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AbstractWe describe an infeasible-interior-point algorithm for monotone linear complemen-tarity problems that has polynomial complexity, global linear convergence, and localsuperlinear convergence with a Q-order of 2. Only one matrix factorization is requiredper iteration, and the analysis assumes only that a strictly complementary solutionexists.1 IntroductionThe monotone linear complementarity problem is to �nd a vector pair (x; y) 2 IRn� IRn suchthat y = Mx+ h; (x; y) � (0; 0); xTy = 0; (1)where h 2 IRn and M is an n � n positive semide�nite matrix. A vector pair (x�; y�) iscalled a strictly complementary solution of (1) if it satis�es the three conditions in (1) and,in addition, x�i + y�i > 0 for each component i = 1; 2; � � � ; n. We denote the solution set for(1) by S and the set of strictly complementary solutions by Sc.A number of interior point methods have been proposed for (1). Among recent papersare the predictor-corrector algorithm of Ji, Potra, and Huang [1] which has polynomialcomplexity and two-step superlinear convergence, the predictor-corrector algorithm of Yeand Anstreicher [5] which is polynomial and quadratically convergent, the path-followinginfeasible-interior-point algorithm of Zhang [6] which has polynomial complexity, and thealgorithm described by the present author in an earlier report [4], which modi�es Zhang'salgorithm so that superlinear convergence with Q-order 2 is attained. All these algorithmsassume existence of a strictly feasible point for (1), that is, a vector pair (x; y) such thaty = Mx + h and (x; y) > 0. Recently, Potra [2, 3] has proposed infeasible-interior-point�This research was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U. S. Department of Energy, under Contract W-31-109-Eng-38.yMCS Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.1



algorithms for linear programming that do not require this assumption but still attain (inthe case of [3]) O(nL) iteration complexity and two-step Q-quadratic convergence.In this paper, we describe an algorithm that is similar to the algorithm in [4] in thatit takes so-called safe steps in the early stages of the algorithm and fast steps in the laterstages (with an intermediate stage in which both kinds of steps can occur). The main pointof di�erence between the two approaches is in the calculation of the safe steps. Essentially,the algorithm in [4] requires that, for safe steps, the infeasibility ky �Mx� hk decreases atleast as quickly as the complementarity gap xTy, while safe steps taken by the algorithm inthis paper reduce these two quantities by exactly the same rate. We are therefore able toshow that the iterates generated by the new algorithm are uniformly bounded, without ana priori assumption that a strictly feasible initial point exists.Each iteration requires the solution of one, two, or three linear systems with the samecoe�cient matrix, so only one matrix factorization need be performed. In the �nal \fast"phase of the algorithm, just one solve is required at each step. The convergence properties areidentical to the algorithm of [4], namely, global linear convergence, polynomial complexitywhen correctly initialized, and local superlinear convergence with Q-order 2.Throughout the remainder of the paper, we make just one assumption:Assumption 1 Sc is nonempty.When (1) is derived from a linear programming problem, all that is needed for Assumption1 to be satis�ed is that a solution exists! Moreover, Ye and Anstreicher [5, Proposition 5.1]give a simple example to show that Assumption 1 is, in a sense, necessary for superlinearconvergence. In their example, the solution set S is nonempty while Sc is empty, and an a�nescaling approach fails to give superlinear convergence even when started arbitrarily close tothe solution. The steps generated by all superlinearly convergent interior-point methodsproposed to date resemble a�ne scaling steps more and more closely as they approach thelimit, so this example suggests that a completely di�erent approach will be needed to designpolynomial and superlinear algorithms that do not require Assumption 1.The remainder of this paper is laid out as follows: In Section 2, the algorithm is speci�ed.Some technical results that provide global bounds on the step components are proved inSection 3. Global linear convergence and polynomial complexity are proved in Section 4.Although we focus on a particular choice of starting point | a choice that guaranteesconvergence in polynomial time | the linear convergence result can be proved when anystarting point (x0; y0) with (x0; y0) > 0 is used. We do not work through the analysis forthe latter case, since only minor modi�cations to the proofs of this paper are required. InSection 5, we obtain bounds on the step components in terms of the complementarity gap.Finally, we prove the superlinear convergence result in Section 6.Unless otherwise speci�ed, k � k denotes the Euclidean norm of a vector. Iteration indices(usually k) appear as superscripts on vectors and matrices and as subscripts on scalars.Subscripts are used to indicate components of vectors and matrices.In Sections 3 and 4, we adopt the following convention: The iteration index k appearsexplicitly in the statement of each lemma and theorem but is usually omitted in the proofs,2



unless doing so would cause confusion. For example, quantities such as �, � , �, (x; y), andD appearing in a proof should be taken as �k, �k, �k, (xk; yk), and Dk, respectively.2 The AlgorithmGiven a starting point with (x0; y0) > (0; 0), the algorithm generates a sequence of iterates(xk; yk) > (0; 0), k = 1; 2; � � �. To describe the step between successive iterates, we de�ne�k = (xk)Tyk=n; e = (1; 1; � � � ; 1)T ;Xk = diag(xk1; xk2; � � � ; xkn); Y k = diag(yk1 ; yk2 ; � � � ; ykn):Given a centering parameter ~� 2 [0; 1=2], vector pairs (uk; vk) and (�uk; �vk) are de�ned as thesolutions of the linear systems" M �IY k Xk # " ukvk # = " yk �Mxk � h�XkY ke+ ~��ke # (2)and " M �IY k Xk # " �uk�vk # = " 0�XkY ke+ ~��ke # : (3)From (uk; vk) and (�uk; �vk) we can calculate the scalar quantities�k = (uk)Tvk=(n�k); �k = [(uk)T �vk + (vk)T �uk]=(n�k); �k = (�uk)T �vk=(n�k): (4)Note from (3) that, since M is positive semide�nite, �k � 0.When a safe step is calculated, ~� is restricted to the interval [��; 1=2], where �� 2 (0; 1=2)is a constant. Safe steps have the form(xk('); yk(')) = (xk; yk) + '(uk; vk) + �(�uk; �vk); (5)where, for any given ' 2 [0; 1], � is chosen so thatxk(')Tyk(') = (1 � ')n�k = (1� ')(xk)Tyk: (6)It is easy to verify by using (2) and (3) thatyk(')�Mxk(')� h = (1 � ')(yk �Mxk � h); (7)so we see that the e�ect of (6) is to ensure that the reductions in infeasibility and comple-mentarity gap are exactly the same.By substituting (4) and (5) into (6), we see that � and ' must satisfy the polynomial�2�k � �(1� ~� � �k') + '(~� + �k') = 0: (8)3



For safe steps, we constrain ' to lie in the interval' 2 "0;min 1; ~�j�kj ; 18j�kj ; 9512�k!# ; (9)where, if any of �k, �k, and �k are zero, the corresponding term is omitted from the formulafor the upper bound. The e�ect of (9) is to ensure existence of a � that satis�es (8), as canbe seen from the following result:Lemma 2.1 When ~� 2 [0; 1=2] and ' satis�es (9), there is at least one nonnegative valueof � such that (8) is satis�ed.Proof. We write the polynomial (8) asa(')�2 � b(')� + c(') = 0;where, using (9), a(') = �kb(') = 1 � ~� � �k' 2 �38 ; 98� ;c(') = '[~� + �k'] 2 [0; 2~�']:When �k = 0, we obtain � = c(')b(') � 0;as required. Otherwise, �k > 0, and we have� = b(')2a(') 241 �vuut1� 4a(')c(')b(')2 35 :Since b(')2a(') > 0;and �����4a(')c(')b(')2 ����� = 4a(')c(')b(')2 � 4�k(2~�')(3=8)2 � (9=64)~�(9=64) � 12 ;we �nd that both roots of (8) are real and nonnegative.If there are two roots for �, we resolve the ambiguity by choosing the smaller one, and de�ne(xk('); yk(')) accordingly.In addition to satisfying (6), the actual step length 'k should be chosen so that all vectorpairs (xk('); yk(')), ' 2 [0; 'k], lie in the neighborhood N (~
) of the central path, whereN (~
) = f(x; y) � 0 jxiyi � ~
(xTy=n)g;and ~
 2 (0; 1=2) is a given parameter.The procedure for calculating a safe step can be stated formally as follows:4



Safe step calculation: Given ~� 2 [��; 1=2] and ~
 2 (0; 1=2],Solve (2) and (3) to �nd (uk; vk), (�uk; �vk);Choose ~' as the largest value in the interval (9) such that(xk('); yk(')) 2 N (~
) (10)for all ' 2 [0; ~'];Return ~' and the corresponding ~�.Fast step calculations do not require (3) to be solved, and they replace the condition (6)by a relaxed condition, in which the decrease in complementarity gap is allowed to vary alittle from the decrease in infeasibility. The procedure can be outlined formally as follows:Fast step calculation: Given ~� 2 [0; 1=2], ~
 2 (0; 1=2], and ~� 2 [0; 1=2],Solve (2) to �nd (uk; vk);Choose ~' as the largest value in [0; 1] such that(xk; yk) + '(uk; vk) 2 N (~
); (11)and(1� ~�)(1� ')(xk)Tyk � (xk + 'uk)T (yk + 'vk) � (1 + ~�)(1 � ')(xk)Tyk; (12)for all ' 2 [0; ~'].Return ~'.To obtain polynomial complexity, we de�ne the starting point for our main algorithm as(x0; y0) = (�xe; �ye); (13)where e is the vector whose components are all 1, and the scalars �x and �y are chosen tosatisfy �x > 0; �y > 0; �y � khk1; �y � kMek1�x: (14)We can now state our algorithm.Given �
 2 (0; 1=2), �� 2 (0; 1=2), � 2 (0; �
), �� > 0, and (x0; y0) de�ned by (13),(14)t0  1, 
0 2�
;for k = 0; 1; 2; � � �if �k � ��then Set ~� = �k, ~
 = �
(1 + �
tk), and ~� = �
tk and do a fast step calculation;5



if ~' � (1 � �)then 'k  ~', �k  0, 
k+1  ~
, �k = ~�, �k  ~�;tk+1  tk + 1;(xk+1; yk+1) (xk; yk) + 'k(uk; vk);go to next k;end ifend ifChoose ~� 2 [��; 1=2], set ~
 = 
k, and do a safe step calculation;'k  ~', �k  ~�, 
k+1  ~
, �k = 0, �k  ~�;tk+1  tk;(xk+1; yk+1) (xk; yk) + 'k(uk; vk) + �k(�uk; �vk);go to next k;end for.The algorithm takes safe steps until the complementarity gap �k falls below a thresholdvalue ��. It then attempts to take fast steps in which the centering component of (uk; vk) isphased out by decreasing �k to zero in concert with �k. These fast steps are accepted only ifthe value ~' chosen by the step procedure exceeds 1� �; otherwise, we revert to a safe step.The size of the central path neighborhood N (
k) is increased slightly on each fast iterate,to allow 'k to approach 1.3 Technical ResultsIn this section, we �nd bounds on the iterates (xk; yk), the step components (uk; vk) and(�uk; �vk), and the scalars �k, �k, and �k de�ned in (4). We de�ne the infeasibility vector rk asrk = yk �Mxk � h; (15)and note that, as observed in (7),rk+1 = (1� 'k)rk; k = 0; 1; 2; � � � :If we de�ne the scalar �k by �k = k�1Yj=0(1 � 'j); (16)it follows that rk = �kr0; k = 0; 1; 2; � � � : (17)We can bound �k in terms of �0 and �k by the following lemma:6



Lemma 3.1 For all k = 0; 1; � � �,�k�0 k�1Yj=0(1� �j) � �k � �k�0 k�1Yj=0(1 + �j):De�ning �L 4= 1Yj=0(1 � �j); �U 4= 1Yj=0(1 + �j);we have that e�3=2 < �L < 1 < �U < e;and �L�k�0 � �k � �U�k�0: (18)Proof. The �rst inequalities follow immediately from the algorithm.Since we have either �k = 0 (safe steps) or �k = �
t, t = 1; 2; � � � (fast steps), it followsthat �L � 1Yt=1(1 � �
t); �U � 1Yt=1(1 + �
t):Now, since �
 2 (0; 1=2), and sincelog(1 � �) � (�3=2)�; log(1 + �) � �; for � 2 [0; 1=2];we have log 1Yt=1(1 + �
t) = 1Xt=1 log(1 + �
t) � 1Xt=1 �
t = �
=(1 � �
):Therefore �U � e�
=(1��
) < e:Similarly, log 1Yt=1(1� �
t) = 1Xt=1 log(1� �
t) � (�3=2) 1Xt=1 �
t = (�3=2)�
=(1 � �
):Therefore �L � e(�3=2)�
=(1��
) > e�3=2:The following theorem provides a bound on the iteration sequence. It is similar to Lemma4.1 of Potra [2].Lemma 3.2 If (x�; y�) 2 S and �x and �y are de�ned as in (13),(14), the vector pair (xk; yk)satis�es�xkykk1 + �ykxkk1 � n�0 + n�k=�k + �xky�k1 + �ykx�k1 � (�U + 1)n�0 + �xky�k1 + �ykx�k1:7



Proof. Using (15), (17), and y� = Mx� + h, we haveM(�x0 + (1� �)x� � x)= �Mx0 + (1� �)Mx� �Mx= �(y0 � h� r0) + (1 � �)(y� � h)� (y � h� r)= �y0 + (1 � �)y� � y:Therefore, by positive semide�niteness of M ,0 � (�x0 + (1� �)x� � x)T (�y0 + (1� �)y� � y)= �2(x0)Ty0 + (1� �)2(x�)Ty� + xTy + �(1 � �)((x0)Ty� + (x�)Ty0)��((x0)Ty + xTy0)� (1� �)((x�)Ty + xTy�):Now, since x0 = �xe; y0 = �ye; (x�)Ty� = 0; (x�)Ty + xTy� � 0;we have �(�xkyk1 + �ykxk1) � �2(x0)Ty0 + xTy + �(1 � �)(�xky�k1 + �ykx�k1)) �xkyk1 + �ykxk1 � n�0 + n�=� + �xky�k1 + �ykx�k1;giving the �rst inequality. The second inequality follows directly from (18).If we de�ne Dk = (Xk)�1=2(Y k)1=2; (19)then bounds on kDk �ukk and k(Dk)�1�vkk are derived in the following lemma.Lemma 3.3 kDk�ukk � 2�
1=2n�1=2k ;k(Dk)�1�vkk � 2�
1=2n�1=2k :Proof. From the equations (3) and �uT �v � 0, we haveD�u +D�1�v = (XY )�1=2(~��e�XY e)) kD�uk2 + kD�1�vk2 � k(XY )�1=2(~��e�XY e)k2) kD�uk � k(XY )�1=2(~��e�XY e)k:Now k(XY )�1=2(~��e�XY e)k � kbk1k~��e�XY ek1;where b is the vector whose components are (xiyi)�1=2. Since (xk; yk) 2 N (
k) � N (�
), wehave kDuk � supi (xiyi)�1=2k~��e�XY ek1 � 1(�
�)1=2 (1 + ~�)n� � 2(�
�)1=2n�;giving the result.Bounds on kDkukk and k(Dk)�1vkk are not much harder to �nd.8



Lemma 3.4 For some (x�; y�) 2 S, de�ne��x = 1n�xkx�k1; ��y = 1n�y ky�k1: (20)Then kDkukk � 3n�
1=2�1=2k (2 + �L�1(1 + ��x + ��y)) (21a)k(Dk)�1vkk � 3n�
1=2�1=2k (2 + �L�1(1 + ��x + ��y): (21b)Proof. We prove only (21a), since the proof of (21b) is nearly identical. We start byde�ning the vector pair (û; v̂) to be the solution of" M �IY k Xk # " ûkv̂k # = " yk �Mxk � h0 # : (22)We have immediately from (22) thatY û+Xv̂ = 0 ) Dû +D�1v̂ = 0 ) Dû = �D�1v̂;and so kDûk = kD�1v̂k. Substituting v̂ = �D2û into the �rst block row of (22), we obtainMû� v̂ = r ) (M +D2)û = r ) ûTD2û � ûTr:Therefore kDûk2 � kDûkkD�1rk ) kDûk � kD�1rk = �kD�1r0k: (23)Now kD�1r0k � kd�1k1ky0 �Mx0 � hk1;where d�1 is the vector with components (xi=yi)1=2. We havekd�1k1 = nXi=1  xiyi!1=2 = nXi=1 xi(xiyi)1=2 � 1(�
�)1=2kxk1;while kr0k1 � ky0k1 + kMx0k1 + khk1 � �y + kMek1�x + khk1:Because of the conditions (14), it follows thatkr0k1 � 3�y :By substituting in (23), we have kDûk � � 3(�
�)1=2�ykxk1:9



From Lemma 3.2, we deduce thatkDûk � 3�(�
�)1=2 (n�0 + n�=� + �xky�k1 + �ykx�k1) � 3(�
�)1=2n�(1+�L�1(1+��y+��x)); (24)where the second inequality follows from (18) and the inequalities��xky�k1 = n��x�y��y = n��0��y � n���y=�Land ��ykx�k1 � n���x=�L. Noting that(u; v) = (û; v̂) + (�u; �v);we can combine (24) with the results of Lemma 3.3 to obtainkDuk � kDûk+ kD�uk � 3n�
1=2�1=2(2 + �L�1(1 + ��y + ��x));as required.In the next theorem, we use Lemmas 3.3 and 3.4 to obtain bounds on a number ofproducts involving components of the vector pairs (uk; vk) and (�uk; �vk) that will be useful inthe next section.Theorem 3.5 Suppose we de�ne a constant ~� independent of n by~� = 9�
 (2 + �L�1(1 + ��x + ��y ))2: (25)Then for all k and for i = 1; 2; � � � ; n, we havejuki vki j � n2~��k;j�uki vki + uki �vki j � n2~��k;j�uki �vki j � n2~��k:Also j�kj = �����(uk)Tvkn�k ����� � n~� ;j�kj = �����(uk)T �vk + (�uk)Tvkn�k ����� � n~� ;0 � �k = (�uk)T �vkn�k � n~� :Proof. These inequalities follow immediately from Lemmas 3.2, 3.3, and 3.4, with thehelp of the triangle inequality. For example, the second inequality is derived as follows.j�uivi + ui�vij � jdi�uijjd�1i vij+ jdiuijjd�1i �vij;10



where di = (yi=xi)1=2 is the i-th diagonal element of D. Thereforej�uivi + ui�vij � kD�ukkD�1vk+ kDukkD�1�vk� 2 3�
1=2 (2 + �L�1(1 + ��x + ��y ))n�1=2 2�
1=2n�1=2:Since ��x � 0, and ��y � 0, we have 4 < 3(2 + �L�1(1 + ��x + ��y)), and soj�uivi + ui�vij � 9�
 (2 + �L�1(1 + ��x + ��y ))2n2� = n2~��:The other �ve inequalities are derived similarly.Finally, we state a purely technical result that is used in Sections 4 and 6.Lemma 3.6 11 + � � 1� �; all � � 0; (26)p1 � � � 1� 12�; all � 2 [0; 1]; (27)p1 � � � 1� 12� � 12�2; all � 2 [0; 1=2]: (28)Proof. For (26), we have11 + � = 1� �+ �2 � �3 + � � �= 1� �+ �2(1 � �+ �2 � � � �)= 1� �+ �21 + �� 1� �:For (27), p1� � = 1� 12�� 18�2 � 348�3 � � � � � 1 � 12�:For (28), note that p1� � = 1�X ck�k;where ck = (12)(12)(32)(52) � � � (k terms)k! � 14 :Hence p1 � � � 1� 12� � 14�2(1 + � + �2 + � � �) � 1 � 12�� 12�2;where the �nal inequality follows from � 2 [0; 1=2].11



4 Linear Convergence and Polynomial ComplexityIn this section, we prove that the algorithm converges globally at a Q-linear rate and that,for su�ciently large choice of �x and �y, it has polynomial complexity.The main result of this section shows that �' de�ned by�' = :01��(1� 2�
)n2~� (29)is a lower bound on 'k for all iterations k on which a safe step is taken. It is clear that �'satis�es the bound (9) since, by Theorem 3.5 and the fact that ~� � ��,min 1; ~�j�kj ; 18j�kj; 9512j�kj! � 9��512n~� � �': (30)It follows from Lemma 2.1 that there is a nonnegative � satisfying (8) for each ' 2 [0; �']. Inthe case of �k = 0, we have the single root� = ~� + �k'1� ~� � �k''; (31)while, when �k > 0, the root of interest to us (i.e., the smaller one) is� = 1 � ~� � �k'2�k 241 �vuut1 � 4�k'(�� + �k')(1 � ~� � �k')235 : (32)In the following result, we de�ne the range in which � lies, in terms of '.Lemma 4.1 For ' 2 [0; �'] and ~� 2 [0; 1=2], the value of � corresponding to ' satis�es� � ~� + �k'1� ~� � �k'' (33)and � � ~� + �k'1� ~� � �k'' "1 + 4�k'(~� + �k')(1� ~� � �k')2# � 2': (34)Proof. When �k = 0, the inequalities (33) and (34) follow immediately from (31).When �k > 0, we obtain the result by appealing to (32) and Lemma 3.6. From (30), wehave that ' satis�es (9), so as in the proof of Lemma 2.1 we have0 � 4�'(~� + �')(1� ~� � �')2 � 12 : (35)Therefore, from (27) vuut1� 4�'(~� + �')(1� ~� � �')2 � 1 � 2�'(~� + �')(1� ~� � �')2 ; (36)12



while from (28)vuut1� 4�'(~� + �')(1 � ~� � �')2 � 1� 2�'(~� + �')(1� ~� � �')2 � 12 " 4�'(~� + �')(1� ~� � �')2#2 : (37)It follows from (32) and (36) that� � 1� ~� � �'2� 2�'(~� + �')(1 � ~� � �')2 = ~� + �'1� ~� � �'';proving (33). From (32) and (37), we have� � 1� ~� � �'2� 24 2�'(~� + �')(1 � ~� � �')2 + 12 " 4�'(~� + �')(1 � ~� � �')2#235� ~� + �'1� ~� � �'' "1 + 4�'(~� + �')(1� ~� � �')2# :Now, by using ~� � :5, (35), and the inequalitiesj'� j � �'n~� � :01; j'�j � �'n~� � :01; j'�j � �'n~� � :01; (38)we have � � :51:49' �1 + 12� � 2';proving (34).To show that the central neighborhood condition (10) holds for ' 2 [0; �'], we need toshow that (xki + 'uki + ��uki )(yki + 'vki + ��vki ) � ~
(1 � ')�k; (39)where, since this is a safe step, ~
 = 
k. From (2) and (3), we haveuki yki + xki vki = �uki yki + �vki xki = �xki yki + ~��k:Substituting these equations in (39) and dropping the iteration index k, we �nd that (10) issatis�ed ifxiyi(1� '� �) + ('+ �)~��+ '2uivi + �2�ui�vi + �'(ui�vi + �uivi) � 
(1 � ')�: (40)We can now use the fact that xiyi � 
�, together with the bounds from Theorem 3.5, todeduce that (40) holds if
�(1 � '� �) + ('+ �)~��� (�2 + '2 + �')n2~�� � 
(1 � ')�;or, equivalently, � �
 + ('+ �)~� � (�2 + '2 + �')n2~�: (41)In the next two lemmas, we derive a lower bound for the left-hand side of this inequalityand an upper bound for its right-hand side. 13



Lemma 4.2 If ~� 2 [��; 1=2] and ' 2 [0; �'], then� �
k + ('+ �)~� � (:80)'��(1 � 2�
); (42)where � is the smaller root of (8).Proof. From (33) and (34), we have��
 + ('+ �)~�� �
' ~� + �'1 � ~� � �' "1 + 4�'(~� + �')(1� ~� � �')2#+ ' "1 + ~� + �'1� ~� � �'# ~�= ' ~�(1 � 
)1 � ~� � �' � '2 ~�� � ~�� + 
�1 � ~� � �' � 
'2 4�(~� + �')2(1 � ~� � �')3 : (43)Now, from Theorem 3.5, (38), ~� 2 [��; 1=2], and 
 � 2�
 < 1, we obtain' �����~�� � ~�� + 
�1� ~� � �' ����� � (1 + 2�
)n~� �'(:49) � (1 + 2�
)(:01)��(1� 2�
)(:49) � (:05)��(1� 2�
); (44)and ' 4�(~� + �')2(1� ~� � �')3 � 4n~� �'[:50 + :01]2(:49)3 � 12��(:01)(1� 2�
) = :12��(1� 2�
); (45)while ~�(1� 
)1� ~� � �' � ��(1 � 2�
)1:01 � (:99)��(1� 2�
): (46)By substituting (44), (45), and (46) into (43), we �nd that��
 + ('+ �)~� � [(:99)� (:12)� (:05)]'��(1� 2�
) � :80'��(1 � 2�
);as required.Lemma 4.3 For ~� 2 [��; 1=2] and ' 2 [0; �'], we have(�2 + '� + '2)n2~� � (:07)'��(1 � 2�
);where � is the smaller root of (8).Proof. From (34), 0 � � � 2' and so�2 + '� + '2 � (4 + 2 + 1)'2 � (7 �')' � (:07)��(1 � 2�
)n2~� ':We can now prove the main result of this section.14



Theorem 4.4 If a safe step (with �k 2 [��; 1=2]) is taken at iteration k, then the value~' = 'k returned by the line search procedure satis�es'k � �':Proof. Lemmas 4.2 and 4.3 together imply that (41) holds for all ' 2 [0; �'] and, therefore,that the central neighborhood condition (39) holds for these values of '. Since we havealready observed in (30) that �' is smaller than the upper bound (9), it follows that 'k liessomewhere between �' and this upper bound. In particular, 'k � �', as required.Our linear convergence result follows.Theorem 4.5 The sequence f�kg generated by the algorithm converges Q-linearly to zerowith a rate constant of (1� �').Proof. On safe steps, it follows from Theorem 4.4 that �k+1 � (1� �')�k. On fast steps,we have �k+1 � ��k. However, � < �
 < :50 < 1� �';so we choose the more conservative value, namely, 1 � �', as the global rate constant.The polynomiality result is almost immediate.Theorem 4.6 Suppose that �x and �y are chosen large enough that for some (x�; y�) 2 S,the scalars ��x and ��y de�ned by (20) are both O(1). Then, for any given � > 0, the algorithmachieves �K� � � for K� = O  n2 ln �x�y� ! :Proof. When a safe step is taken at iteration k, it follows from (29) and the fact that ~�is independent of n that �k+1 � �1 � C10n2 ��k;where C10 = :01��(1 � 2�
)=~� is independent of n. When a fast step is taken, we have theeven sharper decrease �k+1 � ��k:Since C10=n2 < :01 < 1 � �, we �nd that K� satis�es� = �1� C10n2 �K� �0 = �1 � C10n2 �K� �x�y:Hence K� = ln(�=(�x�y))ln (1� C10=n2) � ln(�x�y=�)C10=n2 ;which gives the result. 15



5 Bounds for the Fast Step ComponentsIn this section, we obtain a di�erent set of bounds on the step (uk; vk) calculated in (2).These bounds are used to prove quadratic convergence in the next section.Because of Assumption 1, we can choose any (x�; y�) 2 Sc and de�neB = fi jx�i > 0g; N = fi j y�i > 0g;where B \ N = ; and B [ N = f1; 2; � � � ; ng. (Note that the de�nition of B and N isindependent of the particular choice of (x�; y�).)For our main result, we take note of the similarity between (uk; vk) and the step (�xk;�yk)computed by the algorithm of [4]. Both steps are de�ned by identical formulae (2), and therelevant properties of the sequence (xk; yk) and the parameters ~� and ~
 that give rise to thesteps (�xk;�yk) and (uk; vk) are the same; namely~
 2 [�
; 2�
]; ~� 2 (0; 1=2]; (xk; yk) 2 N (
k);�k � �k�0�L; rk = �kr0; (xk; yk) is a bounded sequence:(Note that we use �L in place of �̂ in [4] and that, in the algorithm of this paper, we applya restriction �k � �U�k�0 that does not exist in [4].)We also need several results like those in Section 3 of [4], which de�ne upper and lowerbounds for components of (xk; yk) in terms of �k. These results are given in the �rst threelemmas of this section. Our main result is Theorem 5.4, which uses the bounds on (xk; yk) toobtain bounds on (uk; vk) using a proof technique identical to one in [4, Section 5]. Finally,in Theorem 5.5, we restate these bounds in the form in which they will be used in Section 6.We start by de�ning an \auxiliary sequence" similar to the one de�ned by Zhang [6,Section 4] and Wright [4, Section 3]. The �rst element of this sequence is any vector pair(w0; z0) 2 IRn � IRn such that z0 = Mw0 + h;but not necessarily (w0; z0) � 0. For instance, (w0; z0) could be taken as the least-normsolution of the underdetermined linear system z �Mw = h. Subsequent elements of theauxiliary sequence are de�ned aswk+1 = wk + 'k(uk + xk � wk) + �k�uk; k = 0; 1; � � � ; (47a)zk+1 = zk + 'k(vk + yk � zk) + �k�vk; k = 0; 1; � � � : (47b)We can state the following result.Lemma 5.1 For k � 0,(i) zk = Mwk + h;(ii) xk � wk = �k(x0 � w0) and yk � zk = �k(y0 � z0).16



Proof. We prove (i) by induction. By de�nition, the result holds for k = 0. Assumingthat zk =Mwk + h, we show that zk+1 = Mwk+1 + h. By (47a),Mwk+1 + h = Mwk + h+ 'k[Muk +Mxk �Mwk] + �M �uk:From (2) and (3), we haveMuk = vk + yk �Mxk � h; M �uk = �vk;and so Mwk+1 + h =Mwk + h+ 'k[vk + yk �Mxk � h+Mxk �Mwk] + �k�vk:Since zk = Mwk + h, we haveMwk+1 + h = zk + 'k[vk + yk � zk] + �k�vk = zk+1;by (47b).For the �rst part of (ii), it su�ces to show that(xk+1 � wk+1) = (1 � 'k)(xk � wk); k = 0; 1; � � � :Substituting from (47a), and using xk+1 = xk + 'kuk + �k�uk, we havexk+1 � wk+1 = (xk + 'kuk + �k�uk)� [wk + 'k(uk + xk � wk) + �k�uk]= xk(1� 'k)� wk(1� 'k) = (1� 'k)(xk � wk);as required. The second part of (ii) is proved similarly.There is no need to actually calculate the auxiliary sequence. It is used merely as atechnical device to obtain the set of bounds in the following lemma.Lemma 5.2 There is a constant C1 > 0 such that for all k � 0, we havei 2 N ) xki � C1�k; (48a)i 2 B ) yki � C1�k; (48b)and i 2 B ) xki � �
=C1; (49a)i 2 N ) yki � �
=C1: (49b)Proof. Let (x�; y�) 2 Sc. Then(xk � x�)T (yk � y�)= (xk �wk + wk � x�)T (yk � zk + zk � y�)= (xk �wk)T (yk � zk) + (wk � x�)T (yk � zk)+(xk � wk)T (zk � y�) + (wk � x�)T (zk � y�):17



Now zk = Mwk + h and y� = Mx� + h, so (wk � x�)T (zk � y�) � 0 and we have(xk � x�)T (yk � y�) � (xk � wk)T (yk � zk) + (wk � x�)T (yk � zk) + (xk � wk)T (zk � y�):We can now use Lemma 5.1(ii) and (x�)Ty� = 0 to write(x�)Tyk + (y�)Txk� (xk)Tyk � (xk � wk)T (yk � zk)� (wk � x�)T (yk � zk)� (xk � wk)T (zk � y�)� n�k + �2k ���(x0 � w0)T (y0 � z0)���+ �k ���(wk � x�)T (y0 � z0)���+ �k ���(x0 � w0)T (zk � y�)���� n�k + �k h���(x0 � w0)T (y0 � z0)���+ ���(wk � x�)T (y0 � z0)���+ ���(x0 � w0)T (zk � y�)���i :(50)Now kwk � x�k � kwk � xkk+ kxk � x�k � �kkw0 � x0k+ kxkk+ kx�k;kzk � y�k � kzk � ykk+ kyk � y�k � �kkz0 � y0k+ kykk+ ky�k:Hence, by boundedness of (xk; yk), we can bound the bracketed term in (50) by a constantindependent of k ( �C1, say) and write(x�)Tyk + (y�)Txk � n�k + �C1�k:By (18), we have �k � (�L�0)�1�k, so(x�)Tyk + (y�)Txk � �k hn+ �C1(�L�0)�1i : (51)Since (x�; y�) � (0; 0) and (xk; yk) > (0; 0), we have from (51) thati 2 N ) y�i xki � �k hn+ �C1(�L�0)�1i ; (52a)i 2 B ) x�iyki � �k hn+ �C1(�L�0)�1i : (52b)Since x�i > 0 for i 2 B and y�i > 0 for i 2 N , we can de�ne C1 <1 byC1 = hn+ �C1(�L�0)�1imax supi2B 1x�i ; supi2N 1y�i ! : (53)The inequalities (48) follow immediately from (52) and (53).For (49a), we have using 
k � �
 thatxki yki � 
k�k � �
�k;so, using (48b), we have i 2 B ) xki � �
�kyki � �
�kC1�k = �
C1 ;18



as required. The remaining inequality (49b) is proved similarly.Note that, in contrast to Zhang [6] and Wright [4], we do not require(x0; y0) � (w0; z0): (54)In [4], we needed (54) to prove (48) and (49) but, in this paper, our a priori knowledge ofthe boundedness of f(xk; yk)g makes this assumption unnecessary.We now prove a simple result that establishes lower bounds on yki , i 2 B, and xki , i 2 N .Lemma 5.3 For all k � 0, there is a positive constant C2 such thati 2 B ) yki � 1C2 �
�k; (55a)i 2 N ) xki � 1C2 �
�k: (55b)Proof. Since, by Lemma 3.2, f(xk; yk)g is bounded, we can choose C2 <1 such that, forall k, 0 < xki � C2; 0 < yki � C2; i = 1; 2; � � � ; n:For (55a) we have i 2 B; xki yki � 
k�k ) yki � �
�kxki � �
�kC2 ;as required. The proof of (55b) is similar.We now have all the inequalities needed to prove the main results for boundedness of(uk; vk), using identical techniques to those in [4, Section 5].Theorem 5.4 There are positive constants C4 and C5 such that the components of the step(uk; vk) satisfy the bounds i 2 N ) juki j � C4�k; (56a)i 2 B ) jvki j � C4�k; (56b)and i 2 B ) juki j � C52 (�k + ~�); (57a)i 2 N ) jvki j � C52 (�k + ~�): (57b)Proof. From (21a), we have������ ykixki !1=2 uki ������ � kDkukk � 3n�
1=2 (2 + ��1L (1 + ��x + ��y ))�1=2k = �C4�1=2k ;19



for �C4 de�ned in an obvious way. Hence, using (48a) and xki yki � �
�k, we have for i 2 Nthat juki j �  xkiyki !1=2 �C4�1=2k = xki(xki yki )1=2 �C4�1=2k � xki(�
�k)1=2 �C4�1=2k � C1�k�
1=2 �C4:The inequality (56a) is obtained by setting C4 = C1 �C4=�
1=2.The proof of (56b) is similar.The remaining inequalities (57) can be proved as in Lemmas 5.2 and 5.3 of [4]. Lemma5.2 is a technical result that is an extension of an earlier result of Ye and Anstreicher [5,Lemma 3.5]. In the proof of [4, Lemma 5.3], we use the inequalities (18), (48), (49), (55),(56), and boundedness of the sequence f(xk; yk)g, all of which have been proved above. Weomit further details and refer the interested reader to [4].Theorem 5.5 Suppose we de�ne the constant C6 asC6 4= 2max(1; C4C5):Then if ~� = �k = �k, we havejuki vki j � (C6=2)�2k; i = 1; � � � ; n;and ���(uk)Tvk��� � n(C6=2)�2k:Proof. The result follows immediately from Theorem 5.4.6 Superlinear ConvergenceIn this �nal section, we show that the sequence f�kg converges superlinearly to zero with Q-order 2. The development follows that in [4, Section 6] quite closely. We write out the proofsof our results where there is enough di�erence from the proofs of [4] to cause confusion, andomit them otherwise.We start by de�ning a threshold condition involving �k and 
k, and �nding bounds onthe step length ~' given by the fast step procedure when this condition is satis�ed.Lemma 6.1 Suppose at iteration k that �k(
k � �
)(1 � �
) � �3C6 (58)and that a fast step is calculated. Then the step length ~' will satisfy1 � ~' � 1� C6 �k(
k � �
)(1� �
) :20



Proof. Before proceeding, note that if the fast step is successful, the algorithm sets 
k+1to �
(1 + �
tk), and so
k � 
k+1 = �
(1 + �
tk�1)� �
(1 + �
tk) = �
tk(1� �
) = (
k � �
)(1 � �
): (59)Under these circumstances, condition (58) is equivalent to�k
k � 
k+1 � �3C6 : (60)We use (58) and (60) interchangeably for the rest of this section.The remainder of the proof is similar to the proof of Lemma 6.1 in [4]. First, we showthat the centrality condition (11) is satis�ed for all ' in the interval' 2 "0; 1 �C6 �k
k � 
k+1 # : (61)Second, we show that the complementarity reduction condition (12) is also satis�ed for all' in the interval (61). The result of the lemma then follows immediately from the way inwhich ~' is chosen by the fast step procedure.We start with (11). Using the parameter settings ~
 = 
k+1 and ~� = �k = �k, we havefrom (2) and (xk; yk) 2 N (
k) thatxki yki � 
k�k;xki vki + yki uki = �xki yki + ~��k = �xki yki + �2k:Hence, using Theorem 5.5, we obtain(xki + 'uki )(yki + 'vki )= xki yki + '(xki vki + yki uki ) + '2uki vki� 
k�k(1� ') + '�2k � '2(C6=2)�2k:On the other hand, 1n
k+1(xk + 'uk)T (yk + 'vk)� 
k+1 h�k(1� '+ '�k) + '2(C6=2)�2ki :Therefore condition (11) will be satis�ed provided that
k�k(1� ') + '�2k � '2(C6=2)�2k� 
k+1 h�k(1� '+ '�k) + '2(C6=2)�2ki ;or, equivalently,(
k � 
k+1)�k(1� ') + '�2k(1� 
k+1)� '2�2k(C6=2)(1 + 
k+1) � 0:21



Since 
k+1 2 [�
; 1), � 2 (0; 1], and ' 2 (0; 1], this last inequality will hold if(
k � 
k+1)�k(1� ')� 'C6�2k � 0 ) 0 � ' � �'I 4= 11 + C6�k=(
k � 
k+1) :We can use (26) to obtain �'I � 1� C6 �k
k � 
k+1 ;and so (11) is satis�ed for ' in the range (61).It su�ces to show for the second part of the proof that����1n(xk + 'uk)T (yk + 'vk)� (1� ')�k���� � ~�(1� ')�k (62)for all ' satisfying (61). Since1n(xk + 'uk)T (yk + 'vk) = �k(1� '+ '�k) + 1n'2(uk)Tvk;we have����1n(xk + 'uk)T (yk + 'vk)� (1� ')�k���� � '�2k + 1n'2 ���(uk)Tvk��� � '�2k + '2(C6=2)�2k:Therefore, (62) holds if '�k + '2(C6=2)�k � ~�(1 � ');which in turn is true provided that' h(1 + C6=2)�k + ~�i � ~�: (63)Now, using C6 � 2, (63) is satis�ed if' � �'II 4= ~�~� + C6�k :Since ~� = �
tk � 
k � 
k+1 by (59), we have�'II = 11 + C6�k=�
tk � 11 + C6�k=(
k � 
k+1) :Using (26) again, we obtain �'II � 1 � C6�k
k � 
k+1 ;which implies that (12) holds for all ' satisfying (61).We can now show that, when a fast step calculation is performed and the condition (58)holds, the fast step will be accepted by the algorithm, since �k+1 � ��k.22



Lemma 6.2 If (58) is satis�ed at iteration k and a fast step is calculated, then�k+1 � 3C6
k � 
k+1�2k � ��k; (64)and �k+1(
k+1 � �
)(1 � �
) � �k(
k � �
)(1 � �
) : (65)Proof. We start by showing that �k(') de�ned by�k(') 4= 1n(xk + 'uk)T (yk + 'vk) = �k(1 � '+ '�k) + 1n'2(uk)Tvkis monotonically decreasing for ' 2 [0; 1] when �k > 0. Using Theorem 5.5 and the fact thatC6 � 1, we have�0k(') = ��k(1� �k) + '2n(uk)Tvk � ��k(1 � �k) + 'C6�2k � ��k(1 � 2C6�k):It follows from (58) that 2C6�k < 1, and so �0k(') < 0 as required.Since a successful fast step will choose 'k in the interval (61), we have�k+1 = �k(1� 'k + 'k�k) + 1n'2k(uk)Tvk� �k(1� 'k) + �2k + 1n(uk)Tvk� C6�2k
k � 
k+1 + �2k + C62 �2k:Since 1 � C6=2 � C6=(
k � 
k+1), we can bound all three terms in the last expression byC6�2k=(
k � 
k+1) and obtain �k+1 � 3C6
k � 
k+1�2k;giving the �rst inequality in (64). The second inequality in (64) follows immediately from(60).For (65), we can use (64) to write�k+1(
k+1 � �
)(1 � �
) = �k+1�
tk+1(1� �
) � 1�
tk+1(1� �
) 3C6�
tk(1� �
)�2k = 3C6�
 " �k�
tk(1� �
)#2 : (66)From (58) and (59), we have3C6�
 �k�
tk(1 � �
) = 3C6�
 �k(
k � �
)(1 � �
) � ��
 < 1;where the last inequality follows from the de�nition of � and �
 in the algorithm. Substitutionof this inequality into (66) yields the desired result.23



Theorem 6.3 Suppose that condition (58) is satis�ed at iteration K and that�K � ��:Then(i) the algorithm takes fast steps at iteration K and at all subsequent iterations, and(ii) the sequence f�kg converges superlinearly to zero with a Q-order of 2.Proof. The second inequality in (64) guarantees that the fast step is accepted at iterationK, while (65) ensures that the threshold condition (58) still holds at iteration K + 1. Byinduction, it follows that (i) is true.For (ii), we apply an argument from [4] to the �rst inequality in (64). See [4, Theorem6.3] for the details.Finally, we show that the algorithm will eventually reach an iterate K at which both (58)and �K � �� are satis�ed, and so superlinear convergence is guaranteed to occur.Theorem 6.4 Suppose we de�ne constants f and �̂ byf 4= log �
log � 2 (0; 1)and �̂ = 8<: �� if ���
(1��
) � �3C6 ;h �3C6 �
2(1��
)�� i1=(1�f) �� otherwise: (67)Then if K is the smallest positive integer for which�K � �̂; (68)we have that �K�
tK(1� �
) � �3C6 (69)and �K � ��; (70)and hence the conditions of Theorem 6.3 are satis�ed.Proof. The proof is almost identical to that of Theorem 6.4 in [4], so we omit it.This section culminates in the following result, which is immediate from Theorems 6.3and 6.4.Corollary 6.5 The sequence f�kg converges to zero superlinearly with a Q-order of 2.24
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