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AbstractIn this paper, we discuss a polynomial and Q-subquadratically convergent algorithmfor linear complementarity problems that does not require feasibility of the initial pointor the subsequent iterates. The algorithm is a modi�cation of the linearly convergentmethod of Zhang and requires the solution of at most two linear systems with the samecoe�cient matrix at each iteration.1 IntroductionThe linear complementarity problem is to �nd a vector pair (x; y) 2 IRn � IRn such thaty = Mx+ h; (x; y) � (0; 0); xTy = 0; (1)where h 2 IRn and M is an n � n positive semide�nite matrix. A pair (x; y) is said to befeasible if y =Mx+h and (x; y) � (0; 0), and strictly feasible if the latter inequality is strict.It is well known that convex quadratic programming problems and linear programmingproblems can be expressed as linear complementarity problems; the same is true of ex-tended linear-quadratic programming problems (see Rockafellar [9]). Much research hasbeen devoted to interior point methods for (1). Recently, Ji, Potra, and Huang [1] proposeda predictor-corrector algorithm with polynomial complexity and superlinear convergence,while the predictor-corrector algorithm of Ye and Anstreicher [11] is polynomial and Q-quadratic. In the latter paper, it was assumed only that a strictly feasible point and astrictly complementary solution (one for which max(x�i ; y�i ) > 0 for i = 1; � � � ; n) exist for(1). Both these algorithms generate a sequence of strictly feasible iterates (xk; yk). A strictlyfeasible starting point (x0; y0) must therefore be supplied. To �nd such a point, one oftenmust augment the problem in an arti�cial way.�This research was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U. S. Department of Energy, under Contract W-31-109-Eng-38.yArgonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.1



More recently, research has focused on algorithms that generate sequences (xk; yk) forwhich (xk; yk) > 0 but possibly yk 6= Mxk + h. These infeasible-interior-point methods morenearly reect computational practice (see, for example, Lustig, Marsten, and Shanno [4]).Also, minor modi�cations to a solution to a \nearby" problem can produce an excellentstarting point for the present problem | an advantage when the underlying problem tobe solved is nonlinear. Infeasible algorithms for linear programming have been proposedby Kojima, Meggido, and Mizuno [2], Kojima, Mizuno, and Todd [3], and Potra [7, 8]. Ofthese, only Potra's algorithms have both polynomial complexity and superlinear convergenceproperties. Potra's methods are of the predictor-corrector type and require three systemsof linear equations (two of which have the same coe�cient matrix) to be solved at eachiteration. The only infeasible-interior-point algorithm for more general problems than linearprograms that we are aware of is due to Zhang [12]. He analyzes an algorithm for a classof problems that includes (1) and proves Q-linear convergence of the complementarity gap�k = (xk)Tyk=n to zero. Polynomial complexity is obtained for a particular choice of startingpoint. The algorithm requires the solution of a single system of linear equations at eachiteration.In this paper, we propose modi�cations of Zhang's algorithm that retain polynomialcomplexity and have the added feature that the sequence f�kg converges superlinearly tozero with Q-order 2. Only the mild assumptions of Ye and Anstreicher [11] are required.Our method requires the solution of at most two linear systems of equations with the samecoe�cient matrix at each iteration.When this report was about to be issued, we received a new report by Zhang and Zhang[13] that describes an infeasible-interior-point algorithm that is similar to ours in some re-spects. They allow relaxed versions of the centering condition and the feasibility dominancecondition (cf. below (4e) and (4d), respectively) to be used on some iterations, and theyobtain similar convergence properties. However, their algorithm is applicable only to linearprogramming problems.Our algorithm is speci�ed in Section 2. Some technical results are proved in Section3, while in Section 4, we prove Q-linear convergence and polynomial complexity. Resultsconcerning boundedness of the steps are proved in Section 5. Finally, superlinear convergenceproperties are discussed in Section 6.Unless otherwise speci�ed, k�k denotes the Euclidean norm of a vector. Iteration numbersappear as superscripts on vectors and matrices and as subscripts on scalars.2 The AlgorithmGiven a starting point with (x0; y0) > (0; 0), the algorithm generates a sequence of iterates(xk; yk) > (0; 0). The desirability of each point is measured by the merit function�(x; y) = xTy + ky �Mx� hkwhose two terms measure the complementarity gap and infeasibility. Clearly, a vector pair(x�; y�) is a solution of (1) if and only if (x�; y�) � (0; 0) and �(x�; y�) = 0. We use the2



shorthand notation �k to denote �(xk; yk).In order to describe the step between successive iterates, we de�ne�k = (xk)Tyk=n; e = (1; 1; � � � ; 1)T ;Xk = diag(xk1; xk2; � � � ; xkn); Y k = diag(yk1 ; yk2 ; � � � ; ykn):The step is calculated as follows.Given ~ 2 (0; 1), ~� 2 [0; 1), ~� 2 [0; 1), solve" M �IY k Xk # " �xk�yk # = " �h�Mxk + yk�XkY ke+ ~��ke # : (2)Choose ~� = arg min� �(xk + ��xk; yk + ��yk) (3)subject to � 2 [0; 1]; (4a)xk + ��xk > 0; (4b)yk + ��yk > 0; (4c)(xk + ��xk)T (yk + ��yk) � (1� ~�)(1 � �)(xk)Tyk; (4d)(xki + ��xki )(yki + ��yki ) � (~=n)(xk + ��xk)T (yk + ��yk); i = 1; � � � ; n: (4e)It has been noted previously that (2) are simply the equations obtained by applying oneiteration of Newton's method to the nonlinear equationsF (x; y) = " y �Mx� hXY e # = " 0~��ke # ;starting from the point (xk; yk). The condition (4e), usually referred to as a centeringcondition, ensures that the iterates do not prematurely approach the edge of the non-negativeorthant. The condition (4d) is a relaxation of the condition enforced by Zhang [12, formula(5.7)] to ensure that feasibility is given a higher priority than complementarity (Zhang uses~� = 0). Potra's algorithms replace (4d) with an equality condition in which ~� = 0. We allow~� > 0 to permit superlinear convergence, as will become clear in the analysis that follows.We can now state our algorithm. 3



Given � 2 (0; 1=2), � 2 (0; 1=2), (x0; y0) > (0; 0),� 2 (0; �), �� > 0, and (x0; y0) with x0i y0i � 2��0;t0  1, 0 2�;for k = 0; 1; 2; � � �if �k = �(xk; yk) � ��then Solve (2){(4) with ~� = �k, ~� = �tk , ~ = �(1 + �tk);if �(xk + ~��xk, yk + ~��yk) � ��kthen �k  ~�, �k  ~�, �k  ~�, k+1  ~;tk+1  tk + 1;(xk+1; yk+1) (xk; yk) + �k(�xk;�yk);go to next k;end ifend ifSolve (2){(4) with ~� 2 [�; 1=2], ~� = 0, ~ = k;�k  ~�, �k  0, �k  ~�, k+1  ~;tk+1  tk;(xk+1; yk+1) (xk; yk) + �k(�xk;�yk);go to next k;end for.The idea behind this algorithm is simple. While the merit function exceeds ��, it isidentical to Zhang's algorithm. One linear system of equations is solved at each iteration toyield what we refer to as a safe step. When the merit function falls below the threshold ��,the algorithm computes a step that may yield rapid convergence by setting �k equal to thecurrent duality gap and allowing ~� > 0 in (4d). We refer to such a step as a fast step. Thecoe�cient matrices for the fast and safe steps are the same, and the integer variable tk keepstrack of the number of fast steps that have been taken prior to iteration k. If the fast stepdoes not give a signi�cant reduction in � (by at least a factor of �), it is discarded, and wetake a safe step instead.This strategy may lead to our rejecting a fast step and taking a safe step that gives asmaller decrease in � at some iterations. Note, however, that we pay a price for taking faststeps in that  is decreased, and so the Q-linear convergence rate will not be as favorableon subsequent iterations. Therefore, it makes sense to reject fast steps unless they makesubstantial progress.In the safe-step calculation, there is considerable scope for user-de�ned heuristics in thechoice of �k. In a practical implementation, the value of �k may be adjusted according to4



the merit function decrease �k�1 � �k on the previous step, and the value of �k�1.In the remainder of the paper, we analyze the convergence properties of this algorithmunder the following assumptions:Assumption 1 M is positive semide�nite.This assumption implies that if (x1; y1) and (x2; y2) are any two points satisfying y = Mx =h, then (y2 � y1)T (x2 � x1) = (x2 � x1)TM(x2 � x1) � 0: (5)Assumption 2 The problem (1) has a strictly feasible point (�x; �y). That is, (�x; �y) > (0; 0)and �y = M �x+ h.Assumption 3 The solution set for (1) is nonempty and, moreover, there is a strictlycomplementary solution (x�; y�).With respect to (x�; y�), we de�ne the partitioning f1; 2; � � � ; ng = N [B, whereB = fi jx�i > 0g; N = fi j y�i > 0g:Assumptions 1, 2, and 3 will be assumed everywhere without being explicitly stated.3 Technical ResultsIn this section, we prove a number of results that are needed in the analysis of Sections 4, 5,and 6. In the statement of many of our results, we refer to the pair (xk; yk), which is alwaysunderstood to be an iterate generated by the algorithm of Section 2.We start by showing that the dominance of feasibility over complementarity is not com-pletely abandoned by our relaxed condition (4d), but still holds to within a certain constant.Lemma 3.1 �̂ 4= 1Yk=0(1 � �k) > 0:Proof. Inspection of the algorithm shows that on each iteration, we have either �k = 0(safe steps) or �k = �t, t = 1; 2; � � � (fast steps). Therefore�̂ � 1Yt=1(1 � �t);and the right-hand side is bounded away from zero since � 2 (0; 1).If we de�ne �0 = 1; �k = k�1Yi=0(1� �i); k = 1; 2; � � � ;the following result de�nes upper and lower bounds on �k.5



Lemma 3.2 For all (xk; yk) generated by the algorithm and �k = (xk)Tyk=n,�k � �̂�k�0;�k � �0 + 1nky0 �Mx0 � hk:Proof. By (4d),�k � (1 � �k�1)(1� �k�1)�k�1 � k�1Yi=0(1� �i)�k�0 � �̂�k�0;giving the �rst inequality. The second inequality follows fromn�k � �k � �0 = n�0 + ky0 �Mx0 � hk:Zhang [12] de�nes an \auxiliary sequence" (uk; vk) by de�ning an initial point (u0; v0)such that (u0; v0) � (x0; y0); v0 = Mu0 + h;and subsequent iterates byuk+1 = uk + �k(�xk + xk � uk); vk+1 = vk + �k(�yk + yk � vk):He proves the following result.Lemma 3.3 (Zhang [12, Lemma 4.1]) For k � 0,(i) vk = Muk + h;(ii) xk+1 � uk+1 = �k(x0 � u0) � 0 and yk+1 � vk+1 = �k(y0 � v0) � 0;(iii) If �K = 1 for some K � 0, then (xk; yk) = (uk; vk) and therefore (xk; yk) is strictlyfeasible for all k > K.Using Lemma 3.3, we can bound some components of the iterates (xk; yk)Lemma 3.4 There is a constant C1 > 0 such that for all iterates (xk; yk),i 2 N ) xki � C1�k; (6a)i 2 B ) yki � C1�k; (6b)and i 2 B ) xki � �=C1; (7a)i 2 N ) yki � �=C1: (7b)6



Proof. From the de�nition of (uk; vk), we have(xk � x�)T (yk � y�)= (xk � uk + uk � x�)T (yk � vk + vk � y�) (8)= (xk � uk)T (yk � vk) + (uk � x�)T (yk � vk) + (xk � uk)T (vk � y�) + (uk � x�)T (vk � y�):Now vk =Muk + h and y� = Mx� + h, so by (5),(uk � x�)T (vk � y�) � 0:Therefore, since (x�)Ty� = 0, we have�(xk)Ty� � (x�)Tyk + (xk)Tyk� (xk � uk)T (yk � vk) + (uk � x�)T (yk � vk) + (xk � uk)T (vk � y�);and so(x�)Tyk + (xk)Ty�� (xk)Tyk � (xk � uk)T (yk � vk)� (uk � x�)T (yk � vk)� (xk � uk)T (vk � y�)= (xk)Tyk + (xk � uk)T (yk � vk)� (xk � x�)T (yk � vk)� (xk � uk)T (yk � y�): (9)Now, by Lemma 3.3,xk � uk � 0; yk � vk � 0; yk � 0; xk � 0;and so (yk)T (xk � uk) � 0; (xk)T (yk � vk) � 0:By substitution in (9), we have(x�)Tyk + (xk)Ty�� (xk)Tyk + (xk � uk)T (yk � vk) + (x�)T (yk � vk) + (y�)T (xk � uk)= (xk)Tyk "1 + (xk � uk)T (yk � vk)(xk)Tyk + (x�)T (yk � vk)(xk)Tyk + (y�)T (xk � uk)(xk)Tyk # :Now, by Lemmas 3.2 and 3.3, we can bound the term in the square brackets by �C1, where�C1 4= "1 + (x0 � u0)T (y0 � v0)�̂(x0)Ty0 + (x�)T (y0 � v0)�̂(x0)Ty0 + (y�)T (x0 � u0)�̂(x0)Ty0 # ;and so (x�)Tyk + (xk)Ty� � n �C1�k:Hence, for i 2 N , xki y�i � n �C1�k ) xki � n �C1y�i �k;7



while for i 2 B, yki � n �C1x�i �k:Hence (6) is obtained by takingC1 = n �C1max supi2B 1x�i ; supi2N 1y�i ! :For (7a), we simply note thati 2 B; xki yki � k�k ) xki � k�kyki � kC1 � �C1 :The proof of (7b) is similar.Assumption 2 can be used to show that the iterates remain bounded.Lemma 3.5 There is a constant C2 > 0 such that for k � 0 and i = 1; 2; � � � ; n,0 < xki � C2; 0 < yki � C2:Proof. Because of Assumption 2, there is a strictly feasible point (�x; �y). Now(xk � �x)T (yk � �y)= (xk � uk + uk � �x)T (yk � vk + vk � �y)= (xk � uk)T (yk � vk) + (uk � �x)T (yk � vk) + (xk � uk)T (vk � �y)+(uk � �x)T (vk � �y)= (xk � uk)T (yk � vk) + (uk � xk)T (yk � vk) + (xk � �x)T (yk � vk)+(xk � uk)T (vk � yk) + (xk � uk)T (yk � �y) + (uk � �x)T (vk � �y)= �(xk � uk)T (yk � vk) + (xk)T (yk � vk)� �xT (yk � vk)+(xk � uk)Tyk � (xk � uk)T �y + (uk � �x)T (vk � �y): (10)Now, since (uk; vk) and (�x; �y) are both feasible, the last term in (10) is non-negative. More-over, xk > 0; yk � vk � 0 ) (xk)T (yk � vk) � 0;yk > 0; xk � uk � 0 ) (yk)T (xk � uk) � 0;(xk � uk) = �k(x0 � u0); (yk � vk) = �k(y0 � v0):Hence, from (10),(xk � �x)T (yk � �y)� �(xk � uk)T (yk � vk)� �xT (yk � vk)� �yT (xk � uk)= ��2k(x0 � u0)T (y0 � v0)� �k�xT (y0 � v0)� �k�yT (x0 � u0);8



and so, using Lemma 3.2 to bound (xk)Tyk, we obtain�xTyk + �yTxk� (xk)Tyk + �xT �y + (x0 � u0)T (y0 � v0) + �xT (y0 � v0) + �yT (x0 � u0)� �0 + �xT �y + (x0 � u0)T (y0 � v0) + �xT (y0 � v0) + �yT (x0 � u0)4= �C2:Hence 0 < yki � �C2�xi ; 0 < xki � �C2�yi ; i = 1; 2; � � � ; n:The result is obtained by settingC2 = �C2max supi=1;���;n 1�xi ; supi=1;���;n 1�yi! :We can use Lemma 3.5 to de�ne lower bounds on some other components of (xk; yk).Lemma 3.6 For all k � 0, i 2 B ) yki � 1C2 ��k;i 2 N ) xki � 1C2 ��k;where C2 is as de�ned in Lemma 3.5.Proof. We have from Lemma 3.5 thati 2 B; xki yki � k�k ) yki � k�kxki � k�kC2 � ��kC2 :4 Linear Convergence and Polynomial ComplexityIn this section, we modify some results of Zhang [12] to show that the algorithm of Section2 produces a sequence f�kg that converges Q-linearly. When the starting point is chosenappropriately, the method has polynomial complexity.We start with a result that can be used to derive global bounds on the step (�xk;�yk).We de�ne �k =  nk!1=2 (xk � uk)Tyk + (yk � vk)Txk(xk)Tyk�k =  1 � 2�k + �2kk !+ 2�k (x0 � u0)T (y0 � v0)�̂(x0)Ty0!k = ��k +q�2k + �k�2 ;9



and the diagonal matrix Dk = (Xk)�1=2(Y k)1=2; (11)which also appears in much of the subsequent analysis.Lemma 4.1 For all k, kDk�xkk2 + k(Dk)�1�ykk2 � !k(xk)Tyk: (12)Moreover, there is a constant ! > 0 !k � !: (13)Proof. Minor modi�cations of the proofs of Lemma 6.2 and Theorem 7.1 in Zhang [12]yield (12). Since, from Lemma 3.2, we have(xk)Tyk � �̂�k(x0)Ty0;we can modify the proof of Zhang [12, Lemma 6.1] to show that�k �  nk!1=2 "1 + (x0 � u0)Ty� + (y0 � v0)Tx� + (x0 � u0)T (y0 � v0)�̂(x0)Ty0 # :Since �k 2 [0; 1) and k � � > 0, it is easy to see that f�kg and f�kg are bounded sequences.Hence f!kg is also bounded, and so we have (13).We can now prove linear convergence.Theorem 4.2 There is a constant � 2 (0; 1) such that�k+1 � (1� �)�k; k = 0; 1; 2; � � � ; (14)that is, the algorithm converges globally and Q-linearly.Proof. Consider a safe step with 0 < � � �k � 1=2. As in the proof of Theorem 7.1 ofZhang [12], we can show that �k+1 � (1� �k)�k;where �k �  1� 2(1 � k)�n ! (1� k)�n! �  1 � 2(1� �)�n ! (1� 2�)�n! > 0;where the second inequality follows from k 2 (�; 2�].When a successful fast step is taken, we have by de�nition that�k+1 � ��k:The result follows by setting� = min  1 � 2(1 � �)�n ! (1� 2�)�n! ; 1� �! : (15)10



The complexity result depends on a particular choice of starting point. Zhang [12] sug-gests the following choice. First, de�ne(u0; v0) = arg min(u;v) kuk2 + kvk2; subject to v = Mu+ h; (16)and r� = inf fk(x�; y�)k j (x�; y�) is a solution of (1) g : (17)Now, we choose r � k(u0; v0)k and set(x0; y0) = r(e; e): (18)Theorem 4.3 Suppose that (x0; y0) is de�ned by (16){(18) and that there is a constant �independent of n such that r � r�=(�pn):Suppose that, for a given � > 0, we have �0 � 1=�� ;where � is a constant independent of n. Then there is an integer K� such thatK� = O(n2 log(1=�));and �k � � for k � K�.Proof. As in Zhang [12, Lemma 7.1], with minor modi�cations, it can be shown that ifwe choose ! = lim supk!1 !k;then ! = O(n). Equation (15) then implies that � � ��=n2, for some �� > 0 independent of n.Therefore �k � � when k � log(�=�0)log(1 � �) = O(log(1=�))� :Hence K� = O(n2 log(1=�)).5 Boundedness of the StepsIn this section, we obtain bounds for components of the steps �xk and �yk in terms of k,�k, and �k. These bounds are �ner than the global bounds implied by (12) and are importantfor the analysis of superlinear convergence. We treat components in the basic and nonbasicindex sets B and N di�erently and de�ne�xkB = [�xki ]i2B; �xkN = [�xki ]i2N ;11



and similarly for �ykB, �ykN , etc. Without loss of generality, we can assume that the com-ponents of all vectors (and the rows and columns of M) are rearranged so that the indicesin B are listed �rst. We can then partition M and Dk in an obvious way asM = " MBB MBNMNB MNN # ; Dk = " DkB DkN # :(Xk and Y k may be partitioned similarly to Dk .) Here, eB and eN denote vectors of theappropriate length whose components are all 1.We start with a simple result that bounds components of �xkN and �ykB.Lemma 5.1 There is a constant C4 such thati 2 N ) j�xki j � C4�k; (19a)i 2 B ) j�yki j � C4�k: (19b)Proof. From (12) and (13), we have for i 2 N that�������xki  ykixki !1=2������ � (n�k!)1=2;and so j�xki j � (n!)1=2 �1=2k(xki yki )1=2xki � (n!)1=21=2k xki :If we de�ne C4 = C1(n!=�)1=2, the inequality (19a) follows from Lemma 3.4. The proof of(19b) is similar.Bounds on the remaining components �xkB and �ykN are more di�cult to obtain. Weneed the following lemma, which is similar to results obtained by Ye and Anstreicher [11,Lemma 3.5] and Monteiro and Wright [5, Lemma 3.6]. For clarity, we drop the superscriptk from vectors and matrices in the following two results.Lemma 5.2 The vector pair (w; z) = (�xB;�yN) solves the convex quadratic programmingproblem min(w;z) 12kDBwk2 � �k�keTBX�1B w + 12kD�1N zk2 � �k�keTNY �1N z; (20)subject to MBBw = (�h�Mx+ y)B �MBN�xN +�yB; (21a)MNBw � z = (�h�Mx+ y)N �MNN�xN : (21b)Proof. The �rst-order necessary conditions for (w; z) to solve (20),(21) are also su�cient,since the problem is convex. These conditions are that (w; z) is feasible with respect to (21)and " D2Bw � �k�kX�1B eBD�2N z � �k�kY �1N eN # 2 R " MTBB MTNB0 �I #! ; (22)12



where R(:) denotes the range space of a matrix. Ye and Anstreicher [11, Lemma 3.4] provethat R " MTBB MTNB0 �I #! = R " MBB MBN0 I #! ;and so (22) becomes " D2Bw � �k�kX�1B eBD�2N z � �k�kY �1N eN # 2 R " MBB MBN0 I #! : (23)We now show that (�xB;�yN) satis�es (23). Equation (2), appropriately partitioned andscaled, yields MBB�xB = (�h�Mx + y)B �MBN�xN +�yB; (24a)MNB�xB ��yN = (�h�Mx + y)N �MNN�xN ; (24b)D2B�xB +�yB = �yB + �k�kX�1B eB; (24c)D�2N �yN +�xN = �xN + �k�kY �1N eN : (24d)It follows from (24a) and (24b) that (w; z) satis�es the constraints (21). Now, sincey� = Mx� + h ) 0 = MBBx�B + hB;we have by substitution of (24c) in (24a) thatD2B�xB � �k�kX�1B eB= �yB � [MBB�xB + hB +MBBxB +MBNxN � yB +MBN�xN ]= �MBB(xB +�xB � x�B)�MBN(xN +�xN): (25)From (24d), D�2N �yN � �k�kY �1N eN = �(xN +�xN): (26)Together, (25) and (26) imply (23).Lemma 5.3 There is a constant C5 > 0 such thatk�xBk � C52 (�k + �k): (27a)k�yNk � C52 (�k + �k): (27b)Proof. Since the feasible set for (21) is nonempty, there is a feasible vector pair ( �w; �z)such that " �w�z # = O (k � h�Mx+ yk) +O (k�xNk) +O (k�yBk) = O(�k);13



where the estimate for the infeasibility term follows from Lemma 3.2, sincek � h�Mxk + ykk = �kk � h�Mx0 + y0k � �k�̂�0k � h �Mx0 + y0k:Note that the objective function (20) may be written as12kDBw � �k�kD�1B X�1B eBk2 + 12kD�1N z � �k�kDNY �1N eNk2 + constant:Hencek�xB � �k�kD�2B X�1B eBk2 + k�yN � �k�kD2NY �1N eNk2� kD�1B k2kDB�xB � �k�kD�1B X�1B eBk2 + kDNk2kD�1N �yN � �k�kDNY �1N eNk2� �C25 nkDB�xB � �k�kD�1B X�1B eBk2 + kD�1N �yN � �k�kDNY �1N eNk2o� �C25 nkDB �w � �k�kD�1B X�1B eBk2 + kD�1N �z � �k�kDNY �1N eNk2o ;where �C5 = max(kD�1B k; kDNk). The last inequality follows from optimality of (�xB;�yN)in (20),(21). Hence" �xB � �k�kD�2B X�1B eB�yN � �k�kD2NY �1N eN # � �C5 " DB �w � �k�kD�1B X�1B eBD�1N �z � �k�kDNY �1N eN # ;and so" �xB�yN # � �C5 (" DB D�1N # " �w�z #+ �k�k " D�1B DN # " X�1B eBY �1N eN #)+�k�k " D�2B D2N # " X�1B eBY �1N eN # :NowkD�1B k = supi2B  xkiyki !1=2 � C2 1(��k)1=2 ; kDNk = C2 1(��k)1=2 ; (Lemmas 3.5, 3.6);kDBk = supi2B  ykixki !1=2 � C1 �k� !1=2 ; kD�1N k � C1  �k� !1=2 ; (Lemma 3.4);kX�1B eBk = supi2B 1xki � C1� ; kY �1N eNk � C1� ; (Lemma 3.4);k �wk = O(�k); k�zk = O(�k); �C5 = max�kD�1B k; kDNk� � C2(��k)1=2 :Hence " �xB�yN # � O(��1=2k )nO(�3=2k ) + �kO(�1=2k )o+ �k�kO(��1k )� C52 (�k + �k); 14



for an appropriately de�ned constant C5.For \fast" steps, the results of Lemmas 5.1 and 5.3 can be combined to give the followingresult.Theorem 5.4 If �k = �k, thenj�xki�yki j � C4C5�2k; i = 1; � � � ; n:6 Asymptotic Subquadratic ConvergenceIn this section, we show that all steps after a certain point in the algorithm are fast stepsand that the sequences f�kg and f�kg converge Q-subquadratically to zero.Throughout the analysis, we will make use of the constant C6 de�ned byC6 4= max(1; 2C4C5) : (28)We start by de�ning a threshold condition involving �k and k, and �nding a lower boundon the step length when this condition is satis�ed.Lemma 6.1 Suppose at iteration k that �k(k � �)(1 � �) � �3C6 (29)and that a fast step is calculated. Then the step length ~� will satisfy1 � ~� � 1 � C6 �k(k � �)(1� �) :Proof. Before proceeding, note that if the fast step is successful, the algorithm sets k+1to �(1 + �tk), and sok � k+1 = �(1 + �tk�1)� �(1 + �tk) = �tk(1� �) = (k � �)(1 � �): (30)Under these circumstances, condition (29) is equivalent to�kk � k+1 � �3C6 : (31)We use (29) and (31) interchangeably for the remainder of the proof.The proof is in three stages. First, we show that the relaxed centrality condition (4e)holds for all � satisfying � 2 "0; 1� C6 �kk � k+1 # : (32)Second, we show that the other main condition on �, namely, (4d), also holds for � satisfying(32). Together, (4d) and (4e) imply that (4b) and (4c) also hold. Third, we show that15



�(xk + ��xk; yk + ��yk) is decreasing for � in the range (32), which, by (3), implies theresult.We start with (4e). Theorem 5.4, (2), (4e), (28), and the fact that ~� = �k = �k implythat j�xki�yki j � C4C5�2k � (C6=2)�2k;xki yki � k�k;xki�yki + yki�xki = �xki yki + �k�k = �xki yki + �2k:Hence (xki + ��xki )(yki + ��yki )= xki yki + �(xki�yki + yki�xki ) + �2(�xki )T�yki� k�k(1� �) + ��2k � �2(C6=2)�2k :On the other hand, 1nk+1(xk + ��xk)T (yk + ��yk)� k+1 h�k(1 � �+ ��k) + �2(C6=2)�2ki :Therefore condition (4e) will be satis�ed provided thatk�k(1� �) + ��2k � �2(C6=2)�2k� k+1 h�k(1 � �+ ��k) + �2(C6=2)�2ki ;or, equivalently,(k � k+1)�k(1� �) + ��2k(1� k+1)� �2�2k(C6=2)(1 + k+1) � 0:Since k+1 2 (0; 1) and � 2 (0; 1], this last inequality will hold if(k � k+1)�k(1� �) � �C6�2k � 0 ) 0 � � � ��I 4= 11 + C6 �kk�k+1 :By assumption (31), the second term in the denominator is less than one, so we can write��I � 1 � C6 �kk � k+1 :Therefore, (4e) is satis�ed for � in the range (32).Turning now to condition (4d), we note that1n(xk + ��xk)T (yk + ��yk) = �k(1� �+ ��k) + 1n�2(�xk)T�yk� �k(1� �+ ��k)� �(C6=2)�2k ;16



where we have used Theorem 5.4, (28), and � 2 (0; 1] to derive the inequality. Therefore,(4d) will hold if �k(1 � � + ��k)� �(C6=2)�2k � (1� �)(1 � �tk)�k, �tk � � h�tk � �k + (C6=2)�ki � 0: (33)From (28), (29), and (30), we have that�k�tk � �3C6 (1 � �) < 1:Hence the term in square brackets in (33) is positive, and so (4d) is satis�ed if0 � � � ��II 4= �tk�tk � �k + (C6=2)�k :Now ��II � 11 + (C6=2)�k=�tk � 1 � (C6=2) �k�tk :Using (30) again, we have that �tk � (k � k+1), and so��II � 1 � C6 �kk � k+1 :Therefore (4d) holds for � in the range (32).Finally, we examine �(xk + ��xk; yk + ��yk) for � 2 [0; 1]. Using the notation rk =kyk �Mxk � hk, we have that�(xk + ��xk; yk + ��yk) = (xk + ��xk)T (yk + ��yk) + (1 � �)rk= n�k + �[(xk)T�yk + (yk)T�xk] + �2(�xk)T�yk + (1 � �)rk= n�k � �n(1 � �k)�k + �2(�xk)T�yk + (1 � �)rk:If (�xk)T�yk � 0, then, since �k < 1 by (31), �(xk + ��xk; yk + ��yk) is decreasing on[0; 1]. Otherwise, the unconstrained minimum occurs at�min = n(1 � �k)�k + rk2(�xk)T�yk � (2=3)n�k2(�xk)T�yk � (2=3)n�k2nC4C5�2k � (2=3)C6�k : (34)But from (31), (3=2)C6�k � �2(k � k+1) � 1; (35)and so �min � 1. Again, we deduce that �(xk + ��xk; yk + ��yk) is decreasing on [0; 1].This implies that the value of ~� chosen by the algorithm is the largest value that satis�es(4), and so 1 � ~� � 1� C6 �kk � k+1 ;17



as required.The next two results show that once the threshold condition (29) is satis�ed at someiteration, then fast steps may be taken on this and all subsequent iterations, and subquadraticconvergence can be attained.Lemma 6.2 If (29) is satis�ed at iteration k and a fast step is taken, then�k+1 � ��k; (36a)�k+1 � ��k; (36b)�k+1 �  3C6k � k+1!�2k; (37a)�k+1 �  3C6n(k � k+1)!�2k; (37b)and �k+1(k+1 � �)(1 � �) � �k(k � �)(1 � �) : (38)Proof. Consider1n(xk + ��xk)T (yk + ��yk) = �k[1� �(1 � �k)] + �2 (�xk)T�ykn : (39)The argument in the last part of Lemma 6.1, in particular, formulae (34) and (35), can beapplied to show that the quadratic function (39) is decreasing on [0; 1]. Therefore�k � 1 �C6 �kk � k+1 ;and so �k+1 = 1n(xk + �k�xk)T (yk + �k�yk)� �k "1 �  1 �C6 �kk � k+1! (1 � �k)# + 1n ���(�xk)T�yk���� �k "C6 �kk � k+1 + �k#+ (C6=2)�2k (40)� �k ��3 + �3�+ �3�k� ��k;yielding (36a). For (36b), we again use the notation rk = kyk �Mxk � hk and note thatrk+1 = (1� �k)rk � C6 �kk � k+1 rk � �rk:18



Therefore, �k+1 = n�k+1 + rk+1 � n��k + �rk = ��k:For (37a), using (40) and the fact that1 � C6 � C6 1k � k+1 ;we have that �k+1 � �k "C6 �kk � k+1 + �k + C6�k# � 3C6k � k+1�2k;as required. Also, �k+1 = n�k+1 + rk+1� 3C6k � k+1n�2k + C6k � k+1�krk� 3C6k � k+1�k[n�k + rk]� 3C6n(k � k+1) [n�k + rk]2= 3C6n(k � k+1)�2k;giving (37b).From (37a) and (30), we have �k+1 � 3C6�tk(1 � �)�2k:Therefore,�k+1(k+1 � �)(1 � �) = �k+1�tk+1(1� �) � 1�tk+1(1� �) 3C6�tk(1� �)�2k = 3C6� " �k�tk(1� �)#2 : (41)From (29) and (30), we have3C6� �k�tk(1 � �) = 3C6� �k(k � �)(1 � �) � �� < 1;where the last inequality follows from the de�nition of � and � in the algorithm. Substitutionof this inequality into (41) gives (38).Theorem 6.3 Suppose that the condition (29) is satis�ed at iteration K and that�K � ��:Then 19



(i) the algorithm will take fast steps at iteration K and at all subsequent iterations, and(ii) the sequences f�kg and f�kg converge superlinearly to zero with Q-order 2.Proof. The �rst part follows inductively from Lemma 6.2. Since (29) is satis�ed atiteration K and since (36b) holds, the fast step will be accepted at this iteration. Formula(38) implies that (29) will again hold at iteration K +1. Since �K+1 � ��K < ��, a fast stepwill be accepted at iteration K + 1, and so on.For (ii), we use (37a). Since �k+1 � 3C6�tk(1 � �)�2k;we have log �k+1 � 2 log �k + log(3C6)� tk log � � log(1� �): (42)We can now use an argument like that of Ye [10]. From (36a) andlog � < log � < 0 and 1 � tk � k + 1;we have for su�ciently large choice of k thatlog �k � log �K + (k �K) log �� (k + 1) log � � tk log �;that is, the �rst term on the right hand side of (42) will eventually dominate the third termand, in fact, limk!1 tklog �k = 0:Dividing (42) by log �k, we have lim infk!1 log �k+1log �k = 2: (43)From Potra [6], (43) implies that the Q-order of convergence for f�kg is 2.The argument for f�kg is similar.Finally, we show that the threshold condition (29) will eventually be met and, hence,that subquadratic convergence will be obtained.Theorem 6.4 De�ne f 4= log �log � 2 (0; 1):De�ne a constant �̂ as follows:�̂ = 8<: �� if ��n�(1��) � �3C6 ;h �3C6 n�2(1��)�� i1=(1�f) �� otherwise: (44)20



Then if K is the smallest positive integer such that�K � �̂; (45)we have that �K�tK(1� �) � �3C6 (46)and �K � ��; (47)and hence the conditions of Theorem 6.3 are satis�ed.Proof. First, consider the case of ��n�(1 � �) � �3C6 : (48)Then �̂ = ��, and so (45) immediately implies (47). Since K is the �rst iterate below ��, thealgorithm cannot have taken any fast steps yet, so tK = 1. Hence, by (45), (48), and thefact that �K � �K=n, �K�tK(1� �) = �K�(1� �) � �K=n�(1 � �) � ��=n�(1� �) � �3C6 ;which gives (46).In the remaining case, note that�3C6 n�2(1� �)�� � �3C6 n�(1 � �)�� < 1;and so �̂ < �� in (44), so again (45) implies (47). This inequality also implies that thealgorithm may have taken some fast steps prior to iteration K but, since a reduction of atleast � occurs on each fast step, the number of such steps is bounded by&log(�̂=��)log � ' :Hence tK � & log(�̂=��)log � '+ 1 � log �̂� log ��log � + 2:Now, �tK � �2 exp " log �̂� log ��log � log �#= �2 exp hf log �̂� f log ��i= �2�̂f ���f :21
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