from (3.12) that $\lim _{q \rightarrow 1} \delta=0$, and therefore, by Lemma 3 , $\lim _{q \rightarrow 1} R=\infty$. Thus, the proof of the theorem is complete.

3.7 Special Case: $N=3$

In the special case $N=3\left(\nu=\frac{1}{2}\right)$, it is actually possible to find a lower bound for R that shows that R grows beyond bounds as $q \rightarrow 1$.

A simple energy argument gives the inequality

$$
\begin{equation*}
0=E(R)<E(0)=\frac{\Gamma^{2}}{2}-\frac{\Gamma^{1+q}}{1+q} \tag{3.59}
\end{equation*}
$$

cf. (3.7). Hence,

$$
\begin{equation*}
\Gamma^{1-q}>\frac{2}{1+q} \tag{3.60}
\end{equation*}
$$

Next, we use an energy argument for (3.9). If $\nu=\frac{1}{2}$, this equation reduces to

$$
\begin{equation*}
w^{\prime \prime}+w-\Gamma^{-(1-q)} r^{1-q} w^{q}=0 \tag{3.61}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left(w^{\prime 2}+w^{2}-\frac{2}{1+q} \Gamma^{-(1-q)} r^{1-q} w^{1+q}\right)^{\prime}=-2 \frac{1-q}{1+q} \Gamma^{-(1-q)} r^{-q} w^{1+q} \tag{3.62}
\end{equation*}
$$

Upon integration over $(0, R)$, the left member yields -1 ; in the right member we use the inequality $w(r)<r$ to obtain the estimate

$$
\begin{equation*}
\int_{0}^{R} r^{-q} w^{1+q} d r<\frac{1}{2} R^{2} \tag{3.63}
\end{equation*}
$$

Thus, using (3.60), we find that

$$
\begin{equation*}
R>\sqrt{\frac{2}{1-q}} \tag{3.64}
\end{equation*}
$$

References

[1] G. Miller, V. Faber, A. B. White, Jr., Finding plasma equilibria with magnetic islands, J. Computational Physics 79 (1988), 417-435.
[2] H. G. Kaper and M. K. Kwong, Free Boundary Problems for Emden-Fowler Equations, Differential and Integral Equations 3 (1990), 353-362.
[3] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge University Press (1966).

[^0]: *This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Computational and Technology Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.
 ${ }^{\dagger}$ Permanent address: Department of Mathematics, University of Toronto, Toronto, M5S 1A1, Ontario, Canada.

