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Abstract

As was shown by Kaper and Kwong [Differential and Integral Equations 3, 353-362],
there exists a unique R > 0, such that the differential equation

2+ 1
W it =0, >0,
r

(0 < ¢q <1, v > 0) admits a classical solution «, which is positive and monotone on
(0, R) and which satisfies the boundary conditions
u'(0) =0, u(R) =u'(R) = 0.

In this article it is shown that «(0) is bounded, but R grows beyond bounds as ¢ — 1.
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1 The Problem

In [1], the reaction-diffusion equation Au + u'/? — 1 = 0 was proposed as a simple model
for Tokamak equilibria with magnetic islands. The equation motivated a study of free
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boundary problems for reaction-diffusion equations in RN (N = 2,3,...) of the general
form Au + u? —u? = 0, where 0 < g < p < 1. In [2], we showed that there is a unique R
(R > 0) and a unique positive-valued function u on (0, R), such that u is the radial solution
of the differential equation which satisfies the boundary conditions u(R) = 0, «/(R) = 0.
(A radial solution depends only on the radial variable r = |z|.) The solution (R, u) of the
free boundary problem depends on the values of the exponents p and g¢.

In this article we analyze the special case p = 1 in more detail and focus on the behavior
of the solution as ¢ — 1. That is, we are interested in the behavior as ¢ — 1 (¢ < 1) of the
pair (R, u), R a real number (R > 0), u a positive-valued function on (0, R), which satisfies
the boundary value problem

2 1
u”—l—iu’—l—u—uq:0,0<r<R, (1.1)
r
u'(0)=0, w(R)=u'(R)=0. (1.2)

We consider v as a real number, not necessarily half-integer (v > 0). The existence and
uniqueness of such a solution follow from [2]. The function u is monotone on (0, R).

2 The Result

We prove the following result.

Theorem 1 For each q € [0,1), there is a unique R > 0 such that (1.1),(1.2) admits a
(classical) solution u that is positive everywhere on (0, R). The function u is monotonically
decreasing on (0, R); w(0) is bounded, but R grows beyond bounds as ¢ — 1.

In the special case v = £ (N = 3) we have a lower bound on R,

R —, 0Z 1. 2.1
>0y 0=as (2.1)

However, as we do not have a comparable upper bound, we cannot conclude that R =
O((1—¢q)~"/?) as ¢ — 1.

3 The Proof

Using a shooting argument, we replace the boundary value problem (1.1), (1.2) by the initial
value problem

2 1
u”—l—iu’+u—uq:0,7‘>0, (3.1)
r
u(0) =7, v'(0) = 0. (3.2)



The results of [2] imply that, for any ¢ € [0, 1), there is a unique 7 > 1 such that the
solution of (3.1), (3.2) decreases from v to meet the r-axis with zero slope at some value
R > 0. Denoting this solution by u(-,7), we have

u(R,v) =0, v'(R,7)=0. (3.3)

The lower bound on vy can be sharpened to (2/(14¢))/(1=9), but 1 suffices for our purpose.
The proof consists of a detailed investigation of the behavior of u(-, 7).

3.1 Downtol

We begin by showing that u(r,~) decreases monotonically from the value v at » = 0 to the
value 1 at some finite point rg.

Lemma 1 There exists a point 1o < j,1/(1 — q)'1? such that u(-,7) is monotonically de-
creasing on (0,79), with u(rg,v) = 1 and v/'(rq,v) < 0. Here, j,1 is the first positive zero
of J,—the Bessel function of the first kind of order v.

Proof. Aslong as u > 1, we have v — u? > (1 — q)u, so u(-,7) oscillates faster than the
solution v of the equation

o + 21/7‘7—%11/ +(1—-¢)v=0. (3.4)
In particular, u(-,7) reaches the value 1 before v does. Now, v(r) is a constant multiple
of 7= J,(r(1 = ¢)"/?), where J, is the Bessel function of the first kind of order v—see, for
example, [3]. Hence, v(r) = 1 for some value r < j,1/(1 — q)'/?, where Jua is the first
positive zero of J,. We conclude that there must be a point ro < j,1/(1 — q)1/2, such that
v > u(r,y)>1for 0 <r < rgand u(rg,y) = 1.

Since 4/(0,7) = 0 and u”(r,7) < 0 near 0, it must be the case that u'(r,v) < 0 near 0.

Suppose u(-,v) were not monotone on (0,rp). Then there exists a value 71 € (0,70)
where u(r,v) has a local minimum, with u(rq,y) > 1. Because u(r,vy) reaches the value 1 at
7o, there must then exist a value ry € (rq,7rg) such that u(rg,vy) = u(ry,7) and v'(rg,v) < 0.
Multiplying the differential equation (3.1) by ' and integrating over (ry,rz), we find that

1 72 / 2
S = —v gy [, (35)
T1 T
But here we have a contradiction, as the two sides of this identity have opposite signs. It
must therefore be the case that u(-, ) is monotone on (0, 7).

The monotonicity of u(-,v) on (0, ro) implies that u'(rg,v) < 0. If w/(rg,v) =0, then it
follows from the Lipschitz continuity of the function u — «? for v > 0 and the consequential
uniqueness of the solution of the initial value problem for (3.1) in the direction of decreasing
r starting at r = rq that u(r,y) = 1 for all » € (0,79). But then we have a contradiction,
as u(0,7) =7 > 1. We conclude that «/(rg,v) < 0. 1



3.2 Beyond rg

From Lemma 1 we know that u(r,~) decreases monotonically until it reaches the value 1
with a negative slope at r = ro. Beyond rq, u(r,v) decreases further until either it reaches
the value 0 with a negative or zero slope, or it bottoms out at some finite value of r with a
minimum value between 0 and 1.

Let 71 be the point where u(r,v) ceases to be positive,
ry=sup {r>rg:u(s,7)>0,0<s<r}. (3.6)

If 71 is finite and u(ry,7) = 0, we do not consider u(-,v) beyond ri. In this case, we can
use the same argument as in the proof of Lemma 1 to show that w(-,7) is monotonically
decreasing on the entire interval (0,71). In particular, if v is such that not only u(ry,v) = 0,
but also u/(r1,7) = 0, then u(-,v) defines the (unique) solution u of the free boundary
problem (3.1), (3.3), where R = rq.

If 1 = oo, then u(r,v) has a positive minimum at some finite value of r, after which it
oscillates with decreasing amplitude around the constant value 1.

Lemma 2 For 0 < r < ry, we have 0 < u(r,y) < 7.

Proof. The lemma is true for 0 < r < rg (cf. Lemma 1). Beyond rg, we use a simple
energy argument. The energy F of any solution u of (3.1), defined by the expression

Lo ey L 2 1 g+1
B(r) = S+ 5u(n)? = —u(n) (37)
is a monotonically decreasing function of its argument, as E'(r) = —((2v+1)/r)(«/(r))? <0

for all » > 0.

Suppose the lemma were false for rqg < 7 < rq. Then u(ry,v) =7 for some r3 € (ro,71),
where E(ry) > v%/2 — 471 /(¢4 1) = E(0), and we have a contradiction. 1

Let w be defined in terms of u(-,7) by the expression

w(r) = ru(r,’y)‘ (3.8)
7
This function is a solution of the initial value problem
2v—1 1 2v—1
" !

1— — = .
w” + w' + ( (a(r 7)) p )w 0, r >0, (3.9)
w(0) =0, w'(0) = 1. (3.10)

It vanishes when u vanishes, while its derivative vanishes when both w and «' vanish.
Furthermore,
0<w(r)<r,0<r<r. (3.11)

The following lemma gives a lower bound for ry.



Lemma 3 We have 11 > j,1/6, where

§=1/1—=0-9), (3.12)

Proof. Because u(r,v) < 7, w oscillates less than the solution v of the initial value problem

?J//+2V_1w/—|—<52—

r

2v—1
2

) v="0,r>0; v0)=0,(0)=1, (3.13)

at least as long as v is positive. Since v(r) = 2"T'(v + 1)67“r'=".J,(67), the first zero of v
occurs at j,1/6. It must therefore be the case that ry > j,1/6. 1

3.3 Bounds on (0,7,1/¢)

We rewrite the equation (3.9) in the form

2v0—1 2v0—1
w” + v w' + (62 _ ) w = f(w), (3.14)
r

flw) = = {(;) - 1} . (3.15)

Using the method of variation of parameters, we obtain the integral equation for w,

where

w(r) =rg(ér)+ g/OT rl=vg? {J,(85)Y,(6r) =Y, (63)J,(67)} f(w(s)) ds, (3.16)

where
g(p) =2"T(v + 1)p™"Ju(p). (3.17)

J, and Y, are the Bessel functions of the first and second kind, respectively, of order v. The
expression (3.16) holds for all » € [0,71) or, if 71 is finite, for all » € [0, 71]. We now restrict
r to the interval [0, j, 1/6].

Lemma 4 For 0 < r < j,1/6, we have

0<rg(ér)<w(r)<r (g(ér) n (f(ggg)) 7 (3.18)

where g is defined in (3.17) and

P*(g(p)) " log(g(p))

P(p) = vt )

(3.19)



Proof. Take any r € (0,j,1/6). It follows from the Kneser-Sommerfeld expansion [3,
Section 15.42] that

) 0o = S S o L e

(3.20)

for 0 < s < r. All the terms in the right member are positive, so the expression in the left
member is positive. Furthermore, f(w(s)) is positive for 0 < s < r. Therefore, the integral
in (3.16) is positive. Obviously, ¢g(ér) is positive, so

w(r) > rg(ér) >0, 0 <1 < jy1/6. (3.21)

It remains to establish the upper bound on w(r) in (3.18). From (3.21) and the fact that g¢
is decreasing on (0, j, 1) we deduce that

1 1
® < < 0<s<r (3.22)

w(s) ~ g(6s) = g(ér)

Therefore, e
or))~U-a 1
s < SO

Furthermore, w(s) < s, cf. (3.11), so

w(s), 0 < s < (3.23)

w(r)—rg(ér) = g/OT rl=vgy {J,(63)Y,(6r) =Y, (6s)J,(67)} f(w(s)) ds

P (1-9) _ T [P
< T<g<57>1>_ - [p—v§ / HVolp) =Vl p)} 2 2| o (3:24)

The expression in square brackets can be evaluated by means of the recurrence formulae
for Bessel functions [3, Section 3.2] and the resulting expression can be simplified further
by means of the Wronskian [3, Section 3.63],

o5 [ AR = Yoo} s = 1= g(p). (3.25)

We estimate this expression by substituting the series expansion for the Bessel function .J,
and truncating after the first term,

2

L=g(p)=1-2"T(v+ )p~"J(p) < ﬁ (3.26)
Thus, ,
S [ nem - et a] < B g

To estimate the factor in front of the square brackets in (3.24), we observe that 0 < g(67) < 1
on (0,7,1/6) and v > 1. Furthermore, one readily verifies that

1—alm?  ylm 1

<
logz=t = logy




for any pair (z,y) with 0 < 2 <1 < y. Therefore,

(96700 1 e L (0l

,yl—q -1 ,yl—q -1
< (g(8r) "D og(g(ér))™! _ (9(6r)) log(g(ér) ™" (3.28)
log~ log~
Using (3.27) and (3.28) in (3.24), we obtain the estimate
6
w(r) —rg(r) < r—fsg?, (3.29)
where ¢ is defined in (3.19). The upper bound for w(r) given in (3.18) follows. §
In terms of u, we have the following bounds:
6 iy
0 < vg(or) <u(r,y)<~y [g(ér) + %} ,0<r< ]Tl (3.30)

Because ¢(p) increases beyond bounds as g(p) decreases to 0, the upper bound in (3.18) or
(3.30) increases indefinitely as r approaches the right endpoint of the interval (0, j,1/6).

In the following analysis we also need an estimate of the quantity r'=2*(r?*=tw)'(r). It
is given by the expression

7‘1_2”(7‘2”_110)’(7‘) = h(ér) + 6% /OT rl=vg” {J,(68)Y,_1(6r) = Y, (63)J,—1(67)} f(w(s)) ds,
(3.31)

where

h(p) = 2"T(v + 1)p' ™" 1 (p). (3.32)

Like (3.16), (3.31) holds for all » € [0, ) or, if ry is finite, for all r € [0, r;]. The following
lemma gives an estimate on (0, j,1/6).

Lemma 5 For 0 < r < j,1/6, we have

P(dr)
logy’

‘7‘1_2U(T2y_1w)/(7‘) _ h(ér)‘ <2(v+1) (3.33)

where h is defined in (3.32) and ¢ is defined in (3.19).

Proof. The proofis similar to, although slightly more involved than, the proof of Lemma 4.
Instead of (3.16), we use (3.31). The analog of (3.24) is

65/0 P17V { S (08)Y, 1 (67) = Y, (88) 1 (87)} f(w(s)) ds

(gler))"10 —1

[ R A A YA S S XY

p=6r



The expression in square brackets can again be evaluated; instead of (3.25) we have

P05 [ oma0) = V)2 4 = 204 1) = hip), (3.35)

where

20+ 1) = h(p) = 200+ 1) — 2T + Dt~ J, 1 (p) < 32, (3.36)
The lemma follows from (3.31), (3.34), (3.35), (3.36), and (3.27). }

3.4 Estimates at rg

We use the results of Lemmas 4 and 5 to estimate ro and r!=2/(r?~1w)" at ro.

Lemma 6 Let a € (j,—11,j,1) be fired. Then there exists a constant v4 > 1 that does not
depend on q, such that

rd=2 (1 =1y Y (1) < —L|h(a)| (3.37)
and

a ) Ay 1/(2”) a

g < rg < ( + |h(a)|) 57 (338)

for all v > 7.

Proof. With the choice of @ indicated in the statement of the lemma, we have g(a) > 0
and h(a) < 0. These inequalities follow from the interlacing property of the zeros of Bessel
functions,

0<7u1 <Jog11 <Ju2<Ju12 <Juz <...;

cf. [3, Section 15.22].

We begin by observing that w oscillates less than v, where v(r) = rg(ér), g defined by
(3.17). Therefore ro, which is defined by the identity w(r) = r/v, is certainly beyond the
point 7y, where g(érz) = 1/v. Therefore, if

Y0 = 1/g(a), (3.39)

then g(érg) < g(a) for all ¥ > 9. Now, ¢ is monotonically decreasing between a and j,_q 1,
so then we also have éry > a for all v > 7. Since rg > 72, we have thus achieved that

ald < rg. (3.40)
for all v > ~o.
With rs = a/é, it follows from (3.33) that

A ) () < —Ina)] + 20+ DA, (3.11)



Here, h(a) and ¢(a) do not depend on ¢ or 4. Therefore, if we now define 71,

v1 = min{~yo, exp (2(1/ +1) |(£EZ;|) 1, (3.42)

then =, is independent of ¢ and
ra” 2 (r? ) (r3) < —3|h(a)| (3.43)

for all 4 > 1. Writing the differential equation (3.9) in the form

<T1—21/ (T2u—1w)/)/ _ (1 _ u—(l—q)) : (3.44)

we observe that the function r!=2/(r?*~lw)’ is decreasing as long as u(r,v) > 1—that is,
up to rg. Therefore, the bound (3.43) extends to the entire interval [rs, ro], and we have

r1=2 (e w) (1) < =L h(a)], r3 <7 < 1o (3.45)
for all ¥ > 1. In particular, the inequality holds at rg, as asserted in (3.37).

Multiplying both sides of the inequality (3.45) by r?*~! and integrating over the interval
(r3,70), we find
w(rs) Ih(a)l) o _ IMa)] o, _ w(ro) o,
— — - — ——=rg". 3.46
(7‘3+41/ "3 4T0>7‘0T0 (3.46)
Here, we estimate the expression in the right member from below by 0. In the left member,
we estimate the ratio w(r3)/rs from above by 1; cf. (3.11). Thus,

4v
2v 1 - 21/‘ 4
To < ( ‘I‘ |h(a)|) T3 (3 7)

The inequalities (3.38) now follow from (3.40) and (3.47). 1

3.5 Down to O

We are now in a position to prove that the continuation of w beyond rg decreases to 0 for
all sufficiently large v, independently of ¢.

Lemma 7 There exists a constant vy, that does not depend on q (v2 > 71, where 1 is the
constant introduced in Lemma 6), such that r1 < oo for all v > 7.

Proof. The proof is by contradiction, where we assume that, for some v > 7;, the solution
u(-,7) of (3.1), (3.2) is positive for all » > 0.

Consider the function w defined by (3.8). By assumption, w is positive for all r > 0.
Because (r'=2"(r?~1w)) = (r/y)(u? — u) and v? — u < 1 — ¢ for u > 0, we have

(T1—2u(r2u—1w)/)/(r) < @7 r> 0. (3.48)



Integrating (3.48) from ro to any point r > rg, and using the estimate (3.37) at rg, we find

1— 2
P22y () < < 3nca) + LSO s, (3.49)
Y

for all v > 7. Because y62 = v — 47 > 4177 — 1 > (1 — ¢)log ¥, it follows that

252
P22 Y () < —Lh(a)| + —2:0g’y’ r> o, (3.50)
for all v > ~4.
Now we restrict r to a compact interval [rg, 7], where
To = b/é, (351)
and b > a is a suitably chosen constant. Defining the constant o by
vz = min{yy, 2 /M@ (3.52)
we then have
r26? 1
< Slh(a)l, ro <7 <y (3.53)
2logy ~ 4

for all v > 7, so (3.50) reduces to
1
2w (r) < —Z|h(a)|, ro <1 <71y, (3.54)

for all v > ~5. Hence,

w(rs) < [(a/b)”wizo) (- (a/b)Q”)mé—ZN] . (3.55)

Using (3.38) to estimate w(rg)/ro and writing the inequality in terms of u, we thus find
that

2 v V) 2w\ [h(a)]
w(ra) < (a/B) (1+|h(a)|) 7 (1 () 1, (3.56)

for all v > 5.

But now we have a contradiction, as the expression in the right member of this inequality
certainly becomes negative for sufficiently large values of yv. We conclude therefore that
u(-,7) reaches the value 0 at some finite point rq, as claimed. §

3.6 Completion of the Proof

According to Lemma 7, u(-, ) ceases to be positive at a finite point rq for all v > vz, where
~9 is a constant that does not depend on ¢. Obviously, r; depends on the value of ~; in
fact, it decreases as v increases. Let

I'=inf{y >1:71 < oo} (3.57)

10



If v = w(0) = I', then u(-,v) reaches the r-axis with a horizontal slope, so u(-,I') defines
the unique solution u of the free boundary problem (1.1), (1.2), where

R =ry(T). (3.58)

Obviously, I' depends on ¢. However, it follows from Lemma 7 that 1 < I' < 74, so u(0) is
bounded as ¢ — 1 (¢ < 1).

It remains to investigate the behavior of R as ¢ — 1 (¢ < 1). Because I' is bounded,
lim,— I''=% = 1. Then it follows from (3.12) that lim,—1 § = 0, and therefore, by Lemma 3,
lim,—.; R = co. Thus, the proof of the theorem is complete. 1

3.7 Special Case: N =3

In the special case N =3 (v = %), it is actually possible to find a lower bound for R that
shows that R grows beyond bounds as ¢ — 1.

A simple energy argument gives the inequality

r? [t
=F E0)=— - ; .
0= E(R) < E(0)= 5 - (3.59)
cf. (3.7). Hence,
2
s ———. 3.60
1+¢q (3.60)

Next, we use an energy argument for (3.9). If v = %, this equation reduces to
w4+ w— T =ay0 = 0, (3.61)
Hence,

2 ! 1-

Upon integration over (0, R), the left member yields —1; in the right member we use the
inequality w(r) < r to obtain the estimate

R
/0 rlw' dr < 1R2 (3.63)

Thus, using (3.60), we find that

R>/—. (3.64)

11
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