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boundary problems for reaction-di�usion equations in RN (N = 2; 3; : : :) of the generalform �u + up � uq = 0 , where 0 � q < p � 1. In [2], we showed that there is a unique R(R > 0) and a unique positive-valued function u on (0; R), such that u is the radial solutionof the di�erential equation which satis�es the boundary conditions u(R) = 0, u0(R) = 0.(A radial solution depends only on the radial variable r = jxj.) The solution (R; u) of thefree boundary problem depends on the values of the exponents p and q.In this article we analyze the special case p = 1 in more detail and focus on the behaviorof the solution as q ! 1. That is, we are interested in the behavior as q ! 1 (q < 1) of thepair (R; u), R a real number (R > 0), u a positive-valued function on (0; R), which satis�esthe boundary value problemu00 + 2� + 1r u0 + u� uq = 0; 0 < r < R; (1:1)u0(0) = 0; u(R) = u0(R) = 0: (1:2)We consider � as a real number, not necessarily half-integer (� � 0). The existence anduniqueness of such a solution follow from [2]. The function u is monotone on (0; R).2 The ResultWe prove the following result.Theorem 1 For each q 2 [0; 1), there is a unique R > 0 such that (1:1); (1:2) admits a(classical) solution u that is positive everywhere on (0; R). The function u is monotonicallydecreasing on (0; R); u(0) is bounded, but R grows beyond bounds as q ! 1.In the special case � = 12 (N = 3) we have a lower bound on R,R > s 21� q ; 0 � q < 1: (2:1)However, as we do not have a comparable upper bound, we cannot conclude that R =O((1� q)�1=2) as q ! 1.3 The ProofUsing a shooting argument, we replace the boundary value problem (1.1), (1.2) by the initialvalue problem u00 + 2� + 1r u0 + u� uq = 0; r > 0; (3:1)u(0) = 
; u0(0) = 0: (3:2)2



The results of [2] imply that, for any q 2 [0; 1), there is a unique 
 > 1 such that thesolution of (3.1), (3.2) decreases from 
 to meet the r-axis with zero slope at some valueR > 0. Denoting this solution by u(�; 
), we haveu(R; 
) = 0; u0(R; 
) = 0: (3:3)The lower bound on 
 can be sharpened to (2=(1+q))1=(1�q), but 1 su�ces for our purpose.The proof consists of a detailed investigation of the behavior of u(�; 
).3.1 Down to 1We begin by showing that u(r; 
) decreases monotonically from the value 
 at r = 0 to thevalue 1 at some �nite point r0.Lemma 1 There exists a point r0 < j�;1=(1 � q)1=2 such that u(�; 
) is monotonically de-creasing on (0; r0), with u(r0; 
) = 1 and u0(r0; 
) < 0. Here, j�;1 is the �rst positive zeroof J�|the Bessel function of the �rst kind of order �.Proof. As long as u > 1, we have u � uq > (1 � q)u, so u(�; 
) oscillates faster than thesolution v of the equation v00 + 2� + 1r v0 + (1� q)v = 0: (3:4)In particular, u(�; 
) reaches the value 1 before v does. Now, v(r) is a constant multipleof r��J�(r(1� q)1=2), where J� is the Bessel function of the �rst kind of order �|see, forexample, [3]. Hence, v(r) = 1 for some value r < j�;1=(1 � q)1=2, where j�;1 is the �rstpositive zero of J� . We conclude that there must be a point r0 < j�;1=(1� q)1=2, such that
 > u(r; 
)> 1 for 0 < r < r0 and u(r0; 
) = 1.Since u0(0; 
) = 0 and u00(r; 
)< 0 near 0, it must be the case that u0(r; 
)< 0 near 0.Suppose u(�; 
) were not monotone on (0; r0). Then there exists a value r1 2 (0; r0)where u(r; 
) has a local minimum, with u(r1; 
) > 1. Because u(r; 
) reaches the value 1 atr0, there must then exist a value r2 2 (r1; r0) such that u(r2; 
) = u(r1; 
) and u0(r2; 
) � 0.Multiplying the di�erential equation (3.1) by u0 and integrating over (r1; r2), we �nd that12(u0(r2; 
))2 = �(2� + 1) Z r2r1 (u0(r; 
))2r dr: (3:5)But here we have a contradiction, as the two sides of this identity have opposite signs. Itmust therefore be the case that u(�; 
) is monotone on (0; r0).The monotonicity of u(�; 
) on (0; r0) implies that u0(r0; 
)� 0. If u0(r0; 
) = 0, then itfollows from the Lipschitz continuity of the function u� uq for u > 0 and the consequentialuniqueness of the solution of the initial value problem for (3.1) in the direction of decreasingr starting at r = r0 that u(r; 
) = 1 for all r 2 (0; r0). But then we have a contradiction,as u(0; 
) = 
 > 1. We conclude that u0(r0; 
) < 0.3



3.2 Beyond r0From Lemma 1 we know that u(r; 
) decreases monotonically until it reaches the value 1with a negative slope at r = r0. Beyond r0, u(r; 
) decreases further until either it reachesthe value 0 with a negative or zero slope, or it bottoms out at some �nite value of r with aminimum value between 0 and 1.Let r1 be the point where u(r; 
) ceases to be positive,r1 = sup fr > r0 : u(s; 
) > 0; 0 < s < rg: (3:6)If r1 is �nite and u(r1; 
) = 0 , we do not consider u(�; 
) beyond r1. In this case, we canuse the same argument as in the proof of Lemma 1 to show that u(�; 
) is monotonicallydecreasing on the entire interval (0; r1). In particular, if 
 is such that not only u(r1; 
) = 0,but also u0(r1; 
) = 0, then u(�; 
) de�nes the (unique) solution u of the free boundaryproblem (3.1), (3.3), where R = r1.If r1 =1, then u(r; 
) has a positive minimum at some �nite value of r, after which itoscillates with decreasing amplitude around the constant value 1.Lemma 2 For 0 < r < r1, we have 0 < u(r; 
)< 
.Proof. The lemma is true for 0 < r � r0 (cf. Lemma 1). Beyond r0, we use a simpleenergy argument. The energy E of any solution u of (3.1), de�ned by the expressionE(r) = 12(u0(r))2 + 12(u(r))2� 1q + 1(u(r))q+1; (3:7)is a monotonically decreasing function of its argument, as E 0(r) = �((2�+1)=r)(u0(r))2 � 0for all r � 0.Suppose the lemma were false for r0 < r < r1. Then u(r2; 
) = 
 for some r2 2 (r0; r1),where E(r2) � 
2=2� 
q+1=(q + 1) = E(0), and we have a contradiction.Let w be de�ned in terms of u(�; 
) by the expressionw(r) = ru(r; 
)
 : (3:8)This function is a solution of the initial value problemw00 + 2� � 1r w0 + �1� 1(u(r; 
))1�q � 2� � 1r2 �w = 0; r > 0; (3:9)w(0) = 0; w0(0) = 1: (3:10)It vanishes when u vanishes, while its derivative vanishes when both u and u0 vanish.Furthermore, 0 < w(r) < r; 0 < r < r1: (3:11)The following lemma gives a lower bound for r1.4



Lemma 3 We have r1 > j�;1=�, where� = q1� 
�(1�q): (3:12)Proof. Because u(r; 
)< 
, w oscillates less than the solution v of the initial value problemv00 + 2� � 1r w0 + ��2 � 2� � 1r2 � v = 0; r > 0; v(0) = 0; v0(0) = 1; (3:13)at least as long as v is positive. Since v(r) = 2��(� + 1)���r1��J�(�r), the �rst zero of voccurs at j�;1=�. It must therefore be the case that r1 > j�;1=�.3.3 Bounds on (0; j�;1=�)We rewrite the equation (3.9) in the formw00 + 2� � 1r w0 + ��2 � 2� � 1r2 �w = f(w); (3:14)where f(w) = 1
1�q (� rw�1�q � 1)w: (3:15)Using the method of variation of parameters, we obtain the integral equation for w,w(r) = rg(�r) + �2 Z r0 r1��s� fJ�(�s)Y�(�r)� Y�(�s)J�(�r)g f(w(s)) ds; (3:16)where g(�) = 2��(� + 1)���J�(�): (3:17)J� and Y� are the Bessel functions of the �rst and second kind, respectively, of order �. Theexpression (3.16) holds for all r 2 [0; r1) or, if r1 is �nite, for all r 2 [0; r1]. We now restrictr to the interval [0; j�;1=�].Lemma 4 For 0 < r < j�;1=�, we have0 < rg(�r)< w(r) < r�g(�r) + �(�r)log 
 � ; (3:18)where g is de�ned in (3:17) and�(�) = �2(g(�))�1 log(g(�))�14(� + 1) : (3:19)5



Proof. Take any r 2 (0; j�;1=�). It follows from the Kneser-Sommerfeld expansion [3,Section 15.42] thatJ�(�s)Y�(�r)� Y�(�s)J�(�r) = 4�rJ�(�r)�J�(�s) 1Xn=1 (J�(j�;ns=r))2(j2�;n � (�r)2)j�;nJ 02� (j�;n) ; (3:20)for 0 � s � r. All the terms in the right member are positive, so the expression in the leftmember is positive. Furthermore, f(w(s)) is positive for 0 � s � r. Therefore, the integralin (3.16) is positive. Obviously, g(�r) is positive, sow(r) > rg(�r)> 0; 0 < r < j�;1=�: (3:21)It remains to establish the upper bound on w(r) in (3.18). From (3.21) and the fact that gis decreasing on (0; j�;1) we deduce thatsw(s) < 1g(�s) � 1g(�r); 0 � s � r: (3:22)Therefore, f(w(s)) < (g(�r))�(1�q)� 1
1�q w(s); 0 � s � r: (3:23)Furthermore, w(s) � s, cf. (3.11), sow(r)� rg(�r) = �2 Z r0 r1��s� fJ�(�s)Y�(�r)� Y�(�s)J�(�r)gf(w(s)) ds� r (g(�r))�(1�q)� 1
1�q � 1 ���� �2 Z �0 fJ�(z)Y�(�)� Y�(z)J�(�)gz�+1 dz��=�r : (3.24)The expression in square brackets can be evaluated by means of the recurrence formulaefor Bessel functions [3, Section 3.2] and the resulting expression can be simpli�ed furtherby means of the Wronskian [3, Section 3.63],��� �2 Z �0 fJ�(z)Y�(�)� Y�(z)J�(�)gz�+1 dz = 1� g(�): (3:25)We estimate this expression by substituting the series expansion for the Bessel function J�and truncating after the �rst term,1� g(�) = 1� 2��(� + 1)���J�(�) � �24(� + 1) : (3:26)Thus, ���� �2 Z �0 fJ�(z)Y�(�)� Y�(z)J�(�)gz�+1 dz��=�r � (�r)24(� + 1) : (3:27)To estimate the factor in front of the square brackets in (3.24), we observe that 0 < g(�r) < 1on (0; j�;1=�) and 
 > 1. Furthermore, one readily veri�es that1� x1�qlog x�1 � y1�q � 1log y6



for any pair (x; y) with 0 < x � 1 � y. Therefore,(g(�r))�(1�q)� 1
1�q � 1 = (g(�r))�(1�q)1� (g(�r))1�q
1�q � 1� (g(�r))�(1�q) log(g(�r))�1log 
 � (g(�r))�1 log(g(�r))�1log 
 : (3.28)Using (3.27) and (3.28) in (3.24), we obtain the estimatew(r)� rg(�r) � r�(�r)log 
 ; (3:29)where � is de�ned in (3.19). The upper bound for w(r) given in (3.18) follows.In terms of u, we have the following bounds:0 < 
g(�r)< u(r; 
)< 
 �g(�r) + �(�r)log 
 � ; 0 < r < j�;1� : (3:30)Because �(�) increases beyond bounds as g(�) decreases to 0, the upper bound in (3.18) or(3.30) increases inde�nitely as r approaches the right endpoint of the interval (0; j�;1=�).In the following analysis we also need an estimate of the quantity r1�2�(r2��1w)0(r). Itis given by the expressionr1�2�(r2��1w)0(r) = h(�r) + � �2 Z r0 r1��s� fJ�(�s)Y��1(�r)� Y�(�s)J��1(�r)gf(w(s)) ds;(3:31)where h(�) = 2��(� + 1)�1��J��1(�): (3:32)Like (3.16), (3.31) holds for all r 2 [0; r1) or, if r1 is �nite, for all r 2 [0; r1]. The followinglemma gives an estimate on (0; j�;1=�).Lemma 5 For 0 < r < j�;1=�, we have���r1�2�(r2��1w)0(r)� h(�r)��� < 2(� + 1)�(�r)log
 ; (3:33)where h is de�ned in (3:32) and � is de�ned in (3:19).Proof. The proof is similar to, although slightly more involved than, the proof of Lemma 4.Instead of (3.16), we use (3.31). The analog of (3.24) is� �2 Z r0 r1��s� fJ�(�s)Y��1(�r)� Y�(�s)J��1(�r)gf(w(s)) ds� (g(�r))�(1�q)� 1
1�q � 1 ��1�� �2 Z �0 fJ�(z)Y��1(�)� Y�(z)J��1(�)gz�+1 dz��=�r :(3.34)7



The expression in square brackets can again be evaluated; instead of (3.25) we have�1�� �2 Z �0 fJ�(z)Y��1(�)� Y�(z)J��1(�)gz�+1 dz = 2(� + 1)� h(�); (3:35)where 2(� + 1)� h(�) = 2(� + 1)� 2��(� + 1)�1��J��1(�) � 12�2: (3:36)The lemma follows from (3.31), (3.34), (3.35), (3.36), and (3.27).3.4 Estimates at r0We use the results of Lemmas 4 and 5 to estimate r0 and r1�2�(r2��1w)0 at r0.Lemma 6 Let a 2 (j��1;1; j�;1) be �xed. Then there exists a constant 
1 > 1 that does notdepend on q, such that r1�2�0 (r2��1w)0(r0) < �12 jh(a)j (3:37)and a� < r0 < �1 + 4�jh(a)j�1=(2�) a� ; (3:38)for all 
 � 
1.Proof. With the choice of a indicated in the statement of the lemma, we have g(a) > 0and h(a) < 0. These inequalities follow from the interlacing property of the zeros of Besselfunctions, 0 < j�;1 < j�+1;1 < j�;2 < j�+1;2 < j�;3 < : : : ;cf. [3, Section 15.22].We begin by observing that w oscillates less than v, where v(r) = rg(�r), g de�ned by(3.17). Therefore r0, which is de�ned by the identity w(r) = r=
, is certainly beyond thepoint r2, where g(�r2) = 1=
. Therefore, if
0 = 1=g(a); (3:39)then g(�r2) � g(a) for all 
 � 
0. Now, g is monotonically decreasing between a and j��1;1,so then we also have �r2 � a for all 
 � 
0. Since r0 > r2, we have thus achieved thata=� < r0: (3:40)for all 
 � 
0.With r3 = a=�, it follows from (3.33) thatr1�2�3 (r2��1w)0(r3) < �jh(a)j+ 2(� + 1)�(a)log
 : (3:41)8



Here, h(a) and �(a) do not depend on q or 
. Therefore, if we now de�ne 
1,
1 = minf
0; exp�2(� + 1) �(a)jh(a)j�g; (3:42)then 
1 is independent of q andr1�2�3 (r2��1w)0(r3) < �12 jh(a)j (3:43)for all 
 � 
1. Writing the di�erential equation (3.9) in the form�r1�2� �r2��1w�0�0 = � �1� u�(1�q)� ; (3:44)we observe that the function r1�2�(r2��1w)0 is decreasing as long as u(r; 
) > 1|that is,up to r0. Therefore, the bound (3.43) extends to the entire interval [r3; r0], and we haver1�2�(r2��1w)0(r) < �12 jh(a)j; r3 � r � r0: (3:45)for all 
 � 
1. In particular, the inequality holds at r0, as asserted in (3.37).Multiplying both sides of the inequality (3.45) by r2��1 and integrating over the interval(r3; r0), we �nd �w(r3)r3 + jh(a)j4� � r2�3 � jh(a)j4� r2�0 > w(r0)r0 r2�0 : (3:46)Here, we estimate the expression in the right member from below by 0. In the left member,we estimate the ratio w(r3)=r3 from above by 1; cf. (3.11). Thus,r2�0 < �1 + 4�jh(a)j� r2�3 : (3:47)The inequalities (3.38) now follow from (3.40) and (3.47).3.5 Down to 0We are now in a position to prove that the continuation of u beyond r0 decreases to 0 forall su�ciently large 
, independently of q.Lemma 7 There exists a constant 
2 that does not depend on q (
2 � 
1, where 
1 is theconstant introduced in Lemma 6), such that r1 <1 for all 
 � 
2.Proof. The proof is by contradiction, where we assume that, for some 
 � 
1, the solutionu(�; 
) of (3.1), (3.2) is positive for all r � 0.Consider the function w de�ned by (3.8). By assumption, w is positive for all r > 0.Because (r1�2�(r2��1w)0)0 = (r=
)(uq� u) and uq � u < 1� q for u > 0, we have(r1�2�(r2��1w)0)0(r) < (1� q)r
 ; r > 0: (3:48)9



Integrating (3.48) from r0 to any point r > r0, and using the estimate (3.37) at r0, we �ndr1�2�(r2��1w)0(r) < �12 jh(a)j+ (1� q)r22
 ; r > r0; (3:49)for all 
 � 
1. Because 
�2 = 
 � 
q > 
1�q � 1 > (1� q) log 
, it follows thatr1�2�(r2��1w)0(r) < �12 jh(a)j+ r2�22 log 
 ; r > r0; (3:50)for all 
 � 
1.Now we restrict r to a compact interval [r0; r2], wherer2 = b=�; (3:51)and b > a is a suitably chosen constant. De�ning the constant 
2 by
2 = minf
1; e2b2=jh(a)jg; (3:52)we then have r2�22 log 
 � 14 jh(a)j; r0 � r � r2; (3:53)for all 
 � 
2, so (3.50) reduces tor1�2�(r2��1w)0(r) < �14 jh(a)j; r0 � r � r2; (3:54)for all 
 � 
2. Hence,w(r2) < �(a=b)2�w(r0)r0 � (1� (a=b)2�) jh(a)j8� � r2: (3:55)Using (3.38) to estimate w(r0)=r0 and writing the inequality in terms of u, we thus �ndthat u(r2; 
) < (a=b)2� �1 + 4�jh(a)j�1=(2�) � 
 �1� (a=b)2�� jh(a)j8� ; (3:56)for all 
 � 
2.But now we have a contradiction, as the expression in the right member of this inequalitycertainly becomes negative for su�ciently large values of 
. We conclude therefore thatu(�; 
) reaches the value 0 at some �nite point r1, as claimed.3.6 Completion of the ProofAccording to Lemma 7, u(�; 
) ceases to be positive at a �nite point r1 for all 
 � 
2, where
2 is a constant that does not depend on q. Obviously, r1 depends on the value of 
; infact, it decreases as 
 increases. Let� = inff
 > 1 : r1 <1g: (3:57)10



If 
 = u(0) = �, then u(�; 
) reaches the r-axis with a horizontal slope, so u(�;�) de�nesthe unique solution u of the free boundary problem (1.1), (1.2), whereR = r1(�): (3:58)Obviously, � depends on q. However, it follows from Lemma 7 that 1 < � � 
2, so u(0) isbounded as q ! 1 (q < 1).It remains to investigate the behavior of R as q ! 1 (q < 1). Because � is bounded,limq!1 �1�q = 1. Then it follows from (3.12) that limq!1 � = 0, and therefore, by Lemma 3,limq!1R =1. Thus, the proof of the theorem is complete.3.7 Special Case: N = 3In the special case N = 3 (� = 12), it is actually possible to �nd a lower bound for R thatshows that R grows beyond bounds as q ! 1.A simple energy argument gives the inequality0 = E(R) < E(0) = �22 � �1+q1 + q ; (3:59)cf. (3.7). Hence, �1�q > 21 + q : (3:60)Next, we use an energy argument for (3.9). If � = 12 , this equation reduces tow00 + w � ��(1�q)r1�qwq = 0: (3:61)Hence, �w02 + w2 � 21 + q��(1�q)r1�qw1+q�0 = �21� q1 + q��(1�q)r�qw1+q: (3:62)Upon integration over (0; R), the left member yields �1; in the right member we use theinequality w(r) < r to obtain the estimateZ R0 r�qw1+q dr < 12R2: (3:63)Thus, using (3.60), we �nd that R > s 21� q : (3:64)11
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