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Abstract

In this paper, we discuss a polynomial and Q-subquadratically convergent algorithm
for linear complementarity problems that does not require feasibility of the initial point
or the subsequent iterates. The algorithm is a modification of the linearly convergent
method of Zhang and requires the solution of at most two linear systems with the same
coeflicient matrix at each iteration.

1 Introduction
The linear complementarity problem is to find a vector pair (z,y) € R™ x R" such that
y=Max+h, (x,y) > (0,0), Ty =0, (1)

where h € R"™ and M is an n X n positive semidefinite matrix. A pair (z,y) is said to be
feasible if y = Ma+h and (x,y) > (0,0), and strictly feasible if the latter inequality is strict.

It is well known that convex quadratic programming problems and linear programming
problems can be expressed as linear complementarity problems; the same is true of ex-
tended linear-quadratic programming problems (see Rockafellar [9]). Much research has
been devoted to interior point methods for (1). Recently, Ji, Potra, and Huang [1] proposed
a predictor-corrector algorithm with polynomial complexity and superlinear convergence,
while the predictor-corrector algorithm of Ye and Anstreicher [11] is polynomial and Q-
quadratic. In the latter paper, it was assumed only that a strictly feasible point and a
strictly complementary solution (one for which max(a},y*) > 0 for ¢ = 1,---,n) exist for
(1). Both these algorithms generate a sequence of strictly feasible iterates (2%, y*). A strictly
feasible starting point (2%, y°) must therefore be supplied. To find such a point, one often
must augment the problem in an artificial way.
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More recently, research has focused on algorithms that generate sequences (z*,y*) for
which (2%, y*) > 0 but possibly y* # Ma* 4+ h. These infeasible-interior-point methods more
nearly reflect computational practice (see, for example, Lustig, Marsten, and Shanno [4]).
Also, minor modifications to a solution to a “nearby” problem can produce an excellent
starting point for the present problem — an advantage when the underlying problem to
be solved is nonlinear. Infeasible algorithms for linear programming have been proposed
by Kojima, Meggido, and Mizuno [2], Kojima, Mizuno, and Todd [3], and Potra [7, 8]. Of
these, only Potra’s algorithms have both polynomial complexity and superlinear convergence
properties. Potra’s methods are of the predictor-corrector type and require three systems
of linear equations (two of which have the same coefficient matrix) to be solved at each
iteration. The only infeasible-interior-point algorithm for more general problems than linear
programs that we are aware of is due to Zhang [12]. He analyzes an algorithm for a class
of problems that includes (1) and proves Q-linear convergence of the complementarity gap
tx = (2%)Ty* /n to zero. Polynomial complexity is obtained for a particular choice of starting
point. The algorithm requires the solution of a single system of linear equations at each
iteration.

In this paper, we propose modifications of Zhang’s algorithm that retain polynomial
complexity and have the added feature that the sequence {pu} converges superlinearly to
zero with Q-order 2. Only the mild assumptions of Ye and Anstreicher [11] are required.
Our method requires the solution of at most two linear systems of equations with the same
coefficient matrix at each iteration.

When this report was about to be issued, we received a new report by Zhang and Zhang
[13] that describes an infeasible-interior-point algorithm that is similar to ours in some re-
spects. They allow relaxed versions of the centering condition and the feasibility dominance
condition (cf. below (4e) and (4d), respectively) to be used on some iterations, and they
obtain similar convergence properties. However, their algorithm is applicable only to linear
programming problems.

Our algorithm is specified in Section 2. Some technical results are proved in Section
3, while in Section 4, we prove Q-linear convergence and polynomial complexity. Results
concerning boundedness of the steps are proved in Section 5. Finally, superlinear convergence
properties are discussed in Section 6.

Unless otherwise specified, ||-|| denotes the Euclidean norm of a vector. Iteration numbers
appear as superscripts on vectors and matrices and as subscripts on scalars.

2 The Algorithm

Given a starting point with (2% y°) > (0,0), the algorithm generates a sequence of iterates
(%, y%) > (0,0). The desirability of each point is measured by the merit function

d(z,y) ="y + |y — Mz — hl|

whose two terms measure the complementarity gap and infeasibility. Clearly, a vector pair
(x*,y*) is a solution of (1) if and only if (*,y*) > (0,0) and ¢(x*,y*) = 0. We use the
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shorthand notation ¢, to denote ¢(z*,y¥).
In order to describe the step between successive iterates, we define

HE = (xk)Tyk/m e=(L1,---, 1)T7
XF = diag(:z;’f,:z;g, e ,:L’ffb), Yh = diag(yf7y§, T 795)-

The step is calculated as follows.

Given 4 € (0,1), 3 € [0,1), & € [0,1), solve

M —1][ Az [ —h—Mazk+y* (2)
Yk X* Ayk T —XFkYFRe 4+ opre |-
Choose
& = arg main o(z* + alAz® y* + aAyF) (3)
subject to
a € [0,1], (4a)
¥ oAzt > 0, (4b)
y* + oAyt > 0, (4c)
(" + ada") (5" + aly*) = (1 - B)(1 - a)(@")Ty", (4d)
(«f + aAaf)(yf + adyf) = (A/n)(a" + oAy +adyh),  i=1, 0. (de)

It has been noted previously that (2) are simply the equations obtained by applying one
iteration of Newton’s method to the nonlinear equations

Fla,y) = [y_)%fe_h] B [&/?ke ]

starting from the point (2% y*). The condition (4e), usually referred to as a centering
condition, ensures that the iterates do not prematurely approach the edge of the non-negative
orthant. The condition (4d) is a relaxation of the condition enforced by Zhang [12, formula
(5.7)] to ensure that feasibility is given a higher priority than complementarity (Zhang uses
@ = 0). Potra’s algorithms replace (4d) with an equality condition in which 3 =0. We allow

B > 0 to permit superlinear convergence, as will become clear in the analysis that follows.
We can now state our algorithm.



0,0),

Given 7 € (0,1/2), 0 € (0,1/2), (2°,y°) > (
0 y°) with 299 > 279 uo;

p€(0,7), ¢ >0, and (z°¢°
lo 1, 70 < 2%;
for £=0,1,2,---

if  gr=o(ahyf) <o
then Solve (2)—(4) with & = ug, 8 = 3%, 5 = (1 4+ 3%);
if  g(ah + aAak, y* + aAy*) < poy
then ajy —a, B — 3, 04 — &, Yep1 < 7;
Tppr — tp + 1;
(xk+1,yk+1) - (xk,yk) + Ozk(Axk,Ayk);
go to next k;
end if
end if

Solve (2)7(4) with & € [07 1/2]7 B = 07 :7 = Yk;
Oék%&v ﬂkHov Uk%a—v’}/k-l—l Hﬁ/;

L1 = Uy

(@Y™ (¥, yh) + an(Adk, Ayh);

go to next k;

end for.

The idea behind this algorithm is simple. While the merit function exceeds ¢, it is
identical to Zhang’s algorithm. One linear system of equations is solved at each iteration to
yield what we refer to as a safe step. When the merit function falls below the threshold ¢,
the algorithm computes a step that may yield rapid convergence by setting o equal to the
current duality gap and allowing 3>0in (4d). We refer to such a step as a fast step. The
coefficient matrices for the fast and safe steps are the same, and the integer variable ¢; keeps
track of the number of fast steps that have been taken prior to iteration k. If the fast step
does not give a significant reduction in ¢ (by at least a factor of p), it is discarded, and we
take a safe step instead.

This strategy may lead to our rejecting a fast step and taking a safe step that gives a
smaller decrease in ¢ at some iterations. Note, however, that we pay a price for taking fast
steps in that = is decreased, and so the Q-linear convergence rate will not be as favorable
on subsequent iterations. Therefore, it makes sense to reject fast steps unless they make
substantial progress.

In the safe-step calculation, there is considerable scope for user-defined heuristics in the
choice of g. In a practical implementation, the value of o may be adjusted according to
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the merit function decrease ¢p_1 — ¢ on the previous step, and the value of ay_;.
In the remainder of the paper, we analyze the convergence properties of this algorithm
under the following assumptions:

Assumption 1 M is positive semidefinite.

This assumption implies that if (2!, y") and (22, y*) are any two points satisfying y = Mz =
h, then
(y2_y1)T(x2_x1) :(J}Q—J}I)TM(J}Q—J}I) ZO (5)

Assumption 2 The problem (1) has a strictly feasible point (z,y). That is, (z,y) > (0,0)
and y = Mz + h.

Assumption 3 The solution set for (1) is nonempty and, moreover, there is a strictly
complementary solution (x*,y*).

With respect to (a*,y*), we define the partitioning {1,2,---,n} = N U B, where
B={ilaz>0}, N=/{i|y >0l

Assumptions 1, 2, and 3 will be assumed everywhere without being explicitly stated.

3 Technical Results

In this section, we prove a number of results that are needed in the analysis of Sections 4, 5,
and 6. In the statement of many of our results, we refer to the pair (2%, y*), which is always
understood to be an iterate generated by the algorithm of Section 2.

We start by showing that the dominance of feasibility over complementarity is not com-
pletely abandoned by our relaxed condition (4d), but still holds to within a certain constant.

Lemma 3.1

>
3

B (1—ﬂk)>0.

k=0

Proof. Inspection of the algorithm shows that on each iteration, we have either g = 0
(safe steps) or B, = 7', t = 1,2, (fast steps). Therefore

=1
and the right-hand side is bounded away from zero since ¥ € (0, 1). [
If we define
k-1
vo =1, l/k:H(l—ozi), k=1,2,---,
=0

the following result defines upper and lower bounds on .
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Lemma 3.2 For all (z*,y*) generated by the algorithm and pyp = (2¥)Ty*/n,

Y

M Bykﬂov
1
pr < M0+5H?JO—M1‘O—]@H-

Proof. By (4d),

k-1 )
fre > (1= Bpo1)(1 — apmr)pin—1 = ] (1 = Bi)vepo = Brpio,

=0

giving the first inequality. The second inequality follows from

npr < ¢ < ¢o = npo + ||y — Ma® — bl

Zhang [12] defines an “auxiliary sequence” (u*,v*) by defining an initial point (u°, v°)

such that
(uo,vo) < (:I;O,yo), " = Mu® + h,

and subsequent iterates by
uFtt = o o Oék(Al'k 4ok uk), o = pF 1 ozk(Ayk + yk — vk).
He proves the following result.
Lemma 3.3 (Zhang [12, Lemma 4.1]) For k > 0,
(i) vF = Mu* + h;
(ii) F+t — o+t = 1y (20 —u®) > 0 and y*H — 0P = b (y° — 00) > 0;

(iii) If ax = 1 for some K > 0, then (zF,y*) = (u*,v*) and therefore (2%, y*) is strictly
feasible for all k > K.

Using Lemma 3.3, we can bound some components of the iterates (z*,y*)

Lemma 3.4 There is a constant Cy > 0 such that for all iterates (z*, y*),

i €N = ¥ < Ciu, (6a)

1€B = yf <Cin, (6b)
and

t€B = Ch, (7Ta)

e N =y,



Proof. From the definition of (u*,v*), we have

(" - w*)T(y’“ - y*)
= (;z;k uf o+ uf —:z;)T(yk—v L y") (8)
= (2" =)y = 0"+ (WF =" (?J — o)+ (2 =BT (0" — ) + (uF = )T (N = ).

Now vF = Mu* + h and y* = Mz* + h, so by (5),
(uk . x*)T(vk . y*) Z 0.

Therefore, since (z*)Ty* = 0, we have

=)y = @)yt A+ ()
> (aF - uk)T(yk o) + (uf = a") (yF = o) + (F =) (0" — )
and so
(x*)Tyk T (l‘k)Ty*
S (l’k)Tyk o (l‘k . uk)T(yk . vk . (uk . J}*)T(yk . vk . (l‘k . uk T(vk R
— (xk)Tyk + (l‘k o uk)T(yk o vk o (l‘k — g* T(yk o vk o (l‘k o uk T(yk R (9)

y
< (Y = )T =) 4 )T — )+ )T — o)
()Tt |1+ (2% — )T (" = ob) N (l’*)T(yk — 0¥ N (y)" (" —uh)]
E EL Ea
Now, by Lemmas 3.2 and 3.3, we can bound the term in the square brackets by C;, where

e [ B ) ) e
C“‘P+ Bt B Aty ]’

and so )
() "y" + (") Ty < nCup.
Hence, for 2 € N, -
nCl
- Mk
Y

7

:L'fyl* < nC’l,uk = :L'f <



while for + € B,

Hence (6) is obtained by taking

- 1 1
C1 = nCimax (sup —, sup —) .
1€EB l’ 1EN yZ

For (7a), we simply note that

Vi Mk Vi o
yt — Gy T Gy

i€ B, iyl >y = af >

The proof of (7b) is similar. [
Assumption 2 can be used to show that the iterates remain bounded.

Lemma 3.5 There ts a constant Cy > 0 such that for k>0 and 1 =1,2,---.n,
0<af <0y  0<yF <Oy

Proof. Because of Assumption 2, there is a strictly feasible point (z,y). Now

)
= (2" Uk) ( —v ) + (0 =) (yh = o)+ (2" - 51?) SUARE
)+ (2"~ ) (y* —y) + y
)+ @)yt =0t =2t (Yt = o)
)T ; (l‘k —u)ly + (uh =) (" —p). (10)
Now, since (u*,v¥) and (z,%) are both feasible, the last term in (10) is non-negative. More-
over,

2" >0, =0 >0 = (@5 (y" -0 >0,
y' >0, aF—u" >0 = ()P -uF) >0,

(2% —uF) = v(2® — u?), (y" — ") = v(y® — o).

Hence, from (10),

> (2t =)y =) -0t =g et )

_ —l/k(l' . uO)T(yO . vO) . l/ki’T(yO . vO) . l/k]jT(l'O . uO)7



and so, using Lemma 3.2 to bound (z*)Ty*, we obtain

i’Tyk _I_ngk

< @)y ety 4 0 = a0 =) 4 - o)+ (@ - o)
< g0+ g (@ —u”) (B0 =) + 2T (Y0 = 0%) + 5T (20 — )
A —
= 02.
Hence . .
0<yb<=22,  o0<ab<Z2 =120
‘ Yi

The result is obtained by setting

_ 1 1
Cy = (s maX( sup —, sup —) )

t=1,n Li i=1,--n Yi
[
We can use Lemma 3.5 to define lower bounds on some other components of (z*, y*).
Lemma 3.6 For all k > 0,
. 1
1€B = yfzaﬁuk,
. i L _
e N = z; Za’}/ﬂka
where Cy is as defined in Lemma 3.5.
Proof. We have from Lemma 3.5 that
FE B, iyt = yf > B 5 Bk T
- - €, - CQ - CQ
[

4 Linear Convergence and Polynomial Complexity

In this section, we modify some results of Zhang [12] to show that the algorithm of Section
2 produces a sequence {¢;} that converges Q-linearly. When the starting point is chosen
appropriately, the method has polynomial complexity.

We start with a result that can be used to derive global bounds on the step (Ax*, Ay*).
We define

& =

0.2
Ny = (1—20‘k—|-—k)—|-21/k ~

Bx)Ty®
wp = (fk + /& + Uk)za
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and the diagonal matrix

DF = (XF) (1)
which also appears in much of the subsequent analysis.
Lemma 4.1 For all k,
D" Az + [(D*) 7 Ayt|* < wi(e®) Ty (12)

Moreover, there is a constant w > 0
wr < w. (13)

Proof. Minor modifications of the proofs of Lemma 6.2 and Theorem 7.1 in Zhang [12]
yield (12). Since, from Lemma 3.2, we have

(xk)Tyk > Bl/k(l'o)Tyo,
we can modify the proof of Zhang [12, Lemma 6.1] to show that
£ < (_) VT (= )Ty 4 (5= o)+ (20— )y~ o)
=\ B(a0)Tyo

Since oy, € [0,1) and v > 7 > 0, it is easy to see that {{;} and {n;} are bounded sequences.
Hence {wy} is also bounded, and so we have (13). ]

I+

We can now prove linear convergence.
Theorem 4.2 There is a constant 6 € (0,1) such that

¢k+1 S (1_5)¢k7 k:071727"'7 (14)
that is, the algorithm converges globally and Q-linearly.

Proof. Consider a safe step with 0 < o < o, < 1/2. As in the proof of Theorem 7.1 of
Zhang [12], we can show that

Prp1 < (1 — 6x)dx,

. (1 (- ma) (1= (1 21— 7)0) (-2,

n nw n nw

where

where the second inequality follows from 4 € (%, 27].
When a successful fast step is taken, we have by definition that

Ory1 < POy

The result follows by setting

§ = min ((1 _ 2 _7)0) (1=2)7 p) . (15)

n nw
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[
The complexity result depends on a particular choice of starting point. Zhang [12] sug-
gests the following choice. First, define

(u®,v°) = arg 1((n1r)1 lull? + |[v||?,  subject to v = Mu+h, (16)
and
r™ =inf {|[(x", y)||| (™, y") is a solution of (1) }. (17)
Now, we choose r > ||(u°, v?)|| and set
(2% y°) = r(e,e). (18)

Theorem 4.3 Suppose that (2°,y°) is defined by (16)-(18) and that there is a constant /3
independent of n such that
r =7 /(Bvn).

Suppose that, for a given ¢ > 0, we have
¢o < 1/¢€7,
where T s a constant independent of n. Then there is an integer K. such that
K. = O(n*log(1/e)),
and ¢, < ¢ for k> K..

Proof. As in Zhang [12, Lemma 7.1], with minor modifications, it can be shown that if
we choose
w = lim sup wy,

k—o0

then w = O(n). Equation (15) then implies that § > §/n?, for some § > 0 independent of n.

Therefore ¢ < ¢ when
L Joa(e/on) _ Ollog(1/c))

~ log(1 — 6) )
Hence K, = O(n?log(1/e¢)). ]

5 Boundedness of the Steps

In this section, we obtain bounds for components of the steps Az* and Ay* in terms of 7y,
ok, and pix. These bounds are finer than the global bounds implied by (12) and are important
for the analysis of superlinear convergence. We treat components in the basic and nonbasic
index sets B and N differently and define

Al‘% = [AJ}?]Z’GB, AJ}?V = [AJ}?]Z’GN,
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and similarly for Ay%, Ay%, etc. Without loss of generality, we can assume that the com-
ponents of all vectors (and the rows and columns of M) are rearranged so that the indices
in B are listed first. We can then partition M and D* in an obvious way as

M:[MBB MBN]7 Dk:lD%

Myg Mnn DY ] '

(X* and Y* may be partitioned similarly to D*.) Here, ¢g and ey denote vectors of the

appropriate length whose components are all 1.
We start with a simple result that bounds components of Az% and Ayk.

Lemma 5.1 There is a constant Cy such that

i €N = |Az¥ < Cyu, (19a)
i€ B = |AyF < Cypy. (19b)

Proof. From (12) and (13), we have for : € N that

k 1/2
()] < o
Ty
and so 1

M, e ()l

|AzF] < (nw)'/? z; < z;.

| el =
If we define Cy = Cy(nw/7)"/?, the inequality (19a) follows from Lemma 3.4. The proof of
(19b) is similar. ]

Bounds on the remaining components Az% and Ayk are more difficult to obtain. We
need the following lemma, which is similar to results obtained by Ye and Anstreicher [11,
Lemma 3.5] and Monteiro and Wright [5, Lemma 3.6]. For clarity, we drop the superscript
k from vectors and matrices in the following two results.

Lemma 5.2 The vector pair (w, z) = (Axp, Ayn) solves the conver quadratic programming

problem
min A Dpwl|* = opprep Xgtw + JIIDN 2|1* — opprenYy'2, (20)
subject to
MBBU) = (—h—Ml’—I—y)B—MBNAJ}N—I-AyB, (21&)
MNBU)—Z = (—h—Ml’—I—y)N—MNNAJ}N. (21b)

Proof. The first-order necessary conditions for (w, z) to solve (20),(21) are also sufficient,
since the problem is convex. These conditions are that (w, z) is feasible with respect to (21)

Db = 711 Xp e ] € R (l Mpp My D : (22)

and

D]_VQZ—Uk,ukY]\FleN 0 -1
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where R(.) denotes the range space of a matrix. Ye and Anstreicher [11, Lemma 3.4] prove
that
Ml Mg |\ _ Mpp MpN
n(| M e ) =n (Y M),
and so (22) becomes

D%w—ak,ungleB MBB MBN
[D]_VQZ—Uk/LkY]QIeN € R 0 I ' (23)

We now show that (Axp, Ayy) satisfies (23). Equation (2), appropriately partitioned and
scaled, yields

MBBAJ}B = (—h—Ml’—I—y)B—MBNAJ}N—I-AyB, (24&)
MNBAJ}B—A]JN = (—h—Ml’—I—y)N—MNNAJ}N, (24b)
DiAzp+ Ayg = —yp+ oy Xg'les, (24c)
D&szN—I-AJ}N = —:L'N—I—Uk,ukY]QleN. (24(1)
It follows from (24a) and (24b) that (w, z) satisfies the constraints (21). Now, since
y*:MJ}*—I-h :>0:MBB$*B—|-}LB,
we have by substitution of (24¢) in (24a) that
DQBAJ}B — Uk,ungleB
= —yp— [MppArp+ hp + Mpprp + Mpynry — yp + MpnAzy]
= —MBB(J}B—I-AJ}B—J}*B)—MBN(J}N—I-AJ}N). (25)
From (24d),
D&szN—O'k/LkYJGIGN: —(J}N—I-AJ}N). (26)
Together, (25) and (26) imply (23). [
Lemma 5.3 There is a constant Cs > 0 such that
C
Al € S+ o) (27a)
C
[Ayn| < 75(/% + o). (27h)

Proof. Since the feasible set for (21) is nonempty, there is a feasible vector pair (w, 2)

such that

w8

|| =0t1=1= 3t a1+ 0 i + 012051 = O,
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where the estimate for the infeasibility term follows from Lemma 3.2, since

| = h— Ma* + g = vl = h — Ma® + %] < £
Brio

Note that the objective function (20) may be written as
%HDBw —opur D5 X5'en||* + %HD]_VIZ — oppr DNYyten || + constant.
Hence

|Azp — orur D" Xgtes||” + | Ayn — orpn DX Y ten|?

< D5 DsATE — 0w DE X5 en|)? + | Dul* | DN Ayn — orur Da Y ten)?
< CH{|DpAvp — oppuDF X5 es|* + | DR Ayn — oppe Dn Yy en|*}
< CH|Dpw — o DE X5 es||* + |DF'Z — o Dy Y en*}

where C5 = maX(HDgl I, 1| P~ ||). The last inequality follows from optimality of (Axzpg, Ayy)
n (20),(21). Hence

AJ}B — O'k,ukDéngleB C
AyN — O'k,ukD]zVYJGIGN =5

Y

Dpw — oy Dg' XB €B
DN z— Uk,ukDNYN en

and so
AJ}B w
<
(35 )= el o JILE L[l o LS8 T
XgleB
|| 7 [ 58]
Now
_ AN 1 1
HDBIH = ?ug (y_k) S CQW, HDNH == Czw, (Lemmas 35, 36),
k 1/2 1/2 1/2
D]l = sup %) <G (ﬂ) . IDR <G (%) . (Lemma 3.4),
1 C C
| X5 es]| = sup — < - 1Y 'en] < - (Lemma 3.4),
i€B L; v 3’
_ C,
Sl — S|l — _ -1
ol = Otu), 12l = Olue), - Cs = max (D51 I1081) < =575
Hence

A _
[5]] = over i o

Cs
2

IA

— (. + o),
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for an appropriately defined constant Cf. [
For “fast” steps, the results of Lemmas 5.1 and 5.3 can be combined to give the following
result.

Theorem 5.4 If o), = py, then

|Afoka| §C4C5,uz, i=1,---,n.

6 Asymptotic Subquadratic Convergence

In this section, we show that all steps after a certain point in the algorithm are fast steps
and that the sequences {p} and {¢x} converge Q-subquadratically to zero.
Throughout the analysis, we will make use of the constant Cg defined by

Cs 2 max (1,20,C5). (28)

We start by defining a threshold condition involving p; and v, and finding a lower bound
on the step length when this condition is satisfied.

Lemma 6.1 Suppose at iteration k that

Hk P
e =1 =3 = 36y )

and that a fast step is calculated. Then the step length & will satisfy

i
Ge==3)

1>a>1-0Cg

Proof. Before proceeding, note that if the fast step is successful, the algorithm sets ~z14
to (1 + %), and so

M= e = (L F ) = (1 +3%) =341 = F) = (e =)L = 7). (30)
Under these circumstances, condition (29) is equivalent to

HE P
< } 31
Ve —Ye+1 306 (31)

We use (29) and (31) interchangeably for the remainder of the proof.
The proof is in three stages. First, we show that the relaxed centrality condition (4e)
holds for all « satistying
ae |01 —Cg—tr
Te — V41
Second, we show that the other main condition on «, namely, (4d), also holds for « satisfying

(32). Together, (4d) and (4e) imply that (4b) and (4c) also hold. Third, we show that

(32)
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o(zF + aAz* y* + aAy") is decreasing for a in the range (32), which, by (3), implies the
result.

We start with (4e). Theorem 5.4, (2), (4e), (28), and the fact that & = o, = py imply
that

|AFAYE| < CuCspd < (Cs/2)d,
xfyzk > VkHk,
e AyF yfAaf = —alyl + oogu = —alyl + i

Hence

(zF 4+ aAzf)(yl + alAyr)
= afyl + a(af Ayl + yfAxf) + o (Aaf)T Ayl
> k(1 = a) + apg — o (Co/2) .

On the other hand,

%’Vk-l-l(xk +alay)' (y" + alyy)
< e [l — o+ ape) + a*(Co/2)l]
Therefore condition (4e) will be satisfied provided that
Yepk(l — @) + apy — a*(Co/2)
> i [kl = a+ ap) + a®(Co/2)p]
or, equivalently,
(v = ) (L = @) + apg (1 = 1) — o (Co/2)(1 + 1) = 0.

Since 41 € (0,1) and « € (0, 1], this last inequality will hold if

1
1+ Co L

Ve~ Vk+1

>

(e = Yeg) (1 — ) — ong,uz >0 = 0<a<ar

By assumption (31), the second term in the denominator is less than one, so we can write
MR
Ve = Vet1

Therefore, (4e) is satisfied for « in the range (32).
Turning now to condition (4d), we note that

ar >1—Cg

1
el = b o) + Sat(At)T Ay
> (1 —a+ ap) — a(Ce/2) s,

1
~(z" + aAz") 1 (y" + aly")
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where we have used Theorem 5.4, (28), and « € (0,1] to derive the inequality. Therefore,
(4d) will hold if

(1= a)(1 = 7"
0. (33)

pe(l — o+ apr) — a(Cs/2)pj,
& 7 — a3 — e+ (Co/2)me]

From (28), (29), and (30), we have that

M P _
Pl n-5)<1.
= <37

Hence the term in square brackets in (33) is positive, and so (4d) is satisfied if

2 i
At — g + (Co/2)pr

0<a<an

Now

_ Mk
> > 1 —(Cs/2)—.
M T G -

Using (30) again, we have that 3% > (4 — Yx41), and so

arp > 1 — CGL-
Ve — Vk+1

Therefore (4d) holds for « in the range (32).
Finally, we examine é(x* + aAx* y* + aAy*) for a € [0,1]. Using the notation rj, =
|ly* — Ma* — h]|, we have that

o(x" + ala® y* + aAy*) = (2F + AT (W FaAy") + (1 —a)r
= nux + o (@) Ay" + (5" At + (AT AY" + (1 = a)ry
= nup —an(l — pg)pr + ozz(A:Jck)TAyk + (1 — a)rg.

If (Ax")TAy* <0, then, since py, < 1 by (31), ¢(2F + aAz* y* + aAy*) is decreasing on
[0, 1]. Otherwise, the unconstrained minimum occurs at
n(l — ) +re o (2/3)np (2/3)npr _ (2/3)

min — Z Z Z . 34
@ 2(Az?)T Ay 2(AzF)TAy* = 2nCyCspi — Copun (34)

But from (31),
(3/2)Comi < £k = ) < 1, (35)

and 50 amin > 1. Again, we deduce that é(a* + aAz* y* + aAy*) is decreasing on [0, 1].
This implies that the value of & chosen by the algorithm is the largest value that satisfies

(4), and so
[t

1>a>1—-Cg——m,
Ve — Vk+1
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as required. [

The next two results show that once the threshold condition (29) is satisfied at some
iteration, then fast steps may be taken on this and all subsequent iterations, and subquadratic
convergence can be attained.

Lemma 6.2 [f (29) is satisfied at iteration k and a fast step is taken, then

Prtt < Pk, (36a)
¢k+1 < P¢ka (36]0)
3C,
e < (76) 1 (37a)
Y& — Vk+1
3C,
bon < (—) &, (37)
n(’Vk_’Vk-I-l)
and
Hr+1 < Kk (38)

(e =) =) = (=91 =75)
Proof. Consider

1 A k TA k
e+ aAeb (g 1 anyt) = pull — a(l — )] + 02 B2 2L

n n

(39)

The argument in the last part of Lemma 6.1, in particular, formulae (34) and (35), can be
applied to show that the quadratic function (39) is decreasing on [0, 1]. Therefore

ap > 1 — CGLv
Y& — Vk+1
and so
1
Pret1 = E(l'k + o A (y" + arAy)
[ 1
< i (1G] + s
I Vi — Vi+1 n
< e loa—t m] §(Cof2? (40)
L Tk~ VE+1
[p P P
< rr L
< Mk_3‘|‘3]‘|‘3,uk
< pp,

yielding (36a). For (36b), we again use the notation ry = ||y* — Ma* — h|| and note that

k
ree1 = (1 —ag)ry < C6Iu77“k < pry.
Y& — Vk+1
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Therefore,
k1 = Nflggr + Thpr S nppiy + pry = poy.
For (37a), using (40) and the fact that

1
1 <0 < Co——y,
Tk — Tk+1
we have that ‘
3
fepr < g | Co—b— g e+ Cope| < ———pi2
Ve — Vk+1 Ve — Vk+1
as required. Also,
Pry1r = Nk T The
3C% 5 Cs
<
Ve — Vk+1 Ve — Vk+1
3C,
< g+ ]
Ve — Vk+1
3C,
< — [np +r)?
n(Ye = Ye+1)
3C% 5
= %
n(Ye = Ye+1)
giving (37b).
From (37a) and (30), we have
3C% 5
< —uj.
= SRt
Therefore,
Hi+1 _ Hi+1 < 1 3Cs N2 _ 3Cs l HE r (41)
(it =L =7)  AF(L=7) = (1 =) % (1 =5)"" 5 31 —7)
From (29) and (30), we have
3Cs Pk 3Cs Mk

= <

7). 3 i) Sy

P
,-7
where the last inequality follows from the definition of p and % in the algorithm. Substitution
of this inequality into (41) gives (38). [

Theorem 6.3 Suppose that the condition (29) is satisfied at iteration K and that
dr < .

Then
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(i) the algorithm will take fast steps at iteration K and at all subsequent iterations, and

(ii) the sequences {ur} and {¢r} converge superlinearly to zero with Q-order 2.

Proof. The first part follows inductively from Lemma 6.2. Since (29) is satisfied at
iteration K and since (36b) holds, the fast step will be accepted at this iteration. Formula
(38) implies that (29) will again hold at iteration K + 1. Since ¢x 41 < pox < &, a fast step
will be accepted at iteration K + 1, and so on.

For (ii), we use (37a). Since

< 3Cs 5
Pe+1 = mﬂlm
we have
log i1 < 2log py +10g(3Cs) — ti logy — log(1 — 7). (42)

We can now use an argument like that of Ye [10]. From (36a) and
logp <logy <0 and 1<t <k+1,
we have for sufficiently large choice of &k that
log pr, <log pux + (k— K)logp < (k4 1)log”y < tylog7,
that is, the first term on the right hand side of (42) will eventually dominate the third term

and, in fact,

t
lim —— =0
k—oo log Jjiys

Dividing (42) by log ., we have

lim inf %

= 2. 43

From Potra [6], (43) implies that the Q-order of convergence for {u} is 2.
The argument for {¢;} is similar. ]
Finally, we show that the threshold condition (29) will eventually be met and, hence,
that subquadratic convergence will be obtained.

Theorem 6.4 Define

s logy
= 0,1).
10gp E ( ? )
Define a constant ¢ as follows:
e it <2
€= { ) (1) MO0 - " (44)
[ﬂ 3 ] ¢ otherwise.
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Then if K is the smallest positive integer such that
¢IX" S €7 (45)
we have that

UK P
< 46
FiE(l =) = 3Cs (46)

and B
oK < o, (47)

and hence the conditions of Theorem 6.3 are satisfied.

Proof. First, consider the case of

¢ o P
ny(1—75) ~ 3Cs

Then ¢ = ¢, and so (45) immediately implies (47). Since K is the first iterate below ¢, the
algorithm cannot have taken any fast steps yet, so tx = 1. Hence, by (45), (48), and the
fact that pr < ¢ /n,

(48)

MK _ MK < ¢Ix"/ n
T3
which gives (46).

In the remaining case, note that

ofn_ _ »p
Y1 =7) 7 3G

<

F(1=7) 7 (1 =7)

p ri(l=9) o p ma(lL 7)<17
306 ¢ 306 ¢
and so ¢ < ¢ in (44), so again (45) implies (47). This inequality also implies that the
algorithm may have taken some fast steps prior to iteration K but, since a reduction of at
least p occurs on each fast step, the number of such steps is bounded by

Fog(é/qﬁ)w ‘

log p

Hence o X _
b < Fog(é/qﬁ)w L1 logézlogd
log p log p

Now

FE >yl exp [



Hence

HEK < HEK _
F(=7) © P - )T 7
ox/n ¢ a9
PA 3o = wr(l - et a1l 7)

Substituting in this expression from (44), we have

HEK <P n’72(17_:7)q31—f ¢’ _ P
(=) 7 30 ¢ ny*(1—75) 3Ce’

and so (46) is satisfied. m

The following result is immediate from Theorems 6.3 and 6.4.

Corollary 6.5 The algorithm converges Q-subquadratically.
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