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Abstract

We describe an infeasible-interior-point algorithm for monotone linear complemen-
tarity problems that has polynomial complexity, global linear convergence, and local
superlinear convergence with a Q-order of 2. Only one matrix factorization is required
per iteration, and the analysis assumes only that a strictly complementary solution
exists.

1 Introduction

The monotone linear complementarity problem is to find a vector pair (z,y) € R" X IR" such
that
y=Max+h, (x,y) > (0,0), ey =0, (1)

where h € R" and M is an n X n positive semidefinite matrix. A vector pair (z*,y") is
called a strictly complementary solution of (1) if it satisfies the three conditions in (1) and,
in addition, ¥ + y* > 0 for each component ¢ = 1,2,---,n. We denote the solution set for
(1) by S and the set of strictly complementary solutions by S°.

A number of interior point methods have been proposed for (1). Among recent papers
are the predictor-corrector algorithm of Ji, Potra, and Huang [1] which has polynomial
complexity and two-step superlinear convergence, the predictor-corrector algorithm of Ye
and Anstreicher [5] which is polynomial and quadratically convergent, the path-following
infeasible-interior-point algorithm of Zhang [6] which has polynomial complexity, and the
algorithm described by the present author in an earlier report [4], which modifies Zhang’s
algorithm so that superlinear convergence with Q-order 2 is attained. All these algorithms
assume existence of a strictly feasible point for (1), that is, a vector pair (z,y) such that
y = Mx 4+ h and (x,y) > 0. Recently, Potra [2, 3] has proposed infeasible-interior-point
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algorithms for linear programming that do not require this assumption but still attain (in
the case of [3]) O(nl) iteration complexity and two-step Q-quadratic convergence.

In this paper, we describe an algorithm that is similar to the algorithm in [4] in that
it takes so-called safe steps in the early stages of the algorithm and fast steps in the later
stages (with an intermediate stage in which both kinds of steps can occur). The main point
of difference between the two approaches is in the calculation of the safe steps. Essentially,
the algorithm in [4] requires that, for safe steps, the infeasibility ||y — Mx — k|| decreases at
least as quickly as the complementarity gap =y, while safe steps taken by the algorithm in
this paper reduce these two quantities by exactly the same rate. We are therefore able to
show that the iterates generated by the new algorithm are uniformly bounded, without an
a priori assumption that a strictly feasible initial point exists.

Each iteration requires the solution of one, two, or three linear systems with the same
coefficient matrix, so only one matrix factorization need be performed. In the final “fast”
phase of the algorithm, just one solve is required at each step. The convergence properties are
identical to the algorithm of [4], namely, global linear convergence, polynomial complexity
when correctly initialized, and local superlinear convergence with Q-order 2.

Throughout the remainder of the paper, we make just one assumption:

Assumption 1 S§°¢ is nonempty.

When (1) is derived from a linear programming problem, all that is needed for Assumption
1 to be satisfied is that a solution exists! Moreover, Ye and Anstreicher [5, Proposition 5.1]
give a simple example to show that Assumption 1 is, in a sense, necessary for superlinear
convergence. In their example, the solution set & is nonempty while §¢ is empty, and an affine
scaling approach fails to give superlinear convergence even when started arbitrarily close to
the solution. The steps generated by all superlinearly convergent interior-point methods
proposed to date resemble affine scaling steps more and more closely as they approach the
limit, so this example suggests that a completely different approach will be needed to design
polynomial and superlinear algorithms that do not require Assumption 1.

The remainder of this paper is laid out as follows: In Section 2, the algorithm is specified.
Some technical results that provide global bounds on the step components are proved in
Section 3. Global linear convergence and polynomial complexity are proved in Section 4.
Although we focus on a particular choice of starting point — a choice that guarantees
convergence in polynomial time — the linear convergence result can be proved when any
starting point (2% y°) with (2% y°) > 0 is used. We do not work through the analysis for
the latter case, since only minor modifications to the proofs of this paper are required. In
Section 5, we obtain bounds on the step components in terms of the complementarity gap.
Finally, we prove the superlinear convergence result in Section 6.

Unless otherwise specified, || - || denotes the Euclidean norm of a vector. Iteration indices
(usually k) appear as superscripts on vectors and matrices and as subscripts on scalars.
Subscripts are used to indicate components of vectors and matrices.

In Sections 3 and 4, we adopt the following convention: The iteration index & appears
explicitly in the statement of each lemma and theorem but is usually omitted in the proofs,



unless doing so would cause confusion. For example, quantities such as 3, 7, p, (x,y), and
D appearing in a proof should be taken as Sy, 7%, g, (2%, 9%), and D* | respectively.

2 The Algorithm

Given a starting point with (2% y°) > (0,0), the algorithm generates a sequence of iterates
(%, y%) > (0,0), k = 1,2,---. To describe the step between successive iterates, we define

HE = (xk)Tyk/m e=(L1,---, 1)T7
XF = diag(:z;’f,:z;g, e ,:L’ffb), Yh = diag(yf7y§, T 795)-

Given a centering parameter & € [0,1/2], vector pairs (u*,v*) and (u”,v*) are defined as the
solutions of the linear systems

M -1 ub ] y* — Ma* —h (2)
Yk XF vF | T = XPYFRe + olre

and
M -1 u B 0 (3)
Yk XF ofF | T | = XPYFRe + opge |

From (u”,v*) and (a*,v"*) we can calculate the scalar quantities

o= (W) (ne), e = ()00 + () @ (npw), b= (@F) 08 (). (4)

Note from (3) that, since M is positive semidefinite, 6, > 0.
When a safe step is calculated, & is restricted to the interval [, 1/2], where & € (0,1/2)
is a constant. Safe steps have the form

("), v" () = (%, y") + @(u*,0") + 0(u", 0%), (5)
where, for any given ¢ € [0, 1], 6 is chosen so that
(o) () = (1 = @) = (1 = ) (") Ty~ (6)
It is casy to verify by using (2) and (3) that
v (p) = Ma" (o) = h = (1 = ) (y* = Ma* = h), (7)

so we see that the effect of (6) is to ensure that the reductions in infeasibility and comple-
mentarity gap are exactly the same.
By substituting (4) and (5) into (6), we see that § and ¢ must satisfy the polynomial

0%6, — (1 — o —nrp) + (6 + ) = 0. (8)



For safe steps, we constrain ¢ to lie in the interval

@ 0 1 1 —N —1 —9 (9)
- min
’ ’ |'7k|78|77k|7512(5k ’

where, if any of 7, 0, and 0y are zero, the corresponding term is omitted from the formula
for the upper bound. The effect of (9) is to ensure existence of a § that satisfies (8), as can
be seen from the following result:

Lemma 2.1 When ¢ € [0,1/2] and ¢ satisfies (9), there is at least one nonnegative value
of 0 such that (8) is satisfied.

Proof. We write the polynomial (8) as
a()0* = b(¢)0 + () = 0.
where, using (9),
ale) = ok
39
b = l—-0- [_7 _:| )
(¢) 0= € 33
cp) = ¢lo+myp] € [0,200].
When 6, = 0, we obtain

0 — C(S‘Q) Z 07
b(¢)
as required. Otherwise, 6 > 0, and we have
LN PO P 4@(99)0599)
2a() b(¢)
Since )
) o,
2a(p)
and . .
4@(99)0(99)‘ _ da(p)ely) _ A8(20¢) _ (9/64)5 _ 1
b(¢)? () = (3/8)7 T (9/64) T2
we find that both roots of (8) are real and nonnegative. [

If there are two roots for #, we resolve the ambiguity by choosing the smaller one, and define

(2*(), y* () accordingly.
In addition to satisfying (6), the actual step length ¢ should be chosen so that all vector

pairs (z¥(¢), y*¥(¢)), ¢ € [0, 1], lie in the neighborhood A (7) of the central path, where

NF) = {(z.y) = 0]aiyi = F(a"y/n)},

and 4 € (0,1/2) is a given parameter.
The procedure for calculating a safe step can be stated formally as follows:
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Safe step calculation: Given & € [7,1/2] and ¥ € (0,1/2],

Solve (2) and (3) to find (u®,v*), (a*,v");
Choose ¢ as the largest value in the interval (9) such that
("), 5"(¢)) € N () (10)

for all ¢ € [0, &J;
Return ¢ and the corresponding 6.

Fast step calculations do not require (3) to be solved, and they replace the condition (6)
by a relaxed condition, in which the decrease in complementarity gap is allowed to vary a
little from the decrease in infeasibility. The procedure can be outlined formally as follows:

Fast step calculation: Given & € [0,1/2], 4 € (0,1/2], and 3 € [0,1/2],

Solve (2) to find (u*,v¥);
Choose ¢ as the largest value in [0, 1] such that
(«*,y") + o(u",v*) € N'(5), (11)

and

(1= 31— @)@ y* < (@" + pu") T (y" + p0b) <1+ 51— ) (@H)Ty*,  (12)

for all ¢ € [0, @]
Return .

To obtain polynomial complexity, we define the starting point for our main algorithm as

(xovyo) = (fl’evfye)v (13)

where e is the vector whose components are all 1, and the scalars ¢, and ¢, are chosen to
satisfy

>0, §>0, & 2 |hlle, & 2 [|Mef[ols (14)

We can now state our algorithm.
Given 7 € (0,1/2), 5 € (0,1/2), p € (0,7), & > 0, and (2, y°) defined by (13),(14)
to — 1, 0 < 27;
for £=0,1,2,---

if fr <
then Set ¢ = pg, ¥ = 3(1 +7%), and 3 = 3% and do a fast step calculation;
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if  ¢=(1-p
then ¢, «— @, 0 — 0, Yoy1 — 7, B = B, ok «— 03
Tppr — tp + 1;
(@™ ™) (@8, ") + pr(u, 0b);
go to next k;
end if
end if

Choose & € [0,1/2], set 4 = ~;, and do a safe step calculation;
o= @ =0, 1 =7, B =0, 0p 03

tk-l—l — tk,

() () o) 4 O )

go to next k;

end for.

The algorithm takes safe steps until the complementarity gap pj falls below a threshold
value ji. It then attempts to take fast steps in which the centering component of (u*, v¥) is
phased out by decreasing o to zero in concert with p;. These fast steps are accepted only if
the value ¢ chosen by the step procedure exceeds 1 — p; otherwise, we revert to a safe step.
The size of the central path neighborhood N(74) is increased slightly on each fast iterate,
to allow ¢ to approach 1.

3 Technical Results

In this section, we find bounds on the iterates (z*,y*), the step components (u*,v"*) and
(u*,v%), and the scalars 73, nx, and & defined in (4). We define the infeasibility vector r* as

rF =y — Ma* —h, (15)
and note that, as observed in (7),
M= (1 — ), k=0,1,2,-

7

If we define the scalar vy by

E—1
ve = 11 =), (16)
7=0
it follows that
= upr?, k=0,1,2,---. (17)

We can bound pyj in terms of po and vy by the following lemma:



Lemma 3.1 Forall k=0,1,---,

E—1 E—1
vipto [ J(1 = 55) < g < wipro [T (1 + 55)-
7=0 7=0
Defining
A A
sr =TIt = By), =H1+5J
j=0 j=0
we have that
6_3/2<5L<1<5U<6,

and
Brvgpo < px < Buviio. (18)

Proof. The first inequalities follow immediately from the algorithm.
Since we have either 3, = 0 (safe steps) or B = 7%, t = 1,2, (fast steps), it follows
that

Bz 110 =4Y. B <L +7")
Now, since 4 € (0,1/2), and since

log(1 — a) > (—3/2)a, log(1+4 a) < «, for a € 10,1/2],

we have . .
log [T(1 +49 Zlog (1459 <24 =4/(1 =)
t=1 t=1 t=1
Therefore
ﬂU S eﬁ//(l_ﬁ/) < c.
Similarly,
10gH 1—7 Zlog 1—=73") > (=3/2) 7" = (=3/2)7/(1 = 7).
t=1
Therefore

B, > =3PV 5 =32,

[
The following theorem provides a bound on the iteration sequence. It is similar to Lemma

4.1 of Potra [2].
Lemma 3.2 If (z*,y*) € S and &, and &, are defined as in (13),(14), the vector pair (z*, y*)

satisfies

ENy Il + & lle™ < npo + np /v + ElyT Il + &l < (Bo 4+ Dingo + Elly™[ln + &l



Proof. Using (15), (17), and y* = Ma* + h, we have
M(vz® + (1 —v)a™ —x)
= vMa2"+ (1 —v)Mx™— Mz
= vy’ —h=r") (1 =)y —h)—(y—h—7)
= v+ (1 —v)y —y.
Therefore, by positive semidefiniteness of M,
0 < (wa+(1—=v)e" =) ()’ + (1 =v)y" —y)
= A+ (1= @)y + 2y + v = n)(@) Ty + (@) y)
(@) "y +2y") = (L= v)((z")y + 2Ty).
Now, since
=Ge, y=ge  (@)y=0, (@) y+aly 20,
we have
v(&llyll + &) v @)y 2ty + (L= )&y + &l )
= &llyll + &lllh npo +npfv + Lyl + &l

giving the first inequality. The second inequality follows directly from (18). [
It we define

<
<

DF = (XM (19)
then bounds on ||[D*u*|| and ||(D*)~'%*|| are derived in the following lemma.
Lemma 3.3
B 2
ID* e < T/Qnﬂiﬂa
i 2
IO < ™.
Proof. From the equations (3) and u’v > 0, we have
Di+D'% = (XY) Y% 6pe — XYe)
= ||Dul® + D710l < J(XY) TV (Gpe — XVe)|?
= IDal < XYY epe — XY,

Now
I(XY) 2 (Gpe — XYe)|| < ||bllllope — XYelly,

where b is the vector whose components are (:Jciyi)_l/z. Since (z*,y%) € N(w) C N(%), we
have

2

— 7
()2
giving the result. [

Bounds on HDkukH and H(Dk)_lka are not much harder to find.

1
I Dull < sup(ai) ™ e — XY el € (1 + G <
i >

ﬂ)”?( N
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Lemma 3.4 For some (x*,y*) € S, define

1 1
&= el &=l (20)
Then
n - £ | g
ID%H) < Spn 2+ AT 1+ € +E)) (21a)
_ 3n - x| o
IO < pn e+ AT 0+ £+ 6). (21b)

Proof. We prove only (21a), since the proof of (21b) is nearly identical. We start by
defining the vector pair (@, ) to be the solution of

B -

We have immediately from (22) that
Yi4+X0=0= Di+D'"%=0= Di=—-D"'9,

and so || D

— D%

. Substituting & = —D?@ into the first block row of (22), we obtain
Ma—t=r = (M+D)=r = a'D*au <alr

Therefore

[Da|* < IDall| D~ ] = |[Daf < [[D7'r|| = v|[ D7), (23)

Now

D70 < ld ™ lly® = Ma® = Ao,

where d=' is the vector with components (;/y;)'/%. We have

. n T 1/2 n T 1
Hd Hl = Z o = Z (inyi)l/Q < (,7#)1/2”3;”17

=1 3 =1

while

[%llo0 < ly°lleo + 11M2°]oc + Nlloo < &y + | Mellocbs + [|Alloo-

Because of the conditions (14), it follows that
[°lle < 3y

By substituting in (23), we have

3
< v &l

()2

9

|| Du




From Lemma 3.2, we deduce that

v 3 1 * *
iz (o v+ &l b+ &l € (1 AT (G 4E), (24)

where the second inequality follows from (18) and the inequalities

vEully™ll = nv&el §5 = nvpoly < npdy/ B

and v&,||e*||1 < npé:/Br. Noting that

|| Du

<

(u,v) = (a,0) + (u,v),
we can combine (24) with the results of Lemma 3.3 to obtain

B 3n _ X X
+|Dull < —=p' P2+ BTN A+ &+ E)),

7}/1/2

[Dul] < || Di

as required. [

In the next theorem, we use Lemmas 3.3 and 3.4 to obtain bounds on a number of
products involving components of the vector pairs (u*,v*) and (u*,v*) that will be useful in
the next section.

Theorem 3.5 Suppose we define a constant 7 independent of n by

~ 9 -1 * *\\2

T=§(Q+5L (L+&+E))" (25)
Then for all k and for:=1,2,---,n, we have

Kok

lufvf| < n Tug,
|ﬂfvf—|—ufﬁf < n Tug,
ufof| < nFuy.
Also
ENT, K
|7e| = () v < nft,
npg
ENT = ATk
| = (u®)' 0" + (u*) "o <7
npg
T =k
0<s = WU s
npg

Proof. These inequalities follow immediately from Lemmas 3.2, 3.3, and 3.4, with the
help of the triangle inequality. For example, the second inequality is derived as follows.

vy + wiv;| < Jdig||d o) 4 ||| d s
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where d; = (yi/xi)l/Q is the 7-th diagonal element of D. Therefore

v+ woil < |[Dul[[[D7 ol + [[Dul|[[ D7 o]

3 - * * 2
< 2524 BTG+ fy))nﬂl/zmnﬂlﬂ-

7}/1/2
Since {; > 0, and & > 0, we have 4 < 3(2 + Br N1+ &+ £5)), and so
9 .
|wiv; + uivy] < 5(2 + 8L+ E+E)) NP =07

The other five inequalities are derived similarly.
Finally, we state a purely technical result that is used in Sections 4 and 6.

Lemma 3.6

—_

> 1—a, all a > 0,
1+«
1
l—a < 1—§oz, all o € [0,1],
11,
l—a > 1—§oz—§oz, all a € [0,1/2].

Proof. For (26), we have

1
= l—-a+a?—a+---
1+«
= l—a+a’(l—a+a®—--)
o
- 11—
a+1+a
> 1—q.
For (27),
1 1 1
\/1—a:1—§a—§a2—%0z3— <l—--«a
For (28), note that
Vl—oz:l—choz,
where PR
o = ()G - - - (k terms) <1
k! 4
Hence

1 1 1 1
Vl—ozZ1—§a—10z2(1—|—o¢—|—0z2—|—---)21—§Q—§a2,

where the final inequality follows from a € [0,1/2].
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4 Linear Convergence and Polynomial Complexity

In this section, we prove that the algorithm converges globally at a Q-linear rate and that,
for sufficiently large choice of ¢, and §,, it has polynomial complexity.
The main result of this section shows that ¢ defined by

0le(1 —27)

= 2

(29)

7~_
is a lower bound on ¢y for all iterations k& on which a safe step is taken. It is clear that ¢
satisfies the bound (9) since, by Theorem 3.5 and the fact that & > 7,

5 1 9 95
in (1.2 > > 3. 30
mm( ’|Tk|’8|77k|’512|5k|) = ¥lom: = 7 (30)

It follows from Lemma 2.1 that there is a nonnegative 6 satisfying (8) for each ¢ € [0, ¢]. In

the case of 0y = 0, we have the single root

o+ T

0= ————
1l —0o—nry

@, (31)

while, when é; > 0, the root of interest to us (i.e., the smaller one) is

_l=o—me || A%e(0 + o)
0= [1 \Il (1_&_%@)2]. (32)

In the following result, we define the range in which 8 lies, in terms of .

Lemma 4.1 For ¢ € [0,¢] and & € [0,1/2], the value of § corresponding to ¢ satisfies

p> TP (33)
1l —o0—nry
and s
N A N
g < 0+ Ty e |1+ kPO + Tip) < 2. (34)

T 1—0 -y (1 =0 —me)?| —

Proof. When 65, = 0, the inequalities (33) and (34) follow immediately from (31).
When 65 > 0, we obtain the result by appealing to (32) and Lemma 3.6. From (30), we
have that ¢ satisfies (9), so as in the proof of Lemma 2.1 we have

0 < 460(6 + T¢)

1
SU—6—ney ~ 2 )

Therefore, from (27)

Jl_MQ_M (36)

(L= —ne)? = (1=0—np)*

12



while from (28)

- 460(6 + 1) o 200+ 19) 1 l 460(5 + 1) r 3
(I—6—mp) = (l=0—ne)* 2[(1-0-np)?| "
It follows from (32) and (36) that
6> 1—6—ne 2599(?—%7'99) _ &—Nl—rc,o N
26 (1—-6—-—np)? 1-6-—n¢
proving (33). From (32) and (37), we have
g < Lmo—me | 2p(otTe) L[ 480(0 47y ’
B 26 (1=0—np)?  2[(1-06-np)?
N LSl
el o)
1—6—ne (1 =0 —nyp)
Now, by using & < .5, (35), and the inequalities
o] <onT <01, fen| <ent <01, pd| < onT < .01, (38)
we have
6 < 51 [1+1] <2
PTLE BT i
proving (34). ]

To show that the central neighborhood condition (10) holds for ¢ € [0, ], we need to
show that

(2% 4+ pulf 4+ 0% (yF 4+ o 4+ 06F) > 3(1 — @), (39)
where, since this is a safe step, ¥ = ~,. From (2) and (3), we have
wiy; + el = wlyl +fal =~y + o

Substituting these equations in (39) and dropping the iteration index k, we find that (10) is
satisfied if

ziyi(l—p—0)+ (p+0)op+ o uv; + 0% uiv; + Oo(uv; + wv;) > (1 — @) p. (40)

We can now use the fact that x;y; > ~vpu, together with the bounds from Theorem 3.5, to
deduce that (40) holds if

(1l =@ —=0)+ (o +0)opu — (0° + ©* + Op)n’ 7 > v(1 — @),

or, equivalently,
—0v+(p+0)5 > ((92 +* + (9(,9)712%. (41)
In the next two lemmas, we derive a lower bound for the left-hand side of this inequality
and an upper bound for its right-hand side.

13



Lemma 4.2 [f& € [0,1/2] and ¢ € [0,¢], then
— O+ (v +0)5 = (80)pa (1 —27),
where § is the smaller root of (8).

Proof. From (33) and (34), we have

—0y + (¢ +0)o
o+ T 460(6 + 1) ] o+ T N
> —’799~7l1—|—~— +oll+—F—|0
1—6—np (1 =0 —np)? l—06—ny
B g1 —7) | 90N =0T 49T , 46(0 4 Tp)?
1—&—np 1—&—np (1 =6 —np)*

Now, from Theorem 3.5, (38), ¢ € [7,1/2], and v < 25 < 1, we obtain

on — &1 + 4T - (1 4+29)n7p - (14 2%)(.01)a(1 —27) < (05)5(1 — 27)
l—c—ne |~ (49 (.49) - ’
and 155+ 72 Anial50 4 .01)2
o+ TP ntpl.ol 4+ . _ _ _ _
< < 120(.01)(1 —29) = .120(1 — 2
(1—6—np)® — (49)3 < 120 (.01)( ) o 7),
while

s1-4) _ o(l-23)
l—oc—np — 101
By substituting (44), (45), and (46) into (43), we find that

> (.99)a(1 — 27).

—0v+ (e +8)5 > [(.99) — (.12) — (.05)] o (1 —27) > .80pa(l — 27),
as required.
Lemma 4.3 For & € [0,1/2] and ¢ € [0, ], we have
(0% + 90 + ¢*)n*7 < (0T)por (1 — 27),
where 0 is the smaller root of (8).

Proof. From (34), 0 < 8 < 2¢ and so

0" + 00 +¢* < (4424 1)p" < (To)p <

('07)6(1~_ 21)%

n

We can now prove the main result of this section.

14
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Theorem 4.4 [f a safe step (with o, € [6,1/2]) is taken at iteration k, then the value
© =y returned by the line search procedure satisfies

Ok 2 P.

Proof. Lemmas 4.2 and 4.3 together imply that (41) holds for all ¢ € [0, ¢] and, therefore,
that the central neighborhood condition (39) holds for these values of ¢. Since we have
already observed in (30) that ¢ is smaller than the upper bound (9), it follows that ¢y lies
somewhere between ¢ and this upper bound. In particular, ¢ > @, as required. [

Our linear convergence result follows.

Theorem 4.5 The sequence {u} generated by the algorithm converges Q-linearly to zero
with a rate constant of (1 — @).

Proof. On safe steps, it follows from Theorem 4.4 that pr11 < (1 — @)ug. On fast steps,
we have pry1 < puy. However,
p<y <A<l —o,

so we choose the more conservative value, namely, 1 — ¢, as the global rate constant. [
The polynomiality result is almost immediate.

Theorem 4.6 Suppose that &, and &, are chosen large enough that for some (x*,y*) € S,
the scalars & and & defined by (20) are both O(1). Then, for any given € > 0, the algorithm

achieves pg. < € for
K. =0 (n21n %) .
€

Proof. When a safe step is taken at iteration k, it follows from (29) and the fact that 7

is independent of n that
C
Pr1 < (1 - ﬁ) Kk,

where Cio = .01o(1 — 2%)/7 is independent of n. When a fast step is taken, we have the
even sharper decrease

i1 S Pl
Since Co/n* < .01 <1 — p, we find that K. satisfies

Cho Ke Cho Ke
=(1-7) m=(1-77) eo

- In(ef(&8)  _ In(&/d)
Ke= In (1 = Cio/n?) = Chrofn?

which gives the result. [

Hence
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5 Bounds for the Fast Step Components

In this section, we obtain a different set of bounds on the step (u*,v*) calculated in (2).

These bounds are used to prove quadratic convergence in the next section.
Because of Assumption 1, we can choose any (z*,y*) € §¢ and define

B={i|ai >0},  N={c]y; >0},

where BAN = () and BUN = {1,2,---,n}. (Note that the definition of B and N is
independent of the particular choice of (a*,y*).)

For our main result, we take note of the similarity between (u*,v*) and the step (Az*, Ay¥)
computed by the algorithm of [4]. Both steps are defined by identical formulae (2), and the
relevant properties of the sequence (z¥,y*) and the parameters & and 7 that give rise to the
steps (Az®, Ay*) and (u*, v¥) are the same; namely

yell  oe(0,1/2, («Fyt) e N,
Ue > Vepofr, r* = pprY, (%, 9*) is a bounded sequence.
(Note that we use 1, in place of 3in [4] and that, in the algorithm of this paper, we apply
a restriction py < Puvipo that does not exist in [4].)

We also need several results like those in Section 3 of [4], which define upper and lower
bounds for components of (z*,y*) in terms of ;. These results are given in the first three
lemmas of this section. Our main result is Theorem 5.4, which uses the bounds on (2%, y*) to
obtain bounds on (u*,v*) using a proof technique identical to one in [4, Section 5]. Finally,
in Theorem 5.5, we restate these bounds in the form in which they will be used in Section 6.

We start by defining an “auxiliary sequence” similar to the one defined by Zhang [6,
Section 4] and Wright [4, Section 3]. The first element of this sequence is any vector pair
(w? 2%) € R™ x R™ such that

20 = Muw® + h,

but not necessarily (w? z%) > 0. For instance, (w?, 2°) could be taken as the least-norm

solution of the underdetermined linear system z — Mw = h. Subsequent elements of the
auxiliary sequence are defined as

whtt = wk‘|‘99k(uk‘|‘$k_wk)+0kuk7 k=01, (47&)
= ot Yt =) 0t k=01, (47b)

We can state the following result.
Lemma 5.1 For k >0,
(i) 2 = Mw* + h;

(ii) 2 —wh = v (2° — w?) and y* — 2 = v (y° — 2°).
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Proof. We prove (i) by induction. By definition, the result holds for & = 0. Assuming
that zF = Mw* + h, we show that 2**! = Mw*+! 4+ h. By (47a),

Mw™t L h = Mw"® —I—h—l—c,ok[Muk—l—M:Jck —ka] + OMu".
From (2) and (3), we have
MuF = o% 4 y* — Ma* — h, Mu* = o,
and so
Muw™t £ h = Mw® —I—h—l—c,ok[vk—l—yk — Mz*—ha+ M" —ka] + 00",
Since zF = Mw* + h, we have
Muw™ 4 b= 2F 4 p[o" + 4% — 2] + 0,07 = 2L

by (47b).
For the first part of (ii), it suffices to show that

(2 =) = (1 =) (a" —wb), k=01,

Substituting from (47a), and using ! = 2% + o u* + 0 u*, we have

$k+1 o wk-|—1 — (l‘k T S«Qkuk T ekuk) o [wk T S«Qk(uk T l‘k o wk) T Qkﬂk]
= "1 =) —w' (1 =) = (1 = @) (" — ),
as required. The second part of (ii) is proved similarly. [

There is no need to actually calculate the auxiliary sequence. It is used merely as a
technical device to obtain the set of bounds in the following lemma.

Lemma 5.2 There ts a constant Cy > 0 such that for all k > 0, we have

i€ N = of <Oy, (48a)

i€B = yF <Oy, (48D)
and

i€B = zF>5/Cy, (49a)

€N = yF>7/0. (49b)

Proof. Let (x*,y*) € S§¢. Then
(" —2") (y" —y)
(l‘k wk wk x*)T(yk o Zk T Zk o y*)
= (2" =) (yF =)+ (0 =) (" -2
k k k

"t —wh) (=) + (w* =2 (= ).



Now ¥ = Mw* + h and y* = Mx* + h, so (w* — )T (zF — y*) > 0 and we have
(l‘k . J}*)T(yk . y*) Z (l‘k . wk)T(yk . Zk) T (wk . J}*)T(yk . Zk) T (l‘k . wk)T(Zk . y*)‘
We can now use Lemma 5.1(ii) and (2*)Ty* = 0 to write

(x*)Tyk T (y*)Txk

e R T R Ay B (Tt L VAR B U U Y ELE Ty
< g (20 = ) (0 = 20| v |(F = )T (0 = 20|+ |20 = ) (- )
< gt v [[(2° = w) (50 = 20)] 4 (0 = @) (0 = 20|+ [(2° = w0 (F — y7)]] (50)
Now
[ I e I e e [ I o [ el
125 =y < 1 =M+ " =yl < wll2® = w0+ I+ el

Hence, by boundedness of (2%, y*), we can bound the bracketed term in (50) by a constant
independent of k (C1, say) and write

(@) + ()" 2" < gy + Cue
By (18), we have vy < (Bru0) ™ g, so
() "y" + (v 2k < i [+ Cr(Brpo)™!] (51)
Since (z*,y*) > (0,0) and (z*,y*) > (0,0), we have from (51) that
i€ N = yiaf < [n+ Cu(Bope) ™', (52a)
i€B = iyt < ln+ Ci(Bupmo) ™. (52b)
Since z7 > 0 for : € B and yf > 0 for : € N, we can define C; < co by
7 B 1 1
Ch = [n + C1(Brio) ] max | sup —, sup — | . (53)
€eB T, eNY;

The inequalities (48) follow immediately from (52) and (53).
For (49a), we have using v, > 7 that

viyl > ke > Y
so, using (48b), we have
THE o Tk

2 =

. gl
1€ B = :L'f > > —
Y; C1Mk Cl
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as required. The remaining inequality (49b) is proved similarly. [
Note that, in contrast to Zhang [6] and Wright [4], we do not require

(2%9°) = (v, 2°). (54)

In [4], we needed (54) to prove (48) and (49) but, in this paper, our a priori knowledge of
the boundedness of {(z*,y"*)} makes this assumption unnecessary.
We now prove a simple result that establishes lower bounds on y¥, ¢ € B, and 2%, 7 € N.

Lemma 5.3 For all k > 0, there is a positive constant Cy such that

1

i€B = yf> ; — e (55a)
1

ieEN = ¥ > —u. (55b)
Cy

Proof. Since, by Lemma 3.2, {(z*, y*)} is bounded, we can choose C < oo such that, for
all k&,

0<af <Oy, 0 <y <Oy, i=1,2,---,n
For (hha) we have B B
i€ B, alyf >y = yf > H > 1B
l’f CQ
as required. The proof of (55b) is similar. [
We now have all the inequalities needed to prove the main results for boundedness of

(u®, %), using identical techniques to those in [4, Section 5].

Theorem 5.4 There are positive constants Cy and Cs such that the components of the step
(u®,v*) satisfy the bounds

€N = |uf| < Cyp, (56a)
i€B = || < Cyu, (56b)
and
. k 05 ~
i€ B = it < Tt o) (57a)
. k CS ~
te N = |vf]| < 7(/@ +0). (57b)

Proof. From (21a), we have

1/2
y_f/
7

3n _
<D S+ B L+ 6+ )i = Can”,
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for Cy defined in an obvious way. Hence, using (48a) and x¥y* > yuy, we have for 1 € N
that

k x} v 1/2 xl =~ 1/2 at =~ 1/2 Chie 4
1 () ol = o < el < S
The inequality (56a) is obtained by setting Cy = C,C4/5"/2.

The proof of (56b) is similar.

The remaining inequalities (57) can be proved as in Lemmas 5.2 and 5.3 of [4]. Lemma
5.2 is a technical result that is an extension of an earlier result of Ye and Anstreicher [5,
Lemma 3.5]. In the proof of [4, Lemma 5.3], we use the inequalities (18), (48), (49), (55),
(56), and boundedness of the sequence {(z*,y*)}, all of which have been proved above. We
omit further details and refer the interested reader to [4]. [

Theorem 5.5 Suppose we define the constant Cg as
A
06 == Qmax(l, 0405).

Then if 6 = o, = pg, we have

|ufvzk|§(06/2)luzv izlv"'vnv
and
()" oH| < n(Co/2)pt.
Proof. The result follows immediately from Theorem 5.4. [

6 Superlinear Convergence

In this final section, we show that the sequence {u;} converges superlinearly to zero with Q-
order 2. The development follows that in [4, Section 6] quite closely. We write out the proofs
of our results where there is enough difference from the proofs of [4] to cause confusion, and
omit them otherwise.

We start by defining a threshold condition involving p and 4, and finding bounds on
the step length ¢ given by the fast step procedure when this condition is satisfied.

Lemma 6.1 Suppose at iteration k that

Mk P
=7 = 3G, (58)

and that a fast step is calculated. Then the step length ¢ will satisfy

1>¢>1-C AL

(e =7)(1 =7)
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Proof. Before proceeding, note that if the fast step is successful, the algorithm sets ~z14
to (1 + %), and so

M= e = (L F ) = (1 +3%) =341 = F) = (e =)L = 7). (59)
Under these circumstances, condition (58) is equivalent to

Kk < P ‘
Ve — Vk+1 306

(60)

We use (58) and (60) interchangeably for the rest of this section.
The remainder of the proof is similar to the proof of Lemma 6.1 in [4]. First, we show
that the centrality condition (11) is satisfied for all ¢ in the interval

[k

ee |01 —Co——| .
Ve — Vk+1

(61)
Second, we show that the complementarity reduction condition (12) is also satisfied for all
@ in the interval (61). The result of the lemma then follows immediately from the way in
which ¢ is chosen by the fast step procedure.

We start with (11). Using the parameter settings ¥ = 441 and & = o} = g, we have
from (2) and (2%, y*) € V(7;) that

ko k
TiYi = Vkbks
ko k| ok k A k. k
wiof fyiul = —afyl +op = —wiyl + p-

Hence, using Theorem 5.5, we obtain

(2F 4+ oul)(y!F + vl
= afyl + o(afol +ylul) + QPulvf
> pn(l — @) + opi — ©*(Ce/2) i

On the other hand,
1
~Yipr (2" + pu) (5" + pve)
< e [l — ¢ + o) + 9*(Co/2)p7]
Therefore condition (11) will be satisfied provided that

k(1 = @) + ouz — ¢*(Co/2) i
> i [l — @ + o) + 9*(Co/2)1it]

or, equivalently,

(Ve — Yo+t — @) + ppi (L — ve41) — @21 (Co/2)(1 + Yag1) > 0.

21



Since yp41 € [7,1), a € (0,1], and ¢ € (0, 1], this last inequality will hold if

1
1+ Copir/(Yk — Yrg1)

>

(v — Ve k(L — ) —@Copi >0 = 0<p < g

We can use (26) to obtain
[t

pr>1—Co———,
Ve — Vk+1

and so (11) is satisfied for ¢ in the range (61).
It suffices to show for the second part of the proof that

1 ~
~(@" +put) (" + ov") — (1= )| < B = @)pue (62)
for all ¢ satisfying (61). Since

1 1
~(@" + o) (" + v’ =l = o+ ppm) + —@* (W),

we have

1

1
(o) 4 o) = (1= Q)| < ik + 0 () TF| < i+ P (Ca/2)

Therefore, (62) holds if .
ik + 9" (Co/2)ux < B(1 — @),

which in turn is true provided that
e [+ Cof2)u + 5] < 5. (63)

Now, using Cs > 2, (63) is satisfied if

o< g = u
Sern==——-:

B+ Cspig
Since § = A > 4 — vpy1 by (59), we have

1 1
> .
L+ Copr /5 = 1+ Copr/(Yk — Yat1)

wrr =

Using (26) again, we obtain
Cefig
Ve = Yht1
which implies that (12) holds for all ¢ satisfying (61).
We can now show that, when a fast step calculation is performed and the condition (58)

err>1—

holds, the fast step will be accepted by the algorithm, since pri1 < pug.
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Lemma 6.2 [f (58) is satisfied at iteration k and a fast step is calculated, then

3C,
frpr S ———pi < ppig., (64)
Ve — VE+1

and
Hr+1 Kk

< .
(Yer1 =) =7) ~ (=71 =7)
Proof. We start by showing that px(¢) defined by

(65)

sl

1
1) 5(@"“ + ouf) (g 4+ ov®) = (1 — ¢ + o) + 5992(1/“)%’“

is monotonically decreasing for ¢ € [0, 1] when g > 0. Using Theorem 5.5 and the fact that
(¢ > 1, we have

2
i) = =gl = ) + o ()08 < =1 = ) + @ Coprp < —pua(1 = 2Cop).

It follows from (58) that 2Csuy < 1, and so p)(¢) < 0 as required.
Since a successful fast step will choose ¢y in the interval (61), we have

1
ferr = (1 —@n + prpr) + g@z(uk)%k

1ka
()T

< (1 — i) + pi +

Cop? C
e o,
Vi — Vh41 2

IA

Since 1 < Cs/2 < Cg/(vk — Yr41), we can bound all three terms in the last expression by

Ceptr/(7k — Yx+1) and obtain
3Cs 5
fpr < —————pj,
Tk — Vk+1

giving the first inequality in (64). The second inequality in (64) follows immediately from
(60).
For (65), we can use (64) to write

Hi+1 _ Hi+1 < 1 3Cs N2 _ 3Cs l HE r (66)
(it =L =7)  AF(L=7) = (1 =3) (1 =5)"" 5 31 —7)
From (58) and (59), we have
3C, 3C,
76715 'uk, _ 76 ,’uk _ §§<17
v =5 7 (=N =7) 7

where the last inequality follows from the definition of p and % in the algorithm. Substitution
of this inequality into (66) yields the desired result. [
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Theorem 6.3 Suppose that condition (58) is satisfied at iteration K and that
pr < p.
Then
(i) the algorithm takes fast steps at iteration K and at all subsequent iterations, and

(ii) the sequence {ur} converges superlinearly to zero with a Q-order of 2.

Proof. The second inequality in (64) guarantees that the fast step is accepted at iteration
K, while (65) ensures that the threshold condition (58) still holds at iteration K + 1. By
induction, it follows that (i) is true.

For (ii), we apply an argument from [4] to the first inequality in (64). See [4, Theorem
6.3] for the details. ]

Finally, we show that the algorithm will eventually reach an iterate K at which both (58)
and px < p are satisfied, and so superlinear convergence is guaranteed to occur.

Theorem 6.4 Suppose we define constants [ and € by

s logy
= 0,1
f logp E( b )
and B
X Iz if == < 560
ez{ 2= T (67)
36 R ] i otherwise.

Then if K is the smallest positive integer for which

HEK S év (68)
we have that . P
—— < 69
Yl =5) 7 3Cs (69)
and
UK S ﬂv (70)
and hence the conditions of Theorem 6.3 are satisfied.
Proof. The proof is almost identical to that of Theorem 6.4 in [4], so we omit it. [

This section culminates in the following result, which is immediate from Theorems 6.3

and 6.4.

Corollary 6.5 The sequence {uy} converges to zero superlinearly with a Q-order of 2.
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