
Derivative Convergence forIterative Equation Solvers�Andreas Griewank and Christian Bischof, Argonne National LaboratoryGeorge Corliss, Marquette University and Argonne National LaboratoryAlan Carle and Karen Williamson, Rice UniversityArgonne Preprint ANL-MCS-P333-1192appeared in Optimization Methods and Software, volume 2, pages 321{355, 1993.When nonlinear equation solvers are applied to parameter-dependent problems, their iterates can be inter-preted as functions of these variable parameters. The derivatives (if they exist) of these iterated functionscan be recursively evaluated by the forward mode of automatic di�erentiation. Then one may ask whetherand how fast these derivative values converge to the derivative of the implicit solution function, which maybe needed for parameter identi�cation, sensitivity studies, or design optimization.It is shown here that derivative convergence is achieved with an R-linear or possibly R-superlinear ratefor a large class of memoryless contractions or secant updating methods. For a wider class of multistepcontractions, we obtain R-linear convergence of a simpli�ed derivative recurrence, which is more economicaland can be easily generalized to higher-order derivatives. We also formulate a constructive criterion forderivative convergence based on the implicit function theorem. All theoretical results are con�rmed bynumerical experiments on small test examples.KEYWORDS: Derivative convergence, automatic di�erentiation, implicit functions, preconditioning, Newton-like methods, secant updates.1 INTRODUCTION AND ASSUMPTIONS ON F (x; t) = 0Many functions of practical interest are de�ned implicitly as solutions to di�erential or algebraic equations.The values of these functions are typically evaluated by iterative procedures with a variable number ofsteps and with various, often discontinuous, adjustments. The corresponding computer programs containbranches, and the results are often (strictly speaking) not everywhere di�erentiable in the data. Then onemay ask whether and how automatic di�erentiation can still be expected to yield derivative values that arereasonable approximations to the underlying implicitly de�ned derivatives.Automatic, or computational, di�erentiation is a chain rule based technique for evaluating the derivativesof functions de�ned by algorithms, usually in the form of computer programs written in Fortran, C, or someother high level language. If the program theoretically can be unrolled into a �nite sequence of arithmeticoperations and elementary function calls, then derivatives can be propagated recursively. Exceptions arisewhen there is a division by zero or when one of the elementary functions is evaluated at a point of non-di�erentiability. These local contingencies are easily detected and arise only in marginal situations wherethe undi�erentiated evaluation algorithm is already poorly conditioned. For a general review of the theory,implementation, and application of automatic di�erentiation, see [16].Rather than as a practical problem for automatic di�erentiation, one can also view the question raisedhere as a purely theoretical one, namely, whether the iterates generated for parameter-dependent problemsconverge not only pointwise, but also with respect to some Sobolev norm involving derivatives with respect�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D, by the National Science Foundation through the Centerfor Research on Parallel Computation under Cooperative Agreement CCR-9120008, and by the W. M. Keck Foundation.1



to the parameters. This theoretical aspect will not be fully explored here, as only pointwise convergence ofthe derivatives is established. Throughout we will analyze the situation where a nonlinear systemF (x; t) = 0 with F : IRn � IR 7! IRnis solved for x(t) for �xed t by an iteration of the formxk+1 = �k(xk; t) � xk � PkF (xk; t) ; (1)where Pk is some n � n matrix, which we will consider as a preconditioner. Without loss of generality, wehave restricted our framework to the case of a single scalar parameter t 2 IR since multivariate derivativescan always be constructed from families of univariate derivatives [2]. Total derivatives with respect to t willbe denoted by primes, and partial derivatives (with x kept constant) by the subscript t.In this paper, we consider two approaches to computing the desired implicitly de�ned derivative x0(t).The \simpli�ed" approach treats the Pk as if they were independent of t. The \fully di�erentiated"approach di�erentiates the entire iterative algorithm.Obviously, any sequence fxkgk�0 for which F (xk; t) never vanishes exactly can be written in form (1),unless we place some restriction on the n� n matrices Pk and thus the sequence of iteration functions �k.The assumptions on the Pk that we will make are quite natural and almost necessary for a numerically stableiterative process.Assumption 1 (Regularity) For some �xed t, the iteration converges to a solution, so thatxk ! x� = x(t) with F (x(t); t) = 0 :Moreover, on some ball with radius � > 0 centered at (x(t); t), the function F is jointly Lipschitz-continuouslydi�erentiable and has a nonsingular Jacobian Fx(x; t) = @F (x; t)=@x with respect to x, so that for twoconstants c0, L, and for all kx� x(t)k < �,kF�1x (x; t)k+ k[Fx(x; t); Ft(x; t)]k � c0 ;and k[Fx(x; t); Ft(x; t)]� [Fx(x�; t); Ft(x�; t)]k � Lkx� x�k ;where we may use l2 norms without loss of generality.Under this assumption, local convergence is guaranteed for Newton's method with Pk = Fx(xk; t)�1 orfor the Picard iteration with Pk = I if the spectral radius of (I �Fx) is less than one. If this condition is notmet by the original system F = 0, one might try to �nd a �xed preconditioner Pk = P so that (I �P Fx) isa contractive mapping. Alternatively, one may select Pk as a function of xk, for example by performing anincomplete triangular decomposition, so that we can writePk = P (xk; t) :Then Pk does not directly depend on the previous iterates, and we will refer to the iteration (1) as amemoryless contraction provided the following condition is met.Assumption 2 (Contractivity) The discrepanciesDk = [I � Pk Fx(xk; t)]satisfy �k � kDkk � � < 1 (2)with respect to some induced matrix norm so that in the limit�� � limk �k � � :2



For the class of methods satisfying this contractivity assumption (which includes Newton's method withanalytical Jacobians or divided di�erence approximations), convergence of the derivatives can be obtainedeasily. As an immediate consequence of Assumptions 1 and 2, we note that by standard argumentskPkk � c0(1 + �) and kP�1k k � c0=(1� �) : (3)In the case of secant methods [13], the condition (2) is usually imposed for k = 0 and deduced for k > 1 toguarantee local convergence. If one assumes a certain kind of uniform linear independence for the sequenceof the search directions, it can be shown [19] that �� = 0. This is a su�cient, but by no means necessary,condition for Q-superlinear convergence. It can be enforced by taking so-called special steps [19] for the solepurpose of reducing the discrepancy Dk. We will see that �� = 0 implies R-superlinear rather than justR-linear convergence of the derivatives. Hence, the extra expense of special updating steps might be justi�edon parameter-dependent problems. Secant methods are not memoryless because the preconditioners Pk arecomputed recursively from step to step. Therefore, they must be considered as functions of all previouspoints xk and of the initial choice P0. Since in formula (1), the matrix Pk must also absorb step multipliers,this functional dependence need not be smooth and may have discontinuities. In that case, the transitionfrom xk to xk+1 may also be nondi�erentiable, so that the classical chain rule is not directly applicable.Even when x0; P0, and all subsequent Pk are smooth functions of t, it may be uneconomical to calculate thecorresponding derivatives explicitly. For example, in the case of Newton's method, the explicit calculationof derivatives would involve the propagation of derivatives through the triangular decomposition of theJacobian, a process that involves n3=3 arithmetic operations in the dense case. However, we know from theimplicit function theorem that Fx(x(t); t)x0(t) = �Ft(x(t); t) : (4)In particular, this means that x0(t) is de�ned in terms of the �rst derivatives of F alone and does not dependon the second derivatives Fxx and Fxt . Yet these tensors come implicitly into play if derivatives with respectto x are propagated through the Newton iteration function �k(xk; t) = xk � Fx(xk; t)�1F (xk; t). The sameapplies to any other iteration where the preconditioner Pk depends in some way on derivatives of F withrespect to x or t. Therefore, we will examine a simpli�ed derivative recurrence, where the Pk are consideredas (piecewise) constants with respect to the total di�erentiation of the recurrence (1) with respect to t. Wecall this the simpli�ed approach.On the other hand, it may be di�cult to determine which quantities in a complicated nonlinear equationsolver need to be di�erentiated and which can be considered as constants because they belong to the cal-culation of the preconditioner Pk. This distinction must then be conveyed to the automatic di�erentiationsoftware by suitably annotating the code or retyping some of its variables. Therefore, one may prefer toadopt a black box approach and di�erentiate the whole iterative algorithm as though it were a straight linecode. This is what we call the fully di�erentiated approach. Also, the derivative x0k = dxk=dt of the iteratexk that is �nally accepted does represent the local tangent of the approximate solution set, which should beclose to the exact solution curve if the convergence occurs with some degree of uniformity.For either the simpli�ed or fully di�erentiated approach, it seems pretty clear that the derivatives cannotconverge faster than the iterates themselves, unless the problem is linear or has some other very specialstructure. We will show for Newton's method and for secant updating methods that the derivatives convergeR-quadratically and R-linearly, respectively. Especially in the case of secant updating methods, we musttherefore expect that the derivatives may lag behind the iterates during the �nal approach to the solution.Fortunately, we can constructively check the accuracy of any derivative approximation so that a prematuretermination can be avoided if accurate derivative values are required.Gilbert showed in [15] that the derivatives dxk=dt converge in the limit to the desired tangent x0 = x0(t)provided that the spectral radius of @�(x; t)=@x is less than one in the vicinity of (x�; t). This fundamentalresult has removed some serious doubts regarding the general applicability of automatic di�erentiation. Ithas been veri�ed on several large codes, including cases [3] where the assumptions of Gilbert's theorem donot appear to be satis�ed. Therefore, we wish to relax the hypothesis and avoid derivatives that are notneeded either from a theoretical or from a practical point of view. We will also establish rates of convergence,provide a practical stopping criterion, and extend the theory to higher derivatives and multistep contractions.The paper is organized as follows. In the next section, we motivate the simpli�ed and fully di�erentiatedderivative recurrences and develop some basic mathematical relations. In Section 3, we establish R-linear3



derivative convergence for the simpli�ed recurrence under Assumptions 1 and 2 alone and for the fullydi�erentiated recurrence under the additional assumption that the update function of the Pk satis�es acertain di�erentiability condition. In Section 4, we present limited numerical experiments to illustrate ourtheoretical results. We compare the simpli�ed and the full derivative recurrences for the Davidson-Fletcher-Powell update, and we consider using automatic di�erentiation to generate higher-order derivatives. We alsoinvestigate the performance of an optimization code in the more realistic setting of parameter identi�cationproblems when the necessary derivative information is supplied by the application of automatic di�erentiationto a function that is de�ned implicitly. In Section 5, we extend the results in Section 3 on R-linear convergenceto methods such as cyclic reduction that are multistep contractive, but not one-step contractive. We concludewith a discussion of opportunities for further work.2 SIMPLIFIED AND FULLY DIFFERENTIATEDRECURRENCESAs we have indicated above, the basic recurrence (1) can be interpreted as one step of a Picard, or Richardson,iteration on the preconditioned nonlinear systemFk(x; t) � Pk F (x; t) = 0: (5)Provided Pk is nonsingular, as we will assume throughout, the solution set of each Fk = 0 is exactly the sameas that of the original system F = 0. Consequently, the implicitly de�ned function x(t) and its derivatives areindependent from the sequence of preconditioners Pk. Their iterative evaluation certainly need not dependon the derivatives of Pk, which may not even exist.Di�erentiating equation (5) with respect to t with Pk considered a constant, one obtains the equationde�ning x0(t) Pk Fx(x(t); t)x0(t) = �Pk Ft(x(t); t) : (6)In the following formulae, we will often suppress the dependence on t, which should be understood. Applyingthe Richardson iteration to the preconditioned linear system (6) of equations evaluated at the \current"iterate xk, one obtains the recurrence~x0k+1 = ~x0k � Pk [Fx(xk; t) ~x0k + Ft(xk; t) ] : (7)Here the tilde over ~x0k indicates that these approximations to the derivative x0(t) are in general not thederivatives of the xk with respect to t, which may or may not exist. Subtracting the actual implicitly de�nedderivative x0� � �Fx(x�; t)�1Ft(x�; t)from both sides, we �nd that ~x0k+1 � x0� = Dk(~x0k � x0�) + r0k ; (8)where r0k � Pk[Fx(xk; t)x0� + Ft(xk; t)] = O(kxk � x�k) : (9)Since the perturbation r0k tends to zero, equation (8) looks very much like a contraction and promisesconvergence of the x0k to x0�.If the Pk are at least locally smooth functions of t so that the matrices P 0k = dPk(x(t))=dt are continuous,then the derivatives x0k = x0k(t) exist, and (1) implies that they satisfy the recurrencex0k+1 = x0k � Pk [Fx(xk; t)x0k + Ft(xk; t)]� P 0k F (xk; t) ; (10)which can be rewritten in the contractive form asx0k+1 � x0� = Dk(x0k � x0�) + r0k � P 0kF (xk; t) : (11)We refer to equation (7) as the simpli�ed recurrence and to equation (10) as the fully di�erentiated recurrence.We hope this terminology helps avoid the danger of confusion with the Jacobian and Hessian update formulas([4] and [5]) that lie at the heart of secant methods. 4



Provided the P 0k stay bounded or do not blow up too fast with increasing k, the last term in the linearrecurrence (11) becomes more and more negligible as the residual F (xk; t) approaches zero. In the remainder,we will analyze equation (7) as a special case of equation (10) with Pk considered as constant on someneighborhood of the current t. Obviously the two-stage iteration de�ned by (1) and (10) can be stationaryonly at the (locally) unique �xed point (xk; x0k) = (x�; x0�). In general, iteration (10) will never reach this�xed point exactly. However, the derivative approximations x0k can have no limit other than the correct valuex0� unless the P 0kF (xk; t) converge to a nonzero vector. This possibility is remote: it can occur only if kP 0kktends to in�nity exactly at the same rate as the reciprocal 1=kF (xk; t)k. Note that this cannot happen in thesimpli�ed derivative recurrence (7) for which P 0k � 0 by de�nition. In the case of the full recurrence appliedto secant methods, the Q-superlinear convergence rate ensures that the perturbation P 0kF (xk; t) tends tozero R-linearly, as we will show in the proof of Proposition 2 in Section 3.In general, we expect the derivatives x0k to exhibit roughly the same convergence behavior as the iteratesxk. To justify this optimism, we note that by Taylor's theorem,PkF (xk; t) = PkFx(xk; t) (xk � x�)� rk ;where rk = �Pk[F (xk; t)� Fx(xk; t)(xk � x�)] = O(kxk � x�k2) : (12)Consequently, the iterates xk de�ned by (1) satisfy the contractive recurrencexk+1 � x� = Dk(xk � x�) + rk : (13)Hence we have essentially the same leading term in (8), (11), and (13). Taking norms, one obtainskxk+1 � x�k � kDkkkxk � x�k+ krkk ;so that the errors kxk � x�k converge Q-linearly because of the contractivity assumption:limk kxk+1 � x�kkxk � x�k � �� :No matter how a derivative approximation x0k was generated, its quality can be checked by evaluatingthe directional derivative F 0(xk; t; x0k) � @F (xk + � x0k; t+ � )@� �����=0 (14)= Fx(xk; t)x0k + Ft(xk; t) : (15)This vector can be evaluated cheaply in the forward mode of automatic di�erentiation, without the need toform the (potentially very large) Jacobian Fx(xk; t). Note that PkF 0(xk; t; x0�) = r0k as de�ned in (9). WhenF 0(xk; t; x0k) vanishes exactly, x0k represents the tangent of the perturbed solution setfx 2 IRn : F (x; t) = F (xk; t)g :If F 0(xk; t; x0k) does not vanish, one can substitute into the right-hand side of (7) or (10) to improve theapproximation. In general, the x0k can approximate x0� only as well as the xk approximate x�. Abbreviating�k � kxk � x�k and �k � kx0k � x0�kand setting �k � (Lc1 + kP 0kk)�k with c1 � 2(c20 + 1) ; (16)one can bound the derivative errors as follows.Lemma 1 The regularity and contractivity imposed by Assumptions 1 and 2 imply that�k � 1(1� �)kPkF 0(xk; t; x0k)k+ 12Lc0c1�k ; (17)�k+1 � �k�k + c0�k ; and kr0kk � c1c0L�k ; (18)for all �k < � . 5



Proof. First we show that the function Fx(x; t)�1Ft(x; t) : IRn ! IRn with t �xed has the Lipschitzconstant Lc0c1=2 at x�.kFx(x; t)�1Ft(x; t)� Fx(x�; t)�1Ft(x�; t)k� kFx(x; t)�1[Ft(x; t)� Ft(x�; t)]k+ k[Fx(x; t)�1 � Fx(x�; t)�1]Ft(x�; t)k� c0 L kx� x�k+ kFx(x; t)�1k � kFx(x�; t)� Fx(x; t)k � kFx(x�; t)�1k � kFt(x�; t)k� c0 L kx� x�k+ c0Lkx� x�kc0 c0 = c0 L (c20 + 1)kx� x�k :>From the de�nition of F 0(xk; t; x0k) in (14), we havex0k � x0� = F�1x (xk; t)F 0(xk; t; x0k) � �Fx(xk; t)�1Ft(xk; t) + x0�� :After taking norms and using the Lipschitz constant just derived, we get�k � kF�1x (xk; t)F 0(xk; t; x0k)k+ c0L c1�k=2 :One can replace the inverse F�1x (xk; t) in the �rst term on the right-hand side by Pk, noting that by theBanach perturbation lemma (e.g., [20]) and the de�nition of Dk in Assumption 2kF�1x (xk; t)P�1k k = k(I �Dk)�1k � 1=(1� kDkk) ;which establishes the �rst assertion.To prove the third inequality, we derive from (9) by taking normskr0kk = kPkFx(xk; t)x0� + PkFt(xk; t)k� kPk[Fx(xk; t)� Fx(x�; t)]k � kx0�k+ kPk[Ft(xk; t)� Ft(x�; t)k� kPkkL(c20 + 1)�k � 2c0L(c20 + 1)�k = Lc0c1�k :Here we have used that kx0�k � kF�1x (x�; t)k � kFt(x�; t)k � c20 by Assumption 1. The last inequality followssince kPkk = k(I �Dk)F�1x k � (1 + �)c0 as a consequence of Assumption 2. Finally, we derive from (11),�k+1 � �k�k + kr0kk+ kP 0kF (xk; t)k� �k�k + (Lc0c1 + kP 0kkc0)�k� �k�k + c0�k ;where c0 is a bound on the Jacobian Fx and hence a Lipschitz-constant for F , so that kF (x; t)k = kF (x; t)�F (x�; t)k � c0�k.The �rst equation of Lemma 1 provides us with a constructive stopping criterion for the derivativeiteration, provided we can make some reasonable assumption regarding the sizes of L, c0, and �, which arealso needed to bound kxk � x�k in terms of kF (xk; t)k or kPkF (xk; t)k. The second inequality is the key toour convergence analysis in the following section.3 DERIVATIVE CONVERGENCE FOR Q-LINEAR METH-ODSFirst we will consider memoryless methods, where we may assume that Pk = P (xk; t) is continuouslydi�erentiable near (x; t) so that for some c2 and all �k < �,kP 0kk = kPxx0k + Ptk � c2(�k + 1) : (19)This relation holds trivially with c2 = 0 for the simpli�ed iteration (7) where P 0k = 0.6



Proposition 1 Under Assumptions 1 and 2, condition (19) implies R-linear or R-superlinear conver-gence for the derivative recurrence (10). That is,limk kx0k � x0�k1=k � ��: (20)Moreover, for all su�ciently small weights ! > 0, the Sobolev normskxk � x�k+ !kx0k � x0�kconverge Q-linearly to zero. Furthermore, if �k � ckxk � x�k, then we have R-quadratic convergence inthat limk kx0k � x0�k1=2k < 1 ;which applies for Newton's method, in particular.Proof. Substituting (19) into the de�nition (16), we obtain�k � (Lc1 + c2)�k + c2�k�k ;so that by (18) �k+1 � (�k + c0c2�k)�k + c3�k ;where c3 = c0(Lc1 + c2). Because of (12) and (13), we have by standard arguments,�k+1 � �k�k + Lc0�2k :Combining the last two inequalities for any !, one obtains the ratio(�k+1 + !�k+1)(�k + !�k) � (�k + !c3 + Lc0�k)�k + !(�k + c0c2�k)�k(�k + !�k)� �k + !c3 + c0(Lc0 + c2)�k :The last bound has the limit superior �� + !c3, since we already know that the �k converge to zero. Thislimiting ratio implies Q-linear convergence of the Sobolev norm, provided we choose 0 < ! < (1 � ��)=c3.Consequently, the linear R-factor of the sequence �k is less than or equal to any �� + c3!, and thus is notgreater than ��, as asserted in (20). With the additional assumption on �k, we have for some c4,�k+1 � c4(�k + 1)�k ;which means that the convergent sequence f�kg is bounded by a multiple of the Q-quadratically convergentsequence f�k�1g.Proposition 1 shows that for memoryless contractions, the fully di�erentiated recurrence (10) yields R-linear convergence and potentially R-superlinear convergence, a possibility that can occur only if the iteratesthemselves converge superlinearly. The same convergence rates are achieved by the simpli�ed derivativerecurrence (7), even when the preconditioners are updated recursively and are not di�erentiable. In theimportant case of Newton's method, either derivative recurrence converges R-quadratically|a rather satis-factory result.Roughly speaking, we can claim in all these cases that the derivatives converge satisfactorily wheneverthe iterates xk converge in a reasonably rapid and stable fashion. The simplest condition under which thexk; x0k, and ~x0k must all converge linearly to their respective limits is that the shifted Jacobians Dk =[I � Pk Fx(xk; t)] converge to a limit whose spectral radius is less than one. This condition was implied bythe hypothesis of Gilbert's theorem [15] but must be considered quite restrictive. For example, the conditiondoes not hold for Broyden's method nor for other popular quasi-Newton schemes, where Pk = �kB�1k . Here,�k is a step multiplier, and Bk is an approximation to the Jacobian Fx(xk; t), which is not guaranteed toconverge to Fx(x�; t) or to any other limit. However, under the usual assumption for local convergence ofsecant updating methods, it can be shown [6] that �k ! 1:0 and that kDkk < 0:5 in the l2 norm for all k.Then it follows from Proposition 1 that the simpli�ed recurrence (7) must converge to the unique limit x0�.7



This does not necessarily apply in case of the fully di�erentiated recurrence (10) because a priori nothing isknown about the existence or the size of the P 0k.The di�erentiability of the secant updates is in question because they contain rank-one terms of the formyk=kskk, where both di�erence vectorssk � xk+1 � xk and yk � F (xk+1; t)� F (xk; t) � Fx(x�; t) skconverge to zero. To prove that the matrix derivatives kP 0kk do not blow up too fast, we make the observationthat all classical updates and many other possible schemes can be written in the formPk+1 = U (Pk; xk; t; sk; yk) ; (21)where the update function U : IRn�n � IRn � IR� IRn � IRn 7! IRn�nhas the following property.Assumption 3 (Lipschitzian Update) There exist constants c � 1, � <1, � < 1, and  <1 such thatthe domain conditionskPk ; kP�1k < c ; kx� x�k ; ksk < � ; and kPy � sk < �ksk (22)imply that U is di�erentiable at the point (P; x; t; s; y), and its partial derivatives satisfykUP k ; kUxk ; kUtk �  ; and kUsk ; kUyk � =ksk ; (23)where P may be restricted to the open cone of symmetric positive de�nite matrices in IRn�n.The crucial point here is that the partial derivatives with respect to s and y are bounded only by a multipleof the reciprocal step size 1=ksk, which allows unbounded growth of the matrix derivatives kP 0kk. The keyobservation of the following proof is that the Q-superlinear convergence ratelimk kxk+1 � x�kkxk � x�k = 0 (24)implies that the residuals kFkk decline just a bit faster than the kP 0kk may grow. Before we formulate thesecond major result, let us briey show that the Broyden update [4] and the DFP formula [9], [14], whichdo not explicitly depend on (x; t), satisfy the condition above.Lemma 2 The Broyden update functionU (P; s; y) = P + (s � Py)sTPsTPyand the Davidon-Fletcher-Powell formulaU (P; s; y) = P � PyyTPyTPy + ssTyT ssatisfy Assumption 3 with all norms k � k induced by the Euclidean vector norm.Proof. For the nonsymmetric Broyden update, � is arbitrary, and � may be any number between zero andone. Then we derive from the last domain condition in Assumption 3 that s 6= 0 and thatkyk = kP�1Pyk � ckPyk � c(1 + �)ksk < 2ckskas well as ksk � kykc � ksk � kPyk � sTPy = sT (Py � s) + sT s � (1� �) jsk2 :8



In particular, kyk � ksk(1 � �)=c. Now let P (� ) � P + � _P for some _P , and compute the derivative _U ofU (P (� ); s; y) with respect to � at � = 0. Then we have by the chain rule with s and y kept constant,_U = _P � _PysTP + (s � Py)sT _P. (sTPy) � (s� Py)sTP (sT _Py)=(sTPy)2 ;so that by the triangle inequality in the L2 normk _Uk � k _Pk � �1 + �kyk � kP Tsk+ ksk2 + ksk � kPyk� =(sTPy)+ (ksk+ kPyk)kP Tsk � ksk � kyk=(sTPy)2�� k _Pk � [1 + (2c2 + 1 + 2c2)=(1� �) + (1 + 2c2)2c2=(1� �)2] :Since the direction _P is arbitrary, the derivative UP is uniformly bounded as required. Similarly, we �nd forthe di�erentiation in some direction _s with s(� ) = s + � _s,k _Uk � k _sk � �(kP T sk+ ks � Pyk � kPk)=(sTPy) + (ksk+ kPyk)kP Tsk � kPyk=(sTPy)2�� (k _sk=ksk) � [(1 + 1 + 2c2)c=(1� �) + (2 + 2c2)2c3)=(1� �)2] ;which implies that Usksk is indeed uniformly bounded. Finally, we derive in the direction _yk _Uk � k _yk � �kPk � kP Tsk=(sTPy) + (ksk+ kPyk)kP Tsk � kP T sk=(sTPy)2�� (k _yk=ksk) � [c2=(1� �) + (c+ 2c2)c2=(1� �)2] ;which ensures that Uyksk is also uniformly bounded.For the DFP formula, we must impose the restriction � < 0:2 c�2. Then we haveyT s = yTPP�1s � sTP�1s � kPy � sk � kP�1k � ksk � (1=c� c�)ksk2 � 0:8ksk2=c ;where we have used the assumed positive de�niteness of P to boundsTP�1s � ksk2=kPk � ksk2=c :As an immediate consequence, we haveyTPy � yT s � yT (s � Py) � 0:8ksk2=c� �kyk � ksk � (0:8=c� �2c)ksk2 � 0:4ksk2=c :The rest of the argument is almost the same as for the Broyden update. Di�erentiating in some direction _Pwith s and y held constant, we �nd_U = _P � [ _PyyTP + PyyT _P ]=(yTPy) � [PyyTP ](yT _Py)=(yTPy)2 ;so that, after taking norms,k _Uk � k _Pk �1 + 2kyk � kPyk2:5c=ksk2+ kPyk2kyk26:25c2=ksk4�� k _Pk �1 + 20c4 + 100c8� � k _Pk(1 + 10c40)2 :The derivatives with respect to y and s can be bounded by multiples of ksk�1 in exactly the same fashion.Since Assumption 3 can also be veri�ed for the BFGS update, it applies for a wide range of methods.Now we obtain for these updating methods almost the same result as in the memoryless case. The ratherstringent restriction � � 0:2c�2 used in the proof for the DFP formula could be avoided if other conditionswere placed on yT s and yTPy. This would make perfect sense in the context of convex optimization, butwe did not introduce them here because our primary focus is on the nonlinear equations case.9



Proposition 2 Under Assumptions 1, 2, and 3 with � and � su�ciently small, the fully di�erentiatedrecurrence (10) yields R-linear or R-superlinear derivative convergence:limk kx0k � x0�k1=k � �� :Moreover, limk [kP 0kkkxk � x�k] 1k � �� ;which limits the potential growth of the P 0k relative to the decline of the errors kxk � x�k.Proof. Di�erentiating (21), we use the chain rule, the triangular inequality, and (23) to obtain1 P 0k+1 � 1 kUP P 0k + Ux x0k + Ut + Us s0k + Uy y0kk� kP 0kk+ �k + kx0�k+ 1 + (ks0kk+ ky0kk)=kskk :To bound the last two terms, we note that by (18) of Lemma 3,ks0kk = kx0k+1 � x0kk � �k+1 + �k� (1 + �)�k + c0�k � 2�k + c0�k :Similarly, we �nd ky0kk = kF 0(xk+1; t; x0k+1)� F 0(xk; t; x0k)k� kFx(xk+1; t)x0k+1� Fx(xk; t)x0kk+ kFt(xk+1; t)� Ft(xk; t)k� kFx(xk+1; t)(x0k+1 � x0�)k+ kFx(xk; t)(x0k � x0�)k+k[Fx(xk+1; t)� Fx(xk+1; t)]x0�k+ L(�k+1 + �k)� c0(�k+1 + �k) + (c20 + 1)L(�k+1 + �k)� 2c0�k + c20�k + �k � (c20 + 1)(�k + �k) :Adding the last two inequalities and noting that kskk � �k � �k+1 � 0:9(1� �)�k, we �nd that for some c5,(ks0kk+ ky0kk)=kskk � c5(�k + �k)=�k :Now, since �k is bounded, and �k=�k is bounded away from zero, the �rst four terms in (25), and an additionalLc1 can be subsumed into the last bound, with c5 growing to some c6, so thatLc1 + kP 0k+1k � c6(�k + �k)=�k :After multiplication by �k+1, we get�k+1 � qk(�k + �k) with qk � c6�k+1=�k ! 0 :Adding ! > �� times this inequality to the bound (18), we �nd that(c0�k+1 + !�k+1)(c0�k + !�k) � c0(qk + !)�k + (c0qk + !�k)�k(c0�k + !�k) � maxn�k + c0qk! ; qk + !o :Since the limit superior of the maximum is !, and one may choose ! arbitrarily close to ��, we have shownthat the sequences f�kgk and f�kgk both have a linear R-factor no greater than ��. The last assertion followsdirectly from the de�nition of �k in (16).This result applies to all standard classical secant methods and suggests that the rate at which thederivatives x0k converge is the same whether or not the Jacobian updating procedure is di�erentiated. Thisconclusion is valid only if the globalization strategy eventually becomes inactive, so that all later steps are ofunit length. On the one hand, this means that the fully di�erentiated, or black box, approach is reasonablysafe. On the other hand, it appears that implicitly de�ned derivatives can be obtained at a much reducedcost by deactivating the Pk, that is, by treating them as constants as in the simpli�ed updating scheme.Also, the theoretical possibility that the P 0k generated in the fully di�erentiated update may grow unboundedis numerically worrisome, as it may lead to exponent overows.10



4 NUMERICAL RESULTSOur limited numerical experiments con�rm and illustrate our theoretical results. In Section 4.1, we testthe predictions of Propositions 1 and 2 for the DFP update, and we consider the generation of higher-orderderivatives. We compare the simpli�ed and the fully di�erentiated derivative recurrences, both without andwith line searches. We �nd general agreement with the theory, but we cannot choose between the simpli�edand the full derivative recurrences in general on the basis of these experiments.In Section 4.2, we consider the e�ect on a class of parameter identi�cation problems of using automaticdi�erentiation of an implicitly de�ned function to compute the derivative information needed by the op-timization algorithm. The fully di�erentiated Newton's method using the more accurate derivative valuescomputed by automatic di�erentiation typically required fewer iterations to �nd a satisfactory solution thanthe corresponding �nite di�erence algorithm, but the �nite di�erence version required less total CPU time.Similar results are given for the fully di�erentiated Broyden's method. Finally, we give some numerical resultsfor a (di�erentiated) simpli�ed Newton's method using slightly modi�ed stopping criteria which indicatesthat the simpli�ed approach is quite promising.4.1 THEDFP UPDATE ANDHIGHER-ORDERDERIVATIVE RECURRENCESOur limited numerical experience con�rms the theoretical results. We found only a moderate growth of theP 0k for our test case, the Davidon-Fletcher-Powell (DFP) secant method. However, there is clear evidencethat the convergence of the �rst derivatives x0k lags signi�cantly behind the convergence of the iterates xkthemselves. This phenomenon is much more pronounced for secant methods than for Newton's method,where the d-th derivative can be shown to lag roughly d steps behind the functional iterate. We have alsopropagated higher derivatives for secant methods and found that they converge in a staggered fashion andat about the same rate whether or not Pk is deactivated.Our numerical experiments were conducted on the test functionF (x; t) � rxf(x; t) with f(x; t) � 12 �xTHx+ tkxk4� ;where H = [1=(i+ j�1)] is the Hilbert matrix of order n, and kxk denotes the Euclidean norm. Locally, theminimizers of f are characterized as roots of the stationarity conditions F = 0, so that minimizationmethodsbehave eventually like equation solvers. In the general nonlinear equations case, the progress towards thesolution is usually gauged in terms of some norm of the residual vector F . Often a monotonic decrease ofsuch a merit function is enforced by a suitable line-search or trust-region strategy [13]. In the optimizationcase, one may use the objective function f itself, which we have utilized for a line-search consisting of asingle parabolic interpolation. This simple strategy works here because the objective function is convex andvery smooth.Since the unique solution x� = 0 is independent of the parameter t, all derivatives x0�; x00� ; : : :x(j)� mustalso vanish, a situation that makes monitoring their errors exceedingly simple. The approximate inverseHessian was initialized as P0 = diag(i)i=1;:::;n, which is somewhat \smaller" than the exact inverse H�1.Consequently, the inverse form of the DFP update takes a very long time before Pk and the resulting stepssk = �PkF (xk; t) become large enough to achieve superlinear convergence. The starting point was alwaysthe vector of ones x0 = e, and the parameter was set to t = 1.The simpli�ed iteration depicted in Figure 1 proceeds rather slowly until the Frobenius norm of the errormatrix ~Dk = I � PkH drops below 1 at about the 25-th step. Hence, our theoretical results apply at mostfor the last �ve iterations. Note that ~Dk is not exactly equal to Dk since we have neglected the nonquadraticterm. Over the whole range the iterates xk, their \derivatives" x0k and the corresponding residuals F (xk; t)and F 0(xk; t; x0k) converge more or less monotonically at about the same rate. Since the iterates themselvesconverge so slowly, the derivatives do not noticeably lag behind. The situation is not radically di�erent whenthe iteration is fully di�erentiated as depicted in Figure 2. However, as one can see from the top line, thepreconditioner derivative P 0k grows to a Frobenius norm in the hundreds before it �nally begins to decline.As a result, the �rst derivative of iterates and residuals seems to behave a little bit more erratically in theintermediate stage of the iteration. While we have not made a timing comparison to see how much overheadthe di�erentiation of the preconditioner entails, it would seem so far that there is no reward for incurring that11
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Figure 1: Simpli�ed Derivative Recurrence, no line-search (n = 2)extra cost. On the other hand, if the identi�cation and \deactivation" of Pk appears to require a signi�cantrecoding e�ort, one may also just di�erentiate the whole iteration. In both Figures 1 and 2, the residualderivative kF 0(xk; t)k is a fairly reliable indicator of the actual error kx0k � x0�k.In order to speed up the convergence, let us introduce a line search in the form of exactly one parabolicinterpolation of the objective f per step. The step multiplier was adjusted even when it was close tothe �rst trial value one, which is known to happen during the �nal convergence to the solution. Theresulting iteration with an increased dimension n = 3 and the simpli�ed derivative recurrence is depicted inFigure 3. The convergence is now much more rapid throughout and accelerates again when the Frobeniusnorm of the discrepancy ~Dk drops below one, which happens at about the eleventh iteration. Curiously,at exactly that stage, the derivatives of iterates and the residuals appear to deteriorate signi�cantly beforethey begin to converge with a noticeable lag behind the iterates and their residuals. As we can see inFigure 4, the associated fully di�erentiated recurrence does not generate that hump and achieves fasterderivative convergence. However, this time P 0k actually show signs of blowing up as its Frobenius normalmost reaches a thousand. Obviously, our very limited numerical experiments do not allow us to draw anygeneral conclusions regarding the relative merits of the simpli�ed and fully di�erentiated iteration.Finally, let us consider the computation of second and higher derivatives. For the simpli�ed recurrence,where the Pk are deactivated, the following informal argument establishes the convergence of the higherderivatives x(j) � djx(t)=dtj. Di�erentiating equation (6) j < m times with respect to t, we obtain thefollowing linear system for the (j + 1)-st derivative from Leibnitz's rule:Pk Fx(x(t); t)x(j+1) = �Pk� @j@tj [Ft(x(t); t)] + jXi=1 �ji� @j�i@tj�i [Fx(x(t); t)] x(i)(t)! : (25)12
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Figure 2: Full Derivative Recurrence, no line-search (n = 2)Here we have assumed that F (x; t) is m times jointly Lipschitz-continuously di�erentiable. Replacing thex(i)(t) by approximations ~x(i)k for i = 0; 1; : : : ; j, one may interpret the right-hand side as a vector function�PkR(j)k � �PkR(j)k �t; xk; ~x0k; : : : ; ~x(j)k � :While this may seem a very messy expression, the residual vectorsFx(xk(t); t)x(i+1)k + Rk(i); for i = 0; 1; : : : ; jcan be evaluated simultaneously for any given t and (~x(i)k )i=0;1;:::;j+1 by one forward sweep of automaticdi�erentiation [8]. The complexity of this Taylor series propagation is O(j2) times that of one functionevaluation F (x; t) if ordinary polynomial arithmetic is used. This asymptotic complexity bound can bereduced to O(j log j) through the use of the fast Fourier transform, but that is likely to pay o� only whenj is signi�cantly larger than 10. As a generalization of (7), one may now iterate for j = 0; 1; : : : ;m� 1 andk = 0; 1; : : : ~x(j+1)k+1 = ~x(j+1)k � Pk hFx(xk(t); t) ~x(j+1)k + R(j)k i :This family of linear recurrences is again of form (7) with the same leading linear term. By induction, onesees that if all ~x(i)k for i < j converge to the correct values x(i)� , then the R(j)k converge to the right-handside of (25), and the ~x(j+1)k can converge only to the unique �xed point x(j+1)� of its recurrence. The linearR-factor is again at least ��, but the higher derivatives tend to converge in a staggered fashion.13
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Iterations Figure 4: Full Derivative Recurrence, parabolic line-search (n = 3)
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To demonstrate this, let us look at the second, third, fourth and �fth derivatives of the iterates xkgenerated by the simpli�ed recurrence for n = 2 without line search and the full recurrence for n = 3 withline-search. These two cases are depicted in Figure 5 and 6, respectively. The most striking feature of bothgraphs is that the derivatives are staggered very nicely behind the iterates themselves. The convergencebehavior is quite smooth and looks ultimately superlinear. This seems to suggest that the errors Dk tend tozero, so that our theorems assert R-superlinear convergence of the derivatives as �� = 0.The fully di�erentiated recurrence without line-search for n = 2 and the simpli�ed recurrence with linesearch for n = 3 exhibit about the same average speed, but the convergence looks signi�cantly rougher. Wehave not included the corresponding graphs in the paper and are still investigating the reasons for this lessdesirable behavior. In fact, we have currently no explanation why the full recurrence appears to work betteron the iteration with line-search. In a practical code, the line-search becomes eventually inactive, so thatone might expect the simpli�ed recurrence to yield more accurate derivatives at a lower cost.The numerical results reported in this section were obtained in double precision on a SPARCstation 2using the automatic di�erentiation package ADOL-C described in [17].4.2 APPLICATION TO PARAMETER IDENTIFICATION PROBLEMSIn this section, we study the e�ect of using the automatic di�erentiation of an implicitly de�ned functionto generate the �rst-order derivative information needed at each iteration of an optimization algorithm. Inparticular, we consider the impact of both the fully di�erentiated and simpli�ed approaches on the solutionof parameter identi�cation problems.Given a parameterized system of ordinary di�erential equationsy0 = g(�; y; p) (26)and a set of data points (�j ; ŷj), the parameter identi�cation problem is to �nd values of the parameters p�to minimize the discrepancy between the solution y(� ; p�) of the ODE model (26) and the data points. Thedata points are measurements of the solution trajectory y(�j ; p�) at various times �j . Given a particularvector of parameters pi, the elements of the residual vector R(pi) are the discrepancies between the solutionof the model y0 = g(�; y; pi) and the data points. Then, the optimization problem to be solved can be looselystated as minimizep 12R(p)TR(p) (27)subject to y0 = g(�; y; p) :The initial values for the ODE (26) can either be treated as �xed constants, y(�0) � ŷ0, or as additionalunknown parameters. We apologize for the change in notation; in this section the parameters are denotedby p instead of t since t usually represents time in the context of di�erential equations.Using orthogonal collocation at the Gauss points, the di�erential equation (26) is discretized so thatthe solution trajectory is approximated by a piecewise polynomial with coe�cients x. Certain conditionsmust be imposed to ensure that the approximating polynomial adequately represents the solution to thedi�erential equation, and these collocation and continuity conditions yield a nonlinear system of equationsF (x; p) = 0. For each parameter vector pi, this nonlinear system must be solved to obtain the coe�cientsx(pi) of the polynomial approximation to the solution trajectory y(� ; pi). A more detailed description of theproblem formulation and the collocation scheme can be found in [12].Thus, using collocation, we can replace the ODE in (27) with a nonlinear system of equations. The\black box" formulation of the parameter identi�cation problem can then be written asminimizep 12R(p; x(p))TR(p; x(p)) ; (28)where x(p) solves F (x; p) = 0 (29)16
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for a �xed p. To solve the resulting optimization problem (28), we will use the nonlinear least-squares packageNL2SOL [11]. NL2SOL is an implementation of an augmented Gauss-Newton trust region method [10] thatexploits the structure of the nonlinear least-squares problem.For each parameter vector pi, (where i denotes the i-th optimization iteration), the evaluation of theresiduals R(pi; x(pi)) requires the solution of the nonlinear system of equations (29) for the implicit variablesx(pi). We consider both Newton's method and Broyden's method for the solution of this nonlinear system;in particular, the implementations found in MINPACK [18], (LMDER and HYBRJ). Thus, given pi and aninitial guess for x(pi), the nonlinear equation solver generates a sequence of iteratesx0(pi); x1(pi); x2(pi); : : : ; x�(pi) � x(pi)until an acceptable solution is found. At the �rst optimization iteration, the initial guess x0(p0) is generatedby linear interpolation of the data points, but at each subsequent iteration, the starting point is chosen tobe the solution of (29) at the previous iterate, i.e., x0(pi) = x�(pi�1). LMDER uses analytical derivatives,Fx(x; p), while HYBRJ starts with the analytical Fx(x; p) and then uses Broyden's method to update thefactorization at subsequent iterations. Both algorithms use a trust region globalization strategy.At each optimization iteration, we must estimate the necessary �rst-order derivative information, J(p; x(p)),where J denotes the Jacobian of the residuals R(p; x(p)), i.e., Jj� = @Rj(p; x(p))=@p. The Jacobian can becomputed by �nite di�erences, or it can be constructed from values of dx(pi)=dp. We will apply automaticdi�erentiation to the nonlinear equation solver to obtain an iterative procedure for computing dx(pi)=dp.Applying the automatic di�erentiation tool ADIFOR [1] to LMDER and HYBRJ, which are both written inFortran, yields a fully di�erentiated Newton's method and a fully di�erentiated Broyden's method. Giventhe current optimization iterate pi and initial guesses x0(pi) and dx0(pi)=dp, the resulting (Fortran) codegenerates a sequence of derivativesdx0(pi)dp ; dx1(pi)dp ; dx2(pi)dp ; : : : ; dx�(pi)dp � dx(pi)dp ;in addition to the original sequence of iterates fxk(pi)g.We used six parameter identi�cation problems from [12] to evaluate the e�ectiveness of the algorithms.We tested two formulations of each problem, and Table 4 identi�es the problems using the convention that\problem 1" refers to problem 1 with �xed initial conditions while \problem 1i" refers to problem 1 withthe initial conditions treated as additional, unknown parameters. Table 4 also indicates the size of eachproblem, both the dimension of the parameter vector p and the size of the nonlinear system F (x; p) = 0.Each ODE model (26) was discretized using a collocation scheme with ten uniformly spaced subintervals anda polynomial approximation of degree three on each subinterval. While this discretization is adequate to solveall of the problems, a more e�cient discretization could be chosen for each individual problem. In addition tothe standard starting point, (which can be found in [12]), problems 1a and 1ai used p0 = (15; 20)T , problems4a and 4ai used p0 = (1 � 10�5; 1 � 10�5)T , and problems 4b and 4bi used p0 = (1 � 10�4; 1 � 10�4)T ,resulting in sixteen di�erent test cases.Using Newton's method (LMDER) to solve (29) for the implicit variables x(pi), we �rst compared thee�ect of a forward di�erence Jacobian with a Jacobian constructed from dx�(pi)=dp produced by the fullydi�erentiated Newton's method. We tested the fully di�erentiated code as if it were a \black box" in thesense that we did not modify the code produced by the automatic di�erentiation tool to take into accountour knowledge that we had di�erentiated Newton's method. Speci�cally, the stopping criteria in the fullydi�erentiated code are the original stopping criteria used to judge the convergence of xk(pi) ! x�(pi) andhave not been modi�ed to take into consideration the convergence of dxk(pi)=dp! dx�(pi)=dp.The top section of Table 2 gives the number of optimization iterations, the number of residual calculations,(i.e., the number of objective function evaluations), and the approximate running time of these algorithmsfor each problem. As the numbers show, the fully di�erentiated Newton's method performed better thanthe �nite di�erence code in terms of the number of optimization iterations required to reach an acceptablesolution. In fact, the fully di�erentiated code saved ten optimization iterations overall.However, the total running time for the fully di�erentiated Newton's method was slightly more than twicethat of the �nite di�erence code. With the exception of problem 4bi, the individual times show that thefully di�erentiated algorithm required roughly two to �ve times more CPU time than the �nite di�erence18



method. It should be noted that the performance of the fully di�erentiated code su�ers since the smallnumber of parameters for these problems magni�es the loop overhead for each of the intermediate gradientcomputations.Some of the running time di�erences are due to the iterative nature of the residual calculation. One wouldexpect that each column of the �nite di�erence Jacobian would require approximately the same amount ofwork as the corresponding residual computation, but this was often not the case. For example, considerproblem 3, which has three unknown parameters, (i.e., the Jacobian has three columns.) Both methodsrequired six optimization iterations to solve the problem, and they also used the same number of iterationsto compute each R(pi; x(pi)). The number of LMDER iterations it took to solve F (x; pi) = 0 for eachresidual calculation is given in Table 1. Overall, 35 iterations were performed by the nonlinear equationsolver. Thus, if each column of the �nite di�erence Jacobian cost as much as the corresponding residualcalculation, then we would predict that it would take 35 � 3 = 105 LMDER iterations to compute all of thenecessary �nite di�erence Jacobians. However, instead of the predicted 105 iterations, Table 1 shows thatonly 63 iterations of LMDER were required. So, due to the iterative nature of the residual calculation, the�nite di�erence algorithm was substantially cheaper than it would have been if the cost of each column ofthe Jacobian were as expensive as the corresponding residual calculation.Also included in Table 2 is an estimate of the relative error in the computed values of dx�(pi)=dp. Unlikethe example in the previous section, we do not have an analytical expression for either x�(pi) or dx�(pi)=dp.Therefore, we use dx(pi)=dp to denote the numerical solution determined by the di�erentiated nonlinearequation solvers. >From the implicit function theorem, we know dx�(pi)=dp satis�es the linear equation (4).Thus, for each Jacobian calculation, we can estimate the relative error in the computed value of dx(pi)=dpas Relative Error (dx(pi)=dp) � (30)kFx(x�(pi); pi) � dx(pi)=dp+ Fp(x�(pi); pi)k �Cond (Fx(x�(pi); pi))kFx(x�(pi); pi)k � kdx(pi)=dpk :We then have an estimate of the relative error in dx(pi)=dp for each optimization iteration i. The numbersreported in Table 2 in the column labelled \Rel Error" are the maximum relative error estimates over all ofthe optimization iterations for each problem.Although the fully di�erentiated Newton's method (LMDER) used the stopping criteria for the underlyingxk(pi)! x�(pi) convergence, the relative error estimates for dx(p)=dp are on the order of machine precision.This indicates that the convergence of derivative did not noticeably lag behind the convergence of the xkiterates for Newton's method. This is not surprising, for the work of Gilbert [15] shows that theoreticallyNewton's method is \special" in that the derivative convergence should only lag one iteration behind theiterate convergence. On the other hand, based on the step size, we would estimate a relative error of around10�8 for the �nite di�erence Jacobian. Over all of the test cases, the extra accuracy in the Jacobian obtainedfrom the fully di�erentiated Newton's method (LMDER) saved ten optimization iterations and six Jacobiancalculations over the �nite di�erence method. However, the �nite di�erence method required slightly lessthan half of the time needed by the fully di�erentiated Newton approach.In a similar manner, the fully di�erentiated Broyden's method uses Broyden's method (HYBRJ) to solveOptimization iteration 0 1 2 3 4 5 6 TotalNumber of iterationsto compute x(pi) 7 7 6 5 4 3 3 35Number of iterationsfor each column of J 3,3,3 3,3,3 3,3,3 3,3,3 3,3,3 3,3,3 3,3,3 63Table 1: The number of LMDER iterations required to compute x(pi) and the number of LMDER iterationsused to compute each column of the �nite di�erence Jacobian J(pi; x(pi)) at each optimization iteration forproblem 3. 19



Finite Di�erence Newton Fully Di�erentiated NewtonProblem # Iter (# Res) Time (sec) # Iter (# Res) Time (sec) Rel Error1 9 (13) 14.0 9 (13) 34.5 5� 10�161i 9 (13) 22.3 9 (13) 45.5 3� 10�161a 7 (9) 13.8 7 (9) 29.9 4� 10�161ai 9 (11) 25.2 9 (11) 53.0 5� 10�162 9 (11) 21.4 7 (9) 42.4 2� 10�162i 8 (10) 25.4 7 (9) 53.3 3� 10�163 6 (7) 15.8 6 (7) 61.6 2� 10�163i 6 (7) 20.5 6 (7) 78.3 3� 10�164 8 (11) 3.3 8 (11) 10.0 5� 10�164i 8 (11) 4.0 7 (10) 10.7 5� 10�164a 7 (12) 3.4 7 (12) 9.4 3� 10�154ai 6 (10) 3.4 6 (10) 9.1 6� 10�164b 13 (19) 14.0 12 (23) 23.3 1� 10�154bi 12 (17) 49.0 10 (15) 24.3 1� 10�155 9 (10) 26.5 8 (9) 127.8 6� 10�165i 10 (13) 38.6 8 (11) 184.1 3� 10�156 6 (7) 264.6 6 (7) 604.5 3� 10�166i 6 (7) 449.2 6 (7) 926.1 3� 10�16Totals 148 (198) 1014.4 138 (193) 2327.8Fully Di�erentiated Broyden Simpli�ed NewtonProblem # Iter (# Res) Time (sec) Rel Error # Iter (# Res) Time (sec) Rel Error1 9 (13) 30.7 4� 10�15 9 (13) 17.2 5� 10�161i 9 (13) 39.9 4� 10�16 9 (13) 15.4 3� 10�161a 9 (14) 36.9 3� 10�15 10 (12) 18.0 2� 10�111ai 9 (11) 46.9 8� 10�16 9 (11) 19.6 4� 10�162 9 (11) 43.8 9� 10�17 10 (12) 17.0 3� 10�122i 8 (10) 55.3 4� 10�17 8 (10) 16.3 3� 10�163 8 (9) 44.7 8� 10�11 6 (7) 20.5 2� 10�123i 7 (8) 51.4 4� 10�11 6 (7) 19.8 4� 10�124 8 (11) 7.8 1� 10�11 8 (11) 5.2 1� 10�124i 8 (11) 9.0 1� 10�11 8 (11) 5.1 2� 10�134a 7 (12) 7.4 1� 10�11 7 (12) 5.1 1� 10�134ai 6 (10) 7.6 2� 10�11 6 (10) 4.3 6� 10�134b 12 (23) 24.5 1� 10�6 12 (23) 15.2 1� 10�124bi 11 (16) 20.7 2� 10�6 11 (16) 16.0 5� 10�125 11 (12) 83.8 1� 10�9 9 (10) 42.5 2� 10�135i 10 (13) 100.7 7� 10�9 10 (13) 50.8 3� 10�126 6 (7) 579.2 2� 10�15 6 (7) 138.8 3� 10�166i 6 (7) 888.3 1� 10�15 6 (7) 139.1 3� 10�16Totals 153 (211) 2078.6 150 (205) 565.9Table 2: The number of optimization iterations, (number of residual, R(p; x(p)), calculations) and the timein seconds required to solve each of the parameter identi�cation problems, and a relative error estimate fordx=dp. 20
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Figure 7: Fully di�erentiated Broyden's method for the �rst Jacobian calculation in problem 4b.the nonlinear system (29) and a fully di�erentiated Broyden's (HYBRJ) method to estimate dx�(pi)=dp.Again, the algorithm was tested as a \black box," and the fully di�erentiated code used only the stoppingcriteria for the xk(pi)! x�(pi) iteration.As one would expect, the fully di�erentiated Broyden's method required slightly more optimizationiterations but slightly less CPU time than the fully di�erentiated Newton's method. These results are shownin Table 2. Each Broyden iteration is cheaper than a Newton iteration, O(dim(x)2) versus O(dim(x)3),and so, each fully di�erentiated Broyden iteration is cheaper than a fully di�erentiated Newton iteration.However, the relative error (30) is signi�cantly larger for some of the problems then the relative error estimategenerated by the fully di�erentiated Newton's method.Figure 7 shows the convergence history of the initial Jacobian, J(p0; x(p0)), computation for problem 4busing the fully di�erentiated Broyden's method. The di�erentiated HYBRJ required 50 iterations to �nd anacceptable solution x�(p0) and thus dx(p0)=dp. Since neither x�(p) or dx(p)=dp are zero, we used relativeerror estimates of the form kxk(p) � x�(p)k2kx�(p)k2 and kx0k(p)� x0(p)kFkx0(p)kF ;where x0k a is convenient shorthand for dxk(p)=dp. (All of the plots in Figure 7 are log10(�) of the respectivequantities.) Also included in Figure 7 is the norm of the nonlinear system, kF (xk; p)k2, and the graphshows that it closely follows the decrease in the relative error in xk. Similarly, the plot of the norm of thetotal derivative, kFx(xk; p) � x0k + Fp(xk; p)k matches the trends in the relative error in dxk=dp, but it issubstantially larger.We derived a lower bound for the derivative of the inverse of the Broyden approximation, P 0k. Since theimplementation in HYBRJ uses the factored form of Broyden's method, it is di�cult to obtain P 0k itself.21



The fully di�erentiated derivative recurrence (10) can be written asx0k+1 � x0k � Pk[Fx(xk; p) � x0k + Fp(xk; p)] = P 0k �F (xk; p) :Taking the norm of both sides and applying the triangle inequality yieldskx0k+1 � x0k � Pk[Fx(xk; p) � x0k + Fp(xk; p)]k � kP 0kk � kF (xk; p)k :This gives us a lower bound on P 0k of the formkx0k+1 � x0k � Pk[Fx(xk; p) � x0k + Fp(xk; p)]kkF (xk; p)k � kP 0kk ; (31)and we can compute the qualities on the left-hand side of (31) using the machinery already in HYBRJ toapply Pk to Fx(xk; p) � x0k + Fp(xk; p). Since this is a fairly expensive computation, none of the calculationsneeded for Figure 7 are included in the timings given in Table 2. Note that the derivative recurrence (10),where Pk is the inverse of the Broyden approximation to Fx(xk; p), does not necessarily hold if the trustregion globalization strategy modi�es the direction and length of the step. However, full \Broyden" stepswere always taken in this particular example. The graph of the lower bound for kP 0kk given by (31) is shownin Figure 7. The plot indicates that the lower bound on kP 0kk is increasing as xk ! x�, and this supportsthe hypothesis that the di�erentiation of Pk can be unstable. It should be noted that in this particular case,kI � PkFx(xk; p)k > 1, and this is most likely due to the fact that the starting guess p0 is \far" from thesolution p�.Finally, we obtained a (di�erentiated) simpli�ed Newton's method (LMDER) from the fully di�erentiatedNewton's method by deactivating the di�erentiation of Pk by hand. We tried using the simpli�ed Newton'smethod with only the stopping criteria for the xk ! x� iteration, but the results were not particularlysuccessful on some of the problems. Thus, we introduced an additional stopping condition requiring thatthe relative error estimate, (30), must be less than a small constant. For these tests, we chose the constantto be macheps(2=3) � 4� 10�11. If the relative error estimate does not satisfy this stopping condition, weforced the simpli�ed code to take additional simpli�ed Newton steps until x0k satis�ed the new relative errortest. The results for the (di�erentiated) simpli�ed Newton's method are given in Table 2, and the relativeerror estimates range from 10�11 to 10�16. The larger relative error estimates are probably an artifact ofthe constant in the new stopping condition, i.e., when the xk ! x� iteration converged, x0(p) just barelypassed the relative error test, and no additional steps were taken. Over all of the test problems, an additional40 (di�erentiated) simpli�ed Newton steps were required to satisfy the relative error test, and the numberof extra steps required by the simpli�ed Newton's method to solve each optimization problem is given inTable 3. As this table shows, there is a de�nite correlation between the number of additional steps and theresulting maximum relative error in x0.Returning to the results in Table 2, overall, the simpli�ed Newton's method required slightly feweroptimization iterations and residual calculations than the fully di�erentiated Broyden's method but slightlymore than either the �nite di�erence method or the fully di�erentiated Newton's method. However, becausethe factorization of Fx(xk; p) is the dominant cost of each Newton iteration, deactivating the di�erentiationof P 0k makes the (di�erentiated) simpli�ed Newton's method the fastest method we tested. Overall, it isabout four times faster than the fully di�erentiated Newton's method and roughly twice as fast as the �nitedi�erence method.Thus, we have demonstrated that the automatic di�erentiation tool ADIFOR can successfully di�erentiatethe complex library routines LMDER and HYBRJ fromMINPACK to provide derivatives of variables de�nedby implicit functions. The derivatives obtained directly from the fully di�erentiated Newton and Broydencodes provided su�ciently good approximations to the Jacobian, and using these Jacobians, the optimizationcode was able to solve this set of parameter identi�cation problems. However, the fully di�erentiated codeswere slower than the �nite di�erence code. The results for the simpli�ed (di�erentiated) Newton's methodshow that simpli�ed, or deactivated approaches can work on practical problems, but currently, they mayrequire some user (expert) intervention. However, the simpli�ed approach shows the most promise forgenerating fast, accurate derivatives.The numerical results reported in this section were obtained in double precision on a SPARCstation 2using the automatic di�erentiation package ADIFOR described in [1].22



Problem Additional Relative Errorsteps1 6 5� 10�161i 2 3� 10�161a 2 2� 10�111ai 2 4� 10�162 4 3� 10�122i 3 3� 10�163 1 2� 10�123i 0 4� 10�124 1 1� 10�124i 1 2� 10�134a 1 1� 10�134ai 2 6� 10�134b 1 1� 10�124bi 1 5� 10�125 2 2� 10�135i 3 3� 10�126 4 3� 10�166i 4 3� 10�16Table 3: The number of additional simpli�ed (di�erentiated) Newton steps required to satisfy the relativeerror test over the solution of each test problem.Problem dim(p) dim(x)1 First-order irreversible chain reaction 2 801i 4 782 First-order reversible chain reaction 4 802i 6 783 Catalytic cracking of gasoil 3 803i 5 784 Bellman's problem 2 404i 3 395 Barnes' problem 3 805i 5 786 Thermal isomerization of �-pinene 5 2006i 10 195Table 4: Parameter Identi�cation Test Problems23



5 CONVERGENCERESULTS FORMULTISTEP CONTRAC-TIONSUnfortunately, many methods of great practical importance are not one-step contractive in the sense thatmost or all of the Dk have a spectral radius greater than or equal to one. For example, this is true for anyiterative method that keeps some components of xk �xed at each step, such as cyclic reduction or any formof alternating projections. In those cases, one would still hope that over a cycle of iterations, a signi�cantcontraction is achieved in the following sense.Assumption 4 The preconditioners Pk are chosen uniformly bounded so thatkPkk+ kP�1k k � c0 <1 for all k ; (32)and there exists an induced matrix norm and a cycle length m > 0 such that�m � limj kDj+m �Dj+m�1 � � �Dj+2 �Dj+1k 1m < 1 : (33)We will argue at the end of this section that any method for which this condition is not met is numericallyunstable.Proposition 3 Under Assumptions 1 and 4, the iterations (1) and (7) converge with a linear R-factor noless than �� = infm �m < 1to their respective limits x� and x0�. Thus, we havelimk kxk � x�k1=k � �� and limk k~x0k � x0�k1=k � �� : (34)Proof. Abbreviating bxk � xk � x� and with rk as de�ned in (12), we have by (13)bxk+m = 0@ mYj=1Dk+m�j1A bxk + mXi=10@m�iYj=1 Dk+m�j1A rk+i�1 (35)over a cycle of m steps. Because of the assumed convergence of the xk and (32), the Di are uniformlybounded in norm by (1 + c0)2, so that by (33) for any " and su�ciently large k, we havekbxk+mk � (�m + ")m kbxkk+ max0�i<mkrk+ik mXi=1(1 + c20)i�1� (�m + ")m kbxkk+ max0�i<mkrk+ik(1 + c20)m=c20 : (36)Because of (13), the assumed convergence, and the uniform boundedness of the Di, the bxk grow at mostlinearly. Therefore, for some constant c7 = c7(m)krk+jk � c7kbxkk2 for 0 � j < m : (37)Hence we have by (35) for �xed m limk kbxk+mk/kbxkk � (�m + ")m ;which ensures m-step Q-linear convergence with a limiting ratio no greater than �mm , since � may be chosenarbitrarily small. This implies the R-linear convergence assertion for the xk by well-known results [20] andby taking the in�mum of �m over m.For the derivatives, we obtain from (7) the recurrence for the bx0k � x0k � x0�bx0k+m = 0@ mYj=1Dk+m�j1A bx0k + mXi=10@m�iYj=1 Dk+m�j1A r0k+i�1 ; (38)24



where r0k is as de�ned in (8). Since the last bound in Lemma 1 was proven without any reference toAssumption 2, it can be used here to derive from the R-linear convergence of the xk that for some constantc8 = c8(m; ") max0<i<m kr0k+ik(1 + c20)m=c20 � c8(�m + �)k+m : (39)Substituting this bound into the \primed" version of (36) and then dividing by (�m + ")k+m, we obtain theinequality kbx0k+mk(�m + ")k+m � kbx0k(�m + ")k � c8 :Summing for k = im over i = 0, 1, : : :, j � 1, we obtainkbx0j mk�(�m + ")j m � kbx00k+ j c8 :Since the mj�th root of the right-hand side converges to one, we obtain the asserted result, namely, thatthe x0k converge with the same linear R-factor �� to x0�.As we have noticed above, the xk may converge superlinearly. In those cases, the recurrence for x0k willsoon be almost exactly linear, so that one may seriously consider accelerating the derivative convergence byRichardson extrapolation. Since we have a constructive test on the quality of these extrapolated derivatives,it should be easy to determine the best candidate.Finally, let us briey examine the possibility that an iterative method of the general form achieves con-vergence but that assumption (33) is never satis�ed. Then equation (36) suggests that a small perturbation�xk of the iterate xk in the direction of the largest singular value of Dk+m �Dk+m�1 � � �Dk+2 �Dk+1 willnot be damped out over an arbitrarily large number m of steps. This would indicate that the method isnumerically rather unstable. We cannot make this claim rigorously, however, because the perturbation �xkmight alter the Dk+j in such a fortuitous way that it is damped out after all. For example, it is currentlynot clear whether conjugate direction methods can be interpreted in form (1) such that assumption (33) issatis�ed. Derivative convergence has been observed for the classical conjugate gradient method, but thisexperimental observation cannot be supported by Proposition 1 and its corollaries.6 CONCLUSION AND DISCUSSIONIn this paper, we have described conditions under which derivative convergence is achieved, albeit possiblyat a slower rate than the underlying function iteration. This observation applies to the fully di�erentiatediteration as well as the simpli�ed recurrence, in the latter case also for higher derivatives. Our purpose wasmainly analytical, and we do not claim that either derivative recurrence is the most e�cient procedure forcalculating implicit derivatives. However, our numerical results do show that both the fully di�erentiatediteration and the simpli�ed approach do provide su�ciently accurate derivatives.One might argue that if a Pk with contractive Dk = I � PkFx is known, the linear system Fxx0 = �Ftcan be solved iteratively after the solution x� has been computed with satisfactory accuracy. This approachhas long been used by engineers, as evidenced for example in some references of [3]. It certainly may beadvantageous to start the derivative recurrences (7) or (10) with an initial x0k = 0 only when the underlyingiteration has reached the vicinity of the solution point.If for some weight vector w, one actually wants to calculate the adjoint sensitivitywTx0k = �wTF�1x Ft ;then one should �rst compute wTF�1x iteratively using the approximate inverse P Tk of FTx . This approachis particularly useful if t is actually a vector so that several linear systems need to be solved for computingx0k. This iterative variant of the reverse mode for implicit gradients has been advocated and analyzed byChristianson in [7]. However, it should be noted that his analysis, if not the method itself, assumes thatthe Jacobian of the iteration function is not only contractive but also Lipschitz continuous in the currentargument. This condition is certainly not satis�ed by secant updating methods. Moreover, there are someimportant schemes like nonlinear conjugate gradients, which do not satisfy our slightly weaker assumptionseither. The question of what happens under those circumstances and several practical implementationaspects remain to be investigated. 25
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